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ABSTRACT The widespread proliferation of Internet of Things (IoT) devices has pushed for the development
of novel transformer-based Anomaly Detection (AD) tools for an accurate monitoring of functionalities in
industrial systems. Despite their outstanding performances, transformer models often rely on large Neural
Networks (NN5s) that are difficult to be executed by IoT devices due to their energy/computing constraints.
This paper focuses on introducing tiny transformer-based AD tools to make them viable solutions for on-
device AD. Starting from the state-of-the-art Anomaly Transformer (AT) model, which has been shown to
provide accurate AD functionalities but it is characterized by high computational and memory demand, we
propose a tiny AD framework that finds an optimized configuration of the AT model and uses it for devising
a compressed version compatible with resource-constrained IoT systems. A knowledge distillation tool is
developed to obtain a highly compressed AT model without degrading the AD performance. The proposed
framework is firstly analyzed on four widely-adopted AD datasets and then assessed using data extracted
from a real-world monitoring facility. The results show that the tiny AD tool provides a compressed AT
model with a staggering 99.93% reduction in the number of trainable parameters compared to the original
implementation (from 4.8 million to 3300 or 1400 according to the input dataset), without significantly
compromising the accuracy in AD. Moreover, the compressed model substantially outperforms a popular
Recurrent Neural Network (RNN)-based AD tool having a similar number of trainable weights as well as a
conventional One-Class Support Vector Machine (OCSVM) algorithm.

INDEX TERMS Anomaly detection, machine learning, self-attention, knowledge distillation, Internet of

Things, transformer, compression.

I. INTRODUCTION

The recent integration of Internet of Things (IoT) sensor
networks within everyday applications has enabled the col-
lection of large volumes of time series data, fostering the
development of accurate monitoring and intelligent control
systems [1], [2], [3], [4]. This is not only limited to industrial
IoT setups but applies to vehicular systems as well [5], [6].
Regardless of the technological implementations and system
architectures, a key task of IoT networks is to acquire data for
monitoring and raising alarms or alerts when needed [7]. In
this context, Anomaly Detection (AD) tools are fundamental
to discover unusual or anomalous patterns as well as abrupt
changes in data, possibly indicating failures or malfunctions
in the system being monitored [8], [9], [10]. Ideally, AD tools

should also operate in real-time so as to provide up-to-date
information, rapidly forward alert messages, and conse-
quently allow a reaction to anomalous events in due time.
Besides, all these functionalities should be general enough to
be seamlessly applied to multiple IoT scenarios [11].

On one hand, given the ever-increasing generation and ac-
quisition of time-series data from IoT devices, conventional
AD procedures based on historical and statistical analysis may
reveal to be inappropriate due to their underlying limiting
statistical and modeling assumptions [12]. On the other hand,
Machine Learning (ML) techniques are being increasingly
used to learn descriptive relations from the collected data,
or even hidden relationships among them, that facilitate the
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AD process. Well-known ML-based AD tools rely on Support
Vector Machines (SVMs) and Decision Trees (DTs) algo-
rithms that aim at detecting anomalies by building a specific
classifier [13], [14], [15] or by representing the time-series
data in a tree structure [16], [17], [18], respectively. Other
widely-used techniques include Isolation Forest (IF) [19],
[20], Local Outlier Factor (LOF) [21], [22], and K-Nearest
Neighbor (K-NN) [23], [24].

More recently, Neural Networks (NNs) have been increas-
ingly applied for solving AD tasks due to their outstanding
ability of capturing highly non-linear and complex relation-
ships from data, consequently facilitating the discovery of
anomalies [25], [26]. Common architectures employed in this
context include Convolutional Neural Networks (CNNs) [27],
Recurrent Neural Networks (RNNs) [28], Graph Neural Net-
works (GNNs) [29], [30], transformers [31], [32], or any
combination thereof (for some examples we refer to [33]).
These techniques typically target reconstructing the input time
series at the output and discern the anomalies based on the
reconstruction error. Indeed, normal data points should be
reconstructed quite well while anomalous time series should
lead to high reconstruction errors at the output indicating
a possible anomaly. Besides selecting a suitable ML model
for the considered AD problem, another important aspect to
take into account is the learning paradigm under which the
models should be trained. Supervised, semi-supervised, and
unsupervised paradigms are the most utilized for AD [26]. In
this paper, we specifically focus on unsupervised methods as
they are able to automatically discern anomalies without any
external supervision or labeled data [26], [34].

Besides selecting a suitable ML model and learning
paradigm, the integration of data-driven AD strategies into
IoT setups faces additional challenges. Indeed, IoT devices are
typically characterized by low power consumption and limited
computational capabilities, preventing the adoption of large
ML models. Therefore, to harness the excellent performances
of ML-based AD tools in IoT systems, novel strategies should
be developed to optimize and/or compress the NNs so that
they can be executed on resource-constrained devices. This
paper tries to move in this direction by developing a tiny
AD framework providing highly accurate learning-based AD
strategies compatible with the (limited) computational and
memory resources of IoT devices without sacrificing the AD
capabilities.

Il. RELATED WORKS AND CONTRIBUTIONS

This section discusses the related works and details the main
contributions of the paper. We start by reviewing prior art on
ML-based unsupervised AD methods (Section II-A), followed
by a discussion on the compression strategies adopted to
reduce the computational/memory complexity of large trans-
former models (Section II-B). Lastly, Section II-C highlights
the main contributions of the paper.

A. UNSUPERVISED ANOMALY DETECTION
Common approaches targeted at solving the AD task in a fully
unsupervised manner rely on RNNs that learn the temporal
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dependency across multi-dimensional time series. For exam-
ple, the authors of [35] propose a Long Short Term Memory
(LSTM)-based Variational AutoEncoder (VAE) to reconstruct
time series and learn their posterior distributions. Authors
in [28] develop OmniAnomaly, a stochastic RNN framework
that aims at producing accurate anomaly scores based on
reconstruction probabilities. Similarly, InterFusion [36] pro-
poses a hierarchical VAE to faithfully model the relationships
among the time series and exploit their representation to per-
form AD, whereas a temporal one-class classification model
introducing dilated RNNs is designed and proposed in [37].
Other ML approaches employ Generative Adversarial Net-
works (GANSs), where adversarially-generated time series are
used to improve the discovery of anomalies [38], or a fusion
of GANs with LSTMs [39]. More recently, new techniques
based on the transformer architecture have also been intro-
duced thanks to the increasing traction of the self-attention
mechanism [32], [40], [41], [42], [43], [44], [45], [46], [47].
Specifically, in [40] the authors propose a graph learning with
transformer for anomaly detection (GTA) that jointly learns
a graph structure and models the temporal dependencies of
the time series through a transformer-based module, whereas
TranAD, introduced in [32], improves the accuracy of AD
while reducing training times. In [41], the authors propose a
root-square sparse transformer together with a dynamically-
adjusted learning strategy to address concept drift in AD
setups, while [42] develops ITran which incorporates knowl-
edge about inductive biases to make the solution effective
even when a relatively small amount of training data is avail-
able. On the other hand, [43] combines GANs with dilated
convolutions to improve the generalization capability of the
developed transformer-based AD tool. Other strategies instead
focus on combining transformers with VAE to provide more
robust AD methods [45], [46]. Lastly, the Anomaly Trans-
former (AT) introduces a novel association discrepancy metric
and redesigns the self-attention mechanisms to work directly
on time series data [47]. Despite their competitiveness, trans-
formers entail an excessive number of trainable parameters
posing a major challenge for their implementation on IoT
devices which are typically characterized by reduced memory
and computational abilities.

B. COMPRESSION STRATEGIES FOR TRANSFORMERS

To reduce the computational burden of large transformer mod-
els, compression strategies have been developed throughout
the years [48], [49]. Most common approaches rely on quanti-
zation and pruning operations applied to the ML model, where
the former aims at representing the NN weights by using a
lower number of bits [50], while the latter removes redundant
model parameters, possibly taking into account also the
structure of the multi-headed self-attention mechanism [51].
Another approach for transformer compression is knowledge
distillation, where a large pre-trained model (called teacher) is
used as a reference for training a much smaller model (called
student) [52]. Knowledge distillation strategies are typically
characterized based on the number of teachers and/or students
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considered during the distillation process [53], [54] or
based on what information is distilled (e.g., the intermediate
outputs, soft labels, and so forth) [55], [56]. Besides the
aforementioned strategies, weight sharing can be also utilized
to reduce transformer complexity. Under these methods, some
trainable parameters are shared between different layers to
reduce model complexity [57], [58]. Finally, methods based
on matrix decomposition (see e.g., [59], [60]) have been used
to factorize large weight matrices into smaller representations.
All these techniques have shown remarkable compression
capabilities specifically for Natural Language Processing
(NLP) tasks where encoder-decoder architectures are largely
utilized. However, their use is largely underexplored when
it comes to AD tasks. Based on these considerations,
in the paper we propose novel solutions for obtaining
highly compressed transformer-based AD tools specifically
formulated for time-series data. Note that other methods
(see e.g., [61] for a review) have been developed to obtain
data-driven AD strategies for time-series data compatible
with resource-constrained devices. Nevertheless, to the
best of our knowledge, this is the first work that considers
transformer models which poses additional challenges due to
their extremely large model footprint.

C. CONTRIBUTIONS

In this paper, we focus on providing highly compressed
transformer-based AD algorithms that can be employed
in resource-constrained IoT setups. The goal is to obtain
lightweight ML models that can support highly accurate AD
functionalities over heterogeneous and complex time series
data. To this end, we propose a tiny AD framework that is
responsible for optimizing a large AD tool based on the self-
attention mechanism, namely AT, and use it for producing
a substantially compressed version able to be executed on
embedded devices. After optimizing the large AT model, a
knowledge distillation policy is developed where the opti-
mized AT algorithm is used to obtain a lighter student ML
architecture characterized by a substantially lower number
of trainable parameters. This process is done through dis-
tillation by matching the representations provided by the
large teacher model with the ones attained by the smaller
student model. Overall, the developed tiny AD framework
is shown to produce transformer-based AD models support-
ing highly-accurate AD functionalities while requiring minor
modifications compared to the original training process of AT,
allowing for straightforward implementations. To summarize,
the detailed contributions are as follows:

e we propose a tiny AD framework. The framework is
responsible for optimizing large AT models and using
them to produce highly compressed AD tools that can be
integrated into resource-constrained devices;

e we develop a knowledge distillation strategy for com-
pressing AT and making it suitable for on-device AD.
The proposed distillation tool is general enough to
be applied even when the student and teacher have a
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different number of layers and self-attention map di-
mensions without increasing the number of trainable
parameters;

® we extensively validate and compare the performances
of the model obtained by the framework over AD
datasets used in the literature as well as using time-series
data collected in a real-world bridge infrastructure mon-
itoring use case;

e we compare the compressed model produced after ap-
plying the developed framework with a conventional
One-Class Support Vector Machine (OCSVM) algo-
rithm as well as a state-of-the-art RNN AD tool. For a
fair comparison, the RNN-based AD strategy is config-
ured so as to have roughly the same number of trainable
weights of the compressed model.

Experimental results show that the proposed technique is
able to provide a substantially compressed AT model, with a
remarkable 99.93% less trainable parameters compared to the
original implementation, with negligible performance loss. In-
deed, for the considered AD datasets, the F1 score obtained by
the distilled model is slightly lower (less than 2%) with respect
to the original AT method. Similarly, the F1 score obtained by
the original AT and the distilled version using the real-world
monitoring time series data is nearly identical. The resulting
model obtained after applying the proposed AD framework
enables a highly-accurate discovery of anomalies and out-
performs the state-of-the-art RNN AD method when the two
networks have similar number of trainable weights. Numerical
results also show that the compressed AT model substantially
outperforms the conventional OCSVM AD strategy. Lastly,
the analysis indicates that the distilled model is suitable for in-
tegration into resource-constrained environments, such as [oT
or embedded systems, thanks to the reduced model footprint,
i.e., number of parameters [62].

The remainder of this paper is organized as follows. Sec-
tion III reviews the AT model and its training process.
Section IV details the proposed tiny AD framework. Section V
highlights the numerical results characterizing the distilled AT
model using 4 widely-adopted AD datasets, while Section VI
concentrates on the assessment of the proposed technique
considering a real-world AD scenario. Finally, Section VII
draws some conclusions.

1Il. TRANSFORMER-BASED ANOMALY DETECTION

This section briefly describes the AT method. At first, we
detail the model architecture (depicted in Fig. 1) together with
the multi-head anomaly-attention mechanism (Section III-A).
Then, we present the learning strategy used for optimizing
the model parameters and the corresponding inference stage
(Section III-B).

A. ARCHITECTURE AND MULTI-HEAD
ANOMALY-ATTENTION MECHANISM

Given a d-dimensional time-series X € RV %4 of length N, the
AT performs AD by reconstructing the original time series
at the output. The AT architecture is composed by L layers,
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learning to reconstruct the time series at the output. The anomaly-attention module is responsible for learning the prior and series association to

facilitate the discovery of anomalous data [47].

where the outputs X©) at layer ¢, with 1 < ¢ < L, are com-
puted as

X = fin (2OW, +2), (1)

being fin(-) the processing done by a layer normalization op-
eration and Wy are the weights associated to a fully connected
layer that operates on the intermediate representation Z©) of
layer ¢, which is defined as

2O = fin (far XD+ X0, @)

where X1 are the outputs of layer £ — 1 and far(-) denotes
the processing done by the anomaly-attention mechanism.
Note that for ¢ =0, the input time-series X is processed
by an embedding function that initially converts X into a
sequence of tokens and then sums the results to the output
given by a positional encoding function to obtain the input
sequence X(® € RV*dn being d,, the dimension of the self-
attention map, similarly to what is carried out in traditional
self-attention procedures [63]. On the other hand, for £ = L
we have X) = X, i.e., the output of the model is the recon-
structed time series X of the input X.

To improve the accuracy of the architecture, a multi-head
anomaly-attention mechanism is proposed to learn a robust
normal-abnormal association criteria. More specifically, two
additional learnable rules are introduced, namely the prior and
series association using self-attention. The former is designed
to learn the relative temporal distance of the time series sam-
ples, while the latter learns the association across different
time series.

The multi-head anomaly-attention module is depicted in
Fig. 2 and works as follows. At first, the output X“~—D
of the (£ — 1)-th layer is reorganized into disjoint matrices
{X;f*l) € RNX(dm/Nh)}gil. Each matrix X;f*l) is then fed to
four fully connected layers to obtain queries, keys, values, and
scale matrices, denoted with Q%), K;f), V;l[) € RN>Uu/Ny)

and T\ € RY*M:, respectively, and defined as

Q%) _ XE,K_I)W(QZ) ’ 3)
K" =x""Pw )
VO = xThw (5)
20 = Xhwl 6)
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FIGURE 2. Multi-headed anomaly attention module at layer ¢ and for the
h-th head. The outputs consist in the prior P¢) and series $) association
matrices together with the intermediate representation of the time-series
70,

being Wg)’ W%), Wg/z)eR(dm/Nh)X(dm/Nh) and Wg) c

R@n/Nw>Ni the associated learnable weights. Next, the
queries and keys matrices for the i-th head are used to com-
pute the series association matrix S0 € RV*V as

O OT
K
S® — Softmax (QhTh), @)
m

while the entries of the prior association matrix P¢) € RV*N
are evaluated by fitting a Gaussian kernel to the pairwise
distances among the indices of the time series as follows

1 (i—j)
[PV j = ———=exp <—2T : ®)
2no?,, Oien

To obtain a proper distribution, P(©) is normalized, i.e.,
PO =P" o PO1y), ©)
where symbol @ denotes the row-wise division. Lastly, the

intermediate representation of the reconstructed time series
for the h-th head ng) is computed as

7" =8OV, (10)

465



BARBIERI ET AL.: TINY TRANSFORMER-BASED ANOMALY DETECTION FRAMEWORK FOR IOT SOLUTIONS

This process is repeated for all N, heads and the results are
concatenated together to obtain the final intermediate repre-
sentation for the £-th layer
7)) _ |7 )
Z<>_[Z1 -~-ZNh]. (11)
B. OPTIMIZATION STRATEGY AND INFERENCE PROCESS

The main goal of the AT model is to reconstruct the time series
at the output by minimizing the reconstruction loss

Erec = ||X—XR||2, (12)

where Xp is the models’ output. Additionally, a symmetrized
Kullback-Leibler (KL) divergence [64], representing an asso-
ciation discrepancy, is used to learn a robust normal-abnormal
discerning rule by optimizing over the following loss term

L
Lo =7 30 (KLPOISO) + KLSOIPD), (13)
(=1
where KL(-||-) denotes the KL divergence between two dis-
crete distributions. Note that Lgky is computed separately
for each row of the matrices PV and S as each row is
assumed to model a separate distribution. The total loss is then
evaluated as

Etot,min = £rec - )LLSKL,

which is used to updated the NN weights.

Using only (14) for training the model makes the prior
association not useful for discerning anomalies. Indeed, the
maximization of the association discrepancy in (14) leads
to Gaussian kernels in (8) with extremely reduced standard
deviation [65]. To overcome this problem, AT introduces
a min-max learning strategy, where the prior association is
initially optimized to be as close as possible to the series
association by minimizing (14). During this phase, the series
association is kept constant and not backpropagated. Then, the
series association is updated so that the association discrep-
ancy in (13) is maximized, leading to an higher ability of the
model to recognize anomalous patterns in the time series data.
More specifically, keeping constant the prior association, the
series association is updated considering the following loss

5)

Additionally, an early stopping criterion is used to prevent
the model to overfit. In particular, the training procedure is
terminated when the losses (14) and (15) stop decreasing for
more than a pre-fixed number of consecutive epochs.

Upon completion of the training process, AD is performed
based on the computation of an Anomaly Score (AS) that
incorporates both the reconstruction quality and the value of
the association discrepancy. Specifically, given a new time
series X € RV*4 the AS for each point of the time series is
evaluated as

(14)

Etot,max - Erec + )"ACSKL~

AS = fsm(Lskr) © | X — Xk H2 .

where fsy(-) and O denote the softmax operation and
element-wise multiplication, respectively. Then, a point is

(16)
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flagged as an anomaly if the AS is greater than a pre-defined
threshold &y,.

IV. TINY ANOMALY DETECTION FRAMEWORK

This section describes the proposed tiny AD framework,
which is responsible for producing a highly compressed ver-
sion of AT. The procedure firstly optimizes an (uncompressed)
AT model and then uses a distillation method to incorpo-
rate the knowledge acquired by the optimized model into
the distilled one characterized by much lower computational
complexity. Given the limited computational and/or memory
resources of embedded systems, such as microcontrollers or
IoT devices, the use of the original (optimized) AT architec-
ture might not be possible in many cases. Indeed, AT relies
on a modified self-attention mechanism that requires 3d?
trainable parameters associated with the learnable weights of
the queries, keys, and value matrices, while the scale ma-
trix requires d,, Ny, trainable parameters. All these parameters
then need to be multiplied by the number of layers L of
the architecture. Considering that the original implementation
of AT [47] sets d,, =512, N =8, and L = 3 layers, the
resulting memory footprint is not compatible with resource-
constrained devices. Therefore, in what follows, we detail
the main inner workings of the proposed tiny AD framework
and how it can provide highly-accurate models suitable to be
executed on resource-constrained devices.

At first, the developed AD tool is responsible for pre-
training a, possibly large, AT model according to the optimiza-
tion strategies presented in Section III-B so as to maximize
its AD performances. Then, it instantiates a new AT network
with much lower computational complexity (i.e., by limiting
its number of layers L, its number of heads Ny, or by reducing
its self-attention map dimension d,,). Training from scratch
the compressed model may lead to sub-optimal performances
due to its limited expressive capabilities. To overcome this
shortcoming, the tiny AD framework integrates a knowledge
distillation tool so that the knowledge of the optimized AT
network, also referred to as teacher, can be incorporated into
the compressed AT model, referred to as student.

Knowledge distillation strategies make use of intermediate
or final model outputs to embed the knowledge acquired by a,
possibly large, ML model into a much smaller NN. The choice
about the specific outputs to be distilled is typically made
based on the architecture at hand. In our case, we foresee three
possible choices: (i) distilling the feature encodings provided
by the embedding module, i.e., X©; (ii) distilling the prior
and series association matrices, i.e., S and P®; (iii) dis-
tilling the intermediate and final outputs of AT, namely X,
Clearly, one could also combine the aforementioned strategies
at the expense of larger computational complexity. The first
choice may not capture the complex relationships required to
reconstruct the time-series at the output as only the feature
encodings between teacher and student models are distilled.
Therefore, the reconstructed time-series at the output provided
by the student may differ substantially from the one provided
by the teacher, possibly leading to poor reconstruction results
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FIGURE 3. Proposed distillation tool: the knowledge of the teacher (top) is
incorporated into the student (bottom) by minimizing the difference
among the outputs at different layers provided by the two models.

and inefficient AD. On the other hand, the second choice may
interfere with the min-max learning strategy of AT as the
prior and series associations are alternatively optimized, as
detailed in Section III-B. This will make the convergence of
the distilled AT model difficult, possibly leading to degenerate
prior/series association matrices with a subsequent decrease
in AD performance. From these considerations, the strategy
adopted in this paper for the distillation process is the third
one as it only constrains the intermediate and final outputs
of teacher and student AT to be close to each other without
explicitly enforcing the prior and series associations of the two
models to be equal. This also guarantees that the reconstructed
time-series provided by the student closely matches the one
provided by the teacher.

According to the previous discussion, the goal of the de-
veloped distillation algorithm is to match the intermediate
and final outputs of the teacher and student, as highlighted
in Fig. 3. The teacher is configured to have LT layers, N}ET)

heads, and a self-attention map dimensions of d,(,,T). Similarly,
the student has L® < L™ layers, N;ES) < N,ET) heads, and
d,(ns) < d,(nT). Starting from the input time-series X, the teacher
computes the outputs at each layer {X(T/Z )}ﬁg according to (1)-
(2). In a similar manner, X is also used by the student model to

compute the outputs {X(Z)}L( ) . Then, fully connected layers,
exemplified by the green rectangles in Fig. 3, are used to
upscale/downscale the outputs of the two architectures so that
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they have the same dimensions. This leads to the new repre-
sentations {X(l) IS RNX"[}L( =1 and {ig) IS RNX“’}%(:S;_I for
the teacher and student models, respectively. Note that the
fully connected layers reuse the weights provided by the last
fully connected layer of the models. By doing so, the trainable
parameters of both models remain the same.

The knowledge distillation process relies on a modified
loss function compared to the ones presented in Section II-
I-B. In particular, the student is initially updated following
the same min-max optimization strategy described before in
(14), (15). Then, a distillation loss term is added to guide the
training from the teacher to the student such that the discrep-
ancy between the intermediate outputs of the two models is
minimized, as highlighted in Fig. 3. Specifically, this loss is
evaluated as

LS )
L(T) §50)
Laist = Ap § HX“) X(‘”H +H _x{H)

a7
The value of Ap is chosen so that the student is able to learn
a robust normal-abnormal discerning rule while also incorpo-
rating the knowledge provided by the teacher.

V. NUMERICAL RESULTS ON LITERATURE DATASETS

In this section, we evaluate the performances of the proposed
tiny AD framework. Section V-A details the main simula-
tion parameters, while Sections V-B and V-C study the AD
accuracy of different student model configurations and the
impact of various distillation loss functions, respectively. Fi-
nally, Section V-D compares the performances of the model
produced by the developed tiny AD framework with state-of-
the-art and conventional baselines.

A. SIMULATION PARAMETERS
For evaluation purposes, we consider the following widely-
adopted AD datasets:

e Server Machine Dataset (SMD): a 5-week long dataset
collected from a large internet company containing in-
formation about 28 different machines [28];

e Soil Moisture Active Passive satellite (SMAP) and Mars
Science Laboratory rover (MSL): two datasets published
by NASA about telemetry of an aircraft system [66];

® Pooled Service Metrics (PSM): a dataset by eBay related
to several application server nodes [67].

The main characteristics of the datasets detailing the train-
ing/validation/testing split percentages, the dimension d of the
time series as well as the percentage of anomalies present in
the testing split are summarized in Table 1.

The experiments focus on the comparison between the de-
tection abilities provided by the optimized model produced
by the developed tiny AD tool and the ones attained by the
compressed model after distillation. In _Barticular, the opti-
mized AT employs L™ = 3 layers, N = 8§ heads, and a

self-attention map dimension d,(,lT) =512, leading to ~4.8
million trainable parameters. The optimized model is trained
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TABLE 1. Statistics of Literature Datasets

Training | Validation | Testing | Anomalies
Dataset | Dim.
[%] [%] [%] [%]
SMD 38 40 10 50 42
SMAP 25 55.4 2.7 41.9 12.8
MSL 55 353 8.8 55.9 10.5
PSM 25 48.1 12 39.9 27.8

for 20 epochs using a batch size of 64 examples. Unless stated
otherwise, each example refers to a windowed time-series
comprising N = 100 data points. The NN weights are learned
via the Adam optimizer configured to have a linear decaying
learning rate with an initial value of 0.0001 and momentum
parameters of 0.9 and 0.999 while considering A = 3 in (14)
and (15). The number of epochs used for the early stopping
criterion is set to 5. This model is then exploited as teacher for
the distillation process.

As performance metrics, we use the standard measure of
precision, recall, and F1 score for classification tasks, which
are defined as

.. TP
Precision = ——, (18)
TP + FP
TP
Recall = —— (19)
TP + FN
Precision - Recall
Fl =2 (20)

Precision + Recall ’

where TP, FP, TN, and FN denote the number of true positives,
false positives, true negatives, and false negatives, respec-
tively. Additionally, we also consider the Receiver Operating
Characteristics (ROC) and the Area Under the Curve (AUC)
value to comprehensively characterize all the methods.

B. IMPACT OF STUDENT MODEL CONFIGURATIONS

This section studies how different student model configura-
tions affect the AD performances. This analysis allows us
to analyze the trade-off between the compression ratio of
the student model and its AD capabilities and subsequently
choose the best configuration. To do so, we pre-train the
teacher using the parameters highlighted before and distill
its knowledge considering students with LS ranging from
1 up to 3 and with d,(,,s) ranging from 16 up to 256, while
setting N}ES) = N;T>. The distillation process utilizes the loss
defined in (17). The student models are trained using the same
configuration parameters of the teacher with Ap = 10. During
the inference process, we select the threshold for flagging an
anomaly following the approach presented in [47] while also
using the adjustment strategy proposed in [68]. Note that the
thresholds are optimized separately for each dataset and for
each student configuration.
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The results of the analysis are highlighted in Table 2 which
reports the precision, recall and F1 scores for each literature
dataset separately. Additionally, the same table highlights the
compression ratio achieved by the student model compared
to the teacher. Note that the compression ratio varies slightly
across the datasets due to the different dimensions of the time-
series, thus we only report it for the SMD dataset. Numerical
results show that the student is able to provide accurate AD
performances even for large compression ratios. Indeed, the
F1 score decreases slightly, i.e., less than 2%, when passing
from L&) =3 and d% =256 to LS =1 and 4> = 16.
Some configurations provide less accurate results compared to
others. For example, the combination d>’ = 16 and LS = 3
should be avoided as responsible for low F1 scores across
most of the considered datasets. This might indicate that the
student AT should be configured with a high enough d,,(f')
when L® is large to not incur in performance degradation.
Overall, the analysis shows that the performance of the stu-
dent model does not deteriorate too much for all analyzed
configurations. Therefore, the best trade-off between model
complexity and AD accuracy is achieved when the student
is configured with L® = 1 and d,(,,s) = 16. Adopting such a
configuration allows us to reduce the number of parameters of
the student by a staggering 99.91% compared to the original
AT without compromising the AD accuracy of the compressed
model.

C. IMPACT OF DIFFERENT LOSS FUNCTIONS

Knowledge distillation processes rely on dedicated and hand-
crafted loss functions to transfer the knowledge between
teacher and student models. This section analyzes the impact
of the specific loss function used during distillation. To do
so, we consider three different loss functions: (i) the L2 loss
defined in (17), (ii) an L1 loss, and (iii) a smooth L1 loss. As

done in Section IV, the L1 loss is evaluated as
Lo (T)
EN S L
Lgist = Ap Z HX(T() - X(SC) H + ()
=1

()
XT - XS

)

20
On the other hand, the smooth L1 loss is computed as

LS)—1
—~ ~ LMD LS
£ =l X o (%R0 - exf T x)).
=1

(22)

where L is defined in [69]. Note that the parameter 8 for
Ly is set to 1. According to the previous analysis, we select
the student model configuration with LS =1, N,ES) = 8 and

d,g,s ) = 16, while the teacher is configured as in Section V-A.
The same training configurations detailed in Section V-A
are also used here for updating the weights of the stu-
dent and teacher models, while we set Ap = 10 for all the
losses. Finally, during inference, we optimize the thresh-
olds according to the policy presented in [47]. This leads
to setting &g = {0.398, 0.145,0.157, 0.287} for the SMD,
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TABLE 2. Performance Comparison Over Different AD Literature Datasets in Terms of Precision (P), Recall (R), and F1 Score for Different Student Model

Configurations

Configuration SMD SMAP MSL PSM

LS 4 Compr. ratio P R Fl P R F1 P R Fl P R Fl

[# [#] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
3 256 74.48 88.82 9329 91.00 | 93.58 9923 9632 | 91.96 9336 92.65 | 97.13 9875 97.93
2 256 82.72 88.87 9455 91.62 | 9359 9935 9639 | 92.17 9759 94.80 | 97.17 98.63 97.89
1 256 90.96 88.74 9232 9050 | 93.60 98.76 96.11 | 9139 9515 9323 | 9721 98.64 97.92
3 64 98.21 8022 9411 91.60 | 93.64 9859 96.05 | 9209 9670 94.34 | 97.05 98.79 9791
2 64 98.74 89.62  95.04 9225 | 93.06 91.46 9225 | 92.10 9670 94.35 | 97.16 9820 97.68
1 64 99.27 88.57 90.54 89.55 | 93.68 98.00 9579 | 92.02 96.70 9431 | 97.03 9853 97.77
3 16 99.84 86.12 7472 80.02 | 93.54 9851 9596 | 91.63 93.07 9235 | 97.17 98.86 98.01
2 16 99.88 8824 88.10 88.17 | 93.61 9886 96.16 | 91.68 9327 9247 | 97.10 98.94 98.01
1 16 99.91 88.30  90.80 89.53 | 93.66 9922 9636 | 91.77 9594 9381 | 97.12 98.10 97.61

TABLE 3. Performance Comparison Over Different AD Literature Datasets in Terms of Precision (P), Recall (R), and F1 Score for Different Loss Functions

SMD SMAP MSL PSM
Loss P R Fl1 P R F1 P R Fl1 P R Fl1
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
L2 loss 88.30  90.80 89.53 | 93.66 99.22 9636 | 91.77 9594 9381 | 97.12 98.10 97.61
L1 loss 87.89 86.78 8733 | 93.65 9899 9625 | 91.94 9750 94.64 | 97.19 98.12  97.65
Smooth L1 loss | 8829  89.34  88.81 | 93.65 99.19 9631 | 92.03 97.50 94.69 | 97.19 9827 97.73

SMAP, MSL and PSM datasets when the L2 loss is con-
sidered, while we set 8, = {0.395, 0.149, 0.152, 0.286} and
St = {0.398,0.145, 0.158, 0.288} for the L1 and smooth L1
losses considering the same datasets, respectively.

Table 3 reports the precision, recall, and F1 scores consid-
ering the three aforementioned loss functions. Comparing the
results, we can see that the L2 loss is advantageous for the
SMD and SMAP datasets, while the smooth L1 has slightly
higher performances when MSL and PSM are considered.
Nevertheless, the results also highlight that the performances
of the proposed approach are not that much affected by the
specific loss used for the distillation process. Indeed, the dif-
ference among all losses in terms of precision, recall, and
F1 score is only marginal. Based on this discussion, the loss
function used for the distillation process for the following
results is (17).

D. COMPARISON WITH OTHER BASELINES

This section evaluates the performances of the proposed
tiny AD framework by comparing it with other baseline
approaches. The knowledge distillation process considers
as teacher the AT model set as in Section V-A while
the student is configured according to the analysis
provided in Section V-B. For comparison purposes, we
consider a widely-used RNN-based AD method, namely
LSTM-VAE [35], implemented so as to roughly have the same
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number of trainable parameters of the student AT, as well as
the conventional OCSVM AD strategy [70]. All models, apart
OCSVM, are optimized using the configuration parameters
detailed in Section V-A while we set Ap = 10 in (17). As far
as the inference process is concerned, the threshold &y, is set
separately for each dataset according to the policy in [47].
This process leads to &y, = {0.016, 0.015, 0.012, 0.02} for the
SMD, SMAP, MSL, and PSM datasets for the teacher, while
for the student we obtain &y = {0.398, 0.145, 0.157, 0.287}.
On the other hand, the thresholds for LSTM-VAE are found
via a non-exhaustive search over a grid of possible values.
Table 4 provides a comparison between the models pro-
duced by the developed tiny AD tool, LSTM-VAE and
OCSVM in terms of precision, recall and F1 metrics. Overall,
the distilled AT model is able to closely match the perfor-
mances of the original (optimized) AT architecture while
requiring a substantially lower computational complexity. In-
deed, the F1 metric achieved by the student is only slightly
lower than the one obtained by the teacher for all datasets.
Focusing now on the detection abilities of LSTM-VAE, they
are largely inferior compared to the ones achieved by the
compressed AT architecture despite having a similar number
of trainable parameters. Specifically, LSTM-VAE provides
very poor detection abilities for the SMD and SMAP datasets
where the F1 score is reduced more than 10% compared to
all other methods, while for the MSL and PSM the accuracy
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TABLE 4. Performance Comparison Over Different AD Literature Datasets in Terms of Precision (P), Recall (R), and F1 Score

SMD SMAP MSL PSM
Method P R F1 P R F1 P R F1 P R F1
[%] [%] [%] [7] [%] [%] [%] [%] [%] [%] [%] [%]
Original AT 89.02 94.67 91.76 | 93.60 99.29 9636 | 92.06 98.06 9496 | 97.37 98.12 97.75
Distilled AT (ours) | 88.30 90.80 89.53 | 93.66 9922 96.36 | 91.77 9594 9381 | 97.12 98.10 97.61
LSTM-VAE 7491 81.92 7826 | 9275 5594 69.78 | 90.96 86.93 8890 | 98.06 88.65 93.12
OCSVM 42.18 74.89 5396 | 48.81 50.32 4955 | 58.63 8422 69.13 | 6331 8229 71.56
1 1 —
o 08 4,08 e J
£ 06 4 Eosj, J
02} = 0.2} e
—— Distilled AT - AUC 0.9973 —— Distilled AT - AUC 0.9945
- - ~LSTM-VAE - AUC 0.9883 - - ~LSTM-VAE - AUC 0.9473
(]0 0‘.1 0‘.2 0‘.3 0.‘4 0.‘5 DjG 0‘.7 0‘.8 0.‘9 1 (IO 0‘.1 0‘.2 0.‘3 0.‘4 D.‘5 0‘.6 0‘.7 0‘.8 0.‘9 1
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FIGURE 4. ROC curves obtained by the distilled AT model provided by the tiny AD framework and the LSTM-VAE method on different datasets. (a) SMD;
(b) SMAP; (c) MSL; and (d) PSM. The corresponding AUC values of the two methods are reported in the legends.

reduction is not so severe (i.e., only a 4-5% reduction on the
F1 metric is observed). Similar results are also achieved by
OCSVM which is shown to provide AD capabilities far below
the ones attained by both LSTM-VAE and the distilled AT
model. This suggests how conventional AD strategies, such as
OCSVM, might not be adequate for heterogeneous time-series
data, and more complex data-driven AD tools are required for
improving the performances.

To complement the analysis, we report in Fig. 4 the ROC
curves obtained by the distilled AT model produced by the de-
veloped AD framework and the LSTM-VAE over all datasets
used in the experiments and their corresponding AUC values.
This set of results further confirms the findings of the previous
analysis: the compressed AT model is able to outperform
LSTM-VAE in all cases. The AUC values obtained by the
distilled algorithm are superior when compared with the ones
attained by LSTM-VAE, especially if the SMAP dataset is
considered. Overall, the analysis shows that the proposed tiny
AD framework is able to provide a highly-accurate distilled
model that closely matches the performances provided by the
470

original (optimized) AT while also outperforming a LSTM-
VAE anomaly detector having a similar number of trainable
parameters.

VI. CASE STUDY: ANOMALY DETECTION ON A BRIDGE
INFRASTRUCTURE

This section analyzes the detection abilities of the models
produced by the developed AD tool using time series data
acquired from a real-world bridge infrastructure monitoring
system deployed in Italy. In the following, we describe the
main technical parameters of the dataset (Section VI-A).
Next, we evaluate the detection abilities of the teacher model
trained under the proposed tiny AD framework by considering
different input configurations in order to select the one that
provides the best performance (Section VI-B). Lastly, Sec-
tion VI-C characterizes the AD capabilities of the compressed
model which is distilled from the best teacher model selected
in Section VI-B according to the framework described in
Section I'V.
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FIGURE 5. AD case study on a real monitoring infrastructure: (a) sketch of the bridge being monitored with the installed loT sensors; (b) time series data

from crack meters in a monitoring period of 9 months.

A. DATASET DESCRIPTION

The case study considers an IoT sensor network comprising
two crack-meters monitoring the status of a bridge (illustrated
in Fig. 5(a)) by measuring the variation of the displacement
across cracks and/or joints over time. Communication proto-
cols, such as MQTT, are used to connect the edge devices to a
central software, where raw data are processed. The sampling
period is configured so that a recording is generated every two
hours. The resulting time series data recorded over 9 consecu-
tive months, namely from December 2021 up to August 2022,
comprises 8000 samples and it is shown in Fig. 5(b). We split
this dataset into two parts: the first 6000 samples are used
used for training, while the remaining 2000 ones constitute
the testing dataset.

To assess the performances of the proposed tiny AD frame-
work, we introduce hand-crafted, yet realistic, anomalies in
the testing set, while we assume that the training data is free
from abnormal points. The following four types of perturba-
tions are introduced in the testing time series:

e Type I - point anomaly: a spike in the time series data;

e Type II - step anomaly: a step function is superimposed
to the values of the time series for Ny consecutive data
points;

e Type III - ascending exponential anomaly: an increasing
exponential function is superimposed to the values of the
time series data for Na consecutive data points;

e Type IV - descending exponential anomaly: a decreasing
exponential function is superimposed to the values of the
time series data for Ny consecutive data points.

Each type of anomaly is introduced by adding one of the
functions fa(t) provided in Table 5 to the raw sensors data.
Specifically, two spikes are added at timesteps fp = 900 and
tp = 1100, with B = 5, while ot denotes the empirical stan-
dard deviation computed over the training dataset. Note that
we consider two different values of ot, one for each crack-
meter. For what concerns the other three anomaly types, i.e.,
step, increasing, and decreasing exponential, they are intro-
duced in two non-overlapping windows comprising N4y = 30
consecutive points each, and using the same values for B and
or as before. The window starts at timestep fp; = 900 and
ends at fpy = 930 for the first time series, while for the second
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TABLE 5. Definition of Anomaly Functions

Anomaly fa(t)
Type 1 Botd(t —tp)
Bor iftp <t <t
Type 11 T DI St < itm;:
0 otherwise
bt —
Bo iftpy <t <t
Type 1II o1 pr="="2
0 otherwise
b=t —
—Bo if tp <t <t
Type IV L DI St < ip
0 otherwise
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FIGURE 6. Testing time series of crack meters with anomalies. The
considered anomalies include (from top to bottom) point, step, ascending,
exponential, and descending exponential perturbations.

one, the initial and final timesteps are chosen as fp; = 1100
and fpy = 1130. Additionally, the exponential functions used
for simulating the last two anomalies use b = 8. The resulting
anomalous patterns of the four types of anomalies are high-
lighted in Fig. 6.
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In the following, we use this database to initially assess
the ability of the original AT model (obtained from the AD
framework detailed in Section IV) of detecting the four types
of anomalies. Then, we will apply the distillation strategy
presented in Section IV to compress the AT model and assess
its AD performances.

B. ANALYSIS OF THE TEACHER WITH DIFFERENT
WINDOWS AND OVERLAPS

This section aims at studying the detection accuracy of the
original AT model trained under the proposed AT framework
using the raw time series data acquired by the monitoring
facility. To achieve this goal, we consider different input
configurations for the selection of the best performing (un-
compressed) AT model and use it to guide the student’s
training. Recalling that AT accepts at the input a time series
X with d dimensions and length N, we vary the number of
data points N as well as the overlap among adjacent segments
and evaluate the performances accordingly. Specifically, we
consider two values of N, namely N = 6 and N = 12, which
correspond to windows spanning half a day and one day of
recording, and three overlaps, i.e., 0%, (no overlap exists
between adjacent segments), 50% and 80%. The original AT
model is configured as in Section V, namely it has LT = 3
layers, N,ET) = 8 heads, and a self-attention map with d,(,,T) =
512 dimensions. Additionally, the Adam optimizer is used for
updating the weights considering a batch size of 64 examples,
a learning rate of 0.001, and momentum parameters of 0.9 and
0.999. The model is trained for 200 epochs and it is stopped
preemptively when the validation loss does not reduce over 10
consecutive epochs.

Fig. 7 shows the AS obtained by the AT model at the end
of the training process for the testing dataset containing the
point anomaly with N = 6 (Fig. 7(a)) and N = 12 (Fig. 7(b)),
and considering all overlaps. In particular, each figure firstly
shows the time series data of the testing dataset at the top,
while the following subplots highlight the AS achieved con-
sidering 0%, 50%, and 80% overlaps.

The results indicate that the point anomaly can be detected
for all windows and overlaps considered in the analysis, even
though in some cases the AS is not particularly high (see e.g.,
the case with N = 12 and 50% overlap). Indeed, for all cases,
two spikes are present in the area delimited by the light gray
boxes, which highlight the regions comprising the anomalies.
Nevertheless, for N = 6 the model is able to recognize the
second anomaly fairly easily as the associated spike is more
pronounced. On the other hand, for N = 12, the AT is able
to reliably detect the first anomaly. Besides choosing an ap-
propriate value for N, also the overlap has an impact on the
overall performances. Indeed, for N = 6 a high overlap, i.e.,
80%, should be preferred to facilitate the AD process, while
for N = 12 the model seems to provide the highest AS when
the adjacent windows have no overlap. Overall, taking into
account also the magnitude of the AS across different input
configurations, the model trained with N = 6 and 80% over-
lap is the one showing the highest peaks in the neighborhood
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FIGURE 7. Analysis of the detection performance of the original AT for
type |1 anomaly with windows comprising: (a) 6 points and (b) 12 points.
From top to bottom, each figure reports the testing time series and the AS
obtained considering 0%, 50%, and 80% overlaps. The position of the
anomalies is highlighted with a light gray box in all subfigures.

of the point anomalies, therefore, it should be selected for
facilitating the AD process.

The detection abilities provided by AT over the testing
dataset with the step anomaly, whose results are reported in
Fig. 8(a) and 8(b) for N = 6 and N = 12, respectively, indi-
cate that the AT model is able to recognize the anomalies also
in this case. However, N = 12 is seen to provide more sparse
peaks in the areas delimited by the gray boxes, while N = 6
obtains scores with high values that cover more uniformly the
area containing the anomalies. The overlaps are also shown
to affect more the model trained with N = 6 rather than that
with N = 12. Indeed, 80% overlap should be avoided when
N = 6 as the peaks of the AS are not particularly high while
the results obtained for 0% and 50% overlaps are quite similar.
On the other hand, for N = 12 different overlaps influence
the ASs provided by the model only negligibly. According
to the results obtained, also under this case N = 6 should
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FIGURE 8. Analysis of the detection performance of the original AT for
type Il anomaly with windows comprising: (a) 6 points and (b) 12 points.
From top to bottom, each figure reports the testing time series and the AS
obtained considering 0%, 50%, and 80% overlaps. The position of the
anomalies is highlighted with a light gray box in all subfigures.

be preferred when compared with N = 12 as showing more
distributed and higher AS values in the vicinity of the step
anomalies, provided the overlap is below 80%.

Fig. 9 reports the results achieved by the AT model for the
testing dataset containing the ascending exponential anomaly
with N = 6 (Fig. 9(a)) and N = 12 (Fig. 9(b)). The results
are in line with the ones found in the previous analysis for
the step anomaly: N = 6 generally provides AS with peaks
more distributed in the neighborhood of the anomalies, while
N = 12 has fewer peaks but has some spikes with higher
magnitude (see e.g., when the overlap is 80%). Interestingly,
when no overlap exists, the AS provided by the model trained
with N = 12 is quite low in the second window, indicating
that under this input configuration AT is not able to detect all
anomalies. Overall, the best-performing input configuration is
N = 6 with 50% overlap, as it shows an AS covering most of
the anomalies in the testing dataset.
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FIGURE 9. Analysis of the detection performance of the original AT for
type 11l anomaly with windows comprising: (a) 6 points and (b) 12 points.
From top to bottom, each figure reports the testing time series and the AS
obtained considering 0%, 50%, and 80% overlaps. The position of the
anomalies is highlighted with a light gray box in all subfigures.

The results considering the last type of anomaly, i.e., the
descending exponential, are presented in Fig. 10(a) for N = 6
and in Fig. 10(b) for N = 12. Compared to the previous type,
this anomaly seems to be easier to be detected as the AS
provided by the model under all input configurations shows
a large number of peaks in the light gray boxes depicted in the
figures. Again, using a window of N = 6 allows the detection
of more anomalous points compared to the case of N = 12.
Similarly as before, N = 6 should be selected in conjunction
with 0% or 50% overlap as the AS magnitude is higher in
the neighborhood of the anomalies, while when N = 12, the
overlap should be selected between 50% and 80% to improve
the detection of the second anomaly. Considering the different
input configurations, N = 6 is shown again to provide more
accurate detection results compared with N = 12, provided
that the overlap is below 80%.

To finalize the analysis on the impact of the different input
configurations for the (uncompressed) AT model, we report
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FIGURE 10. Analysis of the detection performance of the original AT for
type IV anomaly with windows comprising: (a) 6 points and (b) 12 points.
From top to bottom, each figure reports the testing time series and the AS
obtained considering 0%, 50%, and 80% overlaps. The position of the
anomalies is highlighted with a light gray box in all subfigures.

in Table 6 the number of correct predictions together with
the number of false positives obtained by AT considering all
the combinations studied before. The results are obtained by
numerically searching for the detection threshold 8y, that gives
the highest and lowest number of correct predictions and false
positives, respectively.

For the point anomaly, the performances are not affected
by the specific choice of the window and the overlap. How-
ever, this does not hold when considering different types of
anomalies. Generally, a window of N = 6 is seen to provide
the highest number of correct predictions while also having
a slightly higher number of false positives compared with
N = 12. Therefore, N = 6 should be selected to achieve the
highest AD accuracy. Focusing also on the performances
for different overlaps, the results show that 80% should be
avoided as responsible for low accuracy. On the other hand,
0% overlap provides the least amount of false positives but
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TABLE 6. Detection Accuracy and False Positive Analysis for the Original
AT Model

Anomaly Window size N | Overlap Oth FP | TP
[#] [%] [# | [# | [#
0 0.58 0 2
6 50 047 | 0 2
80 2.31 0 2
Type 1
0 0.79 0 2
12 50 0.26 0 2
80 0.48 0 2
0 0.17 1 11
6 50 0.53 0 10
80 0.14 4 11
Type 11
0 0.75 0 6
12 50 1.51 0 5
80 1.32 0 5
0 0.05 2 4
6 50 0.03 4 7
80 0.07 5 6
Type 11T
0 0.17 3 2
12 50 0.05 8 3
80 0.16 2 3
0 0.31 2 9
6 50 0.12 3 10
80 0.03 3 10
Type IV
0 0.69 1 4
12 50 0.18 0 4
80 0.31 1 5

it also detects a lower number of anomalies when compared
with the 50% case. Considering all these aspects, we finally
select the input configuration with N = 6 and 50% overlap
and use the resulting model to perform the distillation process
as detailed in Section I'V.

C. ASSESSMENT OF THE DISTILLED MODEL

This section aims at evaluating the AD performances of the
compressed AT model produced by the proposed AD frame-
work after distillation. According to the previous analysis,
the optimized AT model is pre-trained using N = 6 and 50%
overlap and using the same optimization parameters presented
before. Regarding the compressed model, it is configured as
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FIGURE 11. Analysis of the detection performance of the distilled AT model considering the following anomaly types: (a) point, (b) step, (c) ascending
exponential, and (d) descending exponential. The top part of each figure reports the testing dataset highlighting the specific anomaly type, while the

bottom part shows the AS provided by the model.

in Section V, with L&) =1 layer, Nés) = 8 heads, and a self-
attention map dimension d,(,,s) of 16, leading approximately to
an overall number of 1400 parameters. It is also trained using
a window of N = 6 and an overlap of 50%. The distillation
process runs for 200 epochs with Ap = 10 and it is early
stopped if the validation loss does not decrease for more than
5 consecutive epochs. Note that both models do not have
access to the simulated anomalies during training (they are
added only to the testing database), nor do they use labels
to identify anomalies as we consider a fully unsupervised
learning setting.

Fig. 11 reports the results obtained by the com-
pressed model over the testing dataset comprising the
point (Fig. 11(a)), step (Fig. 11(b)), ascending exponential
(Fig. 11(c)) and descending exponential (Fig. 11(d)) anoma-
lies. Each figure shows at the top the testing time series data
together with the introduced anomalies, while the bottom
highlights the AS obtained by the distilled AT model. To
ease the comparison, we also highlight the position of the
anomalies with a light gray box. The AS for all figures shows
that the model is able to recognize fairly easily all anomaly
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types. Indeed, several spikes are reported in the positions de-
limited by the light gray boxes which indicate that the model is
confident that the time series data contains anomalous points.
This demonstrates that the proposed AD framework integrat-
ing the distillation strategy detailed in Section IV is able to
provide a lightweight AT model that supports highly-accurate
AD capabilities. When comparing the obtained results with
the ones achieved by the uncompressed model (Section VI-B),
it can be noticed that for some cases high AS values are
reported outside of the areas delimited by the light gray
boxes (see e.g., the timestep ranging from 300 up to 360 in
Fig. 11(a)). This may be caused by the fact that the self-
attention map of the compressed AT model is highly reduced
making it more difficult for the anomaly attention mechanism
to correctly learn the prior and series association and thus
they do not fully capture the temporal dependency of the time
series. Nevertheless, a careful optimization of the detection
threshold 8, may be helpful in suppressing those cases.

To comprehensively characterize the performances of the
model obtained by the proposed AD framework after the dis-
tillation process, we report in Table 7 the number of correct
predictions and false positives obtained by the distilled AT
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TABLE 7. Detection Accuracy and False Positive Analysis for the Proposed
Compressed AT Model

Oth FP | TP

Anomaly
[# | [# | #
Type 1 0.68 1 2
Type 11 1.90 0 11
Type I | 0.38 5 6
Type IV | 0.11 4 9

model considering the anomalies previously described. The
results are obtained by optimizing the detection threshold
S in order to maximize the number of correctly detected
anomalies while minimizing the number of false positives.
The results obtained by the compressed AT model are in line
with the ones reported in Table 6 for the case with N =6
and 50% overlap: the number of correct predictions closely
matches the one provided by the uncompressed model for
all anomaly types. The main difference with respect to the
previous case relies on the number of false positives provided
by the model trained under the proposed distillation frame-
work. Indeed, a slightly higher number of false positives is
shown by the distilled model when compared with the same
number provided by the uncompressed AT architecture. This
is likely caused by the fact that the student has a much smaller
representation capacity compared to the teacher leading it to
output a relatively high AS between timesteps 200 and 400.
This consequently causes the spikes detected in that region
of the testing time series to be flagged as anomalies. Never-
theless, the results still suggest that the model obtained after
distillation is capable of closely matching the performances
provided by the original AT implementation.

VII. CONCLUSION

This paper explored the problem of accurate AD in IoT setups
characterized by devices having limited energy/computing
capabilities. Transformer-based AD tools have been
demonstrated to provide outstanding performances in
detecting anomalies over heterogeneous and streaming time
series data. Nevertheless, they generally comprise large and
complex NNs, making them unsuitable for being deployed in
IoT devices due to energy and/or computing constraints. To
overcome such limitations, this paper proposed an effective
tiny AD framework based on knowledge distillation. The
developed tool aims at initially finding an optimized version
of a state-of-the-art AD method, namely AT, and use it as
input for the distillation process whose goal is to produce a
substantially compressed AT model able to achieve accurate
detection abilities.

The proposed framework is firstly assessed using widely
adopted AD datasets showing its efficacy in providing a
highly-accurate AT model while reducing its trainable pa-
rameters by roughly 99.93% (from 4.8 million to 3300 or
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1400 depending on the input dataset). Interestingly, the anal-
ysis also shows that the compressed model provided by the
developed AD tool is able to substantially outperform an
RNN-based state-of-the-art AD algorithm when the two have
roughly the same computational complexity (i.e., number of
trainable parameters) as well as a conventional OCSVM AD
strategy. The AD framework is then deployed in a real-world
AD scenario where an infrastructure is in charge of monitor-
ing the physical parameters of a bridge via distributed IoT
sensors placed on it. Under this scenario, the model produced
by the AD strategy after applying the knowledge distillation
tool is shown to closely match the performances of the original
uncompressed model while only marginally increasing the
number of false positives.

The proposed tiny AD tool has been shown to be partic-
ularly suitable for dealing with complex and heterogeneous
time-series data revealing its potential to be applied to real-
world IoT setups. Nevertheless, the developed framework
could be further optimized to take into account other con-
straints, such as latency and reliability, that are likely to
be required when adapting the proposed solution to diverse
scenarios, which may range from everyday applications to in-
dustrial IoT services. In particular, the renovated self-attention
mechanism of AT could be modified to introduce sparse com-
putations, allowing to further scale down the inference time.
Besides, the optimization of the training pipelines for port-
ing the distillation tool into physical devices is expected to
bridge the gap between research and practice. Finally, it could
be interesting to explore the integration of edge computing
paradigms, including Federated Learning (FL) strategies, to
improve the privacy of the proposed tiny AD framework.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
dustrial Internet of Things: Challenges, opportunities, and directions,”
IEEE Trans. Ind. Inform., vol. 14, no. 11, pp. 4724-4734, Nov. 2018.

[2] A.Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22-32, Feb. 2014.

[3] C. A. Tokognon, B. Gao, G. Y. Tian, and Y. Yan, “Structural health
monitoring framework based on Internet of Things: A survey,” IEEE
Internet Things J., vol. 4, no. 3, pp. 619-635, Jun. 2017.

[4] C. Alippi and M. Roveri, “The (not) far-away path to smart cyber-
physical systems: An information-centric framework,” Computer,
vol. 50, no. 4, pp. 38-47, Apr. 2017.

[5] S.S.Musa, M. Zennaro, M. Libsie, and E. Pietrosemoli, “Convergence
of information-centric networks and edge intelligence for IoV: Chal-
lenges and future directions,” Future Internet, vol. 14, no. 7, 2022,
Art. 192.

[6] L. Barbieri, S. Savazzi, M. Brambilla, and M. Nicoli, “Decentralized
federated learning for extended sensing in 6G connected vehicles,” Veh.
Commun., vol. 33, 2022, Art. no. 100396.

[7] H. Xie, Z. Yan, Z. Yao, and M. Atiquzzaman, “Data collection for
security measurement in wireless sensor networks: A survey,” IEEE
Internet Things J., vol. 6, no. 2, pp. 2205-2224, Apr. 2019.

[8] A. A. Cook, G. Mistrll, and Z. Fan, “Anomaly detection for IoT
time-series data: A survey,” IEEE Internet Things J., vol. 7, no. 7,
pp. 6481-6494, Jul. 2020.

[9] C. Alippi, S. Ntalampiras, and M. Roveri, “Model-free fault detec-
tion and isolation in large-scale cyber-physical systems,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 1, no. 1, pp. 61-71, Feb. 2017.

[10] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical change-detection
tests,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2,
pp. 246-258, Feb. 2017.

VOLUME 4, 2023



ISEEE i 2y IEEE Open Journal of
dcessing  Signal Processing

Processing
i

[11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

F. Cauteruccio et al., “A framework for anomaly detection and classifi-
cation in multiple IoT scenarios,” Future Gener. Comput. Syst., vol. 114,
pp. 322-335, 2021.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A sur-
vey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1-58, 2009.

T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Inf. Sci., vol. 177, no. 18, pp. 3799-3821, 2007.

V. A. Sotiris, P. W. Tse, and M. G. Pecht, “Anomaly detection through
a Bayesian support vector machine,” IEEE Trans. Rel., vol. 59, no. 2,
pp. 277-286, Jun. 2010.

M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class
support vector machines for unsupervised anomaly detection,” in
Proc. ACM SIGKDD Workshop Outlier Detection Description, 2013,
pp. 8-15.

A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Network anomaly
detection by cascading K-means clustering and C4.5 decision tree al-
gorithm,” Procedia Eng., vol. 30, pp. 174-182, 2012.

S. Thaseen and C. A. Kumar, “An analysis of supervised tree based
classifiers for intrusion detection system,” in Proc. IEEE Int. Conf.
Pattern Recognit., Inform. Mobile Eng., 2013, pp. 294-299.

J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based net-
work intrusion detection systems,” IEEE Trans. Syst., Man, Cybern.,
Part C. (Appl. Rev.), vol. 38, no. 5, pp. 649-659, Sep. 2008.

F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. IEEE
8th Int. Conf. Data Mining, 2008, pp. 413-422.

D. Xu, Y. Wang, Y. Meng, and Z. Zhang, “An improved data anomaly
detection method based on isolation forest,” in Proc. IEEE 10th Int.
Symp. Comput. Intell. Des., 2017, pp. 287-291.

0. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A review of local
outlier factor algorithms for outlier detection in Big Data streams,” Big
Data Cogn. Comput., vol. 5, no. 1, 2021, Art. no. 1.

Z. Cheng, C. Zou, and J. Dong, “Outlier detection using isolation forest
and local outlier factor,” in Proc. Conf. Res. Adaptive Convergent Syst.,
2019, pp. 161-168.

V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using
K-nearest neighbour graph,” in Proc. IEEE 17th Int. Conf. Pattern
Recognit., 2004, pp. 430-433.

Y. Djenouri, A. Belhadi, J. C.-W. Lin, and A. Cano, “Adapted K-nearest
neighbors for detecting anomalies on spatio—temporal traffic flow,”
IEEE Access, vol. 7, pp. 10015-10027, 2019.

S. Omar, A. M. Ngadi, and H. H. Jebur, “Machine learning techniques
for anomaly detection: An overview,” Int. J. Comput. Appl., vol. 79,
pp. 33-41, 2013.

A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine
learning for anomaly detection: A systematic review,” IEEE Access,
vol. 9, pp. 78658-78700, 2021.

D. Kwon et al., “An empirical study on network anomaly detection
using convolutional neural networks,” in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst., 2018, pp. 1595-1598.

Y. Su et al,, “Robust anomaly detection for multivariate time se-
ries through stochastic recurrent neural network,” in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2019,
pp. 2828-2837.

Y. Wu, H.-N. Dai, and H. Tang, “Graph neural networks for anomaly
detection in Industrial Internet of Things,” IEEE Internet Things J.,
vol. 9, no. 12, pp. 9214-9231, Jun. 2022.

Y. Feng, J. Chen, Z. Liu, H. Lv, and J. Wang, “Full graph autoencoder
for one-class group anomaly detection of IIoT system,” IEEE Internet
Things J., vol. 9, no. 21, pp. 21886-21898, Nov. 2022.

Q. Wen et al., “Transformers in time series: A survey,” 2022, in
Proc. 32th Int. Joint Conf. Artif. Intell., Aug. 2023, pp. 6778-6786,
doi: 10.24963/ijcai.2023/759.

S. Tuli, G. Casale, and N. R. Jennings, “TranAD: Deep transformer
networks for anomaly detection in multivariate time series data,” in
Proc. VLDB, vol. 15, no. 6, 2022, pp. 1201-1214.

G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM Comput. Surv., vol. 54, no. 2,
pp. 1-38, Mar. 2021.

Y. Liu, Y. Zhou, K. Yang, and X. Wang, “Unsupervised deep learn-
ing for IoT time series,” IEEE Internet Things J., vol. 10, no. 16,
pp. 14285-14306, Aug. 2023.

D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector
for robot-assisted feeding using an LSTM-based variational autoen-
coder,” IEEE Robot. Automat. Lett., vol. 3, no. 3, pp. 1544-1551, Jul.
2018.

VOLUME 4, 2023

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

Z. Li et al., “Multivariate time series anomaly detection and inter-
pretation using hierarchical inter-metric and temporal embedding,” in
Proc. 27th ACM SIGKDD Conf. Knowl. Discov. Data Mining, 2021,
pp. 3220-3230.

L. Shen, Z. Li, and J. Kwok, “Timeseries anomaly detection using tem-
poral hierarchical one-class network,” in Proc. Adv. Neural Inf. Process.
Syst., 2020, pp. 13016-13026.

B. Zhou et al., “BeatGAN: Anomalous rhythm detection using adversar-
ially generated time series,” in Proc. 28th Int. Joint Conf. Artif. Intell.,
2019, pp. 4433-4439.

D. Li et al., “MAD-GAN: Multivariate anomaly detection for time
series data with generative adversarial networks,” in Proc. Artif. Neural
Netw. Mach. Learn., 2019, pp. 703-716.

Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X. Cheng, “Learning graph
structures with transformer for multivariate time-series anomaly detec-
tion in IoT,” IEEE Internet Things J., vol. 9, no. 12, pp. 9179-9189,
Jun. 2022.

S. Zhang et al, “CAT: Beyond efficient transformer for
content-aware anomaly detection in event sequences,” in Proc.
28th ACM SIGKDD Conf. Knowl. Discov. Data Mining, 2022,
pp. 4541-4550.

X. Cai et al., “ITran: A novel transformer-based approach for industrial
anomaly detection and localization,” Eng. Appl. Artif. Intell., vol. 125,
2023, Art. no. 106677.

Y. Li, X. Peng, J. Zhang, Z. Li, and M. Wen, “DCT-GAN: Dilated
convolutional transformer-based GAN for time series anomaly detec-
tion,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3632-3644,
Apr. 2023.

C. Ding, J. Zhao, and S. Sun, “Concept drift adaptation for time se-
ries anomaly detection via transformer,” Neural Process. Lett., vol. 55,
pp. 2081-2101, 2023.

H. Zhang, Y. Xia, T. Yan, and G. Liu, “Unsupervised anomaly detec-
tion in multivariate time series through transformer-based variational
autoencoder,” in Proc. IEEE 33rd Chin. Control Decis. Conf., 2021,
pp. 281-286.

X. Wang et al., “Variational transformer-based anomaly detection ap-
proach for multivariate time series,” Measurement, vol. 191, 2022,
Art. no. 110791.

J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer: Time se-
ries anomaly detection with association discrepancy,” in Proc. Int. Conf.
Learn. Representations, 2022. [Online]. Available: https://openreview.
net/forum?id=LzQQ89U1qm_

K. Han et al., “A survey on vision transformer,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 1, pp. 87-110, Jan. 2023.

M. Gupta and P. Agrawal, “Compression of deep learning models for
text: A survey,” ACM Trans. Knowl. Discov. Data, vol. 16, no. 4,
pp. 1-55, Jan. 2022.

Z. Yang et al., “Searching for low-bit weights in quantized neural net-
works,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 4091-4102.
P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really
better than one?” in Proc. Adv. Neural Inf. Process. Syst., 2019.
[Online]. Available: https://papers.nips.cc/paper_files/paper/2019/hash/
2¢601ad9d2{f9bc8b282670cdd54f691f- Abstract.html

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

X. Liu, P. He, W. Chen, and J. Gao, “Improving multi-task deep neural
networks via knowledge distillation for natural language understand-
ing,” 2019, arXiv:1904.09482.

R. Tang et al., “Distilling task-specific knowledge from BERT into
simple neural networks,” Mar. 2019, arXiv:1903.12136.

S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient knowledge distillation for
BERT model compression,” in Proc. Conf. Empirical Methods Natural
Lang. Process. 9th Int. Joint Conf. Natural Lang. Process., K. Inui,
J. Jiang, V. Ng, and X. Wan, Nov. 2019, pp. 4323-4332. [Online].
Available: https://aclanthology.org/D19-1441

J. Ko et al., “Revisiting intermediate layer distillation for compressing
language models: An overfitting perspective,” in Proc. Findings Assoc.
Comput. Linguistics, 2023, pp. 158-175.

Z. Lan et al., “ALBERT: A lite BERT for self-supervised learning
of language representations,” in Proc. Int. Conf. Learn. Represen-
tations, 2020. [Online]. Available: https://openreview.net/forum?id=
Hl1eA7AEtvS

M. Dehghani et al., “Universal transformers,” in Proc. Int. Conf.
Learn. Representations, 2019. [Online]. Available: https://openreview.
net/forum?id=HyzdRiR9Y7

477


https://dx.doi.org/10.24963/ijcai.2023/759
https://openreview.net/forum{?}id$=$LzQQ89U1qm_
https://openreview.net/forum{?}id$=$LzQQ89U1qm_
https://papers.nips.cc/paper_files/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://aclanthology.org/D19-1441
https://openreview.net/forum{?}id$=$H1eA7AEtvS
https://openreview.net/forum{?}id$=$H1eA7AEtvS
https://openreview.net/forum{?}id$=$HyzdRiR9Y7
https://openreview.net/forum{?}id$=$HyzdRiR9Y7

BARBIERI ET AL.: TINY TRANSFORMER-BASED ANOMALY DETECTION FRAMEWORK FOR IOT SOLUTIONS

[59] X. Ma et al., “A tensorized transformer for language modeling,”
in Proc. Adv. Neural Inf. Process. Syst., 2019. [Online].
Available: https://papers.nips.cc/paper_files/paper/2019/hash/
dc960c46c38bd16e953d97cdeefdbe68- Abstract.html

O. Hrinchuk, V. Khrulkov, L. Mirvakhabova, E. Orlova, and I.
Oseledets, “Tensorized Embedding Layers,” Findings Assoc.
Comput.  Linguistics: ~ EMNLP,  pp. 4847-4860, Nov. 2020,
doi: 10.18653/v1/2020.findings-emnlp.436.

Y. Abadade et al., “A comprehensive survey on tinyML,” IEEE Access,
vol. 11, pp. 96892-96922, 2023.

T. S. Ajani, A. L. Imoize, and A. A. Atayero, “An overview of machine
learning within embedded and mobile devices—optimizations and appli-
cations,” Sensors, vol. 21, no. 13, 2021, Art. no. 4412.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., 2017. [Online]. Available: https://papers.nips.cc/
paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html

A.-K. Seghouane and S.-I. Amari, “The AIC criterion and symmetrizing
the Kullback-Leibler divergence,” IEEE Trans. Neural Netw., vol. 18,
no. 1, pp. 97-106, Jan. 2007.

C. M. Bishop, Pattern Recognition and Machine Learning, (Information
Science and Statistics Series). Berlin, Germany: Springer, 2006.

K. Hundman et al., “Detecting spacecraft anomalies using LSTMs and
nonparametric dynamic thresholding,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2018, pp. 387-395.

A. Abdulaal, Z. Liu, and T. Lancewicki, “Practical approach to asyn-
chronous multivariate time series anomaly detection and localization,”
in Proc. 27th ACM SIGKDD Conf. Knowl. Discov. Data Mining, 2021,
pp. 2485-2494.

H. Xu et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal KPIs in web applications,” in Proc. World Wide
Web Conf., 2018, pp. 187-196.

R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1440-1448.

D. M. Tax and R. P. Duin, “Support vector data description,” Mach.
Learn., vol. 54, pp. 45-66, 2004.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

LUCA BARBIERI (Member, IEEE) received the
B.Sc. and M.Sc. (cum laude) degrees in telecom-
munication engineering and the Ph.D. degree (cum
laude) in information technology from Politecnico
di Milano, Milan, Italy, in 2017, 2019, and 2023,
respectively. He was a Visiting Researcher with the
King’s Communications, Learning & Information
Processing Lab, King’s College London, London,
U.K., in 2022. He is currently a research Assistant
with Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano. His research
interests include machine learning, federated learning, localization methods
for vehicular, and industrial networks.

MATTIA BRAMBILLA (Member, IEEE) received
the B.Sc. and M.Sc. degrees in telecommunica-
tion engineering and the Ph.D. degree (cum laude)
in information technology from the Politecnico di
Milano, Milan, Italy, in 2015, 2017, and 2021, re-
spectively. In 2019, he was a Visiting Researcher
with the NATO Centre for Maritime Research and
Experimentation, La Spezia, Italy. In 2021, he
joined the Faculty of Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Mi-
lano as a Research Fellow. His research interests
include signal processing, statistical learning, data fusion for cooperative
localization and communication in vehicular, and ToT networks. He was the
recipient of the Best Student Paper Award at the 2018 IEEE Statistical Signal
Processing Workshop.

‘ MARIO STEFANUTTI with more than 30 years
of experience with complex IT infrastructures and
systems, gained on major companies like Telecom,
Poste, Autostrade, Alitalia, Ericsson, Telespazio,
Iridium, and Reply, where he holds roles ranging
from Solution Architect, Technical Project Leader,
Project Manager, Programmer. He was with
Sensoworks at the time this work was carried out.
He is currently with GreenVulcano where he is in
charge of the R&D Lab and the Technical Services
at Corporate Level (90+ people). He is responsible
for the strategic definition of technical developments and roadmap of all
GreenVulcano products. His research interests include machine learning and
IoT.

CIRO ROMANO received the graduation degree in
electronic engineering. He is CTO at Sensoworks,
shapes the company’s tech trajectory, leveraging
more than 25 years of ICT expertise. Pioneering
ToT, automotive, energy, and multiutilities projects,
he’s led also research projects spacing in seman-
tic web, federated machine learning, and quantum
technologies. Notably, Water4All innovates leak
detection prediction in water networks providing a
DSS (Decision Support System) to utilies helping
them in effectively maintenance activities. He is
steering several projects in critical infrastructure monitoring and smart park-
ing solution. He is a luminary in tech, his contributions fuel research and tech
evolution, making Sensoworks a force in innovation.

NICCOLO DE CARLO is CEO of Sensoworks, em-
bodies a tech maven’s journey. He has fifteen years
experience in international projects. Co-founding
Sensoworks in the early 2020’s, he foresight pro-
pelled the company to the forefront of IoT inno-
vation. Leading with strategic acumen, he forged
pivotal partnerships that solidified Sensoworks’
standing in the competitive tech landscape. He
instilled a commitment to ethical tech practices,
making Sensoworks a beacon of responsible inno-
vation. As Sensoworks continues to thrive under
his leadership, he stands as a trailblazer, showcasing the transformative
potential of IoT under his guidance.

MANUEL ROVERI (Senior Member, IEEE) re-
ceived the M.S. degree in computer science from
the University of Illinois at Chicago, Chicago, IL,
USA, in 2003, and the Dr.Eng. degree in computer
science engineering, in 2003, and the Ph.D. degree
in computer engineering from the Politecnico di
Milano, Milan, Italy, in 2007. He is currently a
Full Professor with the Dipartimento di Elettron-
ica, Informazione e Bioingegneria, Politecnico di
Milano. He holds one patent and has authored or
coauthored more than 110 articles in international
journals and conference proceedings. His research interests include embed-
ded and edge Al, intelligent embedded, cyber-physical systems, learning in
presence of concept-drift, privacy-preserving machine, and deep learning. He
was the recipient of the 2018 IEEE Computational Intelligence Magazine
Outstanding Paper Award, 2016 IEEE Computational Intelligence Society
Outstanding Transactions on Neural Networks and Learning Systems Paper
Award Best Regular Paper Award at the INNS Conference on Big Data in
2016, and 2021 Outstanding Associate Editor for [EEE TRANSACTIONS ON
EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE. He was the Chair and
a Member of several IEEE committees and subcommittees, and an Associated
Editor for IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING
SYSTEMS, IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, IEEE TRANS-
ACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, IEEE
Computational Intelligence Magazine, and Neural Networks (Elsevier).

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

478

VOLUME 4, 2023


https://papers.nips.cc/paper_files/paper/2019/hash/dc960c46c38bd16e953d97cdeefdbc68-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/dc960c46c38bd16e953d97cdeefdbc68-Abstract.html
https://dx.doi.org/10.18653/v1/2020.findings-emnlp.436
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


