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1.	 Introduction

The melting behavior of the mold powders used in con-
tinuous casting has yet to be completely understood. The 
importance of the characterization of such behavior lies on 
the crucial role that mold powders plays on the quality and 
productivity of the continuous casting process by carrying 
out several tasks: improving lubrication, controlling mold 
heat transfer, absorbing non-metallic inclusions and pre-
venting reoxidation.1,2) Furthermore, the melting behavior 
of mold powders is known to rule the refining ability of 
mold slag and the subsequent infiltration of mold slag film 
in the meniscus.3) Parameters such as the infiltration and 
consumption of the slag film could be set and controlled by 
using mold powders featured by a suitable melting behavior. 
Such a behavior could be achieved by understanding and 
quantifying a crucial melting behavior indicator: the melt-
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ing temperature.4) In addition, from a technological point 
of view, the melting temperature is used as most important 
reference parameter for evaluating the flux behavior. Indeed, 
industrially, both producers and end users require specific 
formulation capable to melt the flux in a specific thermal 
range. However, the phenomena taking place during the 
melting process of commercial mold powders remains 
largely unknown as a consequence of their complexity and 
subsequent interactions among the ionic chemical species 
involved.5–9) Specifically, each of the chemical species 
present in the mold powders has a specific function to 
carry out, which implies complex interactions among their 
components. Moreover, the variability in composition, both 
in terms of quantity and presence of certain components, 
is rather vast considering that different chemical composi-
tions of the mold powders are defined as a function of cast 
steel.10–13) Indeed, each mold powder producer has designed 
and developed its own chemical composition and ways of 
manufacturing these powders. The chemical complexity and 
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high variability of components of the mold powders makes 
the characterization of their melting temperature a daunt-
ing task. Even if the characterization of the mold powders’ 
melting behavior is particularly difficult, a model providing 
this information could turn out as an advantageous tool. 
From a practical point of view, manufacturers could benefit 
from this information. Actually, a reliable model about mold 
powder could be designed on the basis of required physical 
properties without the need for a trial-and-error approach.

A reliable prediction tool must be built on the basis of 
experimental measurement. On the other hand, statistical 
reliability would only be obtained by means of a consider-
able amount of measurements, which are time-consuming 
and costly.14–18) Other solutions like the use of thermo-
dynamic commercial software approximates the melting 
temperature of the powders, but the downside of such an 
approach is associated with computation that assumes an 
equilibrium state and this approach has pointed out a high 
level un uncertainty featured by error up to 250 K.19–21) Sim-
ilarly, equations derived from linear regression approaches 
have been developed with the one most used proposed by 
Mills et al. (Eq. (1)).22)
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However, these equations are affected by significant 
uncertainty levels, implying usual errors that range from 30 
to 100 K.21) A higher level of accuracy is still sought after.

In this work, a new approach for foreseeing the melting 
temperature of mold flux is proposed based on the imple-
mentation and development of an artificial neural network 
(ANN). As the working principle, the neural network should 
be able to predict the melting temperature by setting the 
chemical composition of the powder as the input, being a 
universal calculation mechanism based on pattern recogni-
tion. An ANN consists of an input and an output layer con-
nected by one or more hidden layers that have the task to 
transform the inputs into something that the output layer can 
use. ANN can process all kinds of data which is coded in 
numeric form. The data is inserted into the network via the 
input layer, transformed via the hidden layer(s) and finally 
scaled to the wanted outcome in the output layer. Even if 
the neural network approach has a long tradition in material 
science (it has been used for modelling several properties of 
steels, i.e., impact toughness, martensite start, hot strength 
and grain growth)23–27) there are only few attempts to use it 
for predicting the mold flux properties.28–30)

Thus, starting from the optimization (in term of number 
of neurons in the hidden layer, number of hidden layers, 
data division and learning algorithm) of a neural network 
tested on a restricted training data set of mold powders (284 
measurements),31) the current paper extends the use of such 
a model to a larger data set (422 measurements). Although 
the number of available experimental measurements is 
not extremely large, the choice of a neural network-based 

model was preferred amongst other methods. For instance, 
Random Forests (RF) could be a feasible instrument to solve 
this kind of problem. RF are based on several interconnected 
decision trees (DTs) to achieve higher accuracy than a single 
one. Decision trees are easily interpretable along with linear 
models, rule-based models, and attention-based models. 
However, RF tend to sacrifice the intrinsic interpretability 
present in decision trees and this aspect is one of the most 
desirable qualities of DTs. Furthermore, in problems with 
multiple categorical variables, like the melting temperature 
of mold flux, random forest may not be able to increase the 
accuracy of the base learner. In addition, running random 
forest models on a large dataset has a potentially long 
training time. In addition, decision trees often show a lack 
of reliability in their application to new data. One reason 
behind this is their tendency to perfectly fit all samples in 
the training data. This results in poor application quality if 
the data is noisy or contains outliers.32) When applied to 
regression problems, RF have the limitation that they can-
not exceed the range of values of the target variable used 
in training. Thus, they perform poorly with data out of the 
original training range, i.e., they cannot be used for data 
extrapolation.33) In addition, RF often have little perfor-
mance gain when a certain amount of data is reached, on the 
contrary of ANN, which usually benefit from large amounts 
of data and continuously improve their accuracy, privileg-
ing the choice of this latter. Indeed, one of the purposes 
of the present work is to build-up an architecture capable 
to be expanded and adapted as the available experimental 
information grows by time.

The main objective of the build-up network is to verify its 
capability of predicting the melting temperature on several 
commercial mold powder, both taken as single batch or as a 
combined batch, by stating a relationship between chemical 
composition and melting temperature even without a fully 
comprehension of phenomena that happen during the melt-
ing process. Such relationship can be established by feeding 
the network with real experimental data from which the 
network will “learn”, recognize patterns and eventually be 
able to make its own predictions when facing new, unknown 
data. To achieve this goal, several parameters of the net-
work’s structure will be studied as well as their influence in 
the network’s performance. Finally, similarly from similar 
papers,30) the weight and bias inputs as well as the weight 
and bias of the hidden layer were declared.

2.	 Experimental Procedure

2.1.	 Data Acquisition
For the setup of the neural network, a set of data is needed 

for “training” the network. This data comes from actual 
experimental data obtained through experimental measure-
ments on commercial mold fluxes. In the case of no apparent 
or obvious correlation between inputs and outputs, a large 
training dataset is suggested. Yet, the exact amount of data 
needed is unknown as every case has its peculiarities. As 
a rule of thumb, a large training dataset would be required 
in order to obtain more accurate results in its predictions 
by the model.34) This aspect must be emphasized since the 
availability of data for this case could affect detrimentally 
the performance of the network in the long run even when 
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all the other parameters of the network had been optimized. 
However, for the neural network construction presented in 
this paper, based on only one hidden layer featured by a 
limited neurons number, the set of measurements adopted 
is considered enough for a good estimation and capable 
in avoid overfitting. For this experiment, three different 
batches of data coming from four different sources were 
employed. The batches of experimentally obtained data 
were referred to as

•  Batch 1: 120 measurements, performed at Prosimet 
in Italy.

•  Batch 2: 169 measurements, performed at the Pohang 
University of Science and Technology in South Korea and 
at the Montanuniversität in Leoben, Austria.

•  Batch 3: 133 measurements, provided by Arcelor 
Mittal in France.

•  Combined batch: all previous data batches were 
merged in the hope of obtaining a greater data sample that, 
in theory, would help to improve the network’s accuracy.

The statistical analysis as well as the development of the 
networks were done both for each of the data batches as 
well as for the batch containing the combined data. For all 
the four datasets 70% of measurements was used for train-
ing while 30% for validation. The neurons number in the 
hidden layer was increased and optimized on the number of 
available measurements, but still keeping it at a low value 
to avoid any undesired effect.

2.2.	 Melting Temperature Measurements
To determine the mold flux melting temperature, all the 

four laboratories have used the same measurement tech-
nique that is heating microscopy, which is the preferred 
tool of analysis used in the metallurgical sector when the 
melting behavior of a certain material must be studied.35) 
Direct observation could be considered as the most adequate 
approach since the complexity of these materials does not 
allow a theoretical approach to be established for the predic-
tion of the melting behavior. In example, the replacement of 
some fluxes with others leads to melting temperature fluc-
tuation from few degrees up to few tens of degree.6) Com-
monly, most of the investigated mold powders are featured 
by a melting temperature higher than 1 350 K.6)

In example, the first batch of measurements were per-
formed by a Heating Microscope MISURA by Expert 
System Solutions MISURA 3.32HSM software. Part of the 
second batch was measured by a HESSE EM301 Heating 
Microscope through its proprietary EMI 2 software. Similar 
equipments were used at the other involved laboratories.

For the measurements, samples of different commercial 
powders have been used and underwent the same procedure 
according to DIN 51730 standard, i.e., the powder was 

grounded in an agate mortar, then the powder has been 
pressed in a cylindrical piece of 2 mm ×  1 mm and finally, 
the cylinder resting on an alumina plate has been inserted in 
the furnace of the heating microscope and heated at a fixed 
rate of 10 K/min under inert atmosphere.

The height of the cylinder was observed during the heat-
ing process and expressed as a percentage of the starting 
value. The software recorded the height of the samples 
at the sintering, softening and melting temperatures. Such 
temperatures are determined by the dimensional parameters 
(height, width and contact angle) of the sample projected 
by its silhouette as shown in Fig. 1.36) As a function of 
the shape assumed by the silhouette of the samples several 
characteristic temperature can be distinguished (where H is 
the sample height and W the sample width):35)

•  sintering temperature: identified when there is a 
dimensional variation of 5% with respect to the original 
image obtained from the sample;

•  softening temperature: the corners appear more 
rounded and there is a smoothing of the upper part of the 
walls of the sample;

•  sphere temperature: the sample is formed almost 
entirely of liquid phases, and the shape of the sample is 
controlled by the surface tension. The edges of the sample 
become completely round, with H=W;

•  hemisphere temperature: identified when the contact 
angle becomes approximately 90° (or even more). The 
sample is approximately hemispherical, with W=2H;

•  melting temperature: the sample has spread out such 
that its height is one-third that of the hemisphere tempera-
ture. It is assumed that the sample has completely liquified 
and has reached its melting point.

In addition, for random samples, cross-confirmation of 
the melting behavior was determined by comparing the 
HSM measured values with ones obtained by TG-DSC 
analysis. The difference between the two technique was 
averagely + /−  25 K.

2.3.	 Chemical Composition Measurements
The chemical composition of the mold powders depends 

on the properties required for the industrial process they 
are used in. Flux chemical composition has been already 
defined as the most important factors of influence on the 
melting temperature.22) Sixteen (16) of the most representa-
tive and influential chemical species were taken into account 
(Table 1). The chemical composition of all the studied pow-
ders has been measured by X-ray fluorescence spectrometer.

However, special considerations were taken in order to 
further simplify the input data. A neural network would 
greatly benefit from a smaller number of inputs, enhanc-
ing its predicting capabilities. For instance, all volatile 

Fig. 1.	 Examples of softening and melting steps identified by the heating microscope. The images can be taken either at 
a specific time interval or at a specific temperature range. Adapted from.36)
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components were not considered for further calculations. 
Furthermore, the carbon was not considered either in its free 
form or as total amount. The purpose of carbon in the mold 
powders is that of regulating the melting rate, having no 
effect whatsoever on the final temperature of the powder.6,37) 
Thus, it can be neglected. Also, Na2O and K2O were jointly 
considered as single component due to their similar behavior 
and role in the powder as fluxes and network breakers. More 
specifically, although it is well known that alkalis tend to 
volatilize in CaF–Na2O–K2O–SiO2–CaO system and their 
ratio influences the melting and the viscosity of the flux, 
in this paper their contribution was unified due to their low 
concentration (mostly below the 10 wt.% and halves of the 
samples below 5 wt.%) that minimize to a negligible effect 
the variation of melting temperature.38,39) Consequently, the 
final number of working inputs went from 16 to 13 (Table 1).

2.4.	 Neural Network Construction
The use and implementation of a neural network can be 

justified if no clear relationship is observed between inputs 
(chemical composition) and output (melting temperature). In 

the case of no apparent correlation and in the absence of any 
major statistical anomaly, the experiment carries on with the 
implementation of the neural network.40)

A single hidden layer ANN was created using MATLAB 
version R2022b. Since this is a function approximation 
problem, the principles of feed forward nets are selected in 
order to build the model. A scheme of the designed network 
is illustrated in Fig. 2.41)

Set variables were the transfer function, the training 
algorithm, the data division without a test dataset while the 
number of neurons in the hidden layer was optimized per 
each of the tested batch. All other settings (like number of 
epochs and learning rate) were left as default or optimized 
as necessary. The output node is a linear transfer function. 
Details for each aspect are described below.

A normalization of data has been performed because it 
allows a visualization of the distribution of data, helping to 
determine if the data can be said to have a normal distribu-
tion or if there are only a handful of inputs or data range to 
which most of the outputs can be attributed to. Normaliza-
tion on input data will be computed as reported in Eq. (2),
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where xi,n is the normalized value of one of the chemical 
component (i.e. SiO2) for the i-sample, xi is the actual value 
of the same chemical component of the i-sample, xmin and 
xmax are the minimum and maximum value of such chemical 
within the entire data batch.

Additionally, the normalized data will prevent an incor-
rect assignation of the weights and biases to the inputs 
over their apparent influence over the output. The melting 
temperature of the mold flux was instead log-normalize as 
reported in Eq. (3),

	 y yi n i, � �� �log 1 ............................. (3)

where yi,n was the normalized value of the experimental 
melting temperature and yi the actual experimental melting 
temperature.

The activation, or transfer function, that has been applied 
is the logistic sigmoid due to its good performance to 
describe system featured by significant non-linearity and 
because it transforms the values in the range 0 to 1, thus the 
signs of all output values will be same (i.e., positive values 
as the melting temperature cannot be negative as well as the 
chemical composition) (Eq. (4)).42)

	 f x
e x� � �
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Table 1.	 A typical chemical composition of a mold powder sample 
used during the experimental measurements and relative 
interval of normalization. The visualized order is the 
same used for input nodes in the neural network building.

Component Concentration  
[mass%]

Interval of  
normalization

Input  
order

Ctot. 8.34 – –

Cfree 6.27 – –

SiO2 37.43 0–54 1

Fe2O3 1.73 0–12 2

Al2O3 5.97 0–36 3

CaO 19.75 0–62 4

CaF2 12.43 0–23 5

MgO 2.17 0–19 6

Na2O+K2O 6.24 0–17 7

MnO 0.00 0–11 8

S 0.09 0–5 –.

B2O3 0.00 0–7 9

Li2O 0.00 0–5 10

ZrO2 0.08 0–7 11

TiO2 0.12 0–1 12

P2O5 0.062 0–1 13

Tliq [K] 1 458 1 000–1 750

Fig. 2.	 The structure of the network consists of an input layer with 13 inputs (chemical composition), a hidden layer 
consisting of a variable number of neurons (i.e., 37) with adjustable weights and biases and an output layer con-
sisting of a single output (liquidus temperature). (Online version in color.)
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Several parameters that directly affect the network’s 
performance have been tested and optimized, exploiting the 
knowledge gained during the first exercise published in a 
previous paper.31) Current ANN parameters include:

•  training algorithm (Lavenberg-Martquardt);
•  data division (70/30 training/validation);
•  number of epochs (default =  1 000);
•  learning rate (adapted on the base of dataset dimen-

sion);
•  number of neurons in the hidden layer (optimized on 

the base of dataset dimension);
•  error goal (measured by the Root Mean Square Error).
Finally, the performance of each of the iterations of the 

network will be measured according to the Root Mean 
Square Error (RMSE) obtained when comparing the net-
work’s predictions with the experimental data and this pro-
cedure has been fulfilled separately from the training trials 
in order to perform the validation of the model. RMSE is 
typically used for evaluating an ANN performances and it 
was chosen because it is more conservative than standard 
deviation.43,44) It is typically used to measure the differences 
between experimental and predicted-by-a-model values. It 
is strongly and disproportionately influenced by the size of 
the squared error and it is sensitive to outliers. Thus, it is a 
responsive parameter to assess the goodness of the fitting. 
Minimization of RMSE was used as method for the opti-
mization of number of neurons in the hidden layer, as this 
parameter is one of the most influential on the network’s 
performance, and learning rate.

3.	 Results

3.1.	 Melting Temperature Data Analysis
Histograms were employed for the visualization of the 

data. The histograms representing the distribution of the 
melting temperatures for all the data batches are presented 
in Fig. 3.

As expected, the different origins of the mold powders 
resulted in a different distribution of the melting tempera-
tures. All the batches showed an approximately normal dis-
tribution of the data, even if Batch 3 has pointed out a gap 
right in the middle of the bell curve. All the three initial data 
batches were either negatively or positively skewed, mainly 
due to the presence of outliers, which may be left out of 
the exercise as a way to improve the network performance. 
To better visualize the identified outliers, a boxplot was 
reported in Fig. 4. It is worthy to mention that all the batches 
have approximately the same mean and median value for the 
melting temperature and the symmetrical distribution of the 
box and the whiskers around the average demonstrates the 
normality of data distribution.

However, the unknown nature of the natural phenomena 
behind the melting process of the mold powders does not 
allow discarding these outliers. Thus, all the available data 
were used in the present work, leaving for the future the 
attempt to improve the ANN performances through outliers 
discharging.

Special attention must be given to the distribution of the 
combined batch. As shown in Fig. 3(d), even if the data 
shows a normal distribution, it is possible to observe the 
influence of each data batch. For example, the gap belonging 

Fig. 3.	 Melting temperature distribution of Batch 1 (a); Batch 2 (b); Batch 3 (c) and combined batch (d). (Online version 
in color.)
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Fig. 4.  Boxplot of melting temperature for the three batches plus the combined one. (Online version in color.)

Fig. 5.  SiO2 and CaF2 distribution of (a–b) Batch 1, (c–d) Batch 2 and (e–f) Batch 3. (Online version in color.)
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to Batch 3 is still rather noticeable and so are the outliers 
belonging to batches 2 and 3, influencing on how skewed 
the data distribution resulted to be. From this visualization, 
it is already foreseeable that at the beginning of data pro-
cessing the separation of each data batch from others would 
be the best course of action.

3.2.	 Chemical Species Distribution and Data Correla-
tion

The several chemical species contained in the mold flux 
play a major role in defining the melting temperatures and 
their distribution. In particular, for the CaF2–Na2O–K2O–
SiO2–CaO system the correct balance between SiO2 and 
CaF2 is fundamental to achieve the desired viscosity. Indeed, 
CaF2 can easily replace the divalent oxygen ion resulting in 
breakdown of the Si–O network consequently decreasing the 
viscosity of the slag. This balancing is also effective in low-
ering the surface tension and melting range, while it causes 
an increase in solidification point (for concentrations over 
5 wt.%) due to precipitation of complexes like cuspidine 
(Ca4Si2O7F2).45) For this reason, the varied distribution of 
SiO2 and CaF2 for each batch have been pointed out because 
they are recognized as very significant chemical species 
to determine the melting point (Fig. 5). As for the melt-
ing temperature, their distributions are closer to a gaussian 
distribution. However, among the three batches, differences 
according to the data provider are markedly evident. The 
distributions, as well as the scatter plots (Fig. 6), depict an 
absence of a clear relationship between the two main chemi-
cal species and the melting temperature. This is demonstrated 
by the close-to-zero values of the R2 when linear regression 
is applied to the experimental data (0.0002–0.0887). The 

only exception when the data shows a possible correlation is 
between CaF2 and melting temperature for Batch 2 (0.256). 
However, also for this case, the R2 coefficient is low enough 
to exclude even a weak linear correlation.

One of the main justifications for the use of a neural 
network for data prediction is that there should be no 
clear correlation between input(s) and output(s). If some 
sort of visible correlation existed, other regression mod-
els would be better suited for building the prediction 
model. As for CaF2 and SiO2, also all the other chemical 
components showed no visible correlation with the melt-
ing temperature. In particular, as the alkaline components 
are well known to have a direct influence on the powder 
physical properties and melting, the sum of alkaline spe-
cies (CaO+Na2O+K2O+MgO+Li2O) versus the melting 
temperature is shown in Fig. 7.46,47) Since the sum of all 
the alkaline species can obscure their tendency to lower the 
melting temperature of the flux, the sum of the two major 
species (Na2O+K2O) is over imposed on the same graphs. 
Na2O+K2O versus melting temperature shows a moderate 
inverse linear correlation (R2 =  0.38–0.57). However, this 
is not strong enough to neither explain the melting behavior 
of the flux nor explaining the complex relationships toward 
the other chemical species featuring the flux. Concluding, all 
the scatterplots (Figs. 6 and 7) unequivocally evidenced the 
absence of a clear correlation hence justifying the use of an 
ANN to solve the problem.

3.3.	 Neural Network Configuration and Optimization
In the designed shallow neural network model, the single 

most important parameter to be considered for the network 
is the number of neurons in the hidden layer. A network 

Fig. 6.  Relations between SiO2, CaF2 and the melting temperature. (Online version in color.)
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with a variable number of neurons was built for achieving 
an accurate visualization of the effect of this parameter.

For measuring the effect of the number of neurons, the 
model has been trained by a variable number of neurons 
going from 1 to a 100, with the performance being mea-
sured by means of the RMSE between the predictions of 
the network and the actual data. For the optimization of the 
networks, it was decided to divide the data set as 70% for 
training and 30% for validation.

The RMSE for both sets were plotted and compared (Fig. 
8). As the size of the hidden layer increases the RMSE of 
training decreases until a specific number of neurons. After 
that point, it tends to stabilize. The more neurons in the hid-
den layer, the better the network will be “memorizing” the 
data used for training and, naturally, the smaller the error 
will be. This is less evident for the validation set, probably 
because only the 30% of measurement were used to verify 
the capability of the ANN to foresee the experimental melt-
ing temperature, leading to a higher RMSE variation along 
with the neurons increase. This can be explained by the 
fact that the more neurons the hidden layer has, the more 
complex the model becomes, meaning that the network has 
become overfitted. For the performance of the network, the 
main indicator of how well it is performing is the accuracy 
of the validation data set.

Based on the optimization exercise the number of neurons 
of hidden layer has been optimized and a configuration 
featured by the number of neurons that produced the low-
est RMSE for the validation set has been selected. On this 
basis, the other parameters have been also optimized, keep 
the activation function, the learning algorithm and the data 
division the same already proved to minimize the RMSE,31) 

resulting in the configurations shown in Table 2 for the 
three separated batches.

To be specific, also the number of epochs has been tested. 
One epoch is when an entire dataset is passed forward and 
backward through the neural network only once. Since it 
is not possible to pass the entire dataset into the neural 
net at once, it must be divided into a certain number of 
batches. Thus, an epoch is made up of one or more batches 
and iterations is the number of batches needed to complete 
one epoch. However, in all trials and batches the number 
of epochs hardly overcomes 20–25 for minimizing the 
RMSE of validation set. In addition, even by forcing a high 
number of epochs, the improvement of the ANN model 
performances was negligible and stochastic. Thus, the rou-
tine was left free to auto set the epochs (i.e., by leave this 
parameter to default - 1 000) without imposing a constrain. 
The same considerations can be stated for the learning rate 
(LR). In Batch 1 and 2 by diminishing the learning rate led 
to a marginal, non-significant and stochastic improvement 
of the ANN performances, while this was not true for Batch 
3 and combined batch. Indeed, the best ANN performances 
(evaluated on the validation dataset) were obtained by set-
ting a learning rate of 0.01. By the way, a further decreasing 
the learning rate of a factor of 10, the RMSE related to the 
training dataset reached practically zero while worsening the 
prediction of the validation dataset. Thus, LR was fixed to 
0.01 privileging the minimization of error in the validation 
dataset only for those batches where it was significant.

In Fig. 9 the graphic representations of the data correla-
tion between the predicted data and the experimental data 
from both the validation and training have been pointed out 
and the revealed performance is certainly better than the 

Fig. 7.	 Relations between the sum of all the alkaline species (CaO+Na2O+K2O+MgO+Li2O) and (Na2O+K2O) only 
towards the melting temperature. (Online version in color.)
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Table 2.  Final set of parameters used for the optimization of the neural network model for Batch 1, Batch 2 and Batch 3.

Parameter Batch 1 Batch 2 Batch 3

Number of hidden layers 1 1 1

Number of neurons per layer 6 3 14

Activation function Logistic sigmoid Logistic sigmoid Logistic sigmoid

Learning algorithm Lavenberg-Martquardt Lavenberg-Martquardt Lavenberg-Martquardt

Epochs 1 000 (default) 1 000 (default) 1 000 (default)

Learning rate 0.1 (default) 0.1 (default) 0.01

Training set size 70% 70% 70%

Validation set size 30% 30% 30%

Fig. 8.	 RMSE of the training and validation sets according to the 
number of neurons in the hidden layer for (a) Batch 1, (b) 
Batch 2 and (c) Batch 3. (Online version in color.)

Fig. 9.	 Data correlation between inputs and outputs for (a) Batch 
1, (b) Batch 2 and (c) Batch 3. (Online version in color.)
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approach based on exploitation of thermodynamic computa-
tion at equilibrium, whose average error is more than 100 K 
and the approach based on linear equation proposed by Shu 
et al. whose error ranges from 30 K up to 100 K.19–21) The 
performance in terms of minimum RMSE of the optimized 
neural networks built separately for each of the data batches 
are reported in Table 3.

In order to state a more general model, the analysis of 
the combined batch (that has been built collecting in one 
batch all the data) has been performed to verify the influ-
ence of a larger data batch on the network attitude to learn. 
As fulfilled with the separated data batches, the model has 
been trained by a variable number of neurons that went 
from 1 to 100. The performance of the network has been 
measured by means of the RMSE of both the training data 
set and the validation data set. In Fig. 10(a) the comparison 
between RMSE for training and validation sets has been 
shown. Based on the optimization exercise about the num-
ber of neurons, a configuration with the 37 neurons in the 
hidden layer has been built because it has reached the low-
est RMSE. On this basis, the rest of the parameters have 
been also optimized resulting in the configurations shown 
in Table 4. The comparison between the predicted data and 
the experimental data has been shown in Fig. 10(b). The 

Table 3.	 RMSE for the training am validation sets for Batch 1, 
Batch 2 and Batch 3.

Parameter Batch 1 Batch 2 Batch 3

RMSE for the training set 15.69 K 29.73 K 5.93 K

RMSE for the validation set 24.44 K 26.80 K 13.98 K

Table 4.	 Final set of parameters used for the optimization of the 
neural network model for the combined batch and related 
RMSE.

Parameter Combined batch

Number of hidden layers 1

Number of neurons per layer 37

Activation function Logistic sigmoid

Learning algorithm Lavenberg-Martquardt

Epochs 1 000 (default)

Learning rate 0.01

Training set size 70%

Validation set size 30%

RMSE for the training set 25.18 K

RMSE for the validation set 28.66 K

performance of the neural network built for the combined 
batch shows as the best result obtained, goes as RMSE for 
the training set equal to 25.18 K and RMSE for the valida-
tion set at 28.66 K. The value of validation set in the com-
bined batch is more reliable than the average error observed 
by one of most consolidated linear equation involving the 
effect of all the chemical species. To better visualize this 
last assumption, a linear regression model (without predic-
tors interaction) (Fig. 10(c)) and the Mills equation were 
applied to the combined dataset (Fig. 10(d)). It is evident 
that both the linear regression and the Mills’ equation over-
estimate the melting temperature of mold flux, leading also 
to a larger scattering of the predicted data if compared with 

Fig. 10.	 RMSE of the training and validation sets according to the number of neurons in the hidden layer (a) and data 
correlation between inputs and outputs (b) for the combined batch. Comparison between actual and linear 
regression model (c) or Mills equation predicted values (d). (Online version in color.)
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the ANN results. Furthermore, the Mills’ equation resulted 
in a larger RMSE (+ /−  173.58 K) than the linear regres-
sion model (+ /−  43.88 K). This is due to the fact that 
the linear regression model is obtained from the current 
combined data set while the Mills equation was derived 
from a totally different data set. This strongly highlight 
once again the limitation of a classical statistical approach 
to solve a complex problem like the foreseen of flux melt-
ing temperature, i.e., the incapacity to extend the empirical 
model for a different data set and its intrinsic inability to 
learn and adapt from new input data. Furthermore, the linear 
regression increases the number of bad predicted values, 
especially at the extremity of the experimental melting tem-
perature range, by overestimating and underestimating the 
prediction at low and high temperatures, respectively (Fig. 
10(c)). On the contrary, the ANN model keep the predic-
tions withing the + /−  RMSE along the whole measured 
melting temperature range, by also minimizing the number 
of predictions with a value higher than the mean error (Fig. 
10(b)). Finally, it is worth mentioning that during the first 
iteration of the linear regression modelling, the only two 
predictors with a p-value higher than 0.05, and therefore 
not statistically significant, were “Na2O+K2O” and ZrO2, 
despite the obvious contribution of the former to the melting 
temperature of the flux (Fig. 7). Consequently, following the 
backward-elimination rule, the least significative predictor 
(ZrO2) was removed, which resulted in the significance of 
all the remaining chemical species. By reducing the number 
of regressors from 13 to 12, the necessity to simplify the 
problem by excluding a chemical species that may affect 
the melting temperature is highlighted, further to lead to a 
model that has a mean error (+ /−  44 K) higher than the 
experimental evaluation (+ /−  25 K), i.e., not useful to avoid 
long and energy consuming measurements.

On the basis of optimization procedure, the structure of 
the network has been pointed out (Fig. 11) and the weights 

and biases that corresponding to the combined batch net-
work have been reported to allow even other researchers to 
improve the model starting from such a basis. In particular, 
the first matrix (37 rows x 13 columns) depicts the weight 
assigned to each of the 37 neurons in the hidden layer per 
each of the 13 input parameters (chemical species). Those 
numbers are the interconnections between neurons and 
inputs and therefore do not have a real physical significance. 
The second matrix represents the biases assigned to each of 
the 37 neurons in the hidden layer. It serves to correct what 
the hidden layer cannot calculate against the input. The third 
and fourth matrixes, respectively, represent the connection 
between the hidden layer and the output layer and its bias. 
In other words, they represent the argument of the activation 
function, in this case logistic sigmoid (4), and its intercept. 
From the complexity of the matrixes reported in Fig. 11, the 
non-linearity of the problem is well highlighted. This means 
that a linear regression model, like the approach proposed 
by Mills (1), can be a limited instruments if extended to any 
unknown database, since it works well on the training data-
set but fails in extrapolation if the new data are too far from 
the training itself. Similarly, when a linear regression model 
is applied to a specific dataset, it lacks in correctly estimate 
the extreme values of the experimental range and it suffer 
of lack of flexibility. On the contrary, an ANN can be more 
effective to extrapolate the melting temperature from a new 
dataset even far from the training and validation datasets.

4.	 Conclusions

The use of artificial networks for the prediction of the 
melting temperature by using only the chemical composition 
of such powder has proved to be promising:

•  the designed shallow neural network has been pointed 
out as an efficient tool to associate the chemical species 
composing the flux with its melting temperature;

Fig. 11.  Weights and biases for the optimized artificial neural network of the combined batch.
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•  the use of logistic sigmoid function as the activation 
function points out good performances;

•  when 13 chemical species are taken into account a 
hidden layer composed by 37 neurons is an optimal choice 
and this statement has been proved by the trials performed 
for the combined batch that is the most significant group of 
collected data;

•  the Root Mean Square Error of neural networks 
trained on combined batch is 28.66 K that is lower than the 
error performed by approaches based on linear equations or 
on thermodynamic computation at equilibrium;

•  the matrix of weight ruling the neural network for the 
combined batch has been made public.
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