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ABSTRACT

Compact single-input-multiple-output (SIMO) formations are
a promising option for performance improvement in future
Synthetic Aperture Radar (SAR) missions. A high-resolution
unambiguous imaging is obtained by utilizing several satel-
lites with small antennas. The across-track baseline between
the satellites poses a significant issue for known signal recon-
struction algorithms due to the dependency on the topogra-
phy, which may vary along-track. Proposed here is a method
to compensate for height variations along the azimuth direc-
tion using a simplified but powerful 1-D model. A theoretical
derivation of a forward model is provided, and performance
analysis in terms of signal to noise is demonstrated.

Index Terms— SAR, Multi-channel image formation,
SIMO, Across-track baseline, Topography.

1. INTRODUCTION

In recent decades, spaceborne SAR systems have proven their
outstanding capabilities in providing insights about various
phenomena on Earth’s surface and surrounding atmosphere.
Further performance improvement can be obtained in the fu-
ture by exploiting SIMO formations [1, 2].

The usage of several satellites allows to reduce the an-
tenna size (i.e., improved resolution) without the need to in-
crease the Pulse Repetition Frequency (PRF), which condi-
tions the swath size. Each satellite is under-sampling the az-
imuth spectrum, resulting in ambiguities. However, by prop-
erly combining the signals from all sensors, one can recover
the entire spectrum without aliasing [3, 4].

In the context of a SIMO formation, some degree of
across-track (XT) baseline between the satellites is inevitable
due to orbit control capabilities. The XT baseline translates
to a phase difference between the channels, which depends
on the topography. This additional phase interferes with the
proper signal reconstruction, leaving uncompensated residual
ambiguities [5, 6].

The mitigation of ambiguities in such case is not yet fully
solved in literature. Compensation of a non-zero XT baseline
was demonstrated in [7], but the proposed solution assumed a

Fig. 1. Simplified geometry of a SIMO formation: targets are
assumed lying on a constant slope along-track.

flat earth, which does not fit the general case. Elevation vari-
ations were considered in [8], but only in the range direction,
not handling topography changes along the azimuth.

This article aims to provide a framework for combining
the channels of the SIMO system described in Fig. 1, ac-
counting non-zero XT baselines. This solution assumes that
a slope can describe the topography along the azimuth. The
simplification does not cover all real use cases, but it is a sig-
nificant improvement w.r.t a flat terrain model. To analyse the
signal reconstruction algorithm, a 1-D model along-track is
discussed, and performance are investigated. However sim-
ple, it holds the key elements of the problem and can be ex-
tended to the case of a fully operational SAR.

2. FORWARD MODEL

Let us consider a signal d0 which is observed by a single SAR
system with the following Pulse Repetition Frequency (PRF):

fprf =
2v

La
ζ ⇒ ζ =

fprf
2v/La

(1)
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Fig. 2. Forward models of (a) properly sampled signal (b)
down-sampled signal.

where La is the length of the antenna. The term ζ is the ra-
tio between the PRF and the antenna bandwidth, that is the
oversampling for a conventional SAR: the larger the better
for ambiguity suppression [5]. The transformed impulse re-
sponse function of the SAR system can be approximated as:

Hs(kx) = Ga(kx)e
jr0

k2
x

4·Ω0 (2)

where Ga is the antenna pattern, kx is the wavenumber,
and Ω0 = 2π/λ, λ being the wavelength of the carrier. A 1D
approximation is considered, assuming slant range r0. The
signal observed by the system in Figure 2.a (u0) represents
the raw data from a properly sampled SAR. The spectrum
of u0 is limited by the antenna: kx ∈ [− 2π

La
, 2π
La

], and then
repeated periodically.

The role of the formation is to obtain u0 from the obser-
vations of N sensors, each acquiring with a Nr times reduced
PRF:

fn
prf =

fprf
Nr

(3)

The reconstruction of a full band signal from a set of deci-
mated versions of itself is possible only if a proper shift is
introduced before down-sampling, as illustrated in Fig. 2.b.

In the case of the formations, each decimated raw data is
acquired by a different sensor that is displaced across-track by
Bn

xt w.r.t the reference, annotated in Fig. 1. This introduces a
multiplicative phase screen to the observed scene that can be
modeled as follows:

tn(x) = ejCn[q0+q1·x] (4)

where q0 is the average height of the scene in meters, and q1
is the slope along azimuth. Cn =

2πBn
⊥

λr0 tan(θ) , being Bn
⊥ the

component of Bn
xt perpendicular to the line-of-sight, and θ is

the incidence angle. We do not address the range-dependant
flat-earth phase since it was previously discussed in literature
[7, 8]. The phase screen tn(s) is a modulation that shifts the
scene’s spectrum, and adds a constant phase:

Dn(kx) = D0(kx) ∗ Tn(kx) = D0(kx − Cnq1)e
jCnq0 (5)

Reducing the sampling rate by Nr causes aliasing. The
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Fig. 3. Spectra of the (a) reference signal and (b) one down-
sampled channel where Nr = 3, so three contributions are
summed for each frequency. The grey blocks denote spec-
tral components which contribute to the noise, due to the
wavenumber shift.

folded signal is modeled in the frequency domain:

Un(kx) =

Nr−1∑
i=0

U0(kx + ikxs)

= ejCnq0

Nr−1∑
i=0

D0(kx − Cnq1 + ikxs)Hs(kx + ikxs)

· ejxn(kx+ikxs) +Wn(kx)

(6)

where Wn is the spectrum of the noise, and kxs = 4πζ/(LaNr)
is the sampling angular frequency. Un is repeated periodically
every kxs.

The spectra of u0 and un for Nr = 3 are illustrated in
Figure 3.b. The spectral folds give rise to ambiguities in the
focused data, and increase the clutter.

3. SIGNAL RECONSTRUCTION

3.1. Flat earth approximation

As a first-order approximation, one may neglect the effect of
the slope q1, and compensate only the constant term q0 [8]. In
this case the forward model reduces to:

Uflat
n (kx) = ejCnq0

Nr−1∑
i=0

U0(kx + ikxs)e
jxn(kx+ikxs) (7)

Given n = 1, . . . N , the linear system in 7 can be solved
if N > Nr, i.e., the number of sensors is larger than the num-
ber of frequency folds. The minimum mean squared error



Fig. 4. Multi-channel slope compensation system.

(Wiener) solution is [4]:

Ũ0(kx) = AwA
∗
q0U(kx)

Aw = Akx (A
∗
kxAkx + Cw)

−1
(8)

where U is a N × 1 vector of observations, and Aq0 is a diag-
onal matrix with the constant phase terms from 4. Akx is an
N ×Nr matrix describig the spectral folds:

Akx =

ejx1kx . . . ejx1(kx+(Nr−1)kxs)

...
. . .

...
ejxNkx . . . ejxN (kx+(Nr−1)kxs)

 (9)

The covariance of the signal was assumed to be white and
unitary, and Cw defines the covariance matrix of the noise.

While improving the overall signal-to-noise ratio (SNR),
the solution 8 cannot completely suppress ambiguities when
an along-track elevation slope is present. The performance of
the approach is presented in Section 4.

3.2. Slope Compensation

To recover U0, given a non-zero XT baseline, we process N
channels with the inverse system described in Fig. 4. First,
we apply the phase matched to tn(x) to each channel. The
signal of sensor n (6) comes to be:

Un(kx) ∗ T ∗
n(kx) =

Nr−1∑
i=0

D0(kx + ikxs)

·Hs(kx + Cnq1 + ikxs) · ejxn(kx+Cnq1+ikxs)

(10)

Note that the shifted chirp in 10 can be expressed as:

Hs(kx + Cnq1) = Hs(kx)e
jDn(kx) (11)

where Dn =
r0
2Ω0

Cnq1, and a term with q2 was neglected.

By combining 10 and 11 we obtain:

Un(kx) ∗ T ∗
n(kx) =

Nr−1∑
i=0

U0(kx + ikxs)

· ejxn(kx+Cnq1+ikxs)ejDn(kx+ikxs)

(12)

Fig. 5. Conditioning number of the matrix Akx (13) as func-
tion of the normal baseline and the SAR oversampling.

To get U0, the system in 12 can be inverted similarly to (8),
but the elements of the design matrix are:

Aj,i
kx = ejxj(kx+Cnq1+ikxs)ejDj(kx+ikxs) (13)

The result of the inversion is the estimation of the properly
sampled raw data ũ0. At this point, azimuth compression can
be applied to obtain an estimate of d0.

3.3. Noise Amplification

By aligning the spectra of the different channels we implicitly
apply a circular operator. Parts of the spectrum will be mis-
placed and will contribute to the noise, as depicted in Fig. 3.b
by grey blocks. The noise power for those frequency bins is
as high as the signal (unitary).

The stability of the solution depends on the parameters
of the system. An upper boundary of noise amplification is
estimated by the conditioning number (CN) in Fig. 5, given
the system described in Table 1. Note that the first column
refers to the flat earth approximation, which is not able to
properly compensate ambiguities, but has a favorable CN. For
certain combinations of baseline and PRF, the conditioning
number becomes very high, i.e., the matrix is ill-conditioned.
Thus, the across-track baseline should be limited according
to the chosen PRF. An evaluation of the achievable SNR as a
function of baseline and PRF is provided in Section 4.

In the analysis so far, we have assumed that the antenna
acts as a perfect low-pass filter, eliminating any wavenumber
higher than 2πζ/La. In reality, the antenna pattern follows
the following rule:

Ga(kx) = sinc2
(
ΨLa

λ

)
= sinc2

(
kxLa

4π

)
(14)

A choice of the operational fprf will determine which
part of the energy of u0 is not accounted for in the proposed
model, as shown in Fig. 6. Given the perfect along-track
sampling and no XT baseline, the high-frequency components
of the signal will cancel each other, and no ambiguities will
arise. In the presence of an across-track baselines, the com-
ponents contribute to the noise.



Fig. 6. Unfolded antenna pattern for three footprints. The
central part (marked in blue) is covered by the proposed
model. Higher frequencies are not considered, and act as ad-
ditive noise.

Table 1. Simulated system parameters
Parameter Symbol Value
Carrier frequency f0 9.6GHz
Reference slant range r0 570km
Incidence angle θ 30◦

Number of sensors Nr 3
Terrain slope q1 500m/footprint
single SAR SNR 30dB

4. RESULTS FROM SIMULATIONS

The acquisition of a sloped terrain by three channels was
simulated, following the model in 2. The parameters of
the system and geometry are summarized in Table 1. XT
baselines were assumed symmetric w.r.t the central sensor
([−B⊥, 0, B⊥], simulating the worst case scenario. Along-
tack baselines are considered to be ideal, as suggested in
[1].

The effect of the sloped topography depends on the posi-
tion of the target. To evaluate the performance of the proposed
algorithm w.r.t an entire scene, we simulated a uniform dis-
tributed target, i.e., a homogeneous white speckle. We then
measure the SNR of the reconstructed signal in two cases:
under the flat earth approximation from Section 3.1, and us-
ing the slope compensation described in Section 3.2. SNR is
measured by:

SNR =
1

1− γ
(15)

where γ is the amplitude of the correlation coefficient be-
tween the reconstructed signal and the ideal one, u0. Additive
noise was applied to the data, and the SNR of a single SAR
is reported in Table 1. Fig. 7 shows the achieved SNR for
different values of baseline and PRF (defined by ζ, as in 1).

In the case of no baseline, we obtain the ideal combination
with both methods, where the gain w.r.t a single SAR is N. As
the baseline grows, it is clear that the flat-earth approximation
results in significant clutter. This is predictable, since the ap-
proach does not take into account the phase variation due to
topography. The proposed method, which directly handles the
slope in the inversion, performs better in suppressing ambigu-
ities, even as the baseline increases. However, the operational

(a)

(a)

Fig. 7. SNR of reconstructed signal, accounting for both am-
biguities and noise. (a) Flat earth approximation (b) slope
compensation.

region of the method is limited by the pairing of across-track
baseline and PRF.

For small baselines, higher PRF allows to obtain better
SNR, since the high-frequency contributions are lower in
power, as shown in Fig. 7. Increasing the baseline and PRF
pushes the system towards ill-conditioning, as predicted by
Figure 5. Thus, one should carefully tune the parameters,
taking into account the possible values of the slope, incident
angle and slant range.

5. CONCLUSIONS

This paper provides an extension to the known multi-channel
spectrum reconstruction algorithm, accounting for a constant
slope in topography. The inverse system is able to compensate
the phase difference imposed by topography and suppress am-
biguities. The approach advances from the flat earth paradigm
used in most of the current SIMO recombination techniques.

Results obtained under the two major approximations of
(1) monodimensional acquisition (i.e. coarse range resolu-
tion) and (2) constant slope along-track are rather good and
promising for the extension to a general case of smoothly
space-varying topography.
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