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Abstract 
Space planetary missions' analysis with low-thrust propulsion includes orbit raising and de-orbiting manoeuvres 

which can involve multiple revolutions resulting in a spiralling motion of the satellite. The launch of large constellation 
satellites is increasing the number of satellites launched per month and the design of their trajectory to be positioned 
in their operational orbit. This problem is particularly relevant when low-thrust satellites are considered that are 
characterised by a continuous thrust and are getting more involved in the design of new missions since they grant a 
greater final operational mass thanks to their high specific impulse. 

The optimisation of low-thrust trajectories involving a larger number of orbit revolutions is a challenging problem. 
Differential dynamic programming is one of the techniques that can be used to solve nonlinear optimal control 
problems. This method based on the application of Bellman principle of optimality defines a feedback control law 
solving necessary optimality conditions during the backward sweep discretising the overall problem in several decision 
steps and checks for the functional cost reduction during the forward integration to accept or reject the computed 
control law. In the last years, differential dynamic programming technique evolved thanks to the formulation of the 
hybrid differential dynamic programming proposed by Lantoine and Russell which maps the required derivatives 
recursively using state transition matrices and the stochastic differential dynamic programming which introduces 
random perturbations that can affect the dynamics. However, all past works deal with orbital dynamics expressed in 
terms of Cartesian coordinates and in only one paper orbital elements are used as state representation, but the 
rendezvous problem is not solved.  

This paper presents a systematic procedure for the optimisation of multi-revolution low-thrust trajectories using 
the differential dynamic programming technique based on orbital elements as state rep- 
representation of the dynamics. Lagrange and Gauss planetary equations are used to model the spacecraft dynamics to 
include both conservative and non-conservative accelerations. 

Some planetary missions like orbit raising for large constellations considering the engine specifics of actual 
satellites are used to test the proposed approach including also J2 orbital perturbation.  
Keywords: low-thrust, optimal control, orbital elements, differential dynamic programming. 
 
Nomenclature 
𝛿𝛿𝒃𝒃 Lagrange multipliers variation 
𝛿𝛿𝒖𝒖 control variation 
𝛿𝛿𝒙𝒙  state variation  
𝜇𝜇 gravitational parameter [km3 s2⁄ ] 
𝝋𝝋 endpoint equality constraints  
𝜔𝜔 pericentre anomaly [rad]  
Ω right ascension of the ascending node [rad] 
𝑎𝑎 semi-major axis [km] 
𝑎𝑎� adimensional semi-major axis 
𝑎𝑎0 initial semi-major axis [km] 
𝒃𝒃  Lagrange multipliers 
𝒃𝒃� nominal set of Lagrange multipliers 
𝑒𝑒  eccentricity 
𝑓𝑓 true anomaly 
𝑖𝑖 orbit inclination [rad] 

𝐼𝐼𝐼𝐼𝐼𝐼 specific impulse [s] 
𝐽𝐽 cost function 
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 reference length [km] 
𝑚𝑚 satellite mass [kg] 
𝑚𝑚�  adimensional mass 
𝑚𝑚0 initial satellite mass [kg] 
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 reference mass [kg] 
𝑟𝑟 satellite distance [km] 
𝑡𝑡  time variable [s] 
𝑡̃𝑡 adimensional time  
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 reference time [s] 
𝒖𝒖 control thrust [N] 
𝒖𝒖� nominal control 
𝒖𝒖� adimensional control thrust 
𝒖𝒖∗  control minimising the Hamiltonian function  
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𝑢𝑢0 maximum control thrust magnitude [N] 
𝑢𝑢ℎ  out-of-plane control thrust [N] 
𝑢𝑢�ℎ adimensional out-of-plane control thrust 
𝑢𝑢𝑛𝑛  normal control thrust [N] 
𝑢𝑢�𝑛𝑛 adimensional normal control thrust 
𝑢𝑢𝑡𝑡  tangential control thrust [N] 
𝑢𝑢�𝑡𝑡 adimensional tangential control thrust 
v satellite velocity magnitude [km/s] 
𝑉𝑉 value function 
𝒙𝒙 satellite state vector  
𝒙𝒙� nominal state vector 
𝒙𝒙𝑓𝑓  final state vector 
 
Acronyms/Abbreviations 
ESA European Space Agency 
GNSS Global Navigation Satellite Systems 
HDPP Hybrid Differential Dynamic Programming  
SDDP Stochastic Differential Dynamic Programming  
DDP Differential Dynamic Programming  
PDE Partial Differential Equation  
HJB Hamilton-Jacobi-Bellman  
RAAN Right Ascension of the Ascending Node  
TOF Time Of Flight 
 
1. Introduction 

Electric spacecraft are the new frontier of next space 
missions, not only for planetary missions, but also for 
interplanetary missions. This can be inferred by looking 
at the latest space missions like the ESA mission 
BepiColombo [1] towards Mercury, or the Galileo [2] 
satellites belonging to the GNSS services. 

The low-thrust systems onboard of the electric 
spacecraft present the great advantage in maximising the 
final operational mass of the spacecraft but the design of 
the trajectories involving these systems are more 
involved because their dynamics cannot be represented 
by ballistic motion but it is a continuous dynamics where 
the thruster is always providing an acceleration. 

There are a lot of existing techniques dealing with the 
problem of low-thrust trajectory optimisation in 
literature. One of the most interesting techniques for 
solving non-linear optimal control problems is DDP. 
This method is based on Bellman’s principle of 
optimality [3] which states that an optimal policy has the 
property to be the same even if the optimal control is 
found starting from an intermediate state, and so it is 
independent on the initial guess used for the trajectory of 
the dynamics. This principle is mathematically expressed 
by a PDE which is the HJB equation. Unfortunately, this 
PDE has no analytical solution and the numerical 
solution cannot be provided since the dimension of the 
searching space is not finite. The DDP proposes to apply 
the dynamic programming in a neighbourhood of a 
nominal non-optimal trajectory. This method is more 
effective the closer the non-optimal trajectory is to the 
optimal solution. Colombo et al. [4] presented a modified 

DDP algorithm for the optimisation of low-thrust 
trajectories where the problem is discretised in several 
decision steps, so that the optimisation process requires 
the solution of a great number of small problems. 
Lantoine and Russell [5] developed a new second-order 
algorithm based on DDP, called HDDP, which maps the 
required derivatives recursively through first-order and 
second-order state transition matrices. Ozaki et al. [6] 
proposed a SDDP where random perturbations enter the 
dynamics of the problem and their expected values are 
computed by the unscented transform. However, this 
kind of technique has not been further explored and it has 
been used within the Cartesian framework.  

This paper presents a low-thrust trajectory 
optimisation using a DDP algorithm which is based on 
Keplerian orbital elements as state representation to 
prove that the methodology can work also in a different 
framework like the one proposed by the orbital elements. 
The dynamics of the system will be expressed by Gauss’ 
planetary equations in the [𝒕𝒕�,𝒏𝒏�,𝒉𝒉�] (tangential, normal, 
out-of-plane) reference frame because the low-thrust 
acceleration cannot be modelled as a conservative force.  

The paper is structured as follows: Section 2 presents 
the general DDP, while in Section 3 the modification due 
to the new representation in terms of the orbital elements 
will be presented. The results of the optimisation will be 
shown in Section 4, whereas Section 5 is devoted to the 
discussion of the results and of the methodology. Finally, 
Section 6 concludes the paper. 
 
2. Methodology and mathematical theory 

In this section the main problem of finding an optimal 
control law for trajectory design will be presented 
together with the fundamental theory and methodology 
of the DDP algorithm. 

 
2.1 Dynamics formulation 

 The optimisation problem consists in finding the a 
control law, 𝒖𝒖(𝑡𝑡), that inserted in the system dynamics 
provides a trajectory resulting in the minimisation of a 
functional cost subject to some final equality constraints. 

 
𝐽𝐽 = ∫ [𝑢𝑢(𝑡𝑡)]2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
      subject to     𝝋𝝋 = 𝒙𝒙�𝑡𝑡𝑓𝑓� − 𝒙𝒙𝑓𝑓 (1) 

 
In the Keplerian orbital elements framework, the 

equations of motions of an orbiting satellite are 
represented by Gauss’ planetary equations which model 
both conservative and non-conservative accelerations. In 
this work Gauss’ planetary equations are defined in 
[𝒕𝒕�,𝒏𝒏�,𝒉𝒉�]  reference frame since. The set of Gauss’ 
equations is reported from Battin [7] together with the 
mass variation equation that completes the dynamics of 
a low-thrust satellite: 
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where a, e, i, Ω, ω, f are the osculating semi-major 

axis, eccentricity, inclination, Right Ascension of the 
Ascending Node (RAAN), pericentre anomaly, and true 
anomaly, respectively. The vector [ut, un, uh] represent 
the components of the disturbing forces that are the sum 
of the control actions and the orbital perturbations while 
m id the mass of the satellite and Isp the specific impulse. 

The dynamics formulation can be rearranged to 
improve numerical integration making all the equations 
non dimensional so that the difference in terms of order 
of magnitudes between the orbital parameters is reduced. 
All the orbital elements and disturbing accelerations are 
allowed to range between [0,1]. The following set of 
reference quantities has been used for the 
adimensionalisation process: 
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The n divisor used for definition of the reference mass is 
introduced to avoid that adimensional mass is close to 
zero leading to a divergence of the integration of the 
equations of motions. Using the reference quantities 
given by Eq. (2), Gauss’ adimensional equations are 
formulated in the following manner: 
 

( )

( ) ( )

( ) ( )

( ) ( )
( )

( )

3
2

2

2 2

2

2

2

2

2

2 1 2 cos
1

1 12 cos sin
1 2 cos 1 cos

cos
1

1 cos
sin

1
sin 1 cos

1 2 cos1 2sin
1 2 cos

t

t n

h

h

t

uda a e f e
dt e m

a e u ude ee f f
dt e f e m e f m

f udi a e
dt e f m

f ud a e
dt i e f m

ud e fa e f
dt me e f e

ω

ω

ω

= + +
−

−  −
= + − + + + 

+
= −

+

+Ω
= −

+

+
= − +

+ +

 







 



 

























( )

( )

( )
( )

2

2 2 2

3 2
2 2

2 2 2

0

cos
1 cos

sin cos
1 cos sin

11 cos 1 2 cos cos2sin
1 cos 1 cos

1

1

n

h

t n

t n h
ref

ue f
e f m

f ui
e f i m

a ee f u udf e f e ff
dt e e f e m e f m

a e

dm u u u
dt L Isp g

ω

µ

  + +  + 
+ 

− + 

−+  + +
= − + + + +  − 

= − + +











 



 



  



(3) 

 
The use of classic Keplerian elements as 

representation of the state dynamics introduces some 
limitations on the orbits that can be considered because 
of the singularities associated to the equations of motion. 
Gauss’ variational equations in terms of classic 
Keplerian elements are singular for circular orbits (e = 0) 
and equatorial orbits (i = 0). These singularities are 
restricting the application of such orbital elements 
because both circular orbits and equatorial orbits are of 
particular interest for space missions. Modified 
equinoctial elements can be considered to eliminate the 
two singularities and include both circular and equatorial 
orbits in the analysis. The expression of non-dimensional 
Gauss’ variational equations in terms of modified 
equinoctial elements considering the same set of 
reference variables in the radial-transversal-orthogonal 

ˆ ˆˆ, , 
 r θ h  reference frame is reported: 
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2.2 DDP theory and fundamental algorithm 
Differential dynamic programming is a numerical 

technique for the resolution of non-linear optimal control 
problems, and it is a simplification of the most general 
concept of dynamic programming. It is based on 
Bellman’s principle of optimality [3] that can be 
mathematically represented using Hamilton-Jacobi-
Bellman (HJB) equations in its continuous version: 

 
( ) [ ]

( )

,
min ( , , ) ( , , ) ( , )

t

V t
J t t V t

t
∂

= − + ⋅∇
∂ u

x
x u f x u x           (5) 

 
where V is the value function, J is the functional cost 

and f represents the equations of motion describing the 
dynamics of the system. The HJB equation is a partial 
differential equation with no analytical solution. 
However, no numerical solution can be as well obtained 
because the dimension of the search space is not finite.  
This is defined in literature as the “curse of 
dimensionality”. The DDP offers a solution to the HJB 
equation representing a linear-quadratic expansion 
starting from a nonoptimal solution used as first guess. 
This way it is possible to apply Bellman’s principle of 
optimality to obtain at least a local optimal solution, 
because the global optimality is lost due to the 
application of the linear-quadratic expansion. The HJB 
equation also admits a discrete version that can be 
coupled with the numerical integration schemes: 
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1 1 1, , min , , , ,
k

k k k k k k k k k kV t J t V t+ + + = + u
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where V*

k+1 represents the optimal value function 
obtained at the successive step tk+1, and b is the vector of 
Lagrange multipliers used to adjoint the endpoint 
constraints to the cost function, J, for the definition of the 
value function, V. In this work the discrete version of the 
DDP algorithm is used. Before Taylor expansion is 
applied, each variable in Eq. is reformulated as the sum 
of a nominal initial guess and a small variation in the 
following way:  

 
(7) 

 
 

Each term is expanded in Taylor series starting from the 
initial nominal guess stopping at the second-order term 
to be consistent with the linear-quadratic expansion 
assumption. At this point the algorithm can be 
formulated in its “local” or “global” version: 

 
- the local version keeps the nominal control uk as 

starting point of the Taylor expansions. 

- the global version uses as initial guess for the 
expansions the optimal control u* obtained from 

the minimization of the expanded HJB equation 
with all the variations equal to zero. 

The attribute “local” or “global” refers to the 
magnitude of the control variation that can be applied and 
not to the final minimum solution which will be always 
a local optimal solution. In the “global” version of the 
algorithm the initial guess is the result of an optimisation 
problem. The consequence is that the search space for the 
overall optimal control problem is increased. 

Once each term in the HJB equation is expanded in 
Taylor series the optimal control variation that minimizes 
the right-hand side of HJB equation must be computed. 
The evaluation of the optimal solution is carried out 
differentiating with respect to the control variation 
leading to a linear feedback control law. 
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The feedback control law is replaced in the expanded 

HJB equation to obtain the following set of backward 
difference equations: 
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     The initial condition for the backward difference 

equations is given by the partials of the cost function 
evaluated at the final state.  
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The matrices appearing in the backward equations are 

obtained plugging together the coefficients multiplying 
the same differentials in the expanded HJB equation. 
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Therefore, the DDP can be summarised as a 

technique that is divided in a first backward sweep where 
the optimal control feedback law is computed and a 
second forward integration where the control law is 
applied to check if a minimisation of the functional cost 
is achieved. The process iterates until no further 
reduction is obtained leading to the minimum optimal 
solution. A schematic procedure of DDP algorithm is 
reported in Fig. 1.  
   
3. DDP based on Keplerian orbital elements  

In the previous section the standard DDP algorithm 
has been described. Some adjustments must be carried 
out when orbital elements are used as state representation 
of the system dynamic. Indeed, the use of orbital 
elements is introducing two main features which are not 
present when Cartesian coordinates are considered: 

 
- The largest part of orbital elements is made of 

angles which are limited in the interval [0, 2π]. 
- The orbital elements are divided into “slow” 

variables and “fast” variables”. 
 
The first feature impose a strict control on the 

variation of the orbital elements associated with angles. 
A miscalculation of the angular state variables can lead 
to a wrong optimisation of the dynamics causing the 
DDP algorithm to diverge. Such control can be 
performed introducing two indices which are storing for 
each numerical integration of the trajectory if the angle 
is inside or outside the interval [0, 2π]. If the angle is 
inside the interval the index assumes value equal to 0. If 
the angle is larger than 2π the index assumes value equal 
to +1, while if the angle is negative the index is equal to 
-1. This way the variation of the angular state variables 
can be generalised considering the following formulation: 

 
                 ( ) ( )2 2k k opt k nomi iδ π π= + − +x x x  (12) 
 
 
 

Fig. 1. Schematic procedure of DDP algorithm 
 
A schematic procedure of the definition of the two 
indices for the evaluation of the angular state variables 
variations is reported in Fig 2. 
 

 
 
Fig. 2. Index definition for the angular state variations 
 

The second feature is peculiar of orbit dynamics 
expressed in terms of orbital elements. Indeed, while 
Cartesian coordinates associated to a revolution are just 
random variables which are oscillating, the orbital 
elements are attached to the geometry of the satellite 
orbit. The consequence is that 5 main orbital elements 
which describe the size, shape, orbit inclination and 
orientation (a, e, i, Ω, ω) are constant in case any 
perturbations is affecting the satellite, and the only 

 Using a nominal control 
𝒖𝒖� , compute a nominal 
trajectory 𝒙𝒙�  and a 
nominal cost 𝑉𝑉� . 
 

Using boundary conditions 
given by Eq. (10), integrate 
backwards the first two 
equations described in Eq. (9) 
storing all the matrices.  
 

Apply the step-size adjustment 
method to obtain a new improved 
trajectory. If it is the optimal one, 
stop the computation. 
 

If a new improved trajectory 
is found, replace the nominal 
value 𝒖𝒖� , 𝒙𝒙� ,  𝑉𝑉�  by the new 
improved values. 
 

Integrate 
backwards 
all Eq. (9)
using 
boundary 
conditions in 
given by Eq.
(10). Upload 
the value 
of 𝛿𝛿𝒃𝒃 and 
integrate the 
dynamics. 
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orbital parameter changing with time is the true anomaly 
f. When orbital perturbations or disturbing accelerations 
are introduced like the one provided by a low-thrust 
engine, the variation of orbital elements will be “slow” 
with respect to the variation of the true anomaly which 
will be “fast”.  

The DDP algorithm is structure so that the largest is 
the variation of a state variable the stronger will be the 
action provided by the control law to reduce that 
constraint violation. However, this way of optimizing the 
problem can lead to a wrong solution when a rendezvous 
is considered. If the largest constraint violation is 
represented by the true anomaly, the DDP algorithm will 
update the control law so that the difference between the 
actual true anomaly and the final prescribed one is 
reduced without changing the geometry of the orbit due 
to the large difference in variation in the constraint 
violation. This problem cannot be solved introducing 
weights that are tuning the magnitude of the constraint 
violations because it is a feature attached to the dynamics 
represented by orbital parameters. 

Another result that can be obtained when working 
with orbital elements is that the control cannot optimise 
all the variables at the same time. Looking at Eq. (1) the 
pericenter anomaly rate and true anomaly rate equations 
present the coefficients multiplying the control actions 
which are opposite. If the gradient of the two equations 
with respect to the control action is considered the result 
will be equal and opposite because the first term in the 
true anomaly rate is independent on the control action. 
Therefore, if a given control action is used to maximise 
the pericenter anomaly, the true anomaly will be 
minimised and the other way around. The two variables 
cannot be maximised or minimised at the same time 
considering the same optimal control thrust. This 
phenomenon is again explained remembering that a 

variation of the true anomaly can be obtained not only 
thanks to the satellite motion but also changing the 
direction of the eccentric vector which is the reference 
line where the true anomaly is measured. Therefore, 
while for all the orbital parameters there is a direct effect 
when a control action is applied, for the true anomaly 
there is not this cause-effect relationship leading to the 
impossibility to optimise all the 6 orbital elements 
together.   

The following strategy is proposed for the application 
of DDP algorithm when orbital elements are used as state 
representation of the dynamics. The overall problems is 
divided in two main parts: 

 
- A first optimisation of the overall problem 

considering only the 5 slow orbital elements is 
considered. 

- The optimal solution of the previous sub-
problem is used as initial guess for the overall 
problem. 

 
The decomposition of the overall problem in a first 

sub-problem where only the constraints related to the 
slow orbital elements are considering is ensuring that the 
final target orbit will be exactly the prescribed one. In the 
second part, the optimal thrust is adjusted so that the final 
position of the target orbit is corrected to match the 
prescribed true anomaly. However, the difference 
between the true anomaly variation and the other orbital 
parameters variation can lead the DDP algorithm to 
change the control thrust to depart from the target orbit. 
This means that a strategy for the reduction of the true 
anomaly variation must be pursued for the correct 
implementation of the algorithm.  

A continuation scheme is proposed as technique for 
the control of the true anomaly variation magnitude. 

Fig. 3 Continuation scheme procedure 
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Fig. 4.  Optimal vs nominal trajectory

A vector of true anomalies [f0, f1, …, freq] is generated 
starting from the true anomaly of the optimal solution of 
the first sub-problem and the prescribed final true 
anomaly. A series of optimal control problems is solved 
considering as target true anomaly each element of the 
vector. The optimal solution of each problem is used as 
initial guess for the next one. This way, the variation of  
the true anomaly we are asking to the DDP algorithm is 
reduced and the other orbital elements will not be 
changed. The continuation scheme is shown in Fig. 4. 
 
4. Results  

The new DDP algorithm has been applied to a 
planetary orbit raising. The parameters of the problem 
are summarised in Table 1 and Table 2. 

The problem has been solved including in the 
analysis also the effect of J2 orbital perturbation which 
represents the strongest action when low Earth orbit 
satellite are considered.  
 

Table 1. Initial data for the orbit raising 

 

 
 

Table 2. Final data for the orbit raising 

 
In Fig. 5 the magnitude of the nominal and optimal 

control law are shown while in Fig. 6 the time history of 
the 3 components is presented. The initial guess is a 
tangential control thrust. 

The multiple revolutions associated to the final orbit 
are represented in Fig. 4 where the typical spiralling 
behaviour of low-thrust trajectories is shown. 

 
Fig. 5. Initial nominal control guess for the DDP  
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Altitude 1200 km 
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Fig. 6. Optimal control law after the DDP optimisation 

It is possible to also plot the variation of the orbital 
elements associate to the optimal control thrust in Fig. 7. 

 
 
 
 

5. Conclusions  
In this paper a DDP algorithm based on Keplerian 

elements as state representation of the problem has been 
investigated. The structure of the algorithm has been kept 
unchanged from the traditional one, but a new 
formulation for the dynamics has been provided through 
Gauss’ planetary equations and a new algorithm strategy 
has been proposed. The method has been assessed testing 
a planetary orbit raising. A future work will include the 
effects of the perturbations expressed analytically thanks 
to the semi-analytical formulations inside the dynamics 
of the system to enhance the effects of the orbital 
perturbations.  
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Fig. 7. Orbital elements time variation
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