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Message from the Chairs 
 
Welcome to the 2nd International Workshop on Software Engineering and AI for Data 
Quality in Cyber-Physical Systems/Internet of Things (SEA4DQ 2022), November 17th, 
2022, co-located with the ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC / FSE) 2022, Singapore.  
 
Cyber-physical systems (CPS)/Internet of Things (IoT) are omnipresent in many industrial 
sectors and application domains in which the quality of the data acquired and used for 
decision support is a common factor. Data quality can deteriorate due to factors such as 
sensor faults and failures due to operating in harsh and uncertain environments. How	can	
software	engineering	and	artificial	intelligence	(AI)	help	manage	and	tame	data	quality	issues	
in	CPS/IoT? In this workshop, we aim to answer this question. 
 
Data quality is of paramount importance for CPS/IoT. This workshop series stemmed from 
the common interest in data quality of the Zero-Defect Manufacturing (ZDM) Research and 
Innovation projects under the Horizon 2020 Framework Programme such as InterQ 
(https://interq-project.eu/) and DAT4.Zero (https://dat4zero.eu/). Not only for ZDM, but 
also in general, emerging trends in software engineering need to take data quality 
management seriously as CPS/IoT are increasingly data-centric in their approach to 
acquiring and processing data along the edge-fog-cloud continuum. This workshop provides 
researchers and practitioners a forum for exchanging ideas, experiences, understanding of 
the problems, visions for the future, and promising solutions to the problems in data quality 
in CPS/IoT.  
 
Compared to the first edition SEA4DQ 2021, which featured one keynote, five presentations, 
and one panel discussion, the second edition SEA4DQ 2022 has evolved significantly with 
two keynotes, eight paper submissions, six presentations, and one panel discussion. Eight 
papers submitted to SEA4DQ 2022 had gone through a rigorous review process by the 
Program Committee, with three/four reviewers per paper. Submissions of PC members were 
treated with clear declaration of conflict of interest and decided by the PC chair without 
conflict of interest. In the end, based on the reviews, the PC had decided to accept two full 
papers, one work-in-progress paper, and two position papers. Five paper presentations are 
part of the SEA4DQ 2022's program together with two keynotes, one project presentation 
(InterQ), and a panel discussion.  
 
SEA4DQ 2022 features Prof. Dr. Andreas Metzger, Head of Adaptive Systems and Big Data 
Applications from University of Duisburg-Essen, Germany, and Prof. Dr. Foutse Khomh, Head 
of SoftWare Analytics and Technologies (SWAT) Lab, University of Montréal, Canada as two 
keynote speakers. The first keynote speaker Andreas Metzger addresses Data	Quality	Issues	
in	Online	Reinforcement	 Learning	 for	 Self‐adaptive	 Systems. The second keynote speaker 
Foutse Khomh addresses Quality	 and	Model	Under‐Specification	 Issues. Furthermore, the 
accepted contributions, selected carefully by the program committee, show the research 
trends to address data quality issues are being intensified. Jørgen Stang, Dirk Walther, Per 
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Myrseth report their full paper on Data	Quality	as	a	Microservice	‐	an	ontology	and	rule	based	
approach	for	quality	assurance	of	sensor	data	in	manufacturing	machines. Muhammad Azmi 
Umer, Aditya Mathur and Muhammad Taha Jilani present their full paper Effect	 of	Time	
Patterns	in	Mining	Process	Invariants	for	Industrial	Control	Systems:	An	Experimental	Study. 
Valentina Golendukhina, Harald Foidl, Michael Felderer and Rudolf Ramler provide in their 
work-in-progress paper Preliminary	Findings	on	the	Occurrence	and	Causes	of	Data	Smells	in	
a	Real‐World	Business	Travel	Data	Processing	Pipeline. Maryna Waszak, Terje Moen, Sølve 
Eidnes, Alexander Stasik, Anders Hansen, Gregory Bouquet, Antoine Pultier, Xiang Ma, Idar 
Tørlen, Bjørn Rune Henriksen, Arianeh Aamodt, Dumitru Roman address Data	Quality	Issues	
for	Vibration	Sensors:	A	Case	Study	in	Ferrosilicon	Production in their position paper. And last 
but not least, Dumitru Roman, Antoine Pultier, Xiang Ma, Ahmet Soylu, Alexander G.Ulyashin 
present Data	Quality	Issues	in	Solar	Panels	Installations:	A	Case	Study in their position paper.  
 
We would like to thank the program committee members and all reviewers for their work 
in evaluating the submissions. We also thank the SEA4DQ 2022 organizers for their 
assistance in the preparation of the workshop and the editors of ESEC / FSE 2022 for help 
in publishing these proceedings. 
 
 
Singapore                                                                                                                       Phu H. Nguyen  
November 2022                                                                                                  Maria Chiara Magnanini 
                                                                                                                                                Sagar Sen 
                                                                                                                                                   

SEA4DQ 2022 chairs 
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DataQuality Issues in Online Reinforcement Learning
for Self-Adaptive Systems

(Keynote)
Andreas Metzger

andreas.metzger@paluno.uni-due.de
paluno (The Ruhr Institute for Software Technology), University of Duisburg-Essen

Essen, Germany

ABSTRACT
Online reinforcement learning is an emerging machine learning
approach that addresses the challenge of design-time uncertainty
faced when building self-adaptive systems. Online reinforcement
learning means that the self-adaptive system can learn from data
only available at run time. After introducing the fundamentals
of self-adaptive systems and reinforcement learning, the keynote
discusses three relevant issues and recent solutions related to data
quality in online reinforcement learning for self-adaptive systems.

CCS CONCEPTS
• Software and its engineering→ Designing software.

KEYWORDS
Machine learning, adaptive system
ACM Reference Format:
Andreas Metzger. 2022. Data Quality Issues in Online Reinforcement Learn-
ing for Self-Adaptive Systems (Keynote). In Proceedings of the 2nd Interna-
tional Workshop on Software Engineering and AI for Data Quality in Cyber-
Physical Systems/Internet of Things (SEA4DQ ’22), November 17, 2022, Singa-
pore, Singapore. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/
3549037.3570194

1 INTRODUCTION
A self-adaptive system can modify its structure and behavior at
run time based on its perception of its environment, itself, and
its requirements. Via self-adaptation the system can maintain its
requirements in the presence of dynamic environment changes [4].
Examples of self-adaptive systems include elastic cloud systems,
intelligent IoT systems, and proactive process management systems.

When developing a self-adaptive system, developers face the
challenge of design-time uncertainty. They have to anticipate po-
tential environment states and the precise effect of an adaptation
in a given environment state. However, oftentimes the knowledge
available at design time is not sufficient to do so [5].

This keynote explores the opportunities but also challenges that
modern machine learning algorithms offer in engineering self-
adaptive systems in the presence of design-time uncertainty. It

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEA4DQ ’22, November 17, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9459-8/22/11.
https://doi.org/10.1145/3549037.3570194

will focus on online reinforcement learning as an emerging ap-
proach. Online reinforcement learning enables the self-adaptive
system to learn from data only available at run time.

The keynote addresses the following issues and recent solutions
related to data quality in online reinforcement learning for self-
adaptive systems: (a) data drift [3], (b) data sparsity [2], and (c)
data non-transparency [1]. The keynote also provides a critical
discussion and an outlook on future research opportunities.

2 BIOGRAPHY
Prof. Dr. Andreas Metzger is an adjunct professor at the Univer-
sity of Duisburg-Essen and heads the “Adaptive Systems” group
at paluno, the Ruhr Institute for Software Technology. His current
research interests include the use of machine learning in software
engineering and business process management. He is the steering
committee vice chair of the Networked European Software and
Services Initiative and was deputy general secretary of the Euro-
pean Big Data Value Association from 2015 to 2021. Among other
leadership roles, he was the technical coordinator of the European
lighthouse project TransformingTransport.
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pean Union’s Horizon 2020 research and innovation programme
under grant agreement no. 871493: DataPorts.

REFERENCES
[1] Felix Feit, Andreas Metzger, and Klaus Pohl. 2022. Explaining Online Reinforce-

ment LearningDecisions of Self-Adaptive Systems. In IEEE International Conference
on Autonomic Computing and Self-Organizing Systems, ACSOS 2022, Virtual, Sep-
tember 19-23, 2022, Elisabetta Di Nitto, Ilias Gerostathopoulos, Kirstie Bellman,
and Sven Tomforde (Eds.). IEEE, 51–60.

[2] Andreas Metzger, Clément Quinton, Zoltán Ádám Mann, Luciano Baresi, and
Klaus Pohl. 2022. Realizing Self-Adaptive Systems via Online Reinforcement
Learning and Feature-Model-guided Exploration. Computing (2022), 1–22.

[3] Alexander Palm, Andreas Metzger, and Klaus Pohl. 2020. Online Reinforcement
Learning for Self-adaptive Information Systems. In 32nd International Conference
on Advanced Information Systems Engineering, CAiSE 2020, Grenoble, France, June 8-
12, 2020 (LNCS, Vol. 12127), SchahramDustdar, Eric Yu, Camille Salinesi, Dominique
Rieu, and Vik Pant (Eds.). Springer, 169–184.

[4] Danny Weyns. 2020. An Introduction to Self-adaptive Systems: A Contemporary
Software Engineering Perspective. John Wiley & Sons.

[5] Danny Weyns, Ilias Gerostathopoulos, Nadeem Abbas, Jesper Andersson, Stefan
Biffl, Premek Brada, Tomas Bures, Amleto Di Salle, Patricia Lago, Angelika Musil,
Juergen Musil, and Patrizio Pelliccione. 2022. Preliminary Results of a Survey on
the Use of Self-Adaptation in Industry. In 17th Intl Symp. on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS@ICSE 2022. ACM/IEEE, 70–76.

1

https://orcid.org/0000-0002-4808-8297
https://doi.org/10.1145/3549037.3570194
https://doi.org/10.1145/3549037.3570194
https://doi.org/10.1145/3549037.3570194
https://dataports-project.eu/


DataQuality and Model Under-Specification Issues
(Keynote)
Foutse Khomh

Polytechnique Montréal
Canada

foutse.khomh@polymtl.ca

ABSTRACT
Nowadays, we are witnessing an increasing demand in both in-
dustry and academia for exploiting Deep Learning (DL) to solve
complex real-world problems. However, the performance of these
high-capacity learners is currently bounded by the quality and
volume of their underlying training data. The use of incomplete, er-
roneous, or inappropriate training data, and the implementation of
poor data management practices in a training pipeline often result
into unreliable, biased, or under specified models. In this talk, I will
report about some recent research works that we have conducted
to identify best practices of data management for DL. I will also
report about recent techniques and tools that we have developed
to help detect the root cause of model under-specification issues
early on during a DL training process.
ACM Reference Format:
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BIOGRAPHY
Foutse Khomh is a Full Professor of Software Engineering at Poly-
technique Montréal, Canada CIFAR AI Chair on Trustworthy Ma-
chine Learning Software Systems, and FRQ-IVADO Research Chair
on Software Quality Assurance for Machine Learning Applications.
He received a Ph.D. in Software Engineering from the University of
Montreal in 2011, with the Award of Excellence. He also received a
CS-Can/Info-Can Outstanding Young Computer Science Researcher
Prize for 2019. His research interests include software maintenance
and evolution, machine learning systems engineering, cloud en-
gineering, and dependable and trustworthy ML/AI. His work has
received four ten-year Most Influential Paper (MIP) Awards, and six
Best/Distinguished Paper Awards. He also served on the steering
committee of SANER (chair), MSR, PROMISE, ICPC (chair), and
ICSME (vice-chair). He initiated and co-organized the Software En-
gineering for Machine Learning Applications (SEMLA) symposium
and the RELENG (Release Engineering) workshop series. He is co-
founder of the NSERC CREATE SE4AI: A Training Program on the
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DataQuality as a Microservice: An Ontology and Rule Based
Approach for Quality Assurance of Sensor Data in Manufacturing

Machines
Jørgen Stang∗
Dirk Walther∗
Per Myrseth∗

jorgen.stang@dnv.com
dirk.walther@dnv.com
per.myrseth@dnv.com

DNV
Oslo, Norway

ABSTRACT
The manufacturing industry is continuously looking for production
improvements resulting in high quality production, reduced waste
and competitive advantages. In this article, ontologies, semantic
rule logic andmicroservices have been deployed to suggest a system
for quality assurance of manufacturing machine data. The existing
upper ontology for manufacturing service description has been
used to define both the physical assets as well as the data quality
requirements. The system is used to both operationalize data quality
monitoring by semantic technology as well as enabling up-front
modelling of data quality requirements. The approach is illustrated
by a specific speed-feed case for manufacturing machines but could
easily be extended to other manufacturing use-cases or even to
other industries.

CCS CONCEPTS
• Computer systems organization → Architectures; • Theory
of computation → Semantics and reasoning; • Applied comput-
ing → Industry and manufacturing.

KEYWORDS
Data Quality, Manufacturing Machines, Sensor Data, Microservices,
Ontolologies, IoT
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1 INTRODUCTION
Internet of Things (IoT) and Industry 4.0 have already enabled dig-
ital transformation of knowledge, processes and services in most
industries. Advanced technology is both common-place and off-
the-shelf, providing means for quality improvements and efficiency
gains. In the manufacturing industry, machines and devices are
equipped with sensors to monitor operational characteristics such
as speed, heat, vibrations and more. These characteristics are subse-
quently used to detect deviations, failure modes, inconsistencies and
other events adversely affecting production quality. Traditionally,
this monitoring would rely on humans to detect by noise, visuals,
touch or even smell. Considering that the cost of rework and waste
is significant [24] the digital capabilities providing continuous mon-
itoring and analysis of operations is a game changer. In this new
reality, the quality of the sensor data used for monitoring and issue
handling will be a critical success factor. If left unattended, sensors,
just as the physical assets, will malfunction, drift, freeze, misalign
or plainly break. Subsequently, this will yield wrong information
which in turn can both abate failure detection as well as trigger
costly uncalled-for operations. This paper outlines how ontologies
based on the Manufacturing Service Description Language (MSDL)
can be used with data quality requirements expressed by the Seman-
tic Web Rule Language (SWRL) as model constraints. The specific
data quality rules are implemented as a microservice that can be
reused and deployed both across manufacturing machines as well
as across domains.

The work described here is intended to contribute towards the
ambition of zero defect manufacturing [13], where all process, prod-
uct and data is monitored to ensure any deviations are captured
and handled before production quality is affected.

2 OVERALL SYSTEM ARCHITECTURE
The described system uses a 3 layered architecture and each com-
ponent is briefly described in the next sections. The main objective
is to provide data quality monitoring by automatic reasoning (in-
ference) for the manufacturing machine signals. Figure 1 shows the
3 layers; (1) model definition by ontology on top, (2) semantics rule
logic in the middle and (3) the data quality service at the bottom.
All three layers are required to efficiently represent:

• Ontology – Model constraints (e.g. machine has a feed);
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• Rule – Semantic constraints (e.g. correlation coefficient should
be more than 0.8 between feed and cutting speed for a single
axis machines); and

• Metric – Data Quality as a Service (e.g. calculate correlation
coefficient).

The following is a brief description of Machine Signal, Ontology,
Rule, Metric and Result as shown in Figure 1.

Machine signals are received by event-hubs, streaming APIs,
historical data loads or other integration methods. Usually signals
are buffered to enable data quality metrics to be performed on more
than a single datapoint. Even though some metrics are useful on
single data points (say range and code list validation), most metrics
will require a dataset as input. Also, performance issues will often
debate operations on single datapoints.

The buffered dataset is uploaded to the ontology and validated
according to the defined relations. This utilises the capabilities of
the ontology to define complex models and assign a meaning to
the relations itself. The particular ontology used here is described
in a later section. The valid model can subsequently be queried
by rules to determine compliance with requirements. Ontologies
have reasoning capabilities and in addition we deploy a dedicated
rule definition language such as SWRL [12], SHACL [16] or SPIN
[15]. Rule languages will add query capabilities that is not provided
directly by the ontology itself, however, the model semantics are
utilised to provide “smart” rule execution, meaning, depending
on the machine configuration, different rules and different rule
parameters will be used.

The rule will in turn trigger a data quality metric. The metric
could be compute intensive and rely on complex algorithms and is
therefore implemented in compiled code that executes on scalable
compute resources such as Kubernetes clusters [10], virtual or on-
premise machines. The choice of compute resource will often rely
on security issues and enterprise strategy for cloud or federation.

The data quality assessment result is subsequently used for
alarms, notifications and trend analysis, and will ultimately drive
the improvement processes to ensure that the data produced by the
manufacturing machine sensors are fit for use and that operations
are performed within acceptable risk.

The next sections will describe the 3 main components; Ontology,
Rule and Metric in more detail.

Figure 1: System Architecture

3 ONTOLOGY FOR MANUFACTURING
Ontologies are generally implemented to model complex relations
in information models. Properly defined, ontologies can be used to
both represent knowledge in the model as well as to provide infer-
ence capabilities (automatic reasoning) enabling advanced queries.
Knowledge is represented by semantics that define the meaning of a
relation, whereas inference is used to query the model by semantics.
These capabilities makes ontologies a very powerful modelling and
validation tool [11]. As a very simple example, in a manufactur-
ing machine, an ontology can represent a carving machine with
1 tool which in turn can have spindle positions that move in 1-3
directions (x,y,z). The ontology can hence validate that the machine
configuration is correct (1 tool and 1-3 directions), in addition, the
inference mechanism can use the number of directions present to
infer other characteristics. This example is elaborated further in a
later section.

Well defined ontologies are a prerequisite to ensure scaling on
performance and model complexity. Ontologies are commonly di-
vided into layers which represent different levels of abstraction [7].
The top ontology, or upper ontology, will focus on abstract entities
and the middle layer adds domain specific entities. Based on the
upper and middle ontology, specialised entities and constructs can
be added to provide custom implementations. This provides for
an extensible and flexible modelling paradigm, at the same time,
overlapping lower ontologies in any layer should be avoided. To
that end, several industries have established fora for the devel-
opment and exchange of common ontologies [14] [19] [23] [20].
The Manufacturing Service Description Language (MSDL) was first
introduced in 2006 [2] and further revised in 2019 [5]. It was de-
veloped to support interoperability and advanced reasoning for
manufacturing services within a Virtual Enterprise (VE) [2]. Except
for mentions in recent PhD theses [18] [17] and several articles
[5] [3], there is no evidence of extensive adoption of MSDL in the
industry [4], however, currently, MSDL has been incorporated into
the Industrial Ontologies Foundry (IOF) initiative and will probably
as a consequence gain more traction. In this work we use MSDL as
the upper ontology as the current version of MSDL is well suited
for our purpose. By nature, ontologies evolve and are designed to
be extended for special purposes. New versions of MSDL or other
suitable upper ontologies for manufacturing could hence also be
incorporated in the future.

As shown in Figure 2, MSDL divides the manufacturing service
into supplier, process and resource. Machining capabilities is a re-
source which again includes physical components such as axes,
tables, spindle and tool [28]. We also include the entities feed and
clock as the relationship between cutting speed (spindle) and feed
rate is an important driver for product quality [28] and, also, clock
speed and synchronization is required for both analysis and moni-
toring. Figure 2 show the MSDL based ontology used in the work
presented here.

4 ONTOLOGY RULE LOGIC EXPRESSIONS
Several formal constructs have been implemented to add rule logic
capabilities to ontologies [12] [16] [15]. This is useful to express
specific rules that is not supported by the ontology itself. The on-
tology described in the previous chapter and shown in Figure 2 can
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Figure 2: Ontology for manufacturing (MSDL) used as upper ontology

express that a machine has 1 feed, 1 spindle with 1-3 axes and 1
clock. However, rule logic expressions can be used to determine
relationships between specific machine configurations and required
query results. In the context of data quality, there could be different
requirements to correlation coefficient between spindle speed and
feed rate depending on the number of axes. For 1 axis, a typical
drilling operation, the correlation could be linear, whereas for spa-
tial operations with 3 axes the correlation could be weaker or even
non-existent. Hence, rule logic can be expressed as

SELECT rule WHERE machine hasFeed COUNT 1
AND hasSpindle COUNT 1 AND has Axes COUNT
3 AND result < 0.4

will return the appropriate data quality rule. The data quality rule
will be executed by external service (DQaaS) and the result yields
acceptance criteria for this particular data quality metric. The above
rule illustrates how ontologies and rules can be layered to provide
powerful querying capabilities.

Rule languages are currently more immature than ontologies
and hence not standardised and formalized to the same extent.
The above statement is only for illustration and do not adhere
to a specific rule format. The specific number used as rule result
threshold (0.4) is explained later.

5 DATA QUALITY AS A MICROSERVICE
The term data quality as a service (DQaaS) denotes an existing li-
brary of data quality metrics that can be accessed as a cloud service
or it can be deployed to local clusters [6] [13]. The label ‘micro’

simply indicates the service is stateless, specialised and will require
some level of orchestration by an API-gateway or client applica-
tions. The DQaaS API provide access to methods as endpoints and
the CPU can be provided by Kubernetes clusters, virtual machines
or on-premise servers. The service provides the bottom layer of the
architecture where compute intensive operations are performed.
The service is implemented in Python using Pandas, Numpy, Great
Expectations and other standard modules. The API complies to
OpenAPI 3.0 [25] and is implemented with FastAPI [27]. The data
quality metrics are predominantly geared towards IoT time series
data in the format timestamp — signal — value which easily adopts
itself to manufacturing machine signals. Some example metrics
are shown in Figure 3. Duplicates, missing values, invalid values,
invalid distributions and other anomalies are covered by the service,
currently there are approximately 20 rules available. The rules are
intended to monitor sensors for anomalies such as miscalibration,
drift, freeze, downtime, clock-synchronization, noise, malfunction
and others. Somemetrics are defined inmore detail in a later section.
The following data quality issues are shown in Figure 3: Time colli-
sion (duplicate timestamps for same signal), outside range (where
range is defined from min to max), Rate of Change (RoC), missing
data (values or records) and drift.

Data quality is often defined by data quality frameworks [22] [8]
and there are also dedicated standards such as ISO 8000 [1]. Typi-
cally the frameworks will categorize and suggest specific metrics
definitions. ISO 8000 offers the distinction between syntax, seman-
tic and pragmatic data quality, meaning format errors (wrong data
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type), invalid data (according to real world asset) and use case
dependent respectively. The DQaaS is predominantly concerned
with the semantic category and the metrics are based on common
issues typically encountered for time series data [21] [9]. The prag-
matic, or use case dependent category, is often used for different
system configurations, for example, use cases involving analytics
(prediction or trending) will require data quality measured at a high
resolution. On the other hand, detecting failure modes with long
p–f intervals (time from detection of potential failure to –failure
happens) could require measurements at lower resolutions. Hence,
it should be noted that data that have good quality for one use-
case (say long p–f intervals) could be unfit for other use cases (say
predictive analytics).

In addition to the broad categories syntactic, semantic and prag-
matic, ISO 8000 also offers more detailed data quality characteristics
and data quality anomalies. In the use case presented in a later sec-
tion, we look at the characteristic called consistency (between feed
rate and spindle speed) and the resulting anomaly drift. The con-
sistency is calculated as the correlation coefficient for the related
sensor signals. Drift occurs when related sensor signals experience
increasing deviations, this is also shown graphically in Figure 3.

Figure 3: Sample data quality metrics for time series data

6 CONCEPTUAL MODEL
The overall architecture shown previously can be expanded to
a more detailed conceptual model. The MSDL upper ontology is
extended to include entities that will serve as input to the data
quality service. The rule semantics connects related entities and
the relevant rules defined in the data quality service. In Figure 4 the
manufacturing machine is modelled by asset components, however
there is no classification or modelling of the data quality rules. This
asset-in-focus approach is commonly used to support digital twins
and data interoperability, meaning there should be a consensus on
how to represent the physical asset digitally. When this consensus
is reached, the same unified model can be reused across machines
as well as enterprises. The data quality metrics will then be called
based on asset configuration and data quality requirements defined
in the model. If a machine has a clock it should have a frequency
and the frequency should be according to a given value. If the
requirement is 1 Hz frequency and the monitored frequency is
higher, this should trigger a notification that defines an action to
be taken to mitigate the issue.

Alternatively, the ontology could emphasize on the data quality
rules rather than the asset, focusing on data integration rather than
interoperability. Any proprietary model could connect to the rule

ontology by mapping individual terms to a rule vocabulary. This
alleviates the requirements for a common information model and
relies on the rule classification to define correct semantics. This
approach has not been pursued further here but could prove useful
for a use cases where there are complex requirements or regulations
that should be applied to disparate data sources. The regulations
(say GDPR) can then be modelled by the means described here and
subsequently be applied to proprietary systems (say CRM).

The MSDL based ontology has attributes that describes physical
features such as clock frequencies, feed rates and spindle positions.
These attributes are managed by the query mechanism to trigger
data quality rules. The data quality rules shown here are not ex-
haustive but represents commonly used metrics:

• Noise –Measures deviation between values of same attribute
with a sideways shift, random deviations indicates noise in
signal

• Frequency – Calculates lag between sorted timestamps and
compares to requirement

• Duplicates – Identical timestamp for same signal
• Range/Rate of change – According to defined min-max val-
ues / according to allowed rate of change

• Deviation – Allowed difference between data points
• Distributions – Statistical distribution requirements such as
normal, chi-square, Smirnov and others

• Correlations – Calculates correlation coefficient for related
attribute series

7 USE CASE
The implemented use case is shown in the below figure. The main
motivation for looking at the spindle and the feed-rate is the effect
any mis-configuration of these parameters will have on the end
product. Surface and finishing quality will deteriorate significantly
if the material is fed out-of-sync with the cutting speed, tools can be
damaged and material is wasted [28]. Therefore, careful monitoring
of these critical parameters is required, and, subsequently the data
quality should also be monitored. As mentioned in a previous sec-
tion we will focus on the data quality characteristic consistency and
the data quality anomaly drift as defined by ISO 8000. Consistency is
calculated as the correlation coefficient for the two related sensors,
feed rate and spindle speed. The relationship between feed rate and
spindle speed will depend on material type, cutting axes and others
[26]. The below formulae defines the mathematical relationships
between cutting speed, spindle speed and feed [28]:

Cutting speed: 𝑉𝑐 =
𝜋 𝑥 𝐷 𝑥 𝑛

1000
Spindle speed: 𝑛 = 𝑉𝑐 − 𝜋 − 𝐷 𝑥 1000

Feed: 𝑉𝑓 = 𝑛 𝑥 𝑓𝑧 𝑥 𝑍

where𝐷 is the spindle diameter, 𝑓𝑧 is feed per tooth and𝑍 is number
of flutes or teeth.

In this case it suffices to state that for any given machine config-
uration the relationship is constant. In addition, the ontology will
yield model cardinality, as an example, the feed-speed correlation
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Figure 4: Conceptual model

depends on the number of axes and hence the automatic reason-
ing capabilities will handle correlation rules for different spatial
carving capabilities (drilling, surface, moulding). Figure 5 show the
speed-feed correlation for a moulding machine with spatial spindle
positions (x,y and z) during two time intervals, t1 and t2. As shown,
the feed will have different correlation to the 3 axes during the
moulding process. The spindle z-position has high correlation in
the first period t1 (0.4 from 07:38:30 to 07:39:00) whereas both z and
x position has high values for the last period t2 (0.3 and 0.36 respec-
tively from 07:40:00 to 07:41:00). If we assume the data used for the
analysis have good quality, this can be used to set the threshold
to detect any sensor data quality issues for the relevant sensors.
The actual threshold value can be set up in a number of ways, here
we simply say the squared value for the correlation coefficient for
all axes should be above 0.4 (measured values are 0.42 and 0.48
for the two periods shown in the figure). This could be an over-
simplification, also, we do not know if the data has already drifted
or if there are any other data quality issues in the sample data, but
it will suffice as an illustration for this use case.

In addition to speed-feed correlation, the use case also includes
rules for machine counter, status, clock frequency and valid ranges.
The following is a list of the relevant rules, label in italic refers to
Figure 6:

• api:rule corr > 0.4 — feed/speed correlation coefficient should
be above this value

• api:rule <min ,max> — Range for valid values, between min
and max

• api:rule <0,inf> — Values should be above 0
• api:rule f=1 Hz — Timestamp should have this frequency
• api:rule >0 then ON — If speed is above zero then machine
status should be ON

• api:rule [ON,OFF] — Machine status should be ON or OFF
• api:rule n+1>n — Machine running counter should always
be increasing

The purpose of the data quality rules is to detect anomalies in
the data and this should trigger a root cause analysis to define
activities to support continuous improvement. The above list is
not exhaustive and domain expertise should be used to define ad-
ditional rules that can be added to the service and again triggered
by the rules and constraints defined in the model. The use case
also illustrates how the knowledge model (ontology) can be used
in an operational setting with constraints and requirements. Data
from manufacturing machines can be loaded into the ontology in
real time and described mechanisms will continuously evaluate
compliance to requirements. Also, this modelling approach ensures
that data quality requirements are considered up front as part of
modelling and design, and not as an ad hoc afterthought, which is
often the case.

8 CONCLUSION
The Manufacturing Service Description Language (MSDL) have
been used as a basis for a tentative extension to express data quality
requirements for a simple manufacturing machine with clock, feed
and spindle. A generic data quality service for sensor data can be
used to calculate the data quality requirements based on semantic
rule expressions such as SWRL. The data quality service was im-
plemented in Python based on Great Expectations and deployed
as a microservice on a cloud platform. The work described here
shows how ontologies can be used to both model the knowledge
(terminology/structure/semantics) of the asset as well as defining
requirements and constraints to the production process itself. The
resulting regime provides quality assurance of complex assets, even
digital twins, and will apply relevant data quality rules based on
asset configurations. One example was used for illustration where
the ontology will distinguish between linear carving (drilling) and
spatial carving (moulding) and apply appropriate requirement to
the correlation between machine status, clock frequency, spindle
speed and feed rate.
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Figure 5: Correlation values for feed rate and spindle positions for sample data for a moulding machine

Figure 6: Use case

Jointly, the ontologies and the microservices can support both
traditional model verification as well as process verification. This
combination provides a manner to include and design for data

quality during early design phases. Traditionally data quality tends
to be left as an after-thought and implemented in an ad-hoc manner.
Considering the significant importance of data quality in digital
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processes, the data quality requirements should be defined and
implemented up-front.

Further work should look in to how the data quality result can
be represented as an ontology itself and subsequently used as a
driver for improvement activities and risk analysis. The ontology
described here should be further expanded and formalised to sup-
port more advanced use-cases, also, the data quality service can be
extended with additional rules. Ontologies will scale on both com-
plexity and size, also, the microservice and cloud based architecture
will deploy to any given compute capabilities.
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ABSTRACT
Machine Learning is playing a crucial role in the design of intrusion
detectors for Industrial Control Systems (ICS). Intrusion Detection
Systems (IDS) rely on data obtained from an operational ICS. Such
datasets contain multiple time series, one for each process variable.
In this work, we explore how such time series can be exploited
to understand the effect of time patterns in mining the process
invariants, i.e., conditions on process state variables. We use the
knowledge gained through the time patterns to determine the op-
timal data collection size for generating the invariants. The study
reported here was conducted using the operational data obtained
from a water treatment plant.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puting methodologies→ Anomaly detection; Rule learning;
• Information systems→ Association rules.
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tems, Critical Infrastructures, Industrial Control Systems
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1 INTRODUCTION
Industrial Control System (ICS) is a type of Cyber-physical Sys-
tems (CPS). It consists of cyber and physical components. Cyber
components includes computing, and communication links while
physical components are consist of sensors, actuators, and physical
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processes. These systems are integral part of many critical infras-
tructures. ICS is known to be vulnerable against cyber-attacks as ev-
idenced by, for example, Stuxnet [1], Maroochy Water Services [2],
and others. Researchers have made significant contributions to
protect ICS against similar cyber-attacks. For this purpose, both
traditional Intrusion Detection Systems (IDS), and those based on
Machine Learning (ML), have been developed [3]. The study re-
ported here focuses on ML-based IDS.

ML-based IDS often rely on the operational data obtained from a
critical infrastructure. Several public datasets are available to create
and evaluate including SWaT [4], EPIC [5], and WADI [6]. These
datasets have been collected from operational testbeds that mimic
the processes in city-scale plants. Since the datasets are collected
by running the plant continuously over a period of time and hence
contain multiple time series– one for each process variable. The
study reported here, focuses on the question of how such time
series can be used to determine the optimal size of the data to use
in the creation of an IDS. Therefore, this work investigates the
effectiveness of using variable chunks of multiple time series in
mining the process invariants that capture the normal behavior of
a plant when in a given state.

Several studies discuss the use of invariants [7–10] for detecting
intrusions and process anomalies. However, there remains a signif-
icant gap in determining the effect of time patterns in mining the
process invariants. The studies mentioned earlier do not assess the
effect of time patterns on process invariants. In the study reported
here, we assess the effects and usefulness of time patterns in mining
the process invariants. It was observed that ignoring this property
may lead to reduced effectiveness of the anomaly detector thus en-
abling attackers, with an exhaustive knowledge of plant dynamics,
exploit the states embedded in overlooked invariants. Moreover,
using the time patterns we can also determine the optimal data
collection size for mining the process invariants. The creation of an
effective ML-based IDS requires the right amount of data to avoid
overfitting or underfitting issues. In the study reported here, we
found that by using a suitable chunk-size based on the duration
of a chunk, one could obtain the optimal data size for mining pro-
cess invariants. The key objectives of the study are captured in the
following research questions.

RQ1: How do time patterns affect mining the process invariants?
RQ2: How to determine optimal data collection size for generating
process invariants?
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Contributions: (a) Demonstration of time pattern effects on invari-
ants mining. (b) A proposal to determine optimal data collection
size for generating process invariants.

Organization: The remainder of this paper is organized as follows.
Section 2 describes the SWaT and the dataset. The methodology of
invariant mining is described in Section 3. The metrics for optimal
size of data are defined and discussed in Section 4. The experiments
conducted using different datasets are discussed in Section 5. The
research questions are discussed in Section 6. Section 7 discusses
the related work and Section 8 contains the conclusion of the ex-
perimental study.

Figure 1: SWaT Testbed

2 SWAT TESTBED AND DATASET
The Secure Water Treatment (SWaT) shown in figure 1 is a testbed
available at iTrust, Singapore University of Technology and Design
(SUTD) [11]. It is an industrial replica and a scaled-down version of
a water treatment plant. It is composed of six well-defined processes.
The first stage involves the treatment of rawwater. Chemical dosing
and ultra-filtration are done at stages 2 and 3. Dechlorination is
done at stage 4. After that water is passed to stage 5 to perform
the reverse osmosis. The last stage distributes the water and also
performs the backwash. SWaT can produce treated water at the
capacity of 5 gallons per minute. The plant is composed of several
sensors and actuators. Sensors are used to measure the level of
water in tanks, to measure the flow of water, etc. Actuators include
motorized valves and electric pumps. The communication between
PLCs and sensors/ actuators is done using Level 0 network while
Level 1 network is used for communication among PLCs.

The SWaT dataset [4] was collected by running the plant contin-
uously in the normal state for seven consecutive days. There is a
large number of studies that have reportedly used the SWaT dataset
[12–15]. The SWaT dataset contains 51 attributes. In the current
study, only 14 attributes which are described in Table 1 have been
used. The Association Rule Mining (ARM) [16] approach used in the
current study works only on binary-valued attributes. The SWaT
dataset consists of binary, ternary, and real-valued attributes. There-
fore we transformed all the dataset into binary-valued attributes as
described in listing 1. Doing so resulted in a drastic reduction of

attributes. After transformation into binary-valued attributes, most
of the attributes were giving a single constant value throughout
the dataset. This constant value was not useful for rule mining
therefore these attributes were dropped from the dataset. Similarly,
some attributes were not changing their values throughout the
dataset like P102 because it is an electric pump that is for backup
of P101. These types of backup attributes were also dropped from
the dataset.

1 # MV -101 is the inlet valve controlled by a PLC depending

on LIT101 measurements.

2 # FIT -101 is use to measure the flow towards Tank T101.

3 if FIT -101 <0.5:

4 FIT -101=0 # It means no flow

5 else:

6 FIT -101=1 # It means there is a flow

7 if MV -101 == Open:

8 MV -101 = Open

9 elif MV -101 == Close:

10 MV -101 = Close

11 elif MV -101 == Transition:

12 if FIT -101 <0.5:

13 MV -101 = Close

14 else:

15 MV -101 = Open

16

Listing 1: Feature Transformation into Binary-Valued
Attributes

Algorithm 1: Invariant generation based on time intervals

1: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ← 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ()
2: 𝐵𝑖𝑛𝑎𝑟𝑦𝑉𝑎𝑙𝑢𝑒𝑑_𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ←

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷𝑎𝑡𝑎𝑠𝑒𝑡)
3: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ←

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐵𝑖𝑛𝑎𝑟𝑦𝑉𝑎𝑙𝑢𝑒𝑑_𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠)
4: 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _ℎ𝑜𝑢𝑟𝑠
5: 𝐷𝑎𝑡𝑎_𝐶ℎ𝑢𝑛𝑘𝑠 ←

𝐷𝑎𝑡𝑎𝐶ℎ𝑢𝑛𝑘𝑠 (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
6: 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ← 𝑆

7: 𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ← 𝐶

8: while Data_Chunks is not empty do
9: 𝑑𝑎𝑡𝑎𝑐ℎ𝑢𝑛𝑘 ← 𝐷𝑎𝑡𝑎_𝐶ℎ𝑢𝑛𝑘𝑠.𝑝𝑜𝑝 ()
10: 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠 ←

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠 (𝑑𝑎𝑡𝑎𝑐ℎ𝑢𝑛𝑘, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡)
11: 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 ←

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒𝑠 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠, 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒)
12: end while

3 INVARIANT MINING
Invariants represent the normal behavior of a physical plant. It is
a condition that holds when the plant is in a given state. There
could be various types of invariant as described in equation 1 and
2. Equation 1 represents an invariant which generates an alert
when water level in Tank 101 goes below the LL (low-low) marker.
Equation 2 represents an invariant which ensures that if water in
Tank 101 is equal to or below the L (low) marker then Motorized
Valve 101 should be open, else it generates the alert. In the current
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work we have mined invariants of type (2) using Association Rule
Mining (ARM) [16].

𝐿𝐼𝑇 101(𝑘) > 𝐿𝐿 (1)

𝐿𝐼𝑇 101 ≤ 𝐿 =⇒ 𝑀𝑉 101 = 𝑂𝑃𝐸𝑁 (2)
Association Rule Mining. ARM [16] is an unsupervised rule-

based machine learning approach. It is used to uncover the relation-
ships between seemingly unrelated data in databases. This relation-
ship is expressed as a rule such as P101=ON =⇒ MV201=ON. The
item to the left of =⇒ is referred to as antecedent and the right
one as the consequent. There are two major processes involved in
ARM. The first one is frequent item generation and the second one
is rule generation. Both of these processes are described below:

Frequent item sets. An itemset is a collection of values of one
or more attributes e.g. state of pump, state of the motorized valve,
etc. Every attribute with each possible value is considered as an
itemset. Given the snapshot of the transformed dataset of SWaT at
Figure 2, e.g. MV101=1 is an itemset, similarly, MV101=0 is another
itemset. The itemsets which satisfy the minimum support threshold
are considered as frequent itemsets. The support for an itemset 𝐴
can be calculated using the following equation:

Support(𝐴) = |𝑒 ∈ 𝐷 ;𝐴 ∈ 𝑒 ||𝐷 | (3)

Here 𝑒 is a transaction which exist in dataset 𝐷 , and |𝐷 | denotes
the total number of transactions (rows) in the dataset.

Association rules. Once the frequent itemsets are obtained
then they could be partitioned in more than one way to generate
association rules, e.g. X =⇒ Y, where X is referred to as antecedent,
and Y is referred to as consequent. The rule which satisfies the
minimum confidence criteria is considered as an association rule.
The confidence of a rule can be calculated the following equation:

Confidence(𝑋 =⇒ 𝑌 ) = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ∪ 𝑌 )
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ) (4)

There could be multiple parts at Antecedent like X1, X2, X3
=⇒ Y, where , is representing the Boolean 𝐴𝑁𝐷 . The complete
algorithm is described in Algorithm 1

4 EVALUATION METRICS FOR OPTIMAL SIZE
OF DATA

The following metrics are used to evaluate the optimal data collec-
tion size for mining process invariants.

4.1 Average sum of difference among similar
sized Chunks

This metric sums up the differences in the number of invariants
among each similar size chunks and then takes its average to obtain
the Average Sum of Difference. It can be mathematically expressed
as:

𝐴𝑆𝐷𝑆𝑆𝐶 =

∑𝑇𝑁𝐶−1
𝑖=1 |𝑁𝐼𝐶 (𝑖) − 𝑁𝐼𝐶 (𝑖 + 1) |

𝑇𝑁𝐶 − 1 (5)

where,
ASDSSC = Average Sum of Difference Among Similar Size Chunks,

Table 1: Attributes selected in the current study

Attribute Description
Flow meters
FIT101 Measures inflow into tank T101
FIT201 Measures flow rate from stage1 to 2
FIT301 Measures the flow of water in the UF stage
Motorized valves
MV101 Controls water flow into tank T101
MV201 Controls flow into tank T301
MV301 Controls the UF-backwash process
MV302 Controls water flow to the

de-chlorination unit
MV303 Controls UF backwash
MV304 Controls UF backwash drain
Pumps
P101 Pumps water from raw water

tank to stage 2
P203 Dosing pump for HCl∗
P205 Dosing pump for NaOCl∗
P302 Pumps water from tanks T301 to T401
P602 Pumps water from backwash tank

T602 to UF
∗HCL and NaOCl are chemicals added to water at stage 2.

TNC = Total Number of Similar Size Chunks, and
NIC = Number of Invariants in Chunk.

4.2 Standard deviation of similar sized Chunks
This metric determines the standard deviation across the number of
invariants in similar size chunks. It can bemathematically expressed
as:

𝑆𝐷𝑆𝑆𝐶 =

√√∑𝑇𝑁𝐶
𝑖=1 (𝑁𝐼𝐶 (𝑖) −

∑𝑇𝑁𝐶
𝑗=1 𝑁𝐼𝐶 ( 𝑗 )

𝑇𝑁𝐶
)2

𝑇𝑁𝐶
(6)

where,
SDSSC = Standard Deviation of Similar Size Chunks,
TNC = Total Number of Similar Size Chunks, and
NIC = Number of Invariants in Chunk.

4.3 Average number of invariants in similar
sized Chunks

This metric determines the average number of invariants in similar
size chunks. It can be mathematically expressed as:

𝐴𝑁𝐼𝑆𝑆𝐶 =

∑𝑇𝑁𝐶
𝑖=1 𝑁𝐼𝐶 (𝑖)
𝑇𝑁𝐶

(7)

where,
ANISSC = Average Number of Invariants in Similar Size Chunks,
TNC = Total Number of Similar Size Chunks, and
NIC = Number of Invariants in Chunk.

4.4 Average number of common invariants in
similar sized Chunks

This metric first determines the sum of the number of common
invariants in adjacent similar size chunks and then calculates its
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Figure 2: A snapshot of transformed dataset of SWaT with selected features

Figure 3: Change in the number of invariants in consecutive
1-hour chunks

Figure 4: Change in the number of invariants in consecutive
4-hours chunks

average. It can be mathematically expressed as:

𝐴𝑁𝐶𝐼𝑆𝑆𝐶 =

∑𝑇𝑁𝐶−1
𝑖=1 |𝐼 (𝑖)⋂ 𝐼 (𝑖 + 1) |

𝑇𝑁𝐶 − 1 (8)

where,
ANCISSC = Average Number of Common Invariants in Similar Size
Chunks,
TNC = Total Number of Similar Size Chunks, and
I = Set of Invariants.

Discussion on Metrics. The metrics defined in Sections 4.1, 4.2,
and 4.3, are related to the quantitative aspects of the invariants.
They mainly focus on the stability in the number of invariants. At

the beginning these metrics, evaluated over different chunk sizes,
lead to stability with respect to the number of generated invari-
ants. The metric in Section 4.4 is related to the qualitative aspect of
the invariants. The earlier three metrics reveal the quantitative be-
haviour of invariants. However, there exists a possibility that while
the number of invariants might be the same, indicating stability,
though the invariants generated might be significantly different
than those derived earlier. Metric ANCISSC in Section 4.4 is used
to evaluate this qualitative aspect of the invariants. ANCISSC of-
fers additional insights into the number of common invariants over
different chunk sizes.

5 EXPERIMENTS
Experiments were conducted with two datasets collected from
SWaT [11] during 2015 and 2020 containing, respectively, 410400
and 18000 rows. All experiments used the same number of attributes,
support, and confidence threshold.

5.1 Effects of time patterns on process
Invariants

5.1.1 Experiments using the SWaT 2015 Dataset. In the begining a
subset containing 72 hours of 2015 dataset was selected (later we
have used the complete 2015 dataset as shown in Figure 7). Next,
this dataset was split into 72 independent chunks each comprising
of one hour of data. Invariant mining was carried out independently
on all chunks. The variation in the number of invariants obtained
across the chunks is plotted in Figure 3. A pattern consisting of
long and short bars can be discerned from the figure in the number
of invariants generated. The question of interest was to discover
the invariants that resulted in the long bars.

Upon deeper examination of the invariants in long and short bars,
it was discovered that long bars contain invariants where the valve
MV101 is open and there is some flow indicated by the flow rate
indicator FIT101. Invariants related to the aforementioned actuators
and sensors were not found in the short bars. To understand such
discrepancy, the 72-hour chunk was next split into multiple 4-hour
chunks and invariants mined again.

Figure 4 is a plot of the number of generated invariants using the
4-hour chunks. As shown, the longer bars in Figure 3 are now absent.
After analyzing the invariants generated using 4-hours chunks, it
was discovered that the invariants related to MV101-Open, and a
non-zero reading from FIT101, were present in every bar in Figure 4.
Thus, it was realized that further increase in the chunk size may
affect the distribution of MV101-Open and non-zero FIT101 in the
bars and may create additional stability in the number of invariants
generated. For this purpose, chunks of size 7, 10, and 13-hours were
created from the dataset as shown in Figure 6. It can be observed
from this figure that the long bars gradually vanish as the chunk
size is increased from 4 to 13, completely vanishing in Figure 6(d). It
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Figure 5: Invariant generation based on number of hours

Figure 6: Change in the number of invariants with chunk duration in SWaT 2015 dataset.

is apparently clear from Figure 6 that our hypothesis, i.e., stability
in the number of invariants generated with an increase in chunk
size of the selected time series, holds.

5.1.2 Experiments using the SWaT 2020 Dataset. As the 2020 dataset
of SWaT consists of 18000 rows, i.e., 5-hours of data, this dataset was
split into 10 independent chunks each comprising of 30-minutes of

data. Invariant mining was done independently on these chunks.
We obtained a different number of invariants on these 10 chunks as
shown in Figure 8(a). It can be observed from the figure that there
is no pattern in the number of generated invariants as observed
earlier in Figure 3. Next, we gradually increased the chunk size and
created chunks based on 1, 1.5, 2, and 2.5-hours. This resulted in
a well-defined pattern in the number of generated invariants as
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Figure 7: Change in metrics from Section 4 with chunk duration in SWaT 2015 dataset.

Figure 8: Change in the number of invariants with chunk duration in SWaT 2020 dataset.

Figure 9: Change in metrics from Section 4 with chunk duration in SWaT 2020 dataset.

shown in Figures 8(c), (d), and (e). This observation reaffirms our
hypothesis, i.e., number of invariants generated gradually becomes
stable with an increase in chunk size of the selected time series.

5.2 Optimal data size to generate Invariants
5.2.1 Experiments using SWaT 2015 Dataset. The proposed ap-
proach for optimal size of data to be collected was evaluated using

15



Effect of Time Patterns in Mining Process Invariants for Industrial Control Systems: An Experimental Study SEA4DQ ’22, November 17, 2022, Singapore, Singapore

metrics defined in Section 4. For this purpose, all possible chunk
sizes were created based on the number of hours in the entire
dataset as shown in Figure 5. The minimum and maximum data
chunk sizes were, respectively 1 and 57 hours. The results from all
the experiments based on the aforementioned metrics are presented
in Figure 7. These metrics are designed to determine the stability
in the number of generated invariants over different time intervals.

5.2.2 Experiments using SWaT 2020 Dataset. The sizes of data
chunks created from the SWaT 2020 dataset were 0.5, 1, 1.5, 2,
and 2.5 hours. The results from all the experiments based on the
aforementioned metrics are presented in Figure 9. As these metrics
are designed to determine the stability of the generated invariants
over different time intervals, it is evident from Figure 9 that chunk
sizes greater than 2-hours lead to a stable set of invariants.

6 DISCUSSION
We next revisit the research questions stated earlier.

RQ1: Time patterns have a significant effect on the mining of
process invariants. In the experiments described above, a significant
difference was observed particularly in the number of invariants
based on specific time patterns. This difference is due to specific sub-
processes in SWaT that are activated at different intervals during
plant operation. Some intervals include a large number of invari-
ants while others include significantly less. The intervals with a
large number of invariants exist for a specific duration. Therefore,
the invariants mined in such intervals exist only in those intervals.
No such behavior is observed in the remaining operation of the
plant. The question arises whether one should consider such invari-
ants to monitor process anomaly? The answer is in the affirmative
because an attacker with an exhaustive knowledge of plant dynam-
ics can exploit relations embedded in such invariants. Discarding
such invariants as monitors for process anomaly would enable an
attacker to specifically perform targeted attacks in those intervals
and remain undetected.

RQ2: This question focuses on the optimal data size for mining
process invariants. This optimal data size should capture the overall
behavior of the ICS. Currently, we are unaware of any such study
that focuses on this issue. For example, there exist classifiers that
work quite well even on small-sized datasets, e.g., Naive Bayes. Sim-
ilarly, there exist classifiers that require a large amount of training
data to perform precise classification, e.g., Decision Trees. Though
here we have particularly focused on optimal data size for mining
process invariants, we believe this optimal data size would also be
useful for IDS created using machine learning techniques. Since
the invariants capture the normal behavior of an ICS, therefore, if
we are able to determine the optimal data size for invariants then it
would also be useful for ML-based IDS. From the plots in Figure 7
and 9, it is evident there is stability in the graphs after the chunk
size reached 13-hours and 2-hours in SWaT 2015 and 2020 datasets,
respectively. Therefore, we claim that for the SWaT 2015 and 2020
datasets, the optimal data size is 13 and 2-hours, respectively. This
data size should capture the overall behavior of SWaT.

7 RELATEDWORK
ARM was used in [9, 17] to generate invariants for ICS, with oper-
ational data from SWaT [4], to mine the invariants. These studies
ignored the time series property of SWaT data. The study proposed
here exploited the time series property of SWaT data to study the
effects of time patterns in mining the process invariants. A study
reported in [18] used the ARM to generate the attack patterns for
an ICS. For this purpose, they used both the attacked and normal
operational data of SWaT. However, they also ignored the time
series property of SWaT data.

Process invariants were generated for a selected sub-process of
SWaT using its design information in [19]. They evaluated their
approach by performing different attacks on the testbed. The pro-
posed approach was found useful in detecting the attacks, however,
it does not exploit the time-series property of SWaT. A study re-
ported in [20] used a set of machine learning approaches to generate
invariants for two real-world ICS. They considered the time series
property for mining the invariants. However, they did not discuss
the usefulness of time patterns in mining the process invariants as
in the current study. Supervised Machine learning technique was
used in [21] to generate process invariants for SWaT. They also
considered the time series property of SWaT data. However, they
did not report the effect of time patterns in mining the process
invariants.

8 CONCLUSION
The evolution of each state variable controlled by an ICS in a crit-
ical infrastructure can be represented as a time series. The study
reported here highlights the value of such time series in mining
process invariants, i.e., those that capture the plant behavior under
normal conditions. It was observed that ignoring this property may
result in missed invariants leading to an ineffective anomaly detec-
tor and thus enabling an attacker, with an exhaustive knowledge
of plant physics, to exploit the condition embedded in the lost in-
variants. The attacker could potentially target such time intervals
that contain the lost invariants. Secondly, the creation of effective
ML-based IDS requires the right amount of data to avoid overfit-
ting or underfitting. In the current study we found that by using
a suitable chunk size based on the duration of a chunk, one could
obtain the optimal data size for mining process invariants.
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ABSTRACT

Detection of poor quality data is crucial for enhancing data-driven

systems’ quality. Although there is a lot of research on data valida-

tion, the topic of potential data quality issues is still underexplored.

Such latent issues or data smells can often stay undetected and lead

to the poor future performance of data-intensive systems. Detecting

data smells is not trivial and requires knowledge about their causes.

In this paper, we present the preliminary findings on the causes

and severity of data smells based on a study of a real-world busi-

ness travel data set and the data processing pipeline behind it. The

results show that data smells exist in this data set and cause severe

problems. Although many data smells already occur in raw data,

some smells are created during the transformation and enrichment

stages of the data processing pipeline. These findings indicate the

importance of the data pipeline itself for future research on data

smells. Thus, this article proposes potential future work in this area.
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With the wide spread of machine learning and data-intensive sys-

tems, data quality becomes a more and more critical issue. Various

SEA4DQ ’22, November 17, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9459-8/22/11.
https://doi.org/10.1145/3549037.3561275

systems rely on large amounts of data for different purposes from

performing business analyses to facilitating the decision-making

process. Overall, technologies based on data provide valuable solu-

tions to existing problems given that the data used for such purposes

is of high quality.

In practice, using data of poor quality can lead to unpredictable

consequences and financial reputation, or even human loss. The

lack of common standards for data collection and preparation meth-

ods makes it difficult to apply a unified solution to every problem.

However, the adoption of data pipelines automates the data flow

process to improve the final data quality. A data processing pipeline

is a sequence of operations with data including data ingestion, inte-

gration, cleaning, transformation, enrichment, and loading [5], as

well as functionalities for data flow monitoring and management.

Although data pipelines enhance productivity and contribute to

the quality of data [10], poorly developed and buggy data pipelines

may not only fail to recognize data quality issues but also pro-

duce data of poor quality [12]. Such data issues can stay unnoticed

through all processing operations and lead to incorrect results in the

future. Identification and early prevention of the latent and context-

independent data quality issues, i.e., data smells [4], is crucial to

provide data of high quality and achieve better results.

In this paper, we investigate to what extent data pipeline ele-

ments may lead to the creation of data smells and what are the

possible consequences of it based on business travel data. The busi-

ness travel industry generates a significant amount of data [11] that

includes transportation and accommodation stages. Although the

big amounts of data are not new to the industry, the wide spread of

information and communications technologies and different stan-

dards inherent in them lead to high heterogeneity in raw data [2].

Thus, data processing is complex and prone to errors.

As business travel data are characterized by data describing geo-

graphical coordinates such as longitude and latitude, we argue that

the analysis and findings in this paper are highly relevant to the

domain of Internet of Things (IoT), in particular for autonomous ve-

hicles, drone navigation, and other domains dependent on location,

time, and distance calculations. Moreover, travel data have a large

potential for sustainable solutions testing and application regarding

carbon footprint calculations, management, and reduction, which

is highly relevant for any industry nowadays.

The aim of this exploratory study is threefold: first, we want to

understand to which extent data are affected by data smells; second,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Overview of the main components of the data pipeline

we have a closer look at the roots of data smells and their place in

the data pipeline; third, we propose the ways to detect and avoid

data smells in the data engineering process. Furthermore, with the

results of this study, we pave the way for a deep quantitative study

to investigate the causes and effects of data-related issues.

The rest of the paper is structured as follows. Section 2 presents

the concept of data smells and the reasons for them. In Section

3, data smells are shown in connection with the data processing

pipeline based on the real-life data set. Finally, Section 4 describes

the future work to identify and prevent data smells and concludes

the paper.

2 CONCEPT OF DATA SMELLS

Various studies have been dedicated to data quality issues and the

consequences of poor quality data for data-driven systems [7ś9].

Furthermore, to overcome these consequences, tools that can detect

potential issues have been developed [1, 6]. The problems of missing

data, data outliers, or duplicated values affect the final quality, but

they can be detected before the damage occurs. Unlike typical data

issues, data smells usually do not correspond to "obviously" wrong

or incorrect data. Similar to the code smells, they represent latent

issues, that might arise in the future.

Foidl et al. [4] distinguish four main characteristics of data smells.

Such data have moderate degree of suspicion, i.e., they are not con-

sidered poor upon initial inspection. For instance, the word "Paris"

represents a city and does not look suspicious. However, problems

may arise as soon as the exact location is needed since there are

at least two cities named Paris, one in France and one in the USA.

Another important characteristic of data smells is their context in-

dependence. They represent universal issues that can be present

in any domain and affect any data-driven system. Furthermore,

smelly data can stay unnoticed for a long time and lead to problems

in the future, e.g., less precise classification algorithms or wrong

descriptive statistics. Finally, data smells are frequently caused by

poor practices in data management and engineering. Thus, the in-

troduction of quality assurance methods improves the quality of

the processed data.

3 CASE STUDY

To explore the impact of data smells in a real-life scenario, we

investigated the business travel data of a large enterprise with over

100,000 employees. The data set combines information about more

than 130,000 trips.

To manage the large amounts of heterogeneous data and to use

it for further analysis, the company developed and implemented

a data pipeline. To analyze the data smells and their impact, we

examined the data set and the pipeline to locate the causes of the

smells. Figure 1 presents an overview of the data flow within the

company’s data pipeline. Green clouds indicate the stages where

new data are produced and, therefore, data smells might originate.

The numbers indicate the data smells we identified, as discussed in

the further sections.

There are six main stages of data processing: data ingestion

from data sources to the data storage, storage of the raw data,

transformation to the formats applicable for further processing,

data enrichment, and loading of the data into the final database. The

prepared data are utilized for reporting, analysis, and predictions.

The data comes from two main types of data sources: global

distribution systems (GDSs) and emails. A GDS is a system that pro-

vides information from various travel industry service providers,

including airlines, railways, hotels, and car rental agencies. The

structure and context of data provided by different GDSs vary dra-

matically. Thus, it does not allow direct analysis of the provided data

and requires several preprocessing activities. The second source of

information is unstructured data retrieved from emails, e.g., receipt

documents or tickets. To further use the data from these sources, it

has to be extracted and converted into a structured form.

Data transformation includes two main activities: mapping of

the data to a fixed schema and data extraction using various image

parsers. Then, a validation tool checks if all necessary information

was extracted and whether it is meaningful, for instance, start and

end dates for flights and trains; otherwise, the data record does not

proceed to the next phase. During the enrichment, longitudes and

latitudes are assigned. Based on this information, distance, duration,

and time zones are calculated. The last enrichment element is a

normalized name. Finally, data are stored in the database.

3.1 Identified Data Smells

To identify data smells in the given data set, we used the data smells

taxonomy proposed by Foidl et al. [4]. The taxonomy includes 36

data smells separated into four main categories: encoding, consis-

tency, syntactic, and believability smells. While manually analyzing

our dataset, we found data smells related to all categories. They are

listed in Table 1. Based on the amount of data affected by the smell
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Table 1: Data smells identified in the real-life data set

№ Issue Data smell type Data smell subtype Severity

1 Different types of date/time data: datetime and timestamp Encoding smell Date/Time as string medium

2 Numerical values represented as strings Encoding smell Number as string medium

3 Null and NaN values in one column Consistency smell Missing value inconsistency medium

4 "9999.99.99" as a missing value for dates Consistency smell Missing value inconsistency low

5 Abbreviations used for locations Syntactic smell Ambiguous value high

6 Ambiguous location names Syntactic smell Homonyms low

7 Incorrect longitudes and latitudes Believability smell Suspect value high

8 Incorrect distances Believability smell Suspect value high

9 Incorrect duration values Believability smell Suspect date/time interval high

and the degree of the complexity of the problem, we introduced the

severity column that varies from low, to medium and high.

3.1.1 Encoding Smells. Encoding smells describe the problems con-

nected with inappropriate data types. Such issues complicate the

data analysis process and might lead to wrong results. We found

two instances of this smell type in the data set.

Date/Time as string. The columns with information about

the time of arrival and departure have different types. Some of

the columns are converted to DateTime type with timestamp type

values, whereas the others are assigned object type with DateTime

values. By data ingestion, DateTime format is returned if different

time zones are present in a column. Transformation of the column to

the right format without considering different time zones can lead

to the loss of important information. Furthermore, all operations

with time and date can be affected and deliver poor results.

Number as string. Numerical values representing duration in

minutes and IDs have string type. This could lead to complications

if numerical operations are applied to the data. Also, there is a risk

of information loss if transformed incorrectly (integer instead of

string).

3.1.2 Consistency Smells. Consistency smells arise when different

methods are used to resolve equivalent problems. As a result, the

same data have nonidentical expressions, which makes further

analysis inconsistent and prone to errors.

Missing value inconsistency. We found that missing values

expressions vary within the data set and within one column. Two

ways to represent missing values are NaN and None. Since they

have different properties, it can affect the identification of missing

values, and make operations with missing values more difficult.

For instance, a comparison of None values returns True, whereas a

comparison of NaN values returns False.

Another case of inconsistent missing values was found in date

information, where "9999.99.99" represented a missing value. This

representation was recognized as a date and did not account for

missing values by the system. Since we only found 242 values

represented in this manner, we classify this issue as low severity

for the given data set.

3.1.3 Syntactic Smells. Syntactic smells represent inappropriate

expressions of values that might lead to misinterpretation of infor-

mation by humans or algorithms.

Ambiguous value. Several train stations are located in the air-

ports. In some of these cases, train stations use the abbreviation of

the airport as their name. However, such names for train stations

were not recognized correctly and led to misinterpretation of loca-

tions and false classification of transportation methods (by train

or by plane). In total, 2,922 items were affected by this problem. It

worsened the quality of the data and affected the next steps of data

processing, particularly the data enrichment process.

Homonyms. Nonunique departure and arrival names result in

data smells that can stay unidentified for a long period. However,

when used for longitude and latitude calculations, the quality of

such operations is rather poor. In the data set, distances were calcu-

lated wrongly for trains with the departure or arrival in Boston. The

name is considered ambiguous because there are two Bostons in

USA and Australia. As in the case of ambiguous values, homonyms

lead to errors in the data enrichment process.

3.1.4 Believability Smells. Believability smells can be interpreted

by software as correct data and understood by humans, but they do

not represent the right data. To identify these smells, a descriptive

analysis is needed.

Incorrect longitudes and latitudes. Longitude and latitudes

represent geographic coordinate systems and are necessary for

distance calculations, mapping, and other purposes. The wrong

values are difficult to identify because the values are represented

as float numbers with several decimal digits depending on the

precision of the algorithm. Wrong latitudes or longitudes lead to

incorrect calculations of distance and duration.

Incorrect distances. As it is mentioned above, incorrect dis-

tances appear because of the wrong latitudes and longitudes. In

case they are negative or extremely large, they can be detected

more easily. However, if the distance is within an accepted range,

the issue can stay unnoticed.

Incorrect duration values. The time difference between arrival

and departure is calculated within the data pipeline. To estimate

the duration correctly, departure and arrival times must be adjusted

following local time zones. If the information about the time zone

is lost or the time zone is miscalculated, the final result is affected.

3.2 Causes of Data Smells in the Data Pipeline

To understand the causes of the data smells, we investigated the

data pipeline and identified the steps where data smells occur. The
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results are shown in Figure 1. The enumeration of data smells done

as it is stated in Table 1.

Data sources. Originally, some of the data smells come from the

raw data. Some of the values can be written inconsistently because

they are entered by different users. Another reason for inconsistent

data is the variety of sources and differences in the methods of data

management and handling. The data providers in the travel domain

frequently improve and change their data schemes, therefore, the

raw data have high variability depending on vendors.

Data transformation. The next group of data smells arises in

the data transformation stage. Date/time as string issue arises be-

cause of the insufficient handling of time zones and time values, that

represent empty values. Whereas some tools will recognize "9999-

12-12" as a time variable, others recognize it as a string. Depending

on the result, the type of column is assigned.

Number as a string is a smell caused by the differences in the

processing of structured and unstructured data. The problem is

inherent in the process of document parsing. All data parsed from

images is assigned to string data type to avoid possible data loss.

The reason for missing values inconsistency is different methods

and tools used during data transformation on different data. If tools

use different programming languages, e.g., Java and JavaScript,

the results of the operations will vary based on the logic of the

programming language. In the case of this pipeline, the image parser

is based on Java and the mapping tool is written in JavaScript.

Data enrichment. The majority of data smells are produced in

the data enrichment phase. A part of them is due to smelly raw data

or poor data transformation techniques. The creation of smells in

the enrichment phase happens due to insufficient validation in the

previous phases. However, data smells can also be produced from

clean data, e.g., if time zones are not considered.

Moreover, this new data can be beneficial for data smells iden-

tification in the previous steps. Although spotting data smells in

some cases might be challenging, analysis of the products of such

data can facilitate the process.

3.3 Data Smells Detection

Data smell detection is not a trivial task that requires specific so-

lutions. Although data smell detection is closely related to the

data validation process, there are several reasons why it should be

performed separately [4]. Firstly, detection tools can reveal many

smells and produce a large number of alerts that are impossible to

be processed effectively. Secondly, it requires a certain amount of

processing capabilities and should not worsen the performance of

AI-based systems.

So far, there are rule-based and ML-based tools for data smell

detection. However, as we observed in the previous section, data

smells appear in different data processing phases approaches might

vary in their suitability and effectiveness based on the data pipeline

stage. Understanding when the tools should be applied to achieve

the best results would significantly improve the quality of the final

data. Moreover, considering particular qualities of data pipelines

would improve the quality in the long term.

4 CONCLUSIONS AND FUTUREWORK

With this exploratory study, we contribute to practical evidence of

data smells and motivate several directions of future work. Based

on the data smells taxonomy, we provide the evidence and highlight

the widespread occurrence of data smells in real-life data sets and

the threats they represent for data-driven systems. Furthermore, we

outline the connection between data pipeline architecture and the

creation of data smells. Additionally, we discussed the opportunities

for improvement of data smell detection tools.

Inevitably, a data pipeline has a high impact on data quality.

Therefore, the strategies developed for data validation should be

adapted to the data pipeline architecture. Moreover, the adjust-

ment of data validation practices to different stages of the data

pipeline and the outcomes can be investigated further. Future re-

search should study the impact of data smells in different domains

and determine universal practices for data quality improvement.

Based on the first results presented in this paper, our future goals

are to develop specific techniques that detect potential causes of

data smells in pipelines and a method to determine the severity of

data smells, i.e., how the severity of smells can be computed. Also,

we want to identify pipeline patterns that are suspect in creating

data smells and focus on data transformation and enrichment, the

phases that caused the majority of smells. As for the data sources,

we want to investigate the relationship between the quality of

raw input data and the number of smells they produce [3]. All of

these steps can further lead to the development of a quality model

representing the quality characteristics of data pipelines.
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ABSTRACT

Digitisation in the mining and metal processing industries plays

a key role in their modernisation. Production processes are more

and more supported by a variety of sensors that produce large

amounts of data that meant to provide insights into the performance

of production infrastructures. In the metal processing industry

vibration sensors are essential in the monitoring of the production

infrastructure. In this position paper we present the installation of

vibration sensors in a real industrial environment and discuss the

data quality issues we encountered while using such sensors.
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1 INTRODUCTION

Within mining and metal processing industries, digital transforma-

tion is becoming a driving force changing the nature of companies

and interaction with employees, communities, government, and

environment at every step of the value chain [1]. The metal pro-

cessing industry is already gathering a huge amount of data from

sensors to collect real-time information about the performance of

their infrastructure. Since many processes and machines can pos-

sibly generate data, smart sensors become a primary data source

∗This work received partial funding from the projects: BigDataMine (NFR 309691,
MOST 2019YFE0105000), DataCloud (H2020 101016835), and SINTEF SEP - DataPipes.
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Figure 1: Left: Vibration sensing installation in ferrosilicon

crushing facility at Elkem Bjùlvefossen, Norway. Right: A

vibration sensor encapsulated in a 3D printed watertight

package with wiring together with an overview from inside

the logger enclosure that contains the ESP43WROOM boards

and the power supply unit.

for producing insights via big data analytics. There remain how-

ever many areas where the industry lacks necessary and real-time

information. Commercial sensor equipment may be available but

could be too expensive or inadequate for direct implementation

in the process. In addition, conditions related to the hostile nature

of many processes, e.g., high temperature, dust, abrasion, corro-

sion, etc., may render data acquisition challenging. Research is thus

needed to identify, evaluate, or develop sensor technologies to be

used for real-time data gathering in harsh environments. Before

smelting in metal processing, crushing, and sieving of rawmaterials

are crucial process steps as raw materials have a large impact on

the efficiency of the smelting process. Implementation of practical

and reliable technologies monitoring such equipment in real-time

will thus enable an improved optimisation of the smelting process.

Furthermore, for the crushing and sieving process of the raw ma-

terial, there is much to gain by optimising the process. Currently

very little data is collected, except for the final product, which is

too late to be used for process optimisation.

A case study was developed by Elkem ś one of the world’s lead-

ing providers of advanced material solutions ś to explore vibration

monitoring of mechanical sieving equipment for fault detection.

The task focuses on developing suitable sensors to monitor the sieve

screens in the material separators at Elkem Bjùlvefossen, Norway

plant with the goal to detect overfeeding and increase of the pro-

duction throughput. A set of linear accelerometers were installed at

selected positions on the separator and the vibration data is being

collected since April 2022 (Fig. 1). Several data quality issues arise

during data collection. In this position paper, we present the data

acquisition pipeline and the issues that arise in the context of data

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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quality assessment. In our set-up we experience data loss of 8.6%

due to the chosen acquisition strategy that we will explain here in

more details and propose a possible mitigation strategy.

2 DATA ACQUISITION PIPELINE AND DATA

QUALITY ISSUES

2.1 Hardware Set-Up

As depicted in Fig. 1 the data acquisition is performed with the

following hardware that was installed on site in the crushing and

sieving facility:

• Two three-axis ADXL356 accelerometers

• ESP32 WROOM-32E

• Lenovo Thinkbook PC with Windows 10

• tp-link Archer MR 600 router

The set-up is custom made in-house and installed in a separate

network to ensure full control over the acquisition pipeline. Special

attention was given to design a dust and watertight encapsulation

of the equipment to prevent damage during the wet cleaning of the

facility and to ensure long-lasting run-time over planned evaluation

period of 1 year.

2.2 Data Processing Pipeline

The data is transferred through FTP on WiFi to the Windows com-

puter. A telegraf service is running on the Windows machine con-

stantly sending newly arrived accelerometer data to an influxDB

instance that is deployed in the cloud. Fig. 2 shows a high-level

architecture of the logging pipeline from the sensors to the cloud.

The data is sampled during an acquisition window of 3 minutes

at 1 kHz before it is sent to the Windows PC during a 17 seconds

sampling pause for further handling (Fig. 3). Fig. 3 shows also the

accelerometer signal at 3 axes as it is being acquired by the ana-

logue digital converters (ADC) of the ESP32 WROOM board. We

see that there are two dominant axes (adc0 and adc2) the third axis

seems to pick up just noise. Similar data characteristics apply to the

second vibration sensor. In addition to vibration data, manufactur-

ing execution system (MES) data, as well as, other process data as

product packaging speed is being collected in the same influxDB.

µController

vibration
sensor 1

vibration
sensor 2

4G

Figure 2: Overview of the data sampling pipeline from the

vibration sensor into a time series data base in the cloud.

The process data allows for precise interpretation of the vibration

data and is used for labelling in the later evaluation step. Here, we

use python scripts to identify and prototype a suitable analytics

and prediction framework with a goal to deploy it on site at the

factory.

2.3 Data Quality Issues

The main data quality issue is related to data loss due to commu-

nication overhead and malfunction of the hardware. The micro-

controller sampling routine as well as the process to send the data

over FTP to the Windows server runs as a single thread. While the

data is being sent to permanent storage, no data acquisition can

take place in the current set-up. The duty cycle hence consists of 3

minutes data acquisition followed by a 17 seconds of data transfer

as seen in Fig. 3, resulting in an 8.6% data loss per acquisition cycle.

This strategy is sub-optimal in the current research setting where

we are aiming to detect events on a sub-second scale. Further we

experienced data loss of 1 month from one of the sensors due to

cable wear from the mechanical abrasion of the connecting sensor

cable.

Figure 3: Top: Vibration data from a single accelerometer

sampled at 1 kHz with acquisition gaps. Bottom: Vibration

data from a single sensor consisting of 3 measurements at

orthogonal axes.

3 SUMMARY AND OUTLOOK

We presented the acquisition pipeline consisting of the instrumenta-

tion set-up and software logging routines to be capable of collecting

vibration data that is sampled at 1 kHz. The gaps in the data acqui-

sition can be avoided by either making use of the multi-threading

capabilities of the microcontroller or reducing the sampling rate

such that the acquired data can be sent in very small chunks to

minimise the communication overhead. The sieving unit vibrates

with a frequency of 16 Hz, and we assume that the information that

is relevant for the task of performance optimisation of the crushing

facility is in the range of few hundred Hz therefore posing a lower

requirement towards the sampling frequency. The experimental

data acquisition set-up is meant to collect vibration data for one

year. Once the data collection is finalised, we aim at building an

analytics pipeline that allows us to correlate process data from the

manufacturing execution system (MES) to optimise for key perfor-

mance indicators downstream as for example the packing speed

of the ferrosilicon in bags to be shipped to the customer. Further,

we aim at being able to tackle questions regarding predictive main-

tenance of the facility by analysing extraordinary events detected

through the vibration measurements of the sieving unit.
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ABSTRACT

Solar photovoltaics (PV) is becoming an important source of global

electricity generation. Modern PV installations come with a variety

of sensors attached to them for monitoring purposes (e.g., main-

tenance, prediction of electricity generation, etc.). Data collection

(and implicitly the quality of data) from PV systems is becoming

essential in this context. In this position paper, we introduce a mod-

ern PV mini power plant demo site setup for research purposes

and discuss the data quality issues we encountered in operating the

power plant.
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1 SOLAR PANEL INSTALLATION AND
MONITORING

As a major renewable energy source, solar photovoltaics (PV) [9]

nowadays provide 3.1% of global electricity generation. PV mon-

itoring is an essential part in any PV plant. Monitoring sensors

and their working principles, controllers used in data acquisition

systems, data transmission methods, and data storage and analysis

technologies are very important in a monitoring system [3]. PV

system monitoring may be the best way to maximize the perfor-

mance of PV systems. However, each monitoring system affects

in a different way the PV system performance [4]. PV monitoring

systems have been proposed in the literature, e.g., based on open-

source solutions with wireless and low-cost systems [5]. Others

focus on the design and implementation of microcontroller based

wireless PV modules [1]. Diagnostic techniques and algorithms
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were proposed to monitor photovoltaic plants, to predict failures

and to enhance PV system performance [8]. Recognition Technolo-

gies (RT), Artificial Intelligence (AI), and Machine Learning (ML)

enable drones and make the monitoring of large-scale solar power

plants easier [2]. Data collection (and implicitly the quality of data)

from PV systems is essential in this context, not only for better

maintenance but also for better prediction of electricity generation.

A modern PV mini power plant demo site with 58 solar panels

was installed on the roof of SINTEF building at Forskningsveien 1,

Oslo, Norway, for research purposes, amongst others to collect and

analyze the data from the PV plant and its associated sensors. Fig. 1.a

shows a picture of the installation. To monitor the PV plant perfor-

mance, various sensors are required. These include environmental

sensors, data loggers, infrared cameras, etc. A CMP6 pyranometer

(Fig. 1.b), a DustIQ soiling monitoring system (Fig. 1.c), and a Cli-

maVUE50 mini weather station (Fig. 1.d) are selected and installed

for monitoring purposes. The Tigo system1 is deployed to monitor

the current, voltage and electricity output from each panel group

through module optimizers and invertors. Thus, the information

about radiation, dust related parameter, wind speed, environmental

temperature, panel temperature, and power generation values can

be monitored in real-time.

Figure 1: (a) PV demosite at SINTEF in Oslo, Norway; (b)

CMP6 Pyranometer; (c) DustIQ Soiling Monitoring System;

(d) Campbell Scientific CimaVUE 50 weather station.

Based on the large data that is collected, this demosite provides a

unique opportunity to evaluate the power generation performance

and explore the relation between different environmental variables

which influences the energy output. For this purpose, a data pipeline

was designed and implemented to collect and store data, and make

it available for analysis. Fig. 2 depicts the data pipeline: data is

collected from the sensors installed on the solar panels, as well as

related sensors (e.g., from invertors, weather station), but also from

external data providers (e.g., weather forecasting). Data that comes

from proprietary systems (e.g., Tigo, SMA2) is firstly transmitted to

corresponding proprietary cloud systems, after which it is down-

loaded, integrated/merged with the other data in the form of time

1https://www.tigoenergy.com
2https://www.sma.de

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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Figure 2: Data pipeline for collecting data from the PV installation.

series data, and stored for further analytics (ranging from basic

visualization on dashboards to advanced AI/ML analytics). In the

process of designing and implementing this pipeline we identified

and experienced various data quality issues which we describe in

the following section.

2 DATA QUALITY ISSUES

Missing Data. Missing data is a common problem that many rea-

sons can cause. It can be hardware or software faults and last from

seconds to weeks. We, for example, experienced the loss of electrical

power for our data logger, which took a few days to fix. Our data is

also streamed to the cloud using an IoT gateway and a broadband

internet connection, which can be unreliable from time to time.

The software could be missconfigured. For example, we kept only

the last three months of data in the data logger at the beginning of

the experiment, while we thought we kept everything forever. We

also identified the risk of major hardware failures, such as broken

cables or sensors. When data is missing for a very short period of a

few sensors, interpolation can be considered. However, when the

data is missing for longer periods, the data should not be used for

analysis, especially for ML analytics. Removing the whole period is

better than using default or dummy data.

Inconsistent Timing. The data sources in our systems have

different sampling rates, from a few seconds to one hour, with

clocks that are not necessarily synchronized tightly. We also ex-

perienced issues with time zones. Some sources also have delays

in their availability. For example, a sensor uploads its data at a

one-minute sampling rate, but only every half hour. We can use

sensor fusion software methods to address such problems. We need

to synchronize the timestamps, though it can be tricky to figure

out the minor differences between the clocks. We also sometimes

need to have a single sampling rate for all sensors, and we need to

decide how we interpolate or sample the data. Average and linear

interpolation are the primary solutions we use, but more advanced

methods can also be used. For stream processing, we need to buffer

the data for long periods, waiting for all our sensors to upload their

data.

Unknown Condition. While an utterly broken sensor can be

easy to spot, a sensor that produces inaccurate data can be chal-

lenging. Perhaps one temperature sensor fells from its solar panel

to the floor while still reporting temperatures. One sensor may

not be calibrated correctly or be replaced by another model with

different characteristics. One classic solution in the big data domain

is to use more data, so these issues are merely noise and could be

ignored. In our case, we need to detect the quality changes using

fault detection algorithms and careful data analysis.

Changes in the Experiment Environment. When doing an

experiment outdoor for an extended period, years, for example, we

should be prepared to observe significant changes in the environ-

ment. For example, we observed a new construction that obstructed

the sun for a major part of the time for some of our solar panels. The

panels could also be relocated or have their position adjusted. In

our case, we decided to simulate the differences in sun exposure for

the solar panels that are now mainly in the shade. But sometimes,

the data should be dropped from the datasets.

Not Large Enough Experiment. We would like to have many

years of data with many weather conditions in many locations,

which would significantly increase the value of the data. One solu-

tion would be to share the data. People already share the energy

production with little weather information on websites such as

PVOutput3. Having a fewmore sensors in such community-sourced

datasets would be valuable.

3 SUMMARY AND OUTLOOK

We introduced a modern PV mini power plant demo site and dis-

cussed the data quality issues we encountered in operating the

plant. In future work we plan to identify and implement specific

data pipeline solutions and strategies addressing the identified data

quality issues [6, 7].

REFERENCES
[1] M Reyasudin Basir Khan et al. 2012. Wireless PV Module performance monitoring

system. In Proceedings National Graduate Conference 2012. 1ś4.
[2] Nallapaneni Manoj Kumar et al. 2018. On the technologies empowering drones

for intelligent monitoring of solar photovoltaic power plants. Procedia computer
science 133 (2018), 585ś593.

[3] Siva Ramakrishna Madeti and SN Singh. 2017. Monitoring system for photovoltaic
plants: A review. Renewable and Sustainable Energy Reviews 67 (2017), 1180ś1207.

[4] Eneko Ortega et al. 2017. Study of photovoltaic systems monitoring methods. In
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). IEEE, 643ś647.

[5] José Miguel Paredes-Parra et al. 2018. PV module monitoring system based on
low-cost solutions: Wireless raspberry application and assessment. Energies 11,
11 (2018), 3051.

[6] Dumitru Roman et al. 2021. Big Data Pipelines on the Computing Continuum:
Ecosystem and Use Cases Overview. In Proceedings of the Symposium on Computers
and Communications, 2021. IEEE, 1ś4.

[7] Ahmet Soylu et al. 2022. Data Quality Barriers for Transparency in Public Pro-
curement. Inf. 13, 2 (2022), 99.

[8] Asma Triki-Lahiani et al. 2018. Fault detection and monitoring systems for pho-
tovoltaic installations: A review. Renewable and Sustainable Energy Reviews 82
(2018), 2680ś2692.

[9] Marta Victoria et al. 2021. Solar photovoltaics is ready to power a sustainable
future. Joule 5, 5 (2021), 1041ś1056.

3https://pvoutput.org

25

https://pvoutput.org


Author Index
Aamodt, Arianeh . . . . . . . . . . . . . . . . 22

Bouquet, Gregory . . . . . . . . . . . . . . . 22

Eidnes, Sølve . . . . . . . . . . . . . . . . . . . . 22

Felderer, Michael . . . . . . . . . . . . . . . . 18
Foidl, Harald . . . . . . . . . . . . . . . . . . . . 18

Golendukhina, Valentina . . . . . . . . . 18

Hansen, Anders . . . . . . . . . . . . . . . . . 22
Henriksen, Bjørn . . . . . . . . . . . . . . . . 22

Jilani, Muhammad Taha . . . . . . . . . . 10

Khomh, Foutse . . . . . . . . . . . . . . . . . . . 2

Ma, Xiang . . . . . . . . . . . . . . . . . . . 22, 24
Mathur, Aditya . . . . . . . . . . . . . . . . . . 10
Metzger, Andreas . . . . . . . . . . . . . . . . . 1
Moen, Terje . . . . . . . . . . . . . . . . . . . . . 22
Myrseth, Per . . . . . . . . . . . . . . . . . . . . . 3

Pultier, Antoine . . . . . . . . . . . . . . 22, 24

Ramler, Rudolf . . . . . . . . . . . . . . . . . . 18

Roman, Dumitru . . . . . . . . . . . . . 22, 24

Soylu, Ahmet . . . . . . . . . . . . . . . . . . . . 24
Stang, Jørgen . . . . . . . . . . . . . . . . . . . . . 3
Stasik, Alexander . . . . . . . . . . . . . . . . 22

Tørlen, Idar . . . . . . . . . . . . . . . . . . . . . 22

Ulyashin, Alexander G. . . . . . . . . . . . 24
Umer, Muhammad Azmi . . . . . . . . . 10

Walther, Dirk . . . . . . . . . . . . . . . . . . . . . 3
Waszak, Maryna . . . . . . . . . . . . . . . . . 22

26


	0: Title Page
	0: Message from the Chairs
	1: Data Quality Issues in Online Reinforcement Learning for Self-Adaptive Systems (Keynote)
	2: Data Quality and Model Under-Specification Issues (Keynote)
	3: Data Quality as a Microservice: An Ontology and Rule Based Approach for Quality Assurance of Sensor Data in Manufacturing Machines
	4: Effect of Time Patterns in Mining Process Invariants for Industrial Control Systems: An Experimental Study
	5: Preliminary Findings on the Occurrence and Causes of Data Smells in a Real-World Business Travel Data Processing Pipeline
	6: Data Quality Issues for Vibration Sensors: A Case Study in Ferrosilicon Production
	7: Data Quality Issues in Solar Panels Installations: A Case Study

