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A B S T R A C T

Accurately detecting faults in photovoltaic modules/cells and estimating their effective power output and
parameters of the equivalent circuit representation of photovoltaic modules is becoming increasingly critical
for both the reliability of associated systems and the efficiency of electricity production from renewable energy
sources. Existing studies often work with datasets containing photovoltaic cells that exhibit one fault at a time,
leading to the classification of photovoltaic cells with multiple faults as ‘‘mixed’’ faults. Moreover, factors
such as cell alignment and specific fault types, collectively called ‘‘cell level features’’, are not considered
in current studies estimating the power output of a photovoltaic module. Therefore, this paper focuses on a
comprehensive deep-learning pipeline to separately detect three types of faults in photovoltaic modules/cells
using electroluminescence images. Furthermore, it addresses the estimation of the output power of photovoltaic
modules and the series resistance of their equivalent circuit, considering the cell-level characteristics extracted
from the electroluminescence images. The proposed model demonstrates its ability to detect ‘‘black core’’,
‘‘crack’’, and ‘‘edge’’ faults with global accuracies of 0.93, 0.868, and 0.95, respectively. Furthermore, the
proposed model estimates the power output of photovoltaic modules with a normalized mean absolute error
of 0.03547 and a normalized root mean squared error of 0.04892. This outperforms the base model that
relies solely on non-pre-processed detected faults and significantly larger models adept at extracting features
from the electroluminescence images. Moreover, the VGG16-based model estimates the series resistance in the
equivalent circuit representation of photovoltaic modules with a normalized mean absolute error of 0.04472
and a normalized root mean squared error of 0.0622.
1. Introduction

In recent years, solar Photovoltaic (PV) energy has garnered sub-
stantial attention due to the growing importance of clean energy re-
sources. In 2022, cumulative global PV capacity reached 1185 GW,
marking an increase of 510 GW in 2023, the fastest growth rate in two
decades [1]. However, like all electrical systems, PV systems are not
immune to failures or malfunctions that can affect their performance
and safety and thus lead to undesirable energy, economic, and envi-
ronmental effects. The decrease in energy production from PV failures
directly affects the overall electricity production of PV systems, leading
to a reduction in energy yield and potentially affecting financial returns
on investment. This can be a challenge for system owners, including
residential users, businesses, and grid operators, as it can prolong
the payback period and decrease the revenues of grid-connected sys-
tems [2]. In their lifetime, defects in PV systems can arise from several
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sources such as installation, degradation and environmental factors [3].
As reported in [4], PV modules can exhibit up to 17 types of defects or
failures which may significantly impact the reliable operation of the en-
tire PV system. For instance, the shunt resistance (𝑅𝑆𝐻 ) of PV modules
with cracked cells can fluctuate by up to ±10%, leading to non-uniform
thermal stress due to the presence of cracks [5]. Furthermore, in [6],
the potential power loss in PV modules is attributed to cell cracks. In
this context, black core areas in electroluminescence (EL) PV images
are also related to a serious internal fault within the solar cell. These
typically represent regions of localized damage within the cell, which
no longer allows or reduces electron generation. This underlines the
critical role of fault detection not only to preserve the efficiency and
longevity of photovoltaic modules but also to ensure the reliability and
sustainability of solar energy systems as a whole.
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1.1. Defects in PV modules

PV modules play a pivotal role in harnessing solar energy for sus-
tainable power generation. However, they are prone to various defects
and faults that impact their performance. As mentioned in [4], the main
reason of occurrence faults in PV modules and cells is degradation over
time. The degradation due to outdoor operation is primarily affected by
four factors:

1. Irradiation: solar radiation exposes PV modules to varying levels
of solar energy. Over time, it may lead to anomalies such as
discoloration.

2. Temperature: fluctuations in temperature impact material prop-
erties. Thermal stress can cause breakages and frame damage.

3. Humidity: moisture infiltration due to humidity can lead to snail
trails, interconnection issues, and cell deterioration.

4. MechanicallLoads: mechanical stress from wind, snow, or han-
dling can result in edge defects (dark gray spots near the edges)
and structural failures.

Furthermore, it is important to recognize that these defects are
losely related and may influence each other, thus increasing the
ikelihood of coexisting and triggering a chain reaction. In addition to
he outdoor operation, defects could occur during the manufacturing
rocess, transportation, handling, and installation of PV systems as
ell [4]. To illustrate, in [7], researchers have observed with an
xperimental setup that vertical transports have a lower impact on cell
racks than horizontal transports.

On the other hand, not all defects have an immediate negative im-
act on performance. For instance, thin dark rectangular regions (finger
ailures) in solar cells may not significantly affect initial cell output [4].
owever, some of the defects might lead to serious consequences. For
xample, one of the significant effects of cell cracks is black cores which
ffect the PV module’s performance negatively and can only be seen
ith special techniques such as EL imaging. This is because cracks allow
ater to enter inside PV cells and due to corrosion inside, PV cells
eteriorate over time. This deterioration may not be seen through the
aked eye and the PV module could be missed during the inspection
rocess.

.2. Inspection methods of PV modules

From a broad perspective, several popular defect detection methods
re employed in the field of photovoltaics. These methods include I–

curve tracing, visual inspection, infrared (IR) thermography, and
arious imaging techniques such as EL, photoluminescence (PL), and
ltraviolet (UV) fluorescence [8]. The I–V curve tracing method fa-
ilitates anomaly detection by considering the short-circuit and open-
ircuit conditions of a PV module [9]. However, this method does not
rovide a comprehensive individual component analysis, limiting the
lassification of defects to a relatively small number of classes such as
y-pass diode failures, corrosion, delamination, and degradation [8].
n [10], researchers have also explored the correlation between defects
nd the I–V curve. Nevertheless, the complex impact of cracks on
ower measurements has significantly reduced the accuracy of defect
lassification.

IR thermography relies on temperature-based measurements and
t is one of the non-destructive measurement methods, that has been
idely used to detect defects in PV modules. In IR imaging, infrared

ays that are emitted from PV modules are captured by infrared cam-
ras [4]. In [11], researchers have focused on detecting defects and
oiling loss in PV modules. Also, a low-cost embedded method for
he detection of 5-class faults through IR thermography was inves-
igated and developed in [12]. However, IR imaging is limited by
he conditions in which the measurements are taken, and not all the

efects/failures of PV modules result in a temperature increase [13].

2 
EL imaging stands out as a non-destructive method that provides
high-resolution images, allowing for efficient analysis and labeling
within 10–30 s. The imaging process is carried out in a dark environ-
ment by an exciting PV module with an external power supply and
recording the image with CCD cameras [14]. Alternatively, easier and
cheaper, an RGB digital camera could be used with a modification [15].
By using EL, defects on the PV module appear as dark regions and
lines [14]. EL imaging enables the detection of anomalies within in-
dividual cells even at material structure level [13]. Notably, it can
identify developing faults that might otherwise go unnoticed during
routine inspections. EL image-based methods have been used by many
researchers to detect defects with machine learning (ML) algorithms
in PV modules and cells due to an increase in publicly available data,
specifically, the dataset used in [16].

PL imaging shares similarities with EL imaging, but also exhibits
distinct features. With this technique, PV modules are excited through
illumination and there is no need for an external power source as
opposed to EL. Hence, unlike EL, PL does not require an electrical bias;
instead, it relies on the absorption of light to generate luminescence.
However, in [17], researchers have mentioned that PL should be turned
into a high throughput method for outdoor measurements with an
artificial light source, and to minimize the sun’s background noise,
recordings have been made at night. Hence, in [17], recorded PL
images outdoors with an artificial light source at night. It has been
shown that PL imaging is also well-suited for various types of defects in
PV modules. For inactive areas, EL imaging has performed better than
PL imaging and interconnection failures have not been detected by PL
imaging because of the excitation character of PL as opposed to EL.
However, for ethylene-vinyl acetate (EVA) degradation is not visible in
EL.

1.3. Defect detection and machine learning

As ML algorithms have become increasingly reliable and fast, re-
searchers have shifted their focus toward processes that can reduce
extensive labor work and leverage accumulated experience. Specif-
ically, previous studies have demonstrated that the combination of
Computer Vision (CV) and ML holds strong potential for analyzing
images of PV modules and cells to detect faults [18–21]. In particu-
lar, [18] proposed an automatic classification system for IR images of
PV modules based on Convolutional Neural Networks (CNNs) where
they obtain an average accuracy of 99% in a binary classification
problem. Similarly, an automatic system to perform fault detection and
classification based on IR and RGB images on a large-scale PV system
is proposed in [19] where an average accuracy of more than 99% is
achieved for an 8-class problem. However, research is also focusing
on real-time embedded ML classification of images on microprocessors
(TinyML), so as to improve bandwidth, latency, economics, reliability,
and privacy (BLERP) limitations [20]. In addition, in [21] the TinyML
classification on visible images is also proposed, achieving an average
accuracy of 96% for ten different defects. Moreover, a low-cost embed-
ded hardware prototype was designed to test the ML model in real-time
experiments.

To illustrate, in 2019, researchers studied CNNs on EL images to
identify defective PV cells [16]. According to the results, the CNN
model achieved an impressive average accuracy of 88.42%, outper-
forming the Support Vector Machine (SVM) model, which achieved an
accuracy of 82.44% on a dataset of 2624 cell images. Building upon
this foundation, other researchers have continued down the same path,
developing even more robust algorithms and refining the achievements
of their predecessors. This potential stems from the cumulative progress
in transfer learning and feature extraction techniques, including models
such as AlexNet [22], VGG [23], ResNET [24] and YOLO [25].

1.4. Related work

1.4.1. EL image based fault classification and detection studies
In [16], the applicability of CNNs on EL images to determine
defective PV module cells has been studied. According to the results,
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the CNN model has reached an average of 88.42% and the SVM
model has achieved 82.44% accuracy on 2624 cell images. However,
the model was trained to perform only binary classification (either
functional or defective), not classifying the typology of the fault. In the
ame year, an average accuracy of 93.02% was achieved in [26] by
sing the same dataset proposed in [16] and implementing a Data
ugmentation (DA) method. However, again, the model was solely
redicting whether the cell is functional or defective. In [27], authors
ave proposed a Deep-feature-based (DFB) method where the features
f an EL image are extracted with a Deep Neural Network (DNN) and
he classification was performed with SVM. Their solution has reached
n average accuracy of 90.57% and 94.52% on the dataset [16] with
-class and 2-class classification, respectively. In another study [28],
uthors have combined CNN and SVM methods to classify defective
ells on two different datasets, with the first dataset being the same
s [16] with the same binary classification. Authors have shown that a
ombination of the two models has enabled their model to achieve an
ccuracy of 99.49% and 99.46% on the two datasets, respectively.

In another paper [29], the authors have designed an automated
ipeline for EL image pre-processing and fault classification on 5400
ell images. Their pipeline takes raw EL images and crops them into
ells automatically. Then, on the cell images, they utilized three differ-
nt ML models. Namely, Random Forest (RF), SVM, and CNN. Among
hose, the CNN model has achieved the best accuracy of 99.71%. The
odel has classified the cells based on three different categories: good,
racked, and corroded. Moreover, in [30], the authors have developed
n ML pipeline to extract images of cells from PV modules and classify
he defects around the categories: crack, oxygen, solder, and intra-cell.
ubsequently, they compared four ML models and reported that YOLO
as reached an F1 score of 0.78 for object detection and ResNet18 has
eached an F1 score of 0.83 for the classification.

To solve the lack of datasets regarding EL images, the authors
n [31] have introduced an efficient joint data augmentation method
hat aims to increase the number of images by using the combination
f Generative Adversarial Networks (GAN) and image alternation. They
howed the effectiveness of their method by comparing it with the
ther existing CNN models, namely, Inception V3, VGG16, ResNET50,
nd MobileNet. In the most recent study [32], researchers have im-
lemented GAN based data augmentation method on the dataset [16]
o solve the data ratio imbalance on the four classes in the original
ataset. Moreover, a high-resolution network (HRNet) has been used
y replacing the classification layer with a self-fusion network (SefNet).
s a result, the proposed model has achieved an accuracy of 94.90%,

he current state-of-the-art on the dataset of [16].
In [33], the authors have used an object detection method on

he EL images of PV modules. Their model has aimed to classify
he images based on the categories detect-free, crack, broken cell, and
nsoldered area. After the classification process, three faults have been
llustrated with a bounding box around them. As a result, the proposed
odel based on a multichannel fusion of Faster-RCNN and R-CNN has

eached a regression accuracy of 98.3% regarding fault detection and
8.86% regression accuracy of the bounding boxes. Similarly, in [34],
esearchers have trained a CNN to localize the top 14 types of defects
ut of 19 in total on PV modules and achieved a mean average precision
mAP) of 70.2%. In addition, in [35], authors have designed a model to
etect faulty cells on a PV module by using object detection. The model
etects the faulty cells and puts a bounding box around them but not
ithin the cell. As a result, they have reached an average precision
f 94.76% on the validation dataset with the implementation of data
ugmentation. However, in all three studies, the location of the faults
ithin the cell has not been detected. On the other hand, the distinct
oint of the studies [33,34] is the combination of localization and
lassification of the faults within a PV module. Hence, the probability
f multiple faults in a cell is not disregarded by definition.

In addition to object detection methods, in [36], authors have pro-
osed an automated end-to-end anomaly detection pipeline on EL im-

ges, performing binary pixel-level segmentation. However, although

3 
their model identifies micro-cracks, cracks, dead spots, weak areas,
and weak cells, segmented anomalies have not been separated into
categories. In [37], researchers have automated the process of detecting
and localizing the defects by using semantic segmentation, providing
pixel-level localization of the defects. Their dataset consists of 17,064
annotated cell images containing 9 different defect classes, which is
higher compared to existing datasets available at that time. Some of
the defect classes merged into one to balance the class distributions.
Therefore, four different defect classes have been used in total. Their
proposed model comprised of DeepLabv3 pretrained model with a
ResNET50 backbone. Their model has identified and localized non-
defective areas, cracks, corrosion, contact, and interconnection defects
with an average of 0.69 F1-score and achieved 95.4% pixel-level global
accuracy.

Different approaches for detecting faults in PV modules and cells
that were presented in this section can be summarized in Table 1,
Table 2, and Table 3.

1.4.2. Image based PV module power related parameters estimation based
studies

The images of PV modules can also be used to estimate the charac-
teristic parameters of the electrical model of the module considered. In
this way, it is possible to estimate the power production and the module
parameters without disconnections or the usage of electrical equip-
ment. In [6] the authors have presented an ML approach to estimate
power loss in PV modules due to cell cracks. Firstly, they have created
EL and I–V curve measurement datasets. Then, a statistical analysis of
the cells’ luminescence histogram has been performed which they have
used to extract features from the EL images regarding inactive areas. As
a result, with a custom non-linear regression, they have achieved 𝑅2 of
0.869 and a maximum error of 0.17.

A DL pipeline for estimating PV power has been studied in [38].
A regression-based PV module power estimation has been performed
on 719 EL images from PV modules at various stages of degradation
and cell cracks. Additionally, the dataset includes 3 different types and
use cases of PV modules. Namely, the T1 category with indoor and on-
site, the T2 category with only on-site, and the T3 with only indoor
PV modules with different brands for each category. After extraction
of EL images of PV modules from on-site images, they performed
feature extraction from the EL images by using SVR, and pre-trained
DL models (ResNet18, ResNet50, and MobileNetV2). Therefore, they
have reported that DL models perform significantly better as opposed
to the baseline regression model, 7.3 ± 6.5 Wp (ResNet18) compared to
9.0 ± 8.4 Wp (SVR).

In [39], the authors examined a performance prediction of PV
modules from EL images. They have introduced CNN based ML model
and classified images in terms of degradation level on busbars of
cells. As a result, the cells have been classified into 5 different classes
with 95% accuracy. After the classification process, the correlation
between EL images and I–V curve features has been analyzed. They
have observed that 4 EL features were highly correlated with the I–
V curve features such as 𝑅𝑠, 𝑉𝑚𝑝, 𝐼𝑚𝑝, and 𝑃𝑚𝑝. Therefore, they have
built a polynomial regression model to predict the maximum power
and the series resistance in the equivalent circuit of the module. The
results show that they have reached an adjusted-𝑅2 of 0.88 by using
the median intensity and an adjusted-𝑅2 of 0.87 by using the fraction
of the dark pixels on the degraded cells.

An inverse model to estimate solar cell images from synthetically
created EL images has been proposed in the paper [40]. To train the
modified VGG19-based model, the authors have created 75,000 syn-
thetic EL images with randomized parameters of the physical model on
simulation. It is reported that the CNN model has successfully learned
the inverse mappings between the EL images and the physical model.
Although the images have been created on the simulation, this paper
demonstrates the possibility and effectiveness of DL and CNN models

to predict the physical models of PV modules from the EL images.
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Table 1
Classification-based studies.

Ref. Defect Classes Model Metrics Dataset

[16] Def. or Func. SVM Acc: 82.44% 2,624 Cell Images
Def. or Func. CNN Acc: 88.42% 2,624 Cell Images

[26] Def. or Func. CNN with DA Acc: 93.02% [16]

[27] Def. or Func. DFB + SVM Acc: 94.52% [16]
33% Def. or 66% Def. or Def. or Func. DFB + SVM Acc: 90.57% [16]

[28] Def. or Func. CNN + SVM Acc: 99.49% [16]
Good or Corroded/Cracked CNN + SVM Acc: 99.46% 1,028 Cell Images

[28] Good or Corroded or Cracked SVM Acc: 99.43% 5,400 Cell Images
Good or Corroded or Cracked RF Acc: 97.46% 5,400 Cell Images
Good or Corroded or Cracked CNN Acc: 99.71% 5,400 Cell Images

[30] Crack or Oxygen or Solder or Intra-cell YOLO F1: 0.78 18,954 Module Images
Crack or Oxygen or Solder or Intra-cell ResNet18 F1: 0.83 18,954 Module Images

[31] Detect-free or Micro-crack or
Finger-inter. or Break

GAN Acc: 83% -

Detect-free or Micro-crack or
Finger-inter. or Break

VGG16 Acc: 82% -

Detect-free or Micro-crack or
Finger-inter. or Break

ResNet50 Acc: 67% -

[32] Non-Def. or Poss. Normal or Poss. Def.
or Def.

Sef-HRNet Acc: 94.90% [16]
Table 2
Object detection-based studies.

Ref. Defect Classes Model Metrics Multiple
Boxes

Dataset

[33] Broken Cell or Crack or
Unsoldered

Faster-RCNN + R-FCN Acc: 98.3%,
mAP: 85.7%

Yes 1462 Module
Images

Broken Cell or Crack or
Unsoldered

Faster-RCNN Acc: 91.3%,
mAP: 80.1%

Yes 1462 Module
Images

Broken Cell or Crack or
Unsoldered

R-FCN Acc: 94.7%,
mAP: 82.9%

Yes 1462 Module
Images

[34] 14 Different Defect
Classes

Mask RCNN with
ResNet-101 Backbone

mAP50: 70.2% Yes 5983 Module
Images

[32] Defect YOLO AP: 91.34% No 2144 PV Module
Images

Defect YOLO + DA AP: 94.76% No 2144 PV Module
Images
Table 3
Segmentation-based studies.

Ref. Defect Classes Model Metrics Dataset

[36] Defective and Non-defective Areas Custom DNN for
Segmentation

AP: 99.36% ELPV [16] (Augmented
to 2692) + TechnaliaPR
(Augmented to 8722)

[37] Non-defective or Crack or
Corrosion or Contact or
Interconnection Areas

DeepLabv3 with
ResNet50
Backbone

F1: 0.69,
Acc:95.4%

17,064 (with 256
Generated Images)
In [10] the authors focused on the prediction of 3 types of defects
cracks, corrosion, and solder failure) in the cells based on I–V curve
easurements. In other words, instead of using EL images, the authors
ave focused on the detection of 3 types of defects from the I–V
easurements of the module since in this way, classification would

e faster. The importance of features of I–V curve measurements has
een analyzed based on RF and XGBoost ML algorithms. Even though
n this study the power-related parameters have not been predicted,
hey observed that defects in PV modules correlate with the I–V curve
easurements. Moreover, with the inclusion of cracks among the de-

ects, the accuracy level has decreased. As reported, this could have
esulted from the complex impacts of cracks on I–V curve parameters.
n this paper, although the approach is the reverse compared to [6,38–
0], the correlation between I–V curve measurements and defects has
een demonstrated.
4 
2. Motivations

In the field of PV research, several studies have focused on clas-
sifying defects within PV cells by utilizing EL images. However, these
investigations solely address defect classification without predicting the
power output of the entire PV module and parameters in the equivalent
circuit of PV modules. Furthermore, most of the existing studies aim to
detect one defect at a time. In other words, existing studies often work
with datasets containing PV cells exhibiting one fault at a time and PV
cells with multiple faults are classified as mixed faults.

In addition, some studies focus on predicting the power output of
the PV modules from only the EL images of PV modules. On the other
hand, these studies typically overlook cell-level features, which could
decrease the prediction accuracy significantly. For instance, factors
such as cell alignment and specific fault types are not considered.
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To the best of our knowledge, features such as how the cells aligned,
or the types of faults they include have not been considered before dur-
ing the estimation of the power output of a PV module. Furthermore,
there is no such comprehensive study that focuses on detecting defects,
estimating the power output, and series resistance of the equivalent
circuit of PV modules. Hence, in this paper, a complete DL pipeline
that simultaneously deals with the following concerns is introduced.
The model detects faults within individual PV cells, predicts the overall
power output of the PV module, and predicts the series resistance in the
equivalent circuit representation of the PV module by considering cell-
level features during this process. By bridging the gap between defect
detection, power prediction, and parameter estimation, our research
aims to spark new discussions in this field.

Summarizing, the main paper contributions are twofold:

• To the best of the authors’ knowledge, the paper includes the most
comprehensive deep learning pipeline which accomplishes three
different tasks in two different stages. The result of the first stage
is being used by the second stage. Namely, defect detection (1st
stage), power output, and series resistance estimation (2nd stage).

• Due to a unique approach to cell-level features and detected
faults, the model size has been decreased significantly and the
performance has increased (even surpassed previously used mod-
els) in terms of power output estimation.

2.1. Objective of the research

Defects in PV modules play a critical role in the reliable operation
of PV systems, making their detection a crucial area of study. Fur-
thermore, accurate power output estimation not only ensures reliable
operation but also enhances efficiency by reducing costs and preventing
additional power losses. Hence, the primary objective of this paper is
twofold: first, to investigate the possibility of detecting defects in pho-
tovoltaic (PV) modules using deep learning (DL) techniques. Second,
to predict the power outputs and series resistances in the equivalent
circuit representation of PV modules based on EL images by focusing
on cell-level features.

Achieving high scores in accuracy, recall, precision, and mAP is
crucial for successful defect detection. This paper is dedicated to de-
veloping the best model and optimizing these metrics. Additionally,
when predicting the power output and series resistance of PV modules,
minimizing the error becomes paramount. A low error rate instills trust
and empowers decision-makers to take necessary actions, ensuring the
reliability of associated systems.

2.2. Paper structure

In Section 3, the details regarding the dataset and PV modules
will be presented as a case study. Then, In Section 4, the proposed
methodology will be shared. Lastly, in Section 5, the results will be
demonstrated.

3. Case study

In this section, the dataset and some specific details regarding the
PV modules will be introduced that will be fundamental throughout the
proposed methodology.

3.1. Dataset

The dataset is collected from a power plant located in Northern
Italy, which can be seen in Fig. 1 that uses a rooftop-installed pho-
tovoltaic generator for powering farming infrastructure. Specifically,
the dataset is composed of 29 ILB-Helios NA230W-P PV modules with
polycrystalline cells including different typologies of defects. Across the
5 
Fig. 1. The PV system under investigation from which the EL images from the PV
modules were captured.

tested modules a significant power drop has been detected due to the
present defects.

Since the dataset consists of 29 PV modules made of 60 PV cells
each, the total amounts to 1720 EL images of PV cells. However, since
PV cells should not be considered independent from the module they
belong to, EL images were grouped according to the module names in
the dataset.

To determine specific details about the PV modules, modules were
extracted from the plant and taken to the lab, where they were excited
with an external power source at 25 ◦C and with a mean irradiance
of 1000 W∕m2. Then, images of the PV modules were taken with a
CCD camera. Furthermore, the I–V curve of the 29 PV modules was
also measured to determine the maximum power point (MPP) of the
PV modules.

It has been observed from the I–V curve of the PV modules that
the presence of cell defects is strictly correlated with decreased power
production. Some of the examples of the EL images and the I–V curves
of the PV modules can be seen in Fig. 2, Fig. 3, and Fig. 4. The power
output of the PV module, Fig. 2, is 230.520 W since the cells are healthy.
On the other hand, the PV module, Fig. 4, has significantly more black
areas in EL images, which represent the inactive areas in PV cells. Thus,
the power output is 199.563 W. In addition, the PV module, Fig. 3, has
fewer black areas which affected the power output positively. However,
the power output, 221.985 W, is still less than the rated power, 230 W.

At this stage, it can be observed that the darker, inactive areas have
an impact on the power output. However, these areas have not been
distinguished yet in terms of their type. A detailed assessment of the
types of defects will be performed in further sections.

3.2. Details about PV modules

3.2.1. The electrical model of PV modules
Since the cell-level features are included to enhance the accuracy

of the DL models, before moving on to the proposed methodology,
the details regarding the PV modules should be discussed. A PV cell
can be represented by an equivalent electrical circuit. The models
of a PV module are an extension of the single cell considering the
adequate number of cells in series. The phenomena occurring in the
PV cell can be easily represented by a current generator and a diode
(three-parameter model) as well as by complex models featuring one
current generator, two diodes, and two resistances (seven-parameter
model). The accuracy increases with the number of parameters together
with the computational load and the amount of information required
to define its parameters. For the representation, in this paper, the
five-parameters model was selected.

The five parameters equivalent circuit [41] is reported in Fig. 5.
It includes two resistances, the light-generated current 𝐼 , and the
𝑃𝑉
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Fig. 2. The EL image (a) and I–V curve (b) of the module ‘‘10417’’.

Fig. 3. The EL image (a) and I–V curve (b) of the module ‘‘10498’’.
6 
Fig. 4. The EL image (a) and I–V curve (b) of the module ‘‘14093’’.

Fig. 5. 5-Parameter model.

electrical behavior of the PN junction (𝐼𝐷). The cell shunt resistance
𝑅𝑆𝐻,𝑐 and the cell series resistance 𝑅𝑆,𝑐 are connected in parallel to
the current generator in series to the cell terminals, respectively. In
particular, 𝑅𝑆𝐻,𝑐 and 𝑅𝑆,𝑐 represent the recombination losses and the
Ohmic losses occurring in the cell.

The five-parameter model, which is an implicit equation because of
𝑅𝑆,𝑐 , is described in Eq. (1) for a single PV cell.

𝐼 = 𝐼𝑃𝑉 − 𝐼0 ⋅ [𝑒
𝑉 +𝑅𝑆,𝑐 ⋅𝐼

𝑛⋅𝑉𝑡 − 1] −
𝑉 + 𝑅𝑆,𝑐 ⋅ 𝐼

𝑅𝑆𝐻,𝑐
(1)

In particular, 𝐼0 and 𝑛 represent the reverse saturation current of the
pn-junction and the diode ideality factor, respectively. When moving
from the single cell to a module with 𝑁𝑆 cells in series, the previous
equation becomes, Eq. (2):

𝐼 = 𝐼𝑃𝑉 − 𝐼0 ⋅ [𝑒
𝑉 +𝑅𝑆,𝑚 ⋅𝐼
𝑛⋅𝑁𝑆 ⋅𝑉𝑡 − 1] −

𝑉 + 𝑅𝑆,𝑚 ⋅ 𝐼
𝑅𝑆𝐻,𝑚

(2)

where 𝑅𝑆,𝑚 and 𝑅𝑆𝐻,𝑚 are the overall series and shunt resistance of
the module. In this paper, among the five parameters of the equivalent
circuit, the series resistance (𝑅 ) and the product of the current (𝐼 =
𝑆,𝑐
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Fig. 6. Connection of PV Cells with Bypass Diodes in a PV Module.

𝐼𝑀𝑃𝑃 ) and the voltage at MPP (𝑉 = 𝑉𝑀𝑃𝑃 ) will be estimated, which
results in 𝑃𝑀𝑃𝑃 = 𝐼𝑀𝑃𝑃 ⋅ 𝑉𝑀𝑃𝑃 .

3.2.2. The connection of PV cells
Conventional modules, whether based on Back-Contact (BC) or Pas-

sivated Emitter Rear Cell (PERC) technology, adopt a series-connected
arrangement of PV cells within each module. In the configuration,
Fig. 6, multiple PV cells form a string connected to a bypass diode.
Notably, each string encompasses one-third of the total PV cells in the
module, covering a corresponding one-third area of the PV module’s
surface (𝑆1, 𝑆2, 𝑆3). In the event of shading occurring on a cell within
a string, the bypass diode activates. While this prevents the shaded cell
from causing a complete power loss makes the entire string inactive (for
instance, 𝑆1). This traditional setup is characterized by a proportional
relationship between the number of strings and the number of by-
pass diodes, impacting the module’s overall performance under partial
shading conditions.

The string connection of PV cells in the module will be funda-
mental in the proposed methodology (Section 4). This information
allows us to pre-process the data for the power output and series
resistance estimation so that the developed DL model understands
cell-level features.
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4. Proposed methodology

This section will introduce the proposed methodology, providing
details of the types of failures analyzed and their characteristics, the
methods used to classify them, and the metrics used to assess their
performance. The proposed methodology will be based on the following
process: the EL images of the PV module will be separated into PV cells
and defects in each cell will be labeled. The labeled data will flow into
the DL pipeline, where defects in each PV cell will be detected and, by
extracting the features of the PV cells, the power output and the series
resistance of the equivalent circuit of the PV modules will be predicted.
Finally, the results of the DL pipeline will be evaluated. The complete
methodology can be seen in the flowchart in Fig. 7.

4.1. Fault types and visual assessment

In the dataset, there are three main faults in the EL images of PV
cells. Namely, black-core, crack, and edge faults. Black-core faults are the
black areas that are separated from the rest of the PV cell with a clear
boundary. Crack faults are complex trails that have clear starting and
ending points. It is important to point out that there is a possibility
that numerous cracks are present in a single cell. Lastly, edge faults
are the shaded areas located on the sides of the PV cell. The main
difference between edge and black-core faults lies in the clearness of
the boundary definition with black-core faults being more clear whereas
the boundaries of edge faults are usually blurry gray areas. Some of the
examples of the three types of faults can be seen in Fig. 8.

These faults were analyzed as follows:

• If there are no visible faults on the EL images, label the corre-
sponding cell image as empty.

• If there are visible faults on the EL images, label the correspond-
ing faults on the cell image as black-core, crack, or edge after
careful assessment of the fault borders and types.

Using bounding boxes to label defects is one of the most effective
ways since the ML model will learn where to look and the shapes of
the objects on an image. Although this type of labeling consumes much
more time compared to the classification of the image, the labels will
be more precise. Hence, for black-core and edge faults bounding boxes
were used. On the other hand, precise labels require consistency during
Fig. 7. The complete pipeline of the proposed methodology.
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Fig. 8. Three different types of faults: (a) black-core fault (blue) and crack fault
(orange), and edge fault (yellow).

the labeling process, which means small deviations during the labeling
process might lead to an insufficient learning process. In the case of
crack faults, the shape changes drastically depending on the process
that led to the occurrence of cracks. Hence, in some images, cracks
could span from edge to edge. This results in one bounding box which
includes all the pixels in the image, including unnecessary information.
This means that there will be other features in the bounding box that
will affect the decisions of the ML model. Moreover, it is easy to
overlook crack faults since trails of cracks are so complex that it is
impossible to select all of them on some images, which introduces
inconsistencies as mentioned before. Therefore, binary classification
was used for crack faults.

Hence, there will be two types of labeling in this section:

1. For black-core and edge faults, use bounding boxes to identify the
faults. Therefore, faults will have 𝑥 and 𝑦 coordinates in the EL
image.

2. For crack faults, use binary classification of the EL image. There-
fore, each image will have a ‘‘0’’ or ‘‘1’’ label in terms of
cracks.

4.2. Train/validation splitting

Since the validation/test split should represent the whole dataset
with unseen data, the partitioning was performed by considering the
original fault distribution in the dataset by setting the random seed.
Specifically, for each class, ±5% ratio difference was taken into account.
Moreover, due to the small size of the dataset, the validation/test
dataset was limited to 5 PV Modules (or 300 PV cell images). Hence,
24 PV modules for training and 5 for validation were used.

After splitting the data into train and validation sets, the train data
flows into the fault detection model where the data is pre-processed.
Then, it is used to train the object detection model and the classification
model. The results of the fault detection model are evaluated on the
validation data and the detected defects flow into the power output and
series resistance estimation model. Similarly, the results are evaluated
with the same validation data with different evaluation metrics, specific
to the model’s needs.

4.3. Utilized models

The DL pipeline consists of two models for two different purposes.
Namely, detecting the faults in PV cells and estimating the power
output and series resistance of PV modules. In this section, these two
models will be presented in detail.

4.3.1. The fault detection model
Detecting faults requires two distinct models in parallel due to the

labeling procedure. As mentioned before, bounding boxes have been
used to label black-core and edge faults due to higher precision and
accuracy even though the labeling process was challenging. Therefore,
this leads to an object detection model. On the other hand, because
of the challenges in detecting crack faults and its complex nature,
binary classification was selected as labels. Hence, this leads to a
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classification model. The object detection and the classification model
were combined to create the fault detection model, whose purpose is
to detect the presence of any defects in PV cells.

Due to differences in labeling and nature of the each type of fault,
pre-processing and post-processing will differ significantly from each
other.

A. The object detection model
The fundamental reason behind using an object detection model to

detect defects is to increase the model’s ability to learn different types
of faults from only one image. If a classification model was used, the
model would need an extensive amount of data to understand the de-
fects due to changes in defect types from image to image. To illustrate,
if an image includes three black-core faults, the model will need at least
three separate images that include only one of the similarly shaped
defects. On the other hand, by limiting the fault area with a bounding
box, the model will focus on important parts of the image and learn the
shapes of the defects efficiently.

Moreover, another advantage of the object detection model is to
examine the detections and fine-tune the labels to enhance the results.

The object detection model architecture is based on one of the most
well-known models: YOLOv8 small [42]. YOLOv8, with its ‘‘anchor
free’’ or no ‘‘prior boxes’’ design, aims to find the center points of
the objects instead of focusing on the bounding boxes around the ob-
jects [42]. Therefore, it aims to decrease the bounding box distribution
on the training dataset, where objects could be placed in the same place
on the image. Due to its low number of parameters and being a one-
stage detector, the YOLOv8 small model has achieved an mAP of 44.9
on the Microsoft COCO dataset [43] with 1.20 ms with A100 GPU [42].

A.1. Data pre-processing for the object detection model
Due to limited data size, it is important to increase the data size ar-

tificially. One of the most common methods is data augmentation (DA).
DA allows us to increase the effective size of the dataset by applying
simple transformations (such as adjusting brightness, and rotation) to
the original dataset. However, it was observed that some DA methods
negatively affected the observability of black-core and edge faults. To
preserve the information regarding these faults, only horizontal and
vertical random flipping were applied. Changing contrast, brightness,
or clipping of the image could result in the loss of information in the
data, therefore these methods were not used.

After DA, images were resized (640 by 640) due to the specific needs
of YOLOv8, and the values of pixels were re-scaled to values between
1 and 0 by considering the original coordinates of bounding boxes.

A.2. Data post-processing for the object detection model
Post-processing was applied to the output estimations. Specifically,

the process is as follows:

1. After the object detection model, results, which are coordinates
and labels, of all the detected defects will be stored.

2. The coordinates and the number of detections for each defect
will be filtered and each image will be classified by ‘‘0’’ or ‘‘1’’
for each type of defect.

B. The classification model
As mentioned before, using bounding boxes during labeling requires

consistency. Due to the complex nature of crack defects, it is nearly
impossible to label all cracks in a cell. Initial attempts regarding utiliz-
ing an object detection model to detect crack defects, resulted in poor
accuracy and precision. Therefore, a classification model was used. As
a result, a remarkable improvement in accuracy was observed.

The classification model architecture is based on MobileNetV2,
which is light in terms of the number of parameters yet powerful due
to inverted residual connections [44].
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Fig. 9. 1-Channel image representation of a PV module (Module: ‘‘14414’’).

MobileNetV2 stands out from the crowd with its relatively high
performance, 74.6% Top-1 accuracy, which means the estimation of the
model with the highest probability is equal to the label, on ImageNet,
compared to its number of parameters, 6.9M, thanks to inverted resid-
ual connections and linear bottlenecks [44]. Compared to the current
state-of-the-art, Noisy Student (EfficientNet L2) which has achieved
88.41% on the ImageNet dataset with 480M parameters, by having only
6.9M parameters, MobileNetV2 has achieved a remarkable score and it
is much easier to train on small datasets and deployable on smaller
GPUs.

B.1. Data pre-processing for the classification model
Similarly, DA methods were applied to EL images in this case.

Contrarily, in addition to random horizontal and vertical flipping, this
time, random brightness was also applied, which did not affect crack
faults negatively. After DA, the images were resized (128 by 128) to
preserve the features of the original images (131 by 131), and the pixel
values were re-scaled to values between 1 and 0.

4.3.2. The power output and parameter estimation model
The results of the fault detection model are used in the power output

estimation model as the next step of the DL pipeline. At this step, the
data is pre-processed and used to estimate the power output and series
resistance in the equivalent circuit of the PV module.

A.1. Data pre-processing for the power output and parameter estimation
model

Pre-processing in this part is fundamental. The pre-processing
method will differ significantly for the candidate models according to
the model’s purpose but some steps are independent of the model’s
architecture:

• Images of the cells will be re-combined to create the correspond-
ing PV panel image (Fig. 9).

• Similar to the cell images, defects will be combined to create the
corresponding PV panel defect representation.

As presented in Section 3.2.2, in the equivalent circuit representa-
tion of the PV module, every two rows are in series and independent
of the other rows due to by-pass diodes (Fig. 10). Therefore, while
estimating the power output of the PV module, any defect in the
grouped 20 PV cells will not affect the power output of the remaining
PV cells.

Since the model does not know this higher-level information, the
data should be pre-processed in such a way that the model should infer
the independence of every two consecutive rows.

The proposed methodology is making the data 3-channel images.
This idea stems from the fact that all images include three independent
channels, each of which ranges from 1 to 255 real numbers or 0.0 to 1.0
as normalized values, except for the gray-scale images, which include
only one channel. These three channels are, specifically, red (R), green
9 
Fig. 10. PV module with series connection of cells (1310 by 1310 Image).

Fig. 11. Stacking the Defect Data Into 3-Channels (Module: ‘‘14414’’).

Fig. 12. Representation example for different tested PV Modules.

(G), and blue (B). To illustrate, for each pixel, as normalized values,
R:1, G:1, B:1 results in white and R:0, G:0, B:0 results in black pixel.

In the PV modules, since there are six rows and every two rows are
grouped, there are three independent groups, each of them consisting
of 20 PV cells. Hence, there should be three independent channels in
the images of PV modules. Therefore, one can embed the positions of
cells together with the classification of the PV modules in these three
channels (Fig. 11) as if they are colors so that the model understands
that the information embedded in these channels is independent and
results in a unique representation for each PV module (Fig. 12). This
embedding results in the shape of 20 by 4 by 3, where the first number
(20) stems from the number of cells in consecutive two rows that are
connected by a single by-pass diode, the second number (4) results
from the number of cell types (black core, edge, crack, and empty). The
last number (3) corresponds to the image channel (RGB) in which the
corresponding image slices are stacked.

Similar to the grouping process of defects in the PV cells, images of
the PV cells could be grouped as well to represent the independence
of every two consecutive rows in PV modules (Fig. 13). In addition
to 3-channel data, 1-channel raw data, which was used in the existing
studies, was used as a comparison as well so the effectiveness of this
method can be observed (Fig. 9).

Furthermore, before training the power output estimation model,
the true labels for the power output were normalized by 230 because
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Fig. 13. 3-Channel image representation of a PV module (Module: ‘‘14414’’).

Table 4
Parameters of CNN-based power output estimation model.

CNN Output Shape Parameters

Input 20 x 4 x 3 0
Convolutional layer 1 19 x 3 x 128 1,664
Convolutional layer 2 18 x 2 x 64 32,832
Max pooling 9 x 1 x 64 0
Flatten 576 0
Output 1 577

Fig. 14. Power output estimation model architecture.

of the rated power of the PV modules. Therefore, the results were
normalized between 0.0 and 1.0, which will enable us to compare the
results more accurately with the other studies since the comparison is in
per-unit scale and independent from the rated power output of the PV
module. On the other hand, even though in the dataset the maximum
value that the true labels have is 0.9 for the series resistance, there
is no limit to the value that the series resistance could have in the
equivalent circuit representation. Hence, for the parameter estimation,
the true labels will not be normalized as it was done in the power
output estimation process. Instead, the errors will be normalized by the
mean value of the true labels. Evaluation metrics will be demonstrated
in Section 4.5 in detail.

A.2. The power and parameter estimation model architecture
The architecture of the proposed CNN-based power output and

parameter estimation model can be seen in Table 4 and the visual
representation with the PV module ‘‘14414’’ can be seen in Fig. 14.

4.4. Training

Training has been performed on Google Colab Pro instance with
Nvidia V100 GPU and 64 GB RAM and TensorFlow version 2.14.

For all the models, to prevent over-fitting and increase the efficiency
of the training process, callbacks were used:

1. Model checkpoint callback: To keep track of the lowest valida-
tion loss.

2. Reduce learning rate on plateau callback: The learning rate is
multiplied by 0.5 if there is a plateau in terms of validation loss.

3. Early stopping callback: The training is interrupted if validation
loss does not decrease for some epochs.
10 
Fig. 15. Confusion matrix.

To validate the performance of the Power Output and Parameter
Estimation model, a cross-validation technique was used. Specifically,
the data was separated into 6-folds and fixed, where in each step
train and validation data changed and the result was recorded. The
number of folds (6) is selected to keep the ratio of the validation dataset
sufficiently high (5 PV Modules) while ensuring the training dataset
represents the original defect distribution. As a result, the mean of all
results was found to determine the model’s performance.

For the Object Detection and Classification models, cross-validation
was not used. This is because of the high computational expense of the
training procedure.

4.5. Evaluation metrics

4.5.1. Confusion matrix, accuracy, precision, and recall
The results of the binary classification problem could be represented

on a 2 by 2 matrix where the values are the number of True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN) [45]. This special matrix is called ‘‘confusion matrix’’ (Fig. 15).

Accuracy is the ratio of the correct classifications over all the
examples in the dataset [46]. Accuracy measures how well a model
performs in terms of correctly predicting class labels, which can be seen
in Eq. (3).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

(𝑇𝑃 + 𝑇𝑁)
∑

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(3)

Precision, also known as ‘‘confidence score’’, serves as a measure of
how precise the detections are among all the positive predictions [46].
It quantifies the proportion of true positive detections (correctly iden-
tified objects) out of all the positive predictions and it is computed as
in Eq. (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑃 )
(4)

Recall, computed as in Eq. (5), also known as ‘‘sensitivity’’, shows
how sensitive the detections are out of all detections [46].

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑁)
(5)

4.5.2. Intersection over Union (IoU)
Intersection over Union (IoU) is a metric for algorithms such as

object detection and image segmentation, whose purpose is to evaluate
the ratio between the detected area and the true area of the object [47].
IoU quantifies the degree of overlap between two regions: the detected
area (predicted bounding box or segmented region) and the true area
(ground truth bounding box or annotated region). Hence, in Eq. (6), the
numerator represents the overlapping region, while the denominator
includes the union of the predicted (A) and true (B) areas.

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐴 ∩ 𝐵) (6)

𝑎𝑟𝑒𝑎(𝐴 ∪ 𝐵)
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It is important to mention that, IoU values range from 0 to 1 and
according to COCO metrics [43], the minimum IoU threshold is 0.5.
Therefore, detections lower than the threshold will be disregarded in
terms of mean average precision, affecting the results negatively.

4.5.3. Mean Average Precision (mAP)
Average precision (AP) summarizes the precision–recall curve (PR-

curve) by calculating the weighted mean of precisions achieved at each
threshold [48]. The increase in recall at the previous threshold serves
as the weight. Essentially, AP quantifies how well the model balances
precision and recall across different confidence levels. As a result, a
higher AP for each class indicates better detection accuracy and the
mean of APs across all classes results in the mAP score. It is commonly
used to evaluate object detection models.

4.5.4. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
Mean Absolute Error (MAE) is a useful measure that is being used

widely for regression problems [49]. MAE quantifies the average ab-
solute difference between the predicted values and the actual values
in a dataset, as mathematically shown in Eq. (7). It gives the same
importance to the farthest and the closest values from the predicted
curve, which means MAE treats all errors equally, regardless of their
magnitude. On the other hand, Root Mean Squared Error (RMSE),
which can be computed as in Eq. (8), is the square root of the average
squared difference between the predicted values and the actual values.
It penalizes the farthest values, in other words, ‘‘outliers’’ from the
ground truth are valued more. Therefore, it is a useful metric to analyze
the robustness of the predictions [49].

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝑌𝑖 − 𝑌𝑖
|

|

|

(7)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝑌𝑖 − 𝑌𝑖
|

|

|

2
(8)

. Normalization for the power output estimation process
By normalizing the values 𝑌𝑖 and 𝑌𝑖, (in our case, normalized by

he rated power, 𝑃𝑟𝑎𝑡𝑒𝑑 = 230 W, Eq. (9)) before calculating the
etrics, the normalized versions of the metrics, nMAE (Eq. (10)) and
RMSE (Eq. (11)), can be found. They are commonly used to diminish
he effect of units in estimation. Hence, the error will be between
.0 and 1.0, which will allow the error to be compared with similar
tudies, regardless of the magnitude of the value being tried to estimate.
oreover, since the normalized error is between 0.0 and 1.0, the root

alue of the error will be larger. Therefore, nRMSE will represent the
obustness of the predictions and the effect of outliers, as mentioned
efore. Ideally, these two error metrics should be equal to 0, but since
t is nearly impossible, these metrics should be as close to 0 as possible.

𝑖 =
𝑌𝑖

𝑃𝑟𝑎𝑡𝑒𝑑
and 𝑦𝑖 =

𝑌𝑖
𝑃𝑟𝑎𝑡𝑒𝑑

(9)

𝑀𝐴𝐸1 =
1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| , (10)

𝑛𝑅𝑀𝑆𝐸1 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖||
2 (11)

B. Normalization for the series resistance estimation process
As mentioned before, since there is no theoretical limit to the value

that the resistance can take, normalization will be performed by the
mean value of the true labels in the dataset. Therefore, changes can be
seen in Eq. (12) and Eq. (13).

𝑛𝑀𝐴𝐸 =
1
𝑁

∑𝑁
𝑖=1

|

|

|

𝑌𝑖 − 𝑌𝑖
|

|

| , (12)
2 𝑌
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able 5
valuation metrics for the proposed methodology.
Model Metrics

Object Detection mAP@0.50, AR@0.50-0.95
Classification Accuracy, Precision, Recall, and F1 Score
Fault Detection Accuracy, Precision, Recall, and F1 Score
Power Output and Parameter Estimation nRMSE*, nMAE*; nRMSE**, nMAE**

* Normalization by the rated power 𝑃𝑟𝑎𝑡𝑒𝑑 .
** Normalization by the mean of the true labels.

𝑛𝑅𝑀𝑆𝐸2 =

√

1
𝑁

∑𝑁
𝑖=1

|

|

|

𝑌𝑖 − 𝑌𝑖
|

|

|

2

𝑌
(13)

here 𝑌 is the mean of 𝑌
The evaluation metrics used to determine the performance of the

odels can be seen in Table 5.

. Results

.1. The fault detection model

To evaluate the performance of the fault detection model, the object
etection and the classification model must be evaluated first.

. The object detection model
The model was trained for 300 epochs and the training process

as interrupted by the early stopping callback due to convergence.
ccording to the results, the maximum 𝑚𝐴𝑃@0.50 = 0.4561 and

𝐴𝑅@0.50 − 0.95 = 0.5818 was reached at epoch 184. To be able to
comment on the results, some of the predictions of the object detection
model should be examined.

In the first image in Fig. 16(a), even though the defect has been
detected, the predicted area is much larger than the area of the label.
According to the COCO metrics [43], this detection will be disre-
garded since the intersection over union (IoU) is smaller than 0.50. In
Fig. 16(b), edge faults have been detected perfectly whereas one of the
black core faults has not been detected since it is not obvious like the
previous defects. In Fig. 16(c), the model caught the two faults almost
perfectly.

B. The classification model
The model was trained for 50 epochs and the training process was

interrupted by the early stopping callback due to convergence at epoch
44, similar to the previous model. At epoch 44, the accuracy is 86.80%
and it is saved by the model checkpoint. To be able to comment on the
results, some of the predictions of the classification model should be
examined.

In Fig. 17, with cell ‘‘10474_3_2’’, the classification model struggles
to detect the crack faults with no clear separation between the different
sides. However, other cells are perfectly classified.

C. Results of the fault detection model
Since the true labels of each PV cell are known, evaluation metrics

and confusion matrix for each type of fault can be calculated as in
Fig. 18.

The detection results are promising across all fault types. Black core
faults exhibit the most stability, likely due to the high prevalence of
cells with these faults in the dataset. In the case of crack faults, the
model shows significantly lower precision but higher recall compared
to other metrics, indicating a high ratio of false positives and a high
sensitivity to small changes in the images, which are often identified as
cracks. For edge faults, while accuracy is notably high, both precision
and recall are significantly lower. This discrepancy may stem from the

relatively small number of PV cells with edge faults in the dataset.
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Fig. 16. Randomly chosen examples of detections of the Object Detection Model.

5.2. The power output and parameter estimation model

The best-performing model was selected using a 6-fold cross-
validation technique from among seven candidate models. To assess the
effectiveness of the proposed pre-processing technique proposed in the
previous section, we first evaluated a baseline model that utilized only
the 1-channel defect data, meaning there was no 3-channel stacking
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Table 6
Candidate models for the power output estimation model.

Model Input Type Parameters

Base 1-Channel Defects 241
3-Channel Defects Small 3-Channel Defects 1,664
3-Channel Defects Large* 3-Channel Defects 35,073
1-Channel Images** 1-Channel Image 1,057,025
1-Channel Images*** 1-Channel Image 15,205,057
3-Channel Images** 3-Channel Images 371,585
Hybrid**** 3-Channel Images and Defects 14,881,217

* Proposed model.
** Custom design CNN.
*** VGG16 based CNN.
**** VGG16 for images and custom design CNN for defects data.

of the PV cells. Therefore, the proposed methodology was tested and
validated.

Model name and the number of parameters of the candidate models
can be seen in Table 6:

A. Results of power output estimation
The results of nMAE and nRMSE errors for the 6-fold cross-validation

can be seen in Fig. 19 and Fig. 20.
The base model, which uses only the 1-channel defect data, per-

forms the worstan nMAE of 0.36339 and an nRMSE of 0.48871 since
there is no higher-level information on the connection of PV cells
within the PV module. On the other hand, the proposed model, ‘‘3-
Channel Defects Large’’, performs the best with an nMAE of 0.03547
and an nRMSE of 0.04892 even though the number of parameters is
significantly lower than the closest, the second best performing model,
VGG16-based ‘‘1-Channel Images’’ which utilizes 1-channel raw EL
images the PV modules similar to the existing studies. A smaller number
of parameters means more efficient training and less inferring time for
the model.

For the proposed model, not only nMAE error but also nRMSE is the
lowest, suggesting that the outliers of the estimated power outputs are
closer to the predicted regression line.

B. Results of series resistance estimation
The results of nMAE and nRMSE errors for the 6-fold cross-validation

can be seen in Fig. 21 and Fig. 22.
Similar to the power output estimation result, the base model

performs the worst with and nMAE of 0.49097 and an nRMSE of
0.60602, suggesting that the base model performs worse due to a lack
of higher-level information on the connection of PV cells within the
PV module. Regarding the best estimation, VGG16-based ‘‘1-Channel
Images’’ performs significantly better than other candidate models,
achieving an nMAE of 0.04472 and an nRMSE of 0.0622. In this case,
the ‘‘3-Channel Defects Large’’ is the second-best performing model.
These results suggest that a significantly larger model combined with
the raw EL image of the PV modules is the best in terms of estimating
the series resistance in the equivalent circuit compared to smaller
models which contain a higher level of information regarding cell-level
features.

6. Conclusions

This paper focuses on creating a complete DL pipeline that accom-
plishes three critical tasks: detecting faults within PV cells, estimating
the power output of PV modules, and estimating the series resistance
in the equivalent circuit representation of PV modules by analyzing the
EL images. The first part of our pipeline is dedicated to detecting three
types of faults within PV cells, namely black-core, edge, and crack faults.
Due to the complexity of these faults, two different models for the fault
detection process were employed, whose results are then combined.

The object detection model aims to detect black-core and edge faults
within the PV cells with bounding boxes around them with the follow-
ing details:



E. Ozturk et al. Energy Conversion and Management 319 (2024) 118866 
Fig. 17. Randomly chosen examples of detections of the Classification Model.
Fig. 18. Confusion matrix and evaluation results of the Fault Detection Model.
Fig. 19. Power Output Estimation, nMAE, 6-Fold Cross-validation.

• The model specifically aims to identify black-core and edge faults
within PV cells.

• The model provides bounding boxes with coordinates around
these detected faults.

• The model achieves an mAP@0.50 of 0.4561 and an AR@0.50-
0.95 of 0.5818.

• Since the number of detections per class is not required, the
results are turned into binary values at the end.

The classification model for crack faults, in nature, produces binary
values for the detections and can detect the faults with the following
results:
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Fig. 20. Power Output Estimation, nRMSE, 6-Fold Cross-validation.

• The model successfully detects crack faults with an accuracy of
0.868.

When the results of each model are concatenated and the results of
the fault detection model are calculated, the fault detection model can
detect faults with global accuracies:

• Black core: 0.93
• Crack: 0.868
• Edge: 0.95
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Fig. 21. Series Resistance, nMAE, 6-Fold Cross-validation.

Fig. 22. Series Resistance Estimation, nRMSE, 6-Fold Cross-validation.

The results of the fault detection model are pre-processed in such
a way that the connection of PV cells represents the equivalent circuit
of the PV modules, where each pair of adjacent rows is separated by a
diode, ensuring their independence in affecting the total power output.

To represent this situation, since there are six rows in PV modules,
the defects data was embedded into a 3-channel representation, result-
ing in a unique RGB image for each PV module. These RGB images serve
as a form of feature extraction and they were fed into a CNN-based
power output and parameter estimation model, the second step of the
DL pipeline. The proposed model with the extracted features, combined
with the CNN model, outperforms the base model that relies solely on
non-pre-processed detected faults, and larger models are significantly
more adept at extracting features from EL images of PV modules in
estimating the power output of the PV modules. The approach yields
impressive results in terms of nMAE and nRMSE, as follows:

• nMAE: 0.03547
• nRMSE: 0.04892

Furthermore, the VGG16-based parameter estimation model was
able to estimate the series resistance in the equivalent circuit represen-
tation of the PV modules by extracting features from the raw EL images
of the PV modules with the following results:

• nMAE: 0.04472
• nRMSE: 0.0622

In summary, this paper showcases the effectiveness of using EL
images to detect various types of faults within PV cells, estimate the
output power of PV modules, and estimate the series resistance in
the equivalent circuit representation of the PV modules. By combin-
ing extracted features with higher-level information about PV cells,
standard approaches that rely solely on EL images of PV modules
are surpassed. As a result, our findings contribute to advancing fault
detection techniques, underscore the importance of considering cell-
level features in PV technology, and bridge the gap between fault
14 
detection, power, and parameter estimation, leading to more accurate
PV module performance assessments.

However, there are still some limitations of the applied method-
ology that could be more thoroughly investigated in future research.
For instance, the estimation of output power and series resistance
does not give a complete picture of the PV cell equivalent circuit.
The second-stage model should be expended with a prediction of
other important parameters, such as the shunt resistance. Moreover, EL
images of PV modules used in this research are considerably difficult
to acquire severely limiting a potential industry application of the
proposed methodology. In future studies, similar research should be
concluded that estimates the applicability of the applied techniques
using images acquired in the visible spectrum which would allow for
an easier and more efficient estimation of the well-being of PV cells.
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