
J. Evol. Equ. (2023) 23:19
© 2023 The Author(s)
1424-3199/23/010001-31, published online February 5, 2023
https://doi.org/10.1007/s00028-023-00870-6

Journal of Evolution
Equations

Ergodic results for the stochastic nonlinear Schrödinger equation
with large damping
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Abstract. We study a nonlinear Schrödinger equation with a linear damping, i.e. a zero-order dissipation,
and an additive noise. Working in R

d with d ≤ 3, we prove the uniqueness of the invariant measure when
the damping coefficient is sufficiently large.

1. Introduction

The nonlinear Schrödinger equation occurs as a basic model in many areas of
physics: hydrodynamics, plasmaphysics, optics,molecular biology, chemical reaction,
etc. It describes the propagation of waves in media with both nonlinear and dispersive
responses.
In this article, we investigate the long-time behaviour of the following stochastic

nonlinear Schrödinger equation{
du(t) + [

i�u(t) + iα|u(t)|2σu(t) + λu(t)
]
dt = � dW (t)

u(0) = u0,
(1.1)

The unknown is u : Rd → C. We consider σ > 0, λ > 0 and α ∈ {−1, 1}; for α = 1
this is called the focusing equation and for α = −1 this is the defocusing one. In the
r.h.s., there is a stochastic forcing term, which is white in time and coloured in space.
Imposing some condition on the power, i.e. on σ , many results are known about

existence and uniqueness of solutions, in different spatial domains and with different
noises; see [1–3,8,11,13,14]. Basically these results are obtained without damping,
i.e. λ = 0, but can be easily extended to the case with λ > 0.

When there is no damping and no forcing term (i.e. λ = 0 and � = 0), the
Schrödinger equation is conservative. However, with a noise and a damping term, we
expect that the energy injected by the noise is dissipated by the damping term; because
of this balance it is meaningful to look for stationary solutions or invariant measures.
Ekren et al. [16] and Kim [22] provide the existence of invariant measures of the
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Eq. (1.1) for any damping coefficient λ > 0; see also the more general setting of [7]
for the two-dimensional case in a different spatial domain andwithmultiplicative noise
and the book [20] for the numerical analysis approach. Notice that the damping λu is
weaker than the dissipation given by a Laplacian −λ�u; for this reason we say that
λu is a zero-order dissipation. This implies that the results of existence or uniqueness
of invariant measures for the damped Schrödinger equation are less easy than for the
stochastic parabolic equations (see, for example, [12]). A similar issue appears in the
stochastic damped 2D Euler equations, for which the existence of invariant measures
has been recently proven in [5]; there again the difficulty comes from the absence of
a strong dissipation, given by the Laplacian in the Navier–Stokes equations.

Let us point out that the existence of invariant measures depends on the damping
term as well as on the forcing term. On the other hand, without the damping term
it is well known that the stochastic Schrödinger equation has a different long-time
behaviour; in [19] it is proved that stochastic solutions may scatter at large time in the
subcritical or defocusing case.

The question of the uniqueness of invariant measures is quite challenging for the
SPDE’s with a zero-order dissipation. Debussche and Odasso [15] proved the unique-
ness of the invariant measure for the cubic focusing Schrödinger equation (1.1), i.e.
σ = α = 1, when the spatial domain is a bounded interval; however, no uniqueness
results are known for larger dimension. For the one-dimensional stochastic damped
periodic KdV equation, there is a recent result by Glatt-Holtz et al. [17]. However, for
nonlinear SPDE’s of parabolic type, i.e. with a stronger dissipation term, the unique-
ness issue has been solved in many cases; see, for example, the book [12] by Da Prato
and Zabczyk, and the many examples in the paper [18] by Glatt-Holtz, Mattingly and
Richards, dealing with the coupling technique. Let us point out that the coupling tech-
nique allows for the uniqueness result without restriction on the damping parameter λ

but all the examples solved so far are set in a bounded spatial domain and not in Rd .

The aim of our paper is to investigate the uniqueness of the invariant measures for
Eq. (1.1) in R

d in dimension d ≤ 3, with some restrictions on the nonlinearity when
d = 3. However, our technique fails for larger dimension. Notice that also the results
for the attractor in the deterministic setting are known for d ≤ 3 (see [23]). Our main
result is Theorem 5.1; it provides a sufficient condition to get the uniqueness of the
invariant measure. This condition (5.1) involves λ and the intensity of the noise; to
optimize it, in Sects. 2.2 and 3 we perform a detailed analysis on how the solution
depends on the damping parameter λ.

As far as the contents of this paper are concerned, in Sect. 2 we introduce the
mathematical setting and refine known moments estimates on the solution; in Sect. 3
by means of the Strichartz estimates we prove a regularity result on the solutions for
d = 2 and d = 3; this will allow to prove in Sect. 4 that the support of any invariant
measure is contained in V ∩ L∞(Rd) and some estimates of the moments are given.
Finally, Sect. 5 presents the uniqueness result. The four appendices contain auxiliary
results.
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2. Assumptions and basic results

For p ≥ 1, L p(Rd) is the classical Lebesgue space of complex-valued functions,
and the inner product in the real Hilbert space L2(Rd) is denoted by

〈u, v〉 =
∫
Rd

u(y)v(y)dy.

We consider the Laplace operator � as a linear operator in L2(Rd); so

A0 = −�, A1 = 1 − �

are nonnegative linear operators and {eit A0 }t∈R is a unitary group in L2(Rd).Moreover,
for s ≥ 0 we consider the power operator As/2

1 in L2(Rd) with domain Hs = {u ∈
L2(Rd) : ‖As/2

1 u‖L2(Rd ) < ∞}. Our two main spaces are H := L2(Rd) and V :=
H1(Rd). We set H−s(Rd) for the dual space of Hs(Rd) and denote again by 〈·, ·〉 the
duality bracket.
Wedefine the generalizedSobolev spaces Hs,p(Rd)with normgiven by ‖u‖Hs,p(Rd )

= ‖As/2
1 u‖L p(Rd ). We recall the Sobolev embedding theorem, see, for example, [4,

Theorem 6.5.1]: if 1 < q < p < ∞ with

1

p
= 1

q
− r − s

d
,

then the following inclusion holds

Hr,q(Rd) ⊂ Hs,p(Rd)

and there exists a constant C such that ‖u‖Hs,p(Rd ) ≤ C‖u‖Hr,q (Rd ) for all u ∈
Hr,q(Rd).

Remark 2.1. For d = 1, the space V is a subset of L∞(R) and is a multiplicative
algebra. This simplifies the analysis of the Schrödinger equation (1.1). However, for
d ≥ 2 the analysis is more involved.

We write the nonlinearity as

Fα(u) := α|u|2σu. (2.1)

Lemma C.1 provides a priori estimates on it.
As far as the stochastic term is concerned, we consider a real Hilbert space U with

an orthonormal basis {e j } j∈N and a complete probability space (�,F ,P). Let W be
aU -canonical cylindrical Wiener process adapted to a filtration F satisfying the usual
conditions. We can write it as a series

W (t) =
∞∑
j=1

Wj (t)e j ,
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with {Wj } j a sequence of i.i.d. real Wiener processes (see, for example, [12]). Hence,

�W (t) =
∞∑
j=1

Wj (t)�e j (2.2)

for a given linear operator � : U → V .
Now, we rewrite the Schrödinger equation (1.1) in the abstract form as{

du(t) + [−i A0u(t) + i Fα(u(t)) + λu(t)] dt = � dW (t)

u(0) = u0
(2.3)

We work under the following assumptions on the noise and the nonlinearity. The
initial data u0 is assumed to be in V .

Assumption 2.2. (on the noise) We assume that � : U → V is a Hilbert–Schmidt
operator, i.e.

‖�‖LHS(U,V ) :=
⎛
⎝ ∞∑

j=1

‖�e j‖2V
⎞
⎠

1/2

< ∞. (2.4)

This means that

‖�‖2LHS(U ;V ) =
∞∑
j=1

‖A1/2
1 �e j‖2H =

∞∑
j=1

‖�e j‖2H +
∞∑
j=1

‖∇�e j‖2H < ∞

and it implies that the series (2.2) converges in V .
In order to compare our setting with the more general one of our previous paper [7]

in the two-dimensional setting, we point out that � is also a Hilbert–Schmidt operator

from U to H (and we denote ‖�‖LHS(U ;H) :=
(∑

j∈N ‖�e j‖2H
)1/2

) and, for d = 2,

a γ -radonifying operator from U to L p(R2) for any finite p.

Assumption 2.3. (on the nonlinearity (2.1))

• If α = 1 (focusing), let 0 ≤ σ < 2
d .

• If α = −1 (defocusing), let

{
0 ≤ σ < 2

d−2 , for d ≥ 3

σ ≥ 0, for d ≤ 2

We recall the continuous embeddings

H1(R2) ⊂ L p(R2) ∀ p ∈ [2,∞)

H1(Rd) ⊂ L p(Rd) ∀ p ∈ [2, 2d
d−2 ] for d ≥ 3

Hence, for σ chosen as in Assumption 2.3 there is the continuous embedding

H1(Rd) ⊂ L2+2σ (Rd). (2.5)
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Moreover, if σd < 2(σ + 1), the following Gagliardo–Nirenberg inequality holds

‖u‖L2+2σ (Rd ) ≤ C‖u‖1−
σd

2(1+σ)

L2(Rd )
‖∇u‖

σd
2(1+σ)

L2(Rd )
. (2.6)

In particular, this holds for the values of σ specified in Assumption 2.3. In the focusing
case, thanks to the Young inequality for any ε > 0 there exists Cε > 0 such that

‖u‖2+2σ
L2+2σ (Rd )

≤ ε‖∇u‖2L2(Rd )
+ Cε‖u‖2+

4σ
2−σd

L2(Rd )
. (2.7)

Above we denoted by C a generic positive constant which might vary from one line
to the other, except G which is the particular constant in the next inequality (2.13)
coming from theGagliardo–Nirenberg inequality.Moreover,we shall use this notation:
if a, b ≥ 0 satisfy the inequality a ≤ CAb with a constant CA > 0 depending on the
expression A, we write a �A b; for a generic constant we put no subscript. If we have
a �A b and b �A a, we write a �A b.

We recall the classical invariant quantities for the deterministic unforcedSchrödinger
equation (λ = 0, � = 0), the mass and the energy (see [9]):

M(u) = ‖u‖2H , (2.8)

H(u) = 1

2
‖∇u‖2H − α

2(1 + σ)
‖u‖2+2σ

L2+2σ (Rd )
. (2.9)

They are both well defined on V , thanks to (2.5).

Remark 2.4. In the defocusing case α = −1, we have

H(u) ≥ 1

2
‖∇u‖2H ≥ 0 ∀u ∈ V (2.10)

and

H(u) ≤ 1

2
‖u‖2V + Cσ,d‖u‖2+2σ

V ∀u ∈ V . (2.11)

In the focusing case α = 1, the energy has no positive sign, but we can modify it by
adding a term and recover the sign property. We introduce the modified energy

H̃(u) = 1

2
‖∇u‖2H − 1

2(1 + σ)
‖u‖2+2σ

L2(1+σ)(Rd )
+ G‖u‖2+

4σ
2−σd

H (2.12)

where G is the constant appearing in the following particular form of (2.7)

1

2(1 + σ)
‖u‖2+2σ

L2(1+σ)(Rd )
≤ 1

4 + σ
‖∇u‖2H + G‖u‖2+

4σ
2−σd

H . (2.13)

Even if G depends on σ and d, for short we shall write simply G. Moreover, by
Assumption 2.3 we have that 2 − σ > 0 in the focusing case.

Therefore,

H̃(u) ≥ 2 + σ

8 + 2σ
‖∇u‖2H ≥ 0 ∀u ∈ V . (2.14)
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Moreover, from the definition (2.12) and the continuous embedding (2.5) we get

H̃(u) ≤ 1

2
‖u‖2V + Cσ,d‖u‖2+2σ

V + G‖u‖2+
4σ

2−σd
V ∀u ∈ V . (2.15)

Next in Sect. 2.1 we recall the known results on solutions and invariant measures;
then in Sect. 2.2 we provide the improved estimates for the mass and the energy.

2.1. Basic results

We recall from [14] the basic results on the solutions; for any u0 ∈ V there exists
a unique global solution u = {u(t; u0)}t≥0, which is a continuous V -valued process.
Here, uniqueness is meant as pathwise uniqueness. Actually, their result is given
without damping but one can easily pass from λ = 0 to any λ > 0. Let us state the
result from De Bouard and Debussche [14].

Theorem 2.5. Under Assumptions 2.2 and 2.3, for every u0 ∈ V there exists a unique
V -valued and continuous solution of (2.3). This is a Markov process in V . Moreover,
for any finite T > 0 and integer m ≥ 1 there exist positive constants C1 and C2

(depending on T , m and ‖u0‖V ) such that

E sup
0≤t≤T

[M(u(t))m
] ≤ C1

and

E

[
sup

0≤t≤T
H(u(t))

]
≤ C2.

We notice that the last estimate can be generalized to consider any power m > 1 of
the energy in the defocusing case as well as for the modified energy in the focusing
case, namely

E

[
sup

0≤t≤T
[H(u(t))]m

]
< ∞ (2.16)

and

E

[
sup

0≤t≤T
[H̃(u(t))]m

]
< ∞. (2.17)

This provides

E

[
sup

0≤t≤T
‖u(t)‖mV

]
< ∞. (2.18)

These estimates are in [16].
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As soon as a unique solution in V is defined, we can introduce the Markov semi-
group. Let us denote by u(t; x) the solution evaluated at time t > 0, with initial value
x ∈ V . We define

Pt f (x) = E[ f (u(t; x))] (2.19)

for any Borelian and bounded function f : V → R.
A probability measure μ on the Borelian subsets of V is said to be an invariant

measure for (2.3) when∫
V
Pt f dμ =

∫
V

f dμ ∀t ≥ 0, f ∈ Bb(V ). (2.20)

We recall Theorem 3.4 from [16] on existence of invariant measures.

Theorem 2.6. Under Assumptions 2.2 and 2.3, there exists an invariant measure
supported in V .

2.2. Mean estimates

In this section, we revise some bounds for t ∈ [0,∞) on the moments of the mass,
the energy and the modified energy, in order to see how these quantities depend on the
damping coefficient λ. This improves the results by [16, Lemma 5.1]. Actually, their
Lemma 5.1 has to be modified in the focusing case (see Proposition 2.8).

This is the result for the massM(u) = ‖u‖2H .
Proposition 2.7. Let u0 ∈ V . Then under Assumptions 2.2 and 2.3, for every m ≥ 1
there exists a positive constant C (depending on m) such that

E
[M(u(t))m

] ≤ e−λmtM(u0)
m + C‖�‖2mLHS(U ;H)λ

−m (2.21)

for any t ≥ 0.

Proof. Let us start by proving the estimate (2.21) form = 1. We apply the Itô formula
toM(u(t)) (see [16, Theorem 3.2])

dM(u(t)) + 2λM(u(t))dt = ‖�‖2LHS(U ;H)dt + 2Re〈u(t),�dW (t)〉.
Taking the expected value and using the fact that the stochastic integral is a martingale
by Theorem 2.5, we obtain, for any t ≥ 0,

d

dt
E [M(u(t))] = −2λE [M(u(t))] + ‖�‖2LHS(U,H).

Solving this ODE, we obtain

E [M(u(t))] = e−2λtM(u0) + ‖�‖2LHS(U,H)

∫ t

0
e−2λ(t−s) ds

≤ e−2λtM(u0) + 1

2λ
‖�‖2LHS(U,H),
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which proves (2.21) for m = 1.
For m ≥ 2, we apply the Itô formula to M(u(t))m

M(u(t))m =M(u0)
m − 2λm

∫ t

0
M(u(s))m ds

+ 2m
∫ t

0
M(u(s))m−1Re〈u(s),�dW (s)〉

+ m‖�‖2LHS(U,H)

∫ t

0
M(u(s))m−1 ds

+ 2(m − 1)m
∫ t

0
M(u(s))m−2

∞∑
j=1

[Re〈u(s),�e j 〉]2 ds. (2.22)

With the Young inequality, we get

m‖�‖2LHS(U,H)M(u)m−1 + 2(m − 1)mM(u)m−2
∞∑
j=1

[Re〈u,�e j 〉]2

≤ m(2m − 1)‖�‖2LHS(U,H)M(u)m−1

≤ ελmM(u)m + Cε,m‖�‖2mLHS(U ;H)λ
1−m

for any ε > 0. Hence,

M(u(t))m ≤ M(u0)
m − (2 − ε)λm

∫ t

0
M(u(s))m ds

+ Cε,m‖�‖2mLHS(U ;H)λ
1−mt + 2m

∫ t

0
M(u(s))m−1Re〈u(s),�dW (s)〉. (2.23)

By Theorem 2.5, we know that the stochastic integral in (2.23) is a martingale, so
taking the expected value on both sides of (2.23) we obtain

E[M(u(t))m] ≤ M(u0)
m

−(2 − ε)λm
∫ t

0
E[M(u(s))m] ds + ‖�‖2mLHS(U ;H)Cε,mλ1−mt.

Choosing ε = 1, by means of Gronwall inequality we get

E[M(u(t))m] ≤ e−λmtM(u0)
m + ‖�‖2mLHS(U ;H)Cmλ1−m

∫ t

0
e−λm(t−s)ds

≤ e−λmtM(u0)
m + ‖�‖2mLHS(U ;H)

Cm

m
λ−m

for any t ≥ 0.
If 1 < m < 2, then we use the Hölder inequality and the estimate for m = 2:

E[M(u(t))m] ≤
(
E[M(u(t))2]

)m
2

≤
(
e−2λtM(u0)

2 + 1

4
‖�‖4LHS(U ;H)λ

−2
)m

2

≤ e−mλtM(u0)
m + C‖�‖2mLHS(U ;H)λ

−m �
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Notice that the estimates on the mass do not depend on α, whereas this happens
in the next result concerning the energy H(u) given in (2.9) and the modified energy
H̃(u) given in (2.12). We introduce the functions

φ1(σ, λ,�) = ‖�‖2LHS(U ;V ) + ‖�‖2+2σ
LHS(U ;V )

λ−σ . (2.24)

and

φ2(d, σ, λ,�) = φ1 + ‖�‖2+
σ

σ+1 (1+2 2σ+1
2−σd )

LHS(U ;V )
λ− 1

2
σ

σ+1 (1+2 2σ+1
2−σd ) + ‖�‖2+

4σ
2−σd

LHS(U ;H)
λ− 2σ

2−σd .

(2.25)

Both mappings λ �→ φi (σ, λ,�) are strictly decreasing. The estimates for the energy
in the defocusing case will depend on φ1, and the estimates for the modified energy
in the focusing case will depend on φ2.
This is the result on the power moments of H(u) and H̃(u).

Proposition 2.8. Let u0 ∈ V . Under Assumptions 2.2 and 2.3, we have the following
estimates:

(i) When α = −1, for every m ≥ 1 there exists a positive constant C = C(d, σ,m)

such that

E[H(u(t))m] ≤ e−λmtH(u0)
m + Cφm

1 λ−m (2.26)

for any t ≥ 0.
(ii) When α = 1, for every m ≥ 1 there exist positive constants a = a(d, σ ),

C1 = C(d, σ,m) and C2 = C(d, σ,m) such that

E[H̃(u(t))m] ≤ e−m 2−σ
2+σ

λtH̃(u0)
m

+C1e
−maλt [1 + M(u0)

m( 12+ 2σ
2−σd )]‖�‖mLHS(U ;V )λ

−m
2 + C2φ

m
2 λ−m (2.27)

for any t ≥ 0.

Proof. The Itô formula forH(u(t)) is (see Theorem 3.2 in [16])

dH(u(t)) + 2λH(u(t))dt = αλ
σ

σ + 1
‖u(t)‖2σ+2

L2σ+2(Rd )
dt

−
∞∑
j=1

Re〈�u(t) + α|u(t)|2σu(t),�e j 〉dWj (t) + 1

2
‖∇�‖2LHS(U ;H)dt

−α

2
‖|u(t)|σ �‖2LHS(U ;H)dt − ασ

∞∑
j=1

〈|u(t)|2σ−2, [Re(u(t)�e j )]2〉dt.

(2.28)

We notice that the stochastic integral is amartingale, because its quadratic variation has
finite mean thanks to the moment estimates (2.16)–(2.18). (Computations are similar
to those in the next estimate (2.34).)
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Below we repeatedly use the Hölder and Young inequalities. In particular,

Am−1B ≤ ελAm + Cελ
1−mBm, m > 1 (2.29)

and

Am−2B ≤ ελAm + Cελ
1−m

2 B
m
2 , m > 2 (2.30)

for any positive A, B, λ, ε.
• In the defocusing case α = −1, we neglect the first term in the r.h.s. in (2.28), i.e.

dH(u(t)) + 2λH(u(t))dt ≤ −
∞∑
j=1

Re〈�u(t) − |u(t)|2σ u(t),�e j 〉dWj (t)

+
[1
2
‖∇�‖2LHS(U ;H) + 1

2
‖|u(t)|σ �‖2LHS(U ;H) + σ

∞∑
j=1

〈|u(t)|2σ−2, [Re(u(t)�e j )]2〉
]
dt.

(2.31)

Moreover, thanks to Assumption 2.3 we use Hölder and Young inequalities to get

1

2
‖|u|σ �‖2LHS(U ;H) + σ

∞∑
j=1

〈|u|2σ−2, [Re(u(t)�e j )]2〉

≤ 1

2
‖|u|σ ‖2

L
2σ+2

σ (Rd )

∞∑
j=1

‖�e j‖2L2σ+2(Rd )
+ σ‖|u|2σ ‖

L
2σ+2
2σ (Rd )

∞∑
j=1

‖|�e j |2‖Lσ+1(Rd )

≤ 1 + 2σ

2
‖u‖2σL2σ+2(Rd )

∞∑
j=1

‖�e j‖2L2σ+2(Rd )

≤ 1 + 2σ

2
‖u‖2σL2σ+2(Rd )

C‖�‖2LHS(U ;V ) by (2.5)

≤ λ

2 + 2σ
‖u‖2+2σ

L2+2σ (Rd )
+ C‖�‖2+2σ

LHS(U ;V )
λ−σ

≤ λH(u) + C‖�‖2+2σ
LHS(U ;V )

λ−σ (2.32)

Now, we insert this estimate in (2.31) and take the mathematical expectation to get rid
of the stochastic integral

d

dt
EH(u(t)) + 2λEH(u(t)) ≤ 1

2
‖�‖2LHS(U ;V ) + λEH(u(t)) + C‖�‖2+2σ

LHS(U ;V )
λ−σ ,

i.e.

d

dt
EH(u(t)) + λEH(u(t)) ≤ 1

2
‖�‖2LHS(U ;V ) + C‖�‖2+2σ

LHS(U ;V )
λ−σ .

By Gronwall lemma, we get

EH(u(t)) ≤ e−λtH(u0) + 1

2
‖�‖2LHS(U ;V )λ

−1 + C‖�‖2+2σ
LHS(U ;V )

λ−σ−1
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for any t ≥ 0. This proves (2.26) for m = 1.
For higher powers m ≥ 2, by means of Itô formula we get

dH(u(t))m = mH(u(t))m−1dH(u(t))

+m(m − 1)

2
H(u(t))m−2

∞∑
j=1

[Re〈�u(t) − |u(t)|2σu(t),�e j 〉]2dt. (2.33)

We estimate the latter term using the Hölder and the Young inequality:

1

2

∑
j

[Re〈�u − |u|2σu,�e j 〉]2

≤
∑
j

[Re〈�u,�e j 〉]2 +
∑
j

[Re〈|u|2σu,�e j 〉]2

≤ ‖∇u‖2H
∑
j

‖∇�e j‖2H + ‖|u|2σu‖2
L

2σ+2
2σ+1 (Rd )

∑
j

‖�e j‖2L2+2σ (Rd )

≤ ‖∇u‖2H‖�‖2LHS(U ;V ) + C‖u‖2(2σ+1)
L2+2σ (Rd )

‖�‖2LHS(U ;V )

≤ ελH(u)2 + Cε,σ

(
‖�‖4LHS(U ;V ) + ‖�‖4(1+σ)

LHS(U ;V )
λ−2σ

)
λ−1 (2.34)

for any ε > 0. Inserting in (2.33) and using the Young inequality (2.30), we get

dH(u(t))m ≤ mH(u(t))m−1dH(u(t))

+1

2
mλH(u(t))mdt + C

(
‖�‖4LHS(U ;V ) + ‖�‖4(σ+1)

LHS(U ;V )
λ−2σ

)m/2
λ−m+1dt

(2.35)

We estimate H(u(t))m−1dH(u(t)) using (2.31), (2.32), and the Young inequality
(2.29). Then, we take the mathematical expectation in (2.35) and obtain

d

dt
E[H(u(t))m] + mλE[H(u(t))m]

≤ Cσ,m

(
‖�‖2LHS(U ;V ) + ‖�‖2(1+σ)

LHS(U ;V )
λ−σ

)m
λ−m+1. (2.36)

By Gronwall lemma, we get (2.26).
For 1 < m < 2, we proceed by means of the Hölder inequality as before, using the

estimate for m = 2.
• In the focusing case α = 1, we neglect the last two terms in the r.h.s. in (2.28) and
get

dH(u(t)) + 2λH(u(t))dt ≤ λ
σ

σ + 1
‖u(t)‖2+2σ

L2+2σ (Rd )
dt

−
∞∑
j=1

Re〈�u(t) + |u(t)|2σu(t),�e j 〉dWj (t) + 1

2
‖∇�‖2LHS(U ;H)dt. (2.37)
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We write the Itô formula for the modified energy H̃(u) = H(u) + GM(u)1+
2σ

2−σd .
Proceeding as in (2.23) for the power m = 1 + 2σ

2−σd of the mass, we have

dH̃(u(t)) + 2λH̃(u(t))dt

≤ λ
σ

σ + 1
‖u(t)‖2σ+2

L2σ+2(Rd )
dt

+λ

(
ε

(
1 + 2σ

2 − σd

)
− 4σ

2 − σd

)
GM(u(t))1+

2σ
2−σd dt

+Cε‖�‖2+
4σ

2−σd
LHS(U ;H)

λ− 2σ
2−σd dt + 1

2
‖∇�‖2LHS(U ;H)dt

−
∑
j

Re〈�u(t) + |u(t)|2σu(t),�e j 〉dWj (t)

+2

(
1 + 2σ

2 − σd

)
GM(u(s))

2σ
2−σd Re〈u(t),�dW (t)〉. (2.38)

Since (1− 2
2−σd ) < 0 by Assumption 2.3, for ε small enough we get ε(1+ 2σ

2−σd ) +
2σ(1 − 2

2−σd ) < 0; hence,

σ

σ + 1
‖u‖2σ+2

L2σ+2(Rd )
+

(
ε

(
1 + 2σ

2 − σd

)
− 4σ

2 − σd

)
GM(u)1+

2σ
2−σd

≤
2.13

2σ

4 + σ
‖∇u‖2H +

(
ε

(
1 + 2σ

2 − σd

)
+ 2σ

(
1 − 2

2 − σd

))
GM(u)1+

2σ
2−σd

≤ 2σ

4 + σ
‖∇u‖2H ≤

2.14

4σ

2 + σ
H̃(u).

Then,

dH̃(u(t)) + 2
2 − σ

2 + σ
λH̃(u(t))dt

≤
(
C‖�‖2+

4σ
2−σd

LHS(U ;H)
λ− 2σ

2−σd + 1

2
‖∇�‖2LHS(U ;H)

)
dt

−
∑
j

Re〈�u(t) + |u(t)|2σu(t),�e j 〉dWj (t)

+2

(
1 + 2σ

2 − σd

)
GM(u(s))

2σ
2−σd Re〈u(t),�dW (t)〉. (2.39)

Notice that the condition σ < 2
d implies that σ < 2. So considering the mathematical

expectation, we obtain

d

dt
EH̃(u(t)) + 2

2 − σ

2 + σ
λEH̃(u(t))

≤ C‖�‖2+
4σ

2−σd
LHS(U ;H)

λ− 2σ
2−σd + 1

2
‖∇�‖2LHS(U ;H).

(2.40)

By means of the Gronwall lemma, we get

EH̃(u(t)) ≤ e−2 2−σ
2+σ

λtH̃(u0) + C

(
‖�‖2+

4σ
2−σd

LHS(U ;H)
λ− 2σ

2−σd + ‖∇�‖2LHS(U ;H)

)
λ−1.
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This proves (2.27) for m = 1.
For m ≥ 2, we have by Itô formula

dH̃(u(t))m ≤ mH̃(u(t))m−1dH̃(u(t)) + m(m − 1)

2
H̃(u(t))m−22r(t) dt, (2.41)

where we have estimated the quadratic variation of the stochastic integral in (2.38) so
to get

r(t) =
∞∑
j=1

[Re〈�u(t) + |u(t)|2σu(t),�e j 〉]2 + 4G2(1 + 2σ
2−σd )2M(u(t))

4σ
2−σd

∞∑
j=1

[Re〈u(t),�e j 〉]2.

Keeping in mind the previous estimate (2.34), we get

r(t) � ‖∇u(t)‖2H‖�‖2LHS(U ;V ) + ‖u(t)‖2(2σ+1)
L2σ+2(Rd )

‖�‖2LHS(U ;V )

+ 4G2
(
1 + 2σ

2−σd

)2 M(u(t))1+
4σ

2−σd ‖�‖2LHS(U ;H).

Now to estimate the first term in the r.h.s., we use (2.14), i.e. ‖∇u(t)‖2H ≤ 4H̃(u),
and for the second term by means of (2.7), we get

‖u‖2(2σ+1)
L2σ+2(Rd )

≤ ε

4
‖∇u‖2

2σ+1
σ+1

H + Cε,σM(u)
2σ+1
σ+1 (1+ 2σ

2−σd )

≤ εH̃(u)
2σ+1
σ+1 + Cε,σM(u)

2σ+1
σ+1 (1+ 2σ

2−σd )

for any ε > 0. Thus, we estimate the latter term in (2.41) as follows

H̃(u(t))m−2r(t) � H̃(u(t))m−1‖�‖2LHS(U ;V ) + H̃(u(t))m− 1
σ+1 ‖�‖2LHS(U ;V )

+ H̃(u(t))m−2M(u(t))
2σ+1
σ+1 (1+ 2σ

2−σd )‖�‖2LHS(U ;V )

+ H̃(u(t))m−2M(u(t))1+
4σ

2−σd ‖�‖2LHS(U ;H)

and by Young inequality

≤ λεH̃(u(t))m + C‖�‖2mLHS(U ;V )λ
1−m + C‖�‖2m(1+σ)

LHS(U ;V )
λ1−m(1+σ)

+ CM(u(t))
2σ+1
σ+1 (1+ 2σ

2−σd )m2 ‖�‖mLHS(U ;V )λ
1−m

2

+ CM(u(t))(1+
4σ

2−σd )m2 ‖�‖mLHS(U ;H)λ
1−m

2 .

In (2.41), we insert this estimate and the previous estimate (2.39) for dH̃(u(t)), in-
tegrate in time, and take the mathematical expectation to get rid of the stochastic
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integrals; hence, for ε small enough we obtain

d

dt
E[H̃(u(t))m] + m

2 − σ

2 + σ
λE[H̃(u(t))m]

≤ CE[M(u(t))
2σ+1
σ+1 (1+ 2σ

2−σd )m2 ]‖�‖mLHS(U ;V )λ
1−m

2

+ CE[M(u(t))(1+
4σ

2−σd )m2 ]‖�‖mLHS(U ;H)λ
1−m

2

+ C‖�‖2mLHS(U ;V )λ
1−m + C‖�‖2m(1+σ)

LHS(U ;V )
λ1−m(1+σ)

+ C

(
‖�‖2LHS(U ;V ) + ‖�‖2+

4σ
2−σd

LHS(U ;H)
λ− 2σ

2−σd

)m

λ1−m

We use Gronwall lemma and bearing in mind the estimates (2.21) for the mass we get
an inequality for E[H̃(u(t))m]. Computing the time integrals appearing there, with
some elementary calculations we get

E[H̃(u(t))m] ≤ e−m 2−σ
2+σ

λtH̃(u0)
m + Cφm

2 λ−m

+ Ce−ma1λtM(u0)
2σ+1
σ+1 (1+ 2σ

2−σd )m2 ‖�‖mLHS(U ;V )λ
−m

2

+ Ce−ma2λtM(u0)
m( 12+ 2σ

2−σd )‖�‖mLHS(U ;H)λ
−m

2

for any t ≥ 0, where

a1(d, σ ) = min
(
2−σ
2+σ

, 1
2
2σ+1
σ+1 (1 + 2σ

2−σd )
)

,

a2(d, σ ) = min
(
2−σ
2+σ

, 1
2 + 2σ

2−σd

)
.

Since 2σ+1
σ+1 (1+ 2σ

2−σd ) 12 < 1
2 + 2σ

2−σd , we bound the sum of the two termswith different
powers ofM(u0) by putting in evidence only the largest power. Therefore, we obtain
(2.27).
For 1 < m < 2, we proceed as in the previous case. �

Merging the results for themass and the energy, we obtain the result for the V -norm.
Indeed, ‖u‖2V = ‖∇u‖2H + ‖u‖2H and

‖∇u‖2H = 2H(u) + α

σ + 1
‖u‖2σ+2

L2σ+2(Rd )
.

For α = −1, we trivially get

‖u‖2V ≤ 2H(u) + M(u).

For α = 1, we have from (2.14)

‖u‖2V ≤ 8 + 2σ

2 + σ
H̃(u) + M(u).

Now,webear inmind the functionsφ1 andφ2 given in (2.24) and (2.25), respectively.
This is the result for the moments of the V -norm.
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Corollary 2.9. Let u0 ∈ V . Under Assumptions 2.2 and 2.3, for every m ≥ 1we have
the following estimates:

(i) When α = −1

E[‖u(t)‖2mV ] � e−mλt [H(u0)
m + M(u0)

m] + [φ1 + ‖�‖2LHS(U ;H)]mλ−m

(2.42)

for any t ≥ 0;
(ii) When α = 1, there is a positive constant a = a(d, σ ) such that

E[‖u(t)‖2mV ] � e−m 2−σ
2+σ

λtH̃(u0)
m + e−mλtM(u0)

m

+e−maλt [1 + M(u0)
m( 12+ 2σ

2−σd )]‖�‖mLHS(U ;V )λ
−m

2 + [φ2 + ‖�‖2LHS(U ;H)]mλ−m

(2.43)

for any t ≥ 0.

The constants providing the above estimates (�) depend onm, σ and d but not on λ.

3. Regularity results for the solution

For the solution of Eq. (2.3), we know that u ∈ C([0,+∞); V ) a.s. if u0 ∈ V .
Now, we look for the L∞(Rd)-space regularity of the paths. When d = 1, this follows
directly from the Sobolev embedding H1(R) ⊂ L∞(R). But such an embedding does
not hold for d > 1.However, for d = 2 or d = 3 one can obtain the L∞(Rd)-regularity
by means of the deterministic and stochastic Strichartz estimates of Appendix A.
Let φ1 and φ2 be the functions appearing in Proposition 2.8.

Proposition 3.1. Let d = 2 or d = 3. In addition to Assumptions 2.2 and 2.3, we

suppose that σ < 1+√
17

4 when d = 3.
Given any finite T > 0 and u0 ∈ V , the solution of Eq. (2.3) is in L2σ (�; L2σ (0, T ;

L∞(Rd))). Moreover, there exists a positive constant C = C(σ, d, T ) such that

E‖u‖2σL2σ (0,T ;L∞(Rd ))

≤ C
(
‖u0‖2σV + ψ(u0)

σ(2σ+1) + φ
σ(2σ+1)
3 λ−σ(2σ+1) + ‖�‖2σLHS(U ;V )

)
.

(3.1)

where

ψ(u0) =
{
H(u0) + M(u0), α = −1

H̃(u0) + M(u0) + M(u0)
1+ 4σ

2−σd + 1, α = 1
(3.2)

and

φ3(d, σ, λ,�) =
{

φ1(σ, λ,�) + ‖�‖2LHS(U ;H)
, α = −1

φ2(d, σ, λ,�) + ‖�‖2LHS(U ;V )
, α = 1

(3.3)

so λ �→ φ3(d, σ, λ,�) is a strictly decreasing function.
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Proof. First let us consider d = 2. We repeatedly use the embedding H1,q(R2) ⊂
L∞(R2) valid for any q > 2. So our target is to prove the estimate for the
L2σ (�; L2σ (0, T ; H1,q(R2)))-norm of u for some q > 2.
We introduce the operator � := −i A0 + λ. It generates the semigroup e−i�t =

e−λt ei A0t , t ≥ 0.
Let us fix T > 0. We write Eq. (2.3) in the mild form (see [14])

iu(t) = ie−�t u0 +
∫ t

0
e−�(t−s)Fα(u(s)) ds + i

∫ t

0
e−�(t−s)� dW (s)

=: I1(t) + I2(t) + I3(t) (3.4)

and estimate

E‖Ii‖2σL2σ (0,T ;H1,q (R2))
, i = 1, 2, 3

for some q > 2.
For the estimate of I1, we set

q =
{

2σ
σ−1 if σ > 1
6

3−σ
if 0 < σ ≤ 1

(3.5)

Notice that q > 2. Now, before using the homogeneous Strichartz inequality (A.1)
we neglect the term e−λt , since e−λt ≤ 1. First, assuming σ > 1 we work with the
admissible Strichartz pair (2σ, 2σ

σ−1 ) and get

‖I1‖
L2σ (0,T ;H1, 2σ

σ−1 (R2))
=

∥∥∥e−λ·ei A0·A1/2
1 u0

∥∥∥
L2σ (0,T ;L 2σ

σ−1 (R2))

≤
∥∥∥ei A0·A1/2

1 u0
∥∥∥
L2σ (0,T ;L 2σ

σ−1 (R2))

� ‖A1/2
1 u0‖L2(R2) = ‖u0‖V

For smaller values, i.e. 0 < σ ≤ 1, we choose σ̃ = 3
σ

> 2 > σ so 2σ̃
σ̃−1 = 6

3−σ
and

‖I1‖
L2σ (0,T ;H1, 2σ̃

σ̃−1 (R2))
� ‖I1‖

L2σ̃ (0,T ;H1, 2σ̃
σ̃−1 (R2))

� ‖u0‖V
by the previous computations.
For the estimate of I2, we use the Strichartz inequality (A.2) and then the estimate

fromLemmaC.1 on the nonlinearity.We use the notation γ ′ for the conjugate exponent
of γ ∈ (1,∞), i.e. 1

γ
+ 1

γ ′ = 1. First, consider σ > 1; the pair (2σ, 2σ
σ−1 ) is admissible.

Then,

‖I2‖
L2σ (0,T ;H1, 2σ

σ−1 (R2))
= ‖A1/2

1 I2‖
L2σ (0,T ;L 2σ

σ−1 (R2))

� ‖A1/2
1 Fα(u)‖

L
4
3 (0,T ;L 4

3 (R2))
by (A.2)

= ‖Fα(u)‖
L

4
3 (0,T ;H1, 43 (R2))

� ‖u‖2σ+1

L
4
3 (2σ+1)

(0,T ;V )
by (C.1) and (C.2)
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For 0 < σ ≤ 1, we proceed in a similar way; considering the admissible Strichartz
pair (2 + σ, 2 + 4

σ
), we have

‖I2‖
L2σ (0,T ;H1,2+ 4

σ (R2))
� ‖I2‖

L2+σ (0,T ;H1,2+ 4
σ (R2))

= ‖A1/2
1 I2‖

L2+σ (0,T ;L2+ 4
σ (R2))

� ‖A1/2
1 Fα(u)‖Lγ ′

(0,T ;Lr ′ (R2))
by (A.2)

= ‖Fα(u)‖Lγ ′
(0,T ;H1,r ′ (R2))

where (r, γ ) is an admissible Strichartz pair. According to (C.1), we choose

(1, 2) � r ′ =
{

2
1+2σ , 0 < σ < 1

2
4
3 ,

1
2 ≤ σ ≤ 1

(3.6)

Hence,

γ ′ = 2r ′
3r ′−2 =

{
1

1−σ
, 0 < σ < 1

2
4
3 ,

1
2 ≤ σ ≤ 1

(3.7)

In this way by means of the estimate (C.2) of the polynomial nonlinearity
‖Fα(u)‖H1,r ′ (R2)

� ‖u‖1+2σ
V , we obtain

‖I2‖
L2σ (0,T ;H1,2+ 4

σ (R2))
� ‖u‖2σ+1

Lγ ′(2σ+1)(0,T ;V )
.

Summing up, we have shown that for any σ > 0 there exists q > 2 and γ ′ such
that

E‖I2‖2σL2σ (0,T ;H1,q (R2))
� E

(∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

. (3.8)

Bearing in mind Corollary 2.9, we get the second and third terms in the r.h.s. of (3.1).
The details are given in Appendix 5.1.
It remains to estimate the term I3. We choose q as in (3.5). Using the stochastic

Strichartz estimate (A.3), we get for σ > 1

E‖I3‖2σ
L2σ (0,T ;H1, 2σ

σ−1 (R2))
= E‖A1/2

1 I3‖2σ
L2σ (0,T ;L 2σ

σ−1 (R2))

� ‖A1/2
1 �‖2σLHS(U ;H) = ‖�‖2σLHS(H ;V ).

For smaller values of σ , we proceed as before for I1.
Now, consider d = 3. The additional assumption on σ appears because of the

stronger conditions on the parameters given later on.
For q ≥ 1, we have H θ,q(R3) ⊂ L∞(R3) when θq > 3. So for each Ii in (3.4)

we look for an estimate in the norm L2σ (0, T ; H θ,q(R3)) for some parameters with
θq > 3.
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We estimate I1 for any 0 < σ < 2. When 0 < σ ≤ 1, we consider the admissible
Strichartz pair (2, 6). By means of the homogeneous Strichartz estimate (A.1), we
proceed as before

‖I1‖L2σ (0,T ;H1,6(R3)) � ‖I1‖L2(0,T ;H1,6(R3))

=
∥∥∥e−λ·ei A0·A1/2

1 u0
∥∥∥
L2(0,T ;L6(R3))

≤
∥∥∥ei A0·A1/2

1 u0
∥∥∥
L2(0,T ;L6(R3))

� ‖A1/2
1 u0‖L2(R3) = ‖u0‖V .

When σ > 1, we work with the admissible Strichartz pair (2σ, 6σ
3σ−2 ) and get

‖I1‖
L2σ (0,T ;H1, 6σ

3σ−2 (R3))
� ‖A1/2

1 u0‖L2(R3) = ‖u0‖V ;

since 6σ
3σ−2 > 3 for 1 < σ < 2, we obtain the L∞(R3)-norm estimate.

The estimate for I2 is more involved, and we postpone it to Appendix 5.2, where

condition (D.1) leads to the upper bound σ < 1+√
17

4 .
It remains to estimate the term I3. For any σ > 0, we use the Hölder inequality

and the stochastic Strichartz estimate (A.3) for the admissible pair (2+ σ 2

2 , 6 4+σ 2

4+3σ 2 );
therefore,

E‖I3‖2σ
L2σ (0,T ;H1,6 4+σ2

4+3σ2 (R3))

�T E‖I3‖2σ
L2+ σ2

2 (0,T ;H1,6 4+σ2

4+3σ2 (R3))

� ‖�‖2σLHS(U ;V ).

�
Notice that the restriction σ < 1+√

17
4 on the power of the nonlinearity affects only

the defocusing case, since by Assumption 2.3 in the focusing case we already require
the stronger bound σ < 2

3 when d = 3.
We conclude this section by remarking that there is no similar result for d ≥ 4.

Remark 3.2. For larger dimension, there is no result similar to those in this section.
Indeed, if one looks for u ∈ L2σ (0, T ; H1,q(Rd)) ⊂ L2σ (0, T ; L∞(Rd)), it is nec-
essary that

q > d

in order to have H1,q(Rd) ⊂ L∞(Rd). Already the estimate for I1 does not hold under
this assumption. Indeed, the homogeneous Strichartz estimate (A.1) provides

I1 ∈ C([0, T ]; H1(Rd)) ∩ L2σ (0, T ; H1,q(Rd))

if

1

σ
= d

(
1

2
− 1

q

)
and 2 ≤ q ≤ 2d

d − 2
.
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Since 2d
d−2 ≤ 4 for d ≥ 4, the latter condition q ≤ 2d

d−2 and the condition q > d are
incompatible for d ≥ 4.

Let us notice that also in the deterministic setting the results on the attractors are
known for d ≤ 3, see [23].

4. The support of the invariant measures

From Theorem 2.6 we know that there exist invariant measures supported on V .
Now, we show some more properties on these invariant measures. In dimension d = 2
and d = 3, thanks to the regularity results of Sect. 3 we provide an estimate for the
moments in the V and L∞(Rd)-norm.
Set

φ4 =
{

φ1 + ‖�‖2LHS(U ;H)
, for α = −1

φ2 + ‖�‖2LHS(U ;H)
, for α = 1

The function φ4 = φ4(d, σ, λ,�) is strictly decreasing w.r.t. λ.

Proposition 4.1. Let d ≤ 3 and Assumptions 2.2 and 2.3 hold.
Let μ be an invariant measure for Eq. (2.3), given by Theorem 2.6. Then, for any finite
m ≥ 1 we have ∫

‖x‖2mV dμ(x) ≤ φm
4 λ−m . (4.1)

Moreover, supposing in addition that σ < 1+√
17

4 when d = 3, we have∫
‖x‖2σL∞dμ(x) ≤ φ5(d, σ, λ,�), (4.2)

where λ �→ φ5(d, σ, λ,�) is a smooth decreasing function.

Proof. As far as (4.1) is concerned, we define the bounded mapping �k on V as

�k(x) =
{

‖x‖2mV , if ‖x‖V ≤ k

k2m, otherwise

for k ∈ N.
By the invariance of μ and the boundedness of �k , we have∫

V
�k dμ =

∫
V
Ps�k dμ ∀s > 0. (4.3)

So

Ps�k(x) = E[�k(u(s; x))] ≤ E‖u(s; x)‖2mV .
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Moreover, from Corollary 2.9 we get an estimate for E‖u(s; x)‖2mV , and letting s →
+∞ the exponential terms in the r.h.s. of (2.42) and (2.43) vanish so we get

lim sup
s→+∞

Ps�k(x) ≤ φm
4 λ−m ∀x ∈ V .

By Fatou lemma, we have that the same holds for the integral, that is

lim sup
s→+∞

∫
V
Ps�k(x) dμ(x) ≤ φm

4 λ−m .

From (4.3), we get ∫
V

�k dμ ≤ φm
4 λ−m

as well. Since �k converges pointwise and monotonically from below to ‖ · ‖2mV , the
monotone convergence theorem yields (4.1).

As far as (4.2) is concerned, for d = 1 this is a consequence of estimate (4.1),
because of the Sobolev embedding H1(R) ⊂ L∞(R). However, for d > 1we consider
the estimate (3.1) for T = 1 and set �̃(u) = ‖u‖2σ

L∞(Rd )
; this defines a mapping

�̃ : V → R+ ∪ {+∞}. Its approximation �̃k : V → R+, given by

�̃k(u) =
{

‖u‖2σ
L∞(Rd )

, if ‖u‖L∞(Rd ) ≤ k

k2σ , otherwise

defines a bounded mapping �̃k : V → R+ for any k ∈ N.
It obviously holds

∫
V

�̃k dμ =
∫ 1

0

(∫
V

�̃k dμ

)
ds.

By the invariance of μ and the boundedness of �̃k , it also holds∫
V

�̃k dμ =
∫
V
Ps�̃k dμ ∀s > 0.

Thus, by Fubini–Tonelli theorem, since �̃k(u) = ‖u‖2σ
L∞(Rd )

∧ k2σ ≤ ‖u‖2σ
L∞(Rd )

, we
get

∫
V

�̃k dμ =
∫ 1

0

∫
V
Ps�̃k dμ ds =

∫
V

∫ 1

0
E

[
�̃k(u(s; x))

]
ds dμ(x)

≤
∫
V
E

∫ 1

0
‖u(s; x)‖2σL∞(Rd )

ds dμ(x)

≤ C
∫
V

(
‖x‖2σV + ψ(x)σ(2σ+1) + φ

σ(2σ+1)
3 λ−σ(2σ+1) + ‖�‖2σLHS(U ;V )

)
dμ(x)
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where we used (3.1) from Proposition 3.1 for T = 1.
The integral

∫
V ‖x‖2σV dμ(x) can be estimated by means of (4.1). The same holds

for the integral of the second term, by bearing in mind the expression (3.2) of ψ and
the bounds (2.11), (2.15); let us denote by φψ = φψ(d, σ, λ,�) the new function
estimating

∫
V ψ(x)σ(2σ+1)dμ(x).

Therefore, we have proved that∫
V

�̃k dμ ≤ φ5(d, σ, λ,�)

where φ5 is proportional to

φσ
4 λ−σ + φψ + φ

σ(2σ+1)
3 λ−σ(2σ+1) + ‖�‖2σLHS(U ;V ).

This holds for any k. Since �̃k converges pointwise and monotonically from below to
�̃, themonotone convergence theoremyields the samebound for

∫
V ‖x‖2σ

L∞(Rd )
dμ(x).

This proves (4.2). �

5. Uniqueness of the invariant measure for sufficiently large damping

Wewill prove that if the damping coefficient λ is sufficiently large, then the invariant
measure is unique.

Theorem 5.1. Let d ≤ 3. In addition to Assumptions 2.2 and 2.3, we suppose that

σ < 1+√
17

4 when d = 3.
If

λ > 2φ5(d, σ, λ,�) (5.1)

where φ5 is the function appearing in Proposition 4.1, then for Eq. (2.3) there exists
a unique invariant measure supported in V .

Proof. The existence of an invariant measure comes from Theorem 2.6. Now, we
prove the uniqueness by means of a reductio ad absurdum. Let us suppose that there
exists more than one invariant measure. In particular, there exist two different ergodic
invariant measures μ1 and μ2. For both of them, Proposition 4.1 holds. Fix either
i = 1 or i = 2 and consider any f ∈ L1(μi ). Then, by the Birkhoff ergodic theorem
(see, for example, [10]) for μi -a.e. xi ∈ V we have

lim
t→+∞

1

t

∫ t

0
f (u(s; xi )) ds =

∫
V

f dμi P − a.s. (5.2)

Here, u(t; x) is the solution at time t , with initial value u(0) = x ∈ V .
Now, fix two initial data x1 and x2 belonging, respectively, to the support of the

measure μ1 and μ2. We have∫
V

f dμ1 −
∫
V

f dμ2 = lim
t→+∞

1

t

∫ t

0
[ f (u(s; x1)) − f (u(s; x2))] ds
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P-a.s.. Taking any arbitrary f in the set G0 defined in (B.2), we get∣∣∣∣
∫
V

f dμ1 −
∫
V

f dμ2

∣∣∣∣ ≤ L lim
t→+∞

1

t

∫ t

0
‖u(s; x1) − u(s; x2)‖Hds.

If we prove that

lim
t→+∞ ‖u(t; x1) − u(t; x2)‖H = 0 P − a.s., (5.3)

then we conclude that ∫
V

f dμ1 −
∫
V

f dμ2 = 0

so μ1 = μ2 thanks to Lemma B.1. So let us focus on the limit (5.3).
With a short notation, we write ui (t) = u(t; xi ). Then, consider the difference

w = u1 − u2 fulfilling{
d
dt w(t) − i A0w(t) + i Fα(u1(t)) − i Fα(u2(t)) + λw(t) = 0

w(0) = x1 − x2

so

1

2

d

dt
‖w(t)‖2H + λ‖w(t)‖2H ≤

∫
Rd

∣∣∣[|u1(t)|2σu1(t) − |u2(t)|2σu2(t)]w(t)
∣∣∣dy.

Using the elementary estimate

||u1|2σu1 − |u2|2σu2| ≤ Cσ [|u1|2σ + |u2|2σ ]|u1 − u2|,
we bound the nonlinear term in the r.h.s. as∫

Rd
|[|u1|2σu1 − |u2|2σu2]w| dy ≤ [‖u1‖2σL∞(Rd )

+ ‖u2‖2σL∞(Rd )
]‖w‖2L2(Rd )

.

Therefore,

d

dt
‖w(t)‖2H + 2λ‖w(t)‖2H ≤ 2

(
‖u1(t)‖2σL∞(Rd )

+ ‖u2(t)‖2σL∞(Rd )

)
‖w(t)‖2H .

Gronwall inequality gives

‖w(t)‖2H ≤ ‖w(0)‖2He
−2λt+2

∫ t
0

(
‖u1(s)‖2σL∞(Rd )

+‖u2(s)‖2σL∞(Rd )

)
ds

that is

‖w(t)‖2H ≤ ‖x1 − x2‖2He
−2t

[
λ− 1

t

∫ t
0

(
‖u1(s)‖2σL∞(Rd )

+‖u2(s)‖2σL∞(Rd )

)
ds

]
. (5.4)

This is a pathwise estimate.
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We know from Proposition 4.1 that f (x) = ‖x‖2σ
L∞(Rd )

∈ L1(μi ); therefore, (5.2)
becomes

lim
t→+∞

1

t

∫ t

0
‖u(s; xi )‖2σL∞(Rd )

ds =
∫
V

‖x‖2σL∞(Rd )
dμi (x) ≤ φ5(λ)

P-a.s., for either i = 1 or i = 2. Therefore, if

λ > 2φ5(λ),

the exponential term in the r.h.s. of (5.4) vanishes as t → +∞. This proves (5.3) and
concludes the proof. �
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Definition A.1. We say that a pair (p, r) is admissible if

2

p
+ d

r
= d

2
and (p, r) �= (2,∞)

and ⎧⎪⎪⎨
⎪⎪⎩
2 ≤ r ≤ 2d

d−2 for d ≥ 3

2 ≤ r < ∞ for d = 2

2 ≤ r ≤ ∞ for d = 1

If (p, r) is an admissible pair, then 2 ≤ p ≤ ∞.
Given 1 ≤ γ ≤ ∞, we denote by γ ′ its conjugate exponent, i.e. 1

γ
+ 1

γ ′ = 1.

Lemma A.1. Let (p, r) be an admissible pair of exponents. Then, the following prop-
erties hold

(i) For every ϕ ∈ L2(Rd), the function t �→ eit A0ϕ belongs to L p(R; Lr (Rd)) ∩
C(R; L2(Rd)). Furthermore, there exists a constant C such that

‖ei ·A0ϕ‖L p(R;Lr (Rd )) ≤ C‖ϕ‖L2(Rd ), ∀ϕ ∈ L2(Rd). (A.1)

(ii) Let I be an interval of R and 0 ∈ J = I . If (γ, ρ) is an admissible pair
and f ∈ Lγ ′

(I ; Lρ′
(Rd)), then the function t �→ G f (t) = ∫ t

0 e
i(t−s)A0 f (s)ds

belongs to Lq(I ; Lr (Rd))∩C(J ; L2(Rd)). Furthermore, there exists a constant
C, independent of I , such that

‖G f ‖L p(I ;Lr (Rd )) ≤ C‖ f ‖Lγ ′
(I ;Lρ′

(Rd ))
, ∀ f ∈ Lγ ′

(I ; Lρ′
(Rd)). (A.2)

Proof. See [9, Proposition 2.3.3]. �

Lemma A.3. (stochastic Strichartz estimate) Let (p, r) be an admissible pair. Then,
for any a ∈ (1,∞) and T < ∞ there exists a constant C such that∥∥∥∥

∫ ·

0
ei(·−s)A0�(s)dW (s)

∥∥∥∥
La(�,L p(0,T ;Lr (Rd )))

≤ C‖�‖L2(0,T ;LHS(U,L2(Rd )))

(A.3)

for any � ∈ L2(0, T ; LHS(U, L2(Rd))).

Proof. See [21, Proposition 2]. �

B Determining sets

The set

G1 =
{
f ∈ Cb(V ) : sup

u �=v

| f (u) − f (v)|
‖u − v‖V < ∞

}
(B.1)
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is a determining set for measures on V (see, for example, [6, Theorem 1.2]). This
means that given two probability measures μ1 and μ2 on V we have∫

V
f dμ1 =

∫
V

f dμ2 ∀ f ∈ G1 �⇒ μ1 = μ2.

Following Remark 2.2 in [18], we can consider as a determining set for measures on
V the set

G0 =
{
f ∈ Cb(V ) : sup

u �=v

| f (u) − f (v)|
‖u − v‖H < ∞

}
(B.2)

involving the weaker H -norm instead of the V -norm. So G0 ⊂ G1. Let us show that
G0 is a determining set for measures on V as well.

Lemma B.1. Let μ1 and μ2 be two invariant measures. If∫
V

f dμ1 =
∫
V

f dμ2 ∀ f ∈ G0,

then μ1 = μ2.

Proof. We show the proof since we work in R
d , whereas [18] deals with a bounded

domain.
Set PN x to be the elementwhoseFourier transform is 1|ξ |≤NF(x); hence,‖PN x‖V ≤√
1 + N 2‖x‖H . Now, we show that any function f ∈ G1 can be approximated by a

function fN ∈ G0 by setting fN (x) = f (PN x). Indeed,

| fN (x) − fN (y)| ≤ L‖PN x − PN y‖V ≤ L
√
1 + N 2‖x − y‖H .

By assumption, we know that∫
V

fN dμ1 =
∫
V

fN dμ2.

Taking the limit as N → +∞, by the bounded convergence theorem we get the same
identity for f ∈ G1. Hence, μ1 = μ2. �

C Estimate of the nonlinearity

We consider F(u) = |u|2σu.
Lemma C.1. Let d = 2. For any σ > 0, if p ∈ (1, 2) is defined as

p =
{

2
2σ+1 , 0 < σ < 1

2
4
3 , σ ≥ 1

2

(C.1)
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then

‖F(u)‖H1,p(R2) � ‖u‖2σ+1
H1(R2)

∀u ∈ H1(R2). (C.2)

Let d = 3. For any σ ∈ (0, 3
2 ], we have

‖F(u)‖
H

1, 6
2σ+3 (R3)

� ‖u‖2σ+1
H1(R3)

∀u ∈ H1(R3) (C.3)

and for any σ ∈ [1, 3
2 ] we have

‖F(u)‖
H2−σ, 65 (R3)

� ‖u‖2σ+1
H1(R3)

∀u ∈ H1(R3). (C.4)

Proof. We start with the case d = 2. To estimate the H1,p-norm of F , it is enough to
deal with ‖F‖L p(Rd ) and ‖∂F‖L p(Rd ). We compute

∂F(u) = σ |u|2σ−2 (ū∂u + u∂ ū) u + |u|2σ ∂u, for an arbitrary u ∈ V, (C.5)

and thus, |∂F(u)| �σ |u|2σ |∂u|.
We have

‖F(u)‖L p(Rd ) = ‖u‖2σ+1
L(2σ+1)p(Rd )

, (C.6)

and the Hölder inequality, for 1 ≤ p < 2, gives

‖∂F(u)‖L p(Rd ) ≤ ‖|u|2σ ‖
L

2p
2−p (Rd )

‖∂u‖L2(Rd )

≤ ‖u‖2σ
L

4σ p
2−p (Rd )

‖u‖V (C.7)

We recall the Sobolev embedding

H1(R2) ⊂ Lr (R2) for any 2 ≤ r < ∞.

Therefore, if ⎧⎨
⎩
2 ≤ (2σ + 1)p

2 ≤ 4σ p

2 − p
,

then both the r.h.s. of (C.6) and (C.7) can be estimated by a quantity involving the
H1(R2)-norm. The two latter inequalities are the same as

p ≥ 2

2σ + 1

so one easily sees that the choice (C.1) allows to fulfil the two required estimates, i.e.
‖F(u)‖L p(Rd ) � ‖u‖2σ+1

V and ‖∂F(u)‖L p(Rd ) � ‖u‖2σ+1
V . This proves (C.2).
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For d = 3, first we show that for any σ ∈ (0, 3
2 ]

‖F(u)‖H1,p(R3) � ‖u‖2σ+1
H1(R3)

∀u ∈ H1(R3) (C.8)

with p = 6
2σ+3 ∈ [1, 2).

To this end, we notice that the r.h.s. of (C.6) and (C.7) is estimated by a quantity

involving the H1(R3)-norm if H1(R3) ⊂ L(2σ+1)p(R3) and H1(R3) ⊂ L
4σ p
2−p (R3).

Recalling the Sobolev embedding

H1(R3) ⊂ Lr (R3) for any 2 ≤ r ≤ 6,

we get the conditions

2 ≤ (2σ + 1)p ≤ 6

(
equivalent to

2

2σ + 1
≤ p ≤ 6

2σ + 1

)
(C.9)

2 ≤ 4σ p

2 − p
≤ 6

(
equivalent to

2

2σ + 1
≤ p ≤ 6

2σ + 3

)
(C.10)

Notice that (C.10) is stronger than (C.9); moreover, (C.10) has a solution p ∈ [1, 2)
only if σ ∈ (0, 3

2 ]. Choosing

p = 6

2σ + 3
∈ [1, 2), (C.11)

we fulfil all the requirements and so we have proved (C.3).

Nowfor 1 ≤ σ ≤ 2 there is the continuous embeddingH1, 6
2σ+3 (R3) ⊆ H2−σ, 65 (R3).

Hence, from (C.3) we get (C.4). �

D Computations in the proof of Proposition 3.1

5.1. From (3.8) to (3.1)

From (3.8), we proceed as follows. We distinguish different values of the parameter
σ .

•σ ∈ (0, 1
4 ): we have γ ′ = 1

1−σ
, so 2σ

γ ′ = 2σ(1 − σ) < 3
8 and γ ′(2σ + 1) =

2σ+1
1−σ

< 2. With the Hölder inequality twice

E

(∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

≤
(
E

∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

�T

(
E

∫ T

0
‖u(t)‖2V dt

) 2σ
γ ′ γ ′ 2σ+1

2
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We conclude by means of the estimate of Corollary 2.9 for m = 1; for instance, in
case (i)(

E

∫ T

0
‖u(t)‖2V dt

)σ(2σ+1)

�d,σ

(∫ T

0

[
e−λt [H(u0) + M(u0)] + [φ1 + ‖�‖2LHS(U ;H)]λ−1

]
dt

)σ(2σ+1)

�d,σ

(
1 − e−λT

λ
[H(u0) + M(u0)] + T [φ1 + ‖�‖2LHS(U ;H)]λ−1

)σ(2σ+1)

�d,σ

(
T [H(u0) + M(u0)] + T [φ1 + ‖�‖2LHS(U ;H)]λ−1

)σ(2σ+1)

�d,σ,T [H(u0) + M(u0)]σ(2σ+1) + [φ1 + ‖�‖2LHS(U ;H)]σ(2σ+1)λ−σ(2σ+1)

where we used 1−e−λT

λ
≤ T .

•σ ∈ [ 14 , 1
2 ): we have γ ′ = 1

1−σ
, so 2σ

γ ′ = 2σ(1−σ) ≤ 1
2 and γ ′(2σ +1) = 2σ+1

1−σ
≥ 2.

With the Hölder inequality

E

(∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

≤
(
E

∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

and then we conclude by means of the estimate of Corollary 2.9 for 2m = γ ′(2σ +1);
for instance, in case (ii)(

E

∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

�σ,d

( ∫ T

0
e− γ ′

2 (2σ+1) 2−σ
2+σ

λtdtH̃(u0)
γ ′
2 (2σ+1) +

∫ T

0
e− γ ′

2 (2σ+1)λtdtM(u0)
γ ′
2 (2σ+1)

+
∫ T

0
e− γ ′

2 (2σ+1)aλtdt[1 + M(u0)
γ ′
2 (2σ+1)( 12+ 2σ

2−σd )]‖�‖
γ ′
2 (2σ+1)
LHS(U ;V )

λ− γ ′
4 (2σ+1)

+ T [φ2 + ‖�‖2LHS(U ;H)]
γ ′
2 (2σ+1)λ− γ ′

2 (2σ+1)
) 2σ

γ ′

�σ T
2σ
γ ′

(
[H̃(u0) + M(u0)]σ(2σ+1) + [1 + M(u0)]2σ(2σ+1)( 12+ 2σ

2−σd )

+ ‖�‖2σ(2σ+1)
LHS(U ;V )

λ−σ(2σ+1) + [φ2 + ‖�‖2LHS(U ;H)]σ(2σ+1)λ−σ(2σ+1)
)

where we used
∫ T
0 e−btdt = 1−e−bT

b ≤ T for any b > 0.
•σ ∈ [ 12 , 2

3 ): we have γ ′ = 4
3 , so

2σ
γ ′ = 3

2σ < 1 and γ ′(2σ + 1) = 4
3 (2σ + 1) ≥ 8

3 .
So we proceed as in the previous case.
•σ ≥ 2

3 : we have γ ′ = 4
3 , so

2σ
γ ′ ≥ 1 and γ ′(2σ +1) ≥ 28

9 .With the Hölder inequality

E

(∫ T

0
‖u(t)‖γ ′(2σ+1)

V dt

) 2σ
γ ′

�T E

∫ T

0
‖u(t)‖γ ′(2σ+1) 2σ

γ ′
V dt

and then we conclude bymeans of the estimate of Corollary 2.9 for 2m = 2σ(2σ +1).
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5.2. Estimate of I2 when d = 3

We distinguish two ranges of values for σ .
• For 0 < σ ≤ 1 we have L2(0, T ; L6(R3)) ⊆ L2σ (0, T ; L6(R3)). So we consider

the admissible Strichartz pair (2, 6) and get for any admissible Strichartz pair (γ, r)

‖I2‖L2σ (0,T ;H1,6(R3)) �T ‖I2‖L2(0,T ;H1,6(R3))

= ‖A1/2
1 I2‖L2(0,T ;L6(R3))

� ‖A1/2
1 Fα(u)‖Lγ ′

(0,T ;Lr ′ (R3))
by (A.2)

� ‖Fα(u)‖Lγ ′
(0,T ;H1,r ′ (R3))

The parameters are such that γ ′ = 4r ′
7r ′−6 . From Definition A.1, we have the condition

2 ≤ r ≤ 6, equivalent to 6
5 ≤ r ′ ≤ 2. Choosing

r ′ = 6

3 + 2σ
,

we have r ′ ∈ [ 65 , 2) when 0 < σ ≤ 1 and γ ′ = 2
2−σ

∈ (1, 2]; thus, we can use (C.3)
to estimate the nonlinearity Fα(u). Summing up, we have

‖I2‖L2σ (0,T ;L∞(R3)) � ‖I2‖L2σ (0,T ;H1,6(R3)) � ‖u‖2σ+1

L
2 2σ+1
2−σ (0,T ;V )

.

Hence,

E‖I2‖2σL2σ (0,T ;L∞(R3))
� E

(∫ T

0
‖u(t)‖

2
2−σ

(2σ+1)
V dt

)σ(2−σ)

�
(
E

∫ T

0
‖u(t)‖2

2σ+1
2−σ

V dt

)σ(2−σ)

by Hölder inequality since σ(2 − σ) ≤ 1.
From here, bearing in mind Corollary 2.9 we conclude as in the previous subsection

and we obtain the second and third terms in the r.h.s. of (3.1).
• For σ > 1, we use the admissible Strichartz pair (2σ, 6σ

3σ−2 ) so

‖I2‖
L2σ (0,T ;H θ, 6σ

3σ−2 (R3))
= ‖Aθ/2

1 I2‖
L2σ (0,T ;L 6σ

3σ−2 (R3))

� ‖Aθ/2
1 Fα(u)‖

L2(0,T ;L 6
5 (R3))

� ‖Fα(u)‖
L2(0,T ;H θ, 65 (R3))

where we used (A.2) with γ ′ = 2 and ρ′ = 6
5 , corresponding to the admissible

Strichartz pair (γ, ρ) with γ = 2 and ρ = 6. Notice that 6
5 is the minimal allowed

value for ρ′ when d = 3.
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Now, assuming 1 < σ ≤ 3
2 we use the estimate (C.4) with θ = 2 − σ . Summing

up, we obtain

‖I2‖
L2σ (0,T ;H2−σ, 6σ

3σ−2 (R3))
� ‖u‖2σ+1

L2(2σ+1)(0,T ;H1(R3))
.

When

(2 − σ)
6σ

3σ − 2
> 3, (D.1)

we have H2−σ, 6σ
3σ−2 (R3) ⊂ L∞(R3). This gives the condition σ < 1+√

17
4 . Hence,

‖I2‖L2σ (0,T ;L∞(R3)) � ‖u‖2σ+1
L2(2σ+1)(0,T ;V )

.

Since σ > 1, we conclude with the Hölder inequality that

E‖I2‖2σL2σ (0,T ;L∞(R3))
� E

(∫ T

0
‖u(t)‖2(2σ+1)

V dt

)σ

�T E

∫ T

0
‖u(t)‖2σ(2σ+1)

V dt

Finally, we obtain the second and third term of (3.1) by means of Corollary 2.9 as
before.
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