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Abstract

This paper presents a comprehensive apprach to the probabilistic analysis of

residential distribution grid injected by distributed PV sources. The approach

is data-driven and is able to deal with the general scenario that includes the

uncertainty of correlated PV sources and of statistically independent consumer

loads. The novel method adopts a Gaussian-Mixture-Model for correctly rep-

resenting PV sources correlation and a fresh probabilistic analysis techinque

employing Multi-Expansion polynomial chaos. Numerical experiments carried

out on the Non-Synthetic European low voltage test system, highlight the impor-

tance of the comprehensive modeling strategy in order to realistically quantify

uncertainty impact on the grid.
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1. Introduction

It is expected that the massive integration of photovoltaic (PV) distributed

generation into residential power distribution grid will have potential adverse

effects on network quality, such as over voltage or current exceeding the wire

carrying capacity [1], [2]. Evaluating the impact of PV sources is a challenging

issue due to the unpredictability of both PV power generation and residential

consumers power demand [3]. A detailed analysis requires the adoption of real-

istic stochastic models for the PV sources and loads as well as the exploitation

of advanced probabilistic computational tools [4], [5], [6]. Stochastic models

for PV generation are mainly focused on reproducing the temporal and spatial

variability of solar irradiance [7]. In fact, spatial correlation between geograph-

ically dispersed PV generation sites can play an important role in determining

the relevance of their impact on the grid lines. For what concerns residential

loads, several statistical models have been proposed in the literature in order

to reproduce their uncertainty. Many previous models are based on the as-

sumption that uncertainty in residential power demand can be represented by

Gaussian-distributed mutually independent random variables [8], [9].

∗Corresponding author
Email address: giambattista.gruosso@polimi.it (Giambattista Gruosso)

Preprint submitted to SEGAN February 8, 2022



In this paper, we present a novel data-driven modeling approach to uncer-

tainty quantification in PV penetrated residential grid. The new approach can

handle the general statistical scenario where a subset of uncertain variables,

i.e. PV delivered power, can be strongly correlated among them while another

subset, i.e. residential load power demands, are statistically independent. This

is achieved by adopting a proper Gaussian Mixture Model (GMM) to represent

the joint PDF of correlated PV sources and a parametric statistical model for

loads.

Moving on considering probabilistic analysis computation, the basic and ref-

erence method is represented by Monte Carlo simulation. However MC method

is computationally time consuming and thus several approximate probabilistic

analysis techniques have been proposed, which includes Point Estimate Method,

Cumulant, Kernel and Surrogate Model [10], [11], [12], [13]. Among all these

techniques, Stochastic Response Surface Method (SRSM) based on polynomial

chaos expansions has recently gained large attention due to its versatility in

handling random variables with nonstandard statistical distributions [14], [15],

[16] as well as, in the field of power distribution grid, due to the comprehensive

statistical information (i.e. the detailed Probability Density Function) it can

provide about observable quantities of interest [17], [18].

In this paper, we extend the usage of SRSM so as to deal with the general

uncertainty modeling scenario. To this aim, the SRSM surrogate model is im-

plemented through a novel technique referred to as Multi-Expansion generalized

Polynomial Chaos (ME-gPC).

The novel contributions of this paper include:

1. We describe a data-driven modeling of correlated PV sources based on

Bayesian estimation and Gaussian Mixture Model (GMM). Our approach

relies on the analysis of extensive data set of measurements grouped for

different daily time windows. As a practical case study, we exploit the

data set available for Australian consumer site [19] however, our approach

is general and can be applied to any data set.
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2. We extend the modeling approach to add the uncertainty of residential

consumers power demand. We show how the power demand for a single

user (or a small set of users) over a given time window of the day is well

represented by a Beta-distributed random variable whose PDF can be

extracted from data using a parametric approach.

3. We describe in details the ME-gPC technique able to successfully handle

the case of correlated non Gaussian random variables described by GMMs.

We remark how the Multi-Expansion method that we first present in this

paper is similar but not equal to the method known in the mathemati-

cal community and denoted as Multi-Element method [20]. The Multi-

Element method has a much more complicated implementation, i.e. it

requires to break the statistical space into mutually disjoint regions, than

the Multi-expansion technique described in this paper. As a result, Multi-

Expansion method is more suitable for probabilistic power grid analysis.

4. We use the (ME-gPC) method for calculating the detailed Probability

Density Function (PDF) of a set of observable quantities that are relevant

for power system designers. In particular, we consider and compare dif-

ferent PV modeling scenarios, i.e. with or without including PV sources

correlation, applied to the Non-Synthetic European low voltage test sys-

tem [21].

The remainder of this paper is organized as follows: In Sec. II, we illustrate

the data-driven GMM modeling strategy for PV sources. In Sec. III, the statis-

tical model for residential loads extracted from measurement data is outlined.

Sec. IV details the novel ME-gPC method. Sec. V is used to describe the pro-

posed polynomial chaos based implementation while Sec. VI presents numerical

experiments, Finally, the conclusions are outlined in Sec. VII.

2. Modeling Photovoltaic Power Generation

This Section focuses on statistical modeling of correlated PV sources starting

from data measured over a sufficiently long time. The method we propose
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has general validity and can be used to create statistical models of sources

(as well as loads) exhibiting correlated uncertainty. As an example to clarify

our procedure, we choose the data set of photovoltaic sources [19] provided

by the Australian electric distribution company Ausgrid. It contains measured

electricity production for rooftop solar systems from 1st July 2012 to 30th June

2013.

In the central hours of the day, the power samples extracted from the data

set exhibit a significant variability which introduces a high degree of uncertainty

in the generated electric power. This can be due to several factors that include

the time-spatial variability in solar irradiation as well as solar cells efficiency,

orientation, shadowing effects, and variable interaction with the electrical in-

terface/control. In addition, PV generated power variability has a strong de-

pendence on the time of day which is considered. In order to deal with such a

time-dependence, the available measurement are grouped into several sets cor-

responding to different time windows during the day. For example, we consider

windows width of one hour in which the statistical distribution (i.e. the PDF)

of generated electrical power is evaluated.

To better clarify this concept, let us consider the electrically delivered power

PS1
(t) and PS2

(t) by two close PV plants ( in p.u.) placed in the Sydney city

over the time window from 01:00 PM to 02:00 PM. Fig. 1 reports the scattered

plot of the PS1(t) and PS2(t) samples: the two random variables exhibit a strong

correlation, in fact samples tend to concentrate along the space diagonal. The

calculated correlation coefficient is ρ1 = 0.9347.

By contrast, we consider now the two powers PS3
(t) and PS4

(t) delivered by

two PV plants placed at geographically distant locations. The scattered plot of

such power data is reported in Fig. 2. In this case, the data set shows a weak

statistical correlation given by ρ2 = 0.2219.

As a result, in order to be realistic we need to develop a general modeling

framework able to properly reproduce the joint statistical behavior (i.e. the joinf

PDF) of many PV power sources while accounting for their actual correlation.

The general method that we present in this paper relies on the adoption of
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Figure 1: Case of two PV systems with strong correlation: scattered plot of generated powers
PS1 (t) PS2 (t) and the contour of the GMM model fitting to the PV data.

Gaussian-Mixture-Models (GMM) [22], [23]. For instance, the combined effects

of PS1 and PS2 can be modeled by means of two random variables x1 and

x2, collected into column vector x⃗ = [x1, x2]
T , having joint probability density

function given by:

f(x⃗) =

NG∑
n=1

αn g(x⃗; µ⃗n,Σn). (1)

Each g(·) function in the series is a multi-variate Gaussian described by its

mean-value vector µ⃗n and covariance matrix Σn, i.e.:

g(x⃗; µ⃗n,Σn) =
1

((2π)2|Σn|)0.5
e−

1
2 (x⃗−µ⃗n)

TΣ−1
n (x⃗−µ⃗n). (2)

The scalar coefficients 0 < αn ≤ 1 are the weights and are such that

NG∑
n=1

αn = 1

while “T ” denotes the transposition operator [24]. The GMM model (1) can

approximate any PDF using a sum of weighted multi-variate Gaussians and

this approximation converges to any PDF when the number NG of components

is increased [22]. The joint PDF of scattered data x1 ≈ PS1
versus x2 ≈
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Figure 2: Case of two PV systems with weak correlation: scattered plot of generated powers
PS3 (t) PS4 (t) and the contour of the GMM model fitting to the PV data.

PS2 is fitted with model (1) by means of an iterative technique referred to as

Expectation Maximization (EM) [24]. The EM algorithm is implemented in the

function ’fitgmdist’ of Matlab. For a given number NG of Gaussian components,

the EM algorithm provides αn, µ⃗n and Σn, for n = 1, . . . , NG. In Figs. 1 and 2,

we report the contour plot of the PDFs generated by fitting the scattered data

shown in the same figures with a GMM model of the type (1) made of NG = 2

Gaussian components in Fig. 1 and NG = 4 Gaussian components in Fig. 2.

The EM algorithm requires specifying the number NG of Gaussian terms.

To assess a proper value for NG, we use a technique where the value of NG is

gradually increased, and the GMM components’ variances are checked. More

specifically, the considered criteria is the minimum of the sum of variances of

nth component (variances are the diagonal elements of co-variance matrices),

i.e.,

σmin = min
n

sum[diag(Σn)]. (3)

Fig. 3 shows the values of the parameter σmin versus the number of Gaussian
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Figure 3: The dependence of parameter σmin versus number of Gaussian NG while fitting the
model to the PV data.

components NG in GMM required for the data set shown in Fig. 1, the curve

presents a knee in correspondence of NG = 2, that is a rapid decrease. This

means that further increasing NG yields Gaussian components with relatively

much smaller variances. Gaussian terms with too slight variances are negligible

at first approximation and thus NG = 2 is selected as the appropriate number

of terms.

3. Modeling residential load

The uncertainty of residential loads power consumption can also be included

into our probabilistic model starting from a statistical analysis of available res-

idential active power consumption data. More specifically, in this paper we will

rely on measurement data available for the test network adopted in our analysis,

i.e., the Nonsynthetic European low voltage test network [21]. This network

contains a set of smart meter data measured for different loads.

As an instance, Fig. 4 reports the scattered plot of two load powers data
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PL1 and PL2 measured at two different buses in the test network. Load powers

are scattered in a way that suggests they are rather independent. In fact, the

correlation coefficient computed with these load data results ρ = 0.072. By

repeating such a statistical data analysis for several loads extracted from the

data set and for several time windows during the day, we concluded that the

typical uncertainty of residential power demand can be realistically reproduced

by independent random variables.
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Figure 4: Scattered plot of powers PL1 and PL2, these powers are absorbed by the loads
connected to Phase A of the bus 1279 and 1283 in the test network.

The univariate PDF of such variables can be extracted from the data through

a fitting/parametric approach. To this aim, the power data are first normalized

to the peak value KL. In this way, the active power absorbed by a load is

written as

PL = KL y (4)

where y ∈ [0, 1] is a random variable distributed accordingly to the PDF f(y).

The application of the histogram operator to the normalized power values pro-

vides the (approximate) numerical samples f(yj) of the PDF over a sequence
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of ordered values yj ∈ [0, 1], with yj+1 > yj . Fig. 5 shows the PDF data

distribution for the Normalised power PL1.
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Figure 5: (Histogram) Normalized power PDF of PL1 which is Phase A of bus 1279. Figure
shows the PDF of random variables y1 after scaling PL1 by KL which is 15kW. (dashed line)
fitting with the Beta distribution of parameters a = 1.2448, b = 19.4836.

The extracted PDF samples f(yj) are fitted by trying several standard sta-

tistical distributions (among which Weibull, Exponential, and Beta). We de-

termined that, for the available data, the best fitting is achieved by the Beta

distribution:

fβ(y, a, b) =
ya−1(1− y)b−1

Beta(a, b)
. (5)

where Beta(a, b) denotes the Beta function while a and b are positive param-

eters to be determined. The values of parameters a and b are deduced by an

optimization procedure that minimizes the following objective function:

Error(a, b) =
∑
j

[
fβ(y

j , a, b)− f(yj)
]2
, (6)

with the constraints a > 0 and b > 0. Fig. 5 shows the Beta distribution

fβ(y, a, b) with parameters a = 1.2448, b = 19.4836 that yields data best fitting
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for the considered case.

4. Multi-Expansion gPC Probabilistic Analysis

The probabilistic analysis methodology that we describe in this paper is

able to handle the general scenario: the network contains a first set of NS

random variables xk strongly correlated among them plus a second set of NL

random variables yk that can be realistically modeled as being statistically

independent. The correlated random variables are collected into the vector

x⃗ = [x1, . . . , xNS
]T whereas the independent variables are collected into the vec-

tor y⃗ = [y1, . . . , yNL
]T . Please note that such a general arrangement includes

the special case where all variables are correlated, i.e., NL = 0 as well as the

case where all variables are independent, i.e., NS = 0. In light of the analy-

sis presented in Sec. 2, for the adopted test network vector x⃗ should contain

the power delivered by PV plants. The joint PDF of correlated variables is

approximated by a GMM model (1) extracted from the available data set and

for the one considered time window of the day. Besides, in light of the analysis

presented in Sec. 3, for the adopted test network the vector y⃗ of indepen-

dent variables should include the network loads described by their univariate

PDF. More specifically, load uncertainty is described by statistically indepen-

dent Beta-distributed variables yr ∈ [0, 1]. Each yr represents the normalized

power demand of one residential customer over the same time window.

Hence, we focus on one electrical observable variable that can affect the

quality of the network and denote it generically as V . Such a variable, which

can be one node voltage as well as a line current, is seen as the output of the

probabilistic problem.

The probabilistic analysis of the network can be achieved with the reference

Monte Carlo method. This implies generating a huge number Nmc of uncer-

tainty variables vector [x⃗T , y⃗ T ]T according to the joint probability distribution

of variables. In order to generate samples for the correlated variables x⃗, a two

step procedure is required: (i) a Gaussian component of index n is selected ran-

domly on the basis of the prior probabilities αn; (ii) a realization of variables
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x⃗ is obtained randomly from the selected multi-variate Gaussian distribution

g(x⃗; µ⃗n,Σn). The random generation of samples for variables forming y⃗ is sim-

pler and can be directly obtained from the univariate PDF f(yr).

For each realization of the PV power sources x⃗ and loads power demand

y⃗, the corresponding realization of the observable variable V is calculated by

running a deterministic Load Flow analysis of the distribution grid. An ob-

servable variable is in fact a deterministic function of uncertainty variables x⃗

and y⃗. As the number, Nmc of evaluations grows, at limit tending to infinity,

the distribution of the calculated values of V describes its detailed statistical

distribution. Since MC converges slowly, with an error that reduces as 1/N0.5
mc ,

the number of the required LF simulations tends to be large and probabilistic

analysis time-consuming.

A way for accelerating MC methods while preserving high accuracy is the

adoption of a surrogate model for the observable variable V based on gPC

expansions. In what follows, we describe how the conventional gPC method can

be extended to handle the case of nonGaussian distributed random variables

described by the GMM (1). Such an extension relies on the fact that once the nth

Gaussian component has been (randomly) selected, variables x⃗ are completely

described by the multi-variate Gaussian distribution g(x⃗; µ⃗n,Σn). It is thus

possible to introduce a new set of variables zn univocally defined by the following

linear transformation

x⃗ = Lnz⃗n + µ⃗n. (7)

Matrix Ln is the square root of the nth covariance matrix, i.e.

Σn = Ln L
T
n (8)

Matrix Ln is simply calculated through the Cholesky decomposition of (sym-

metric) Σn. It is worth noticing how the newly defined variables in the vector

z⃗n are Normal distributed N (0,1), i.e. they are Gaussian-distributed variables

with zero mean and unitary variance. In addition, such Gaussian variables are

decorrelated and thus statistically independent.
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In view of (7), the observable variable V can now seen as a function of

variables z⃗n, y⃗ and approximated by a gPC series expansion. Using the compact

notation

ξ⃗n = [z⃗ T
n , y⃗ T ]T , (9)

The relationship V (ξ⃗n) is approximated with an order-γ truncated series expan-

sion of the type

V (ξ⃗n) ≈
Nb−1∑
i=0

cni Hi(ξ⃗n), n = 1, . . . , NG (10)

formed by Nb multi-variate basis functions Hi(ξ⃗n) weighted by unknown coef-

ficients cni . For each Gaussian component forming (1), a different gPC series

expansion of the type (10) is adopted. In this sense, the method may be referred

to as a Multi-Expansion gPC method.

An interesting interpretation of such a technique is that of seeing the rela-

tionship V (ξ⃗n) as a discrete-type random variable that can assume NG different

expressions (10) with probabilities αn. Since the nth expansion series (10) holds

only for x⃗ belonging to a subregion of the parameter space centered around µ⃗n,

its truncation order γ can be selected smaller compared to conventional Single-

Expansion gPC method. It is worth noting how the Multi-Expansion method

we employ in this paper follows an idea similar to what has been presented in

[25] and referred to as the Multi-element method. However, the Multi-element

method requires breaking the statistical space into mutually disjoint regions over

which the joint PDF is sharply fragmented. By contrast, the Multi-expansion

method approximates the joint PDF as the sum of smooth partially-overlapped

Gaussian kernel functions, making implementation more straightforward while

accounting for variables correlation.

5. gPC Method and Stochastic Collocation

The Multi-Expansion gPC in connection with GMM models reduces the

probabilistic analysis to n single-expansion gPC subproblems. The single-expansion

problem is well documented in the literature [14], [15], [17]. In our case, each
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subproblem has NS independent and Normally-distributed variables zs, with

s = 1, . . . , NS and NL independent variables yr, with r = 1, . . . , NL. As a con-

sequence, the multivariate basis functions forming gPC expansion (10) are all

of the type:

Hi(ξ⃗n) =

NS∏
s=1

qis(zs) ·
NL∏
r=1

qi′r (yr), (11)

where qis(zs) are the univariate Hermite polynomials of degree is while qi′r (yr)

are the univariate Jacobi-chaos polynomials of degree i′r [14]. For a given number

of parameters NS +NL and series truncation order γ, the index degrees is and

i′r should satisfy the following constraint

NS∑
s=1

is +

NL∑
r=1

i′r ≤ γ. (12)

The number of gPC basis functions in (10) is given by

Nb =
(γ +NS +NL)!

γ! (NS +NL)!
. (13)

The expansion coefficients cni in the series (10) can be calculated with a

known technique referred to as Stochastic Testing (ST) method [15]. For each

Gaussian component n, the Nb unknown coefficients cni are calculated by select-

ing Nsam = Nb testing points ξ⃗kn, for k = 1, . . . , Nsam among the multivariate

Gauss quadrature nodes. Univariate Gauss quadrature nodes for Normally-

distributed variables zs and Beta-distributed variables yr are known in closed

form or can be easily computed [16]. Multivariate nodes are then obtained from

the tensor product (i.e. all possible combinations) of univariate ones.

Each testing point (9) corresponds to given values of variables z⃗n = Zk and

y⃗ = Yk. Variable values z⃗n = Zk are then transformed into PV delivered

powers x⃗ by means of the linear transformation (7). Variable values y⃗ = Yk,

after scaling provide load absorbed powers. As a result, for each testing point,

the observable variable V n
k = V (ξ⃗kn) can be evaluated by running a deterministic

LF analysis. Hence, the series expansions (10) are enforced to fit exactly (i.e.,

the polynomials interpolate the samples) the values V n
k at the testing points.
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This results in the following linear system

M c⃗n = V⃗ n, (14)

where c⃗n = [cn0 , . . . , c
n
Nb−1]

T and V⃗ n = [V n
1 , . . . , V n

Nsam
]T are the column vectors

collecting the unknown coefficients and observable variable values respectively.

The Nb ×Nb square matrix M = {ak,i} = {Hi(ξ⃗
k)} collects the gPC basis

functions evaluated at the testing points, i.e.

M =


H0(ξ⃗

1) . . . HNb−1(ξ⃗
1)

...
. . .

...

H0(ξ⃗
Nsam) . . . HNb−1(ξ⃗

Nsam)

 . (15)

Interestingly matrix M remains the same for each Gaussian component, so

it can be precalculated, inverted and used for any n as follows:

c⃗n = M−1 V⃗ n for n = 1, . . . , NG (16)

Once, the cni coefficients have been computed, the surrogate models (10)

can be exploited within MC method in a significantly efficient way. In fact,

for each randomly selected Gaussian component samples of the independent

variables ξ⃗n = [z⃗n, y⃗] are easily generated and then the nth model (10) provides

the realization of observable variable V without having to run a LF simulation.

In this way millions of realizations of V can be obtained in a few seconds on a

quad-core computer allowing a detailed determination of the PDF.

6. Numerical Results

In this Section, we exploit the proposed ME-gPCmethod to analyze/quantify

the uncertainty of nodal voltages in the power grid due to the presence of dis-

tributed PV generation. To this aim, we consider several scenarios/investigations.

In subsection 6.1, we compare the case of PV systems having high statistical

correlation among them with the opposite case of uncorrelated PV systems.

Simulations are applied to a power distribution network exhibiting the typ-

ical features of European distribution networks and referred to as the Nonsyn-
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Table 1: Subsections of numerical results

Subsection Modelling Correlation type Case study
6.1 GMM and Highly correlated Modelling

Independent and uncorrelated comparision
6.2 GMM with Highly correlated Voltage

varying loads and uncorrelated unbalance
6.3 GMM Highly correlated Monte Carlo

check

thetic European low voltage test network (NSELVTN) [21]. The NSELVTN

contains several loads with prescribed power consumption.

For the purposes of this article, the network is modified by injecting several

PV generators into its subsection shown in Figure 6. In doing that, two different

scenarios are considered. In the first one, presented in subsection 6.1, loads are

fixed to their nominal values (i.e., loads uncertainty is not included). In the

second one, illustrated in subsection 6.2, the statistical uncertainty of a subset

of loads is included via a set of independent random variables. This second

example thus corresponds to the general scenario described in Section 4, where

network uncertainty is represented by a set x⃗ of (strongly) correlated random

variables along with a set y⃗ of independent ones. Finally, in subsection 6.3,

in order to validate the results of the proposed ME-gPC method, Monte Carlo

simulations are conducted to compare the results.

The analysis and numerical results conducted in the subsequent subsections

are summarized in Table. 1. All the simulations have been done using a joint

co-simulation [17] between Matlab for the part of distributions and sampling

points generation and Opendss[26] for the network simulation. The machine

used is an Intel I7 with 16GB of ram and 2.3 GHz clock frequency.

6.1. NSELVTN with correlated PV sources

In this subsection, we investigate the importance of accounting for the actual

correlation degree of PV sources in probabilistic load flow analysis.

To this aim, the original NSELVTN is injected by two PV systems connected

to Phase C of bus 1279 and to Phase C of bus 1283. The effects of these PV
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Figure 6: The detail of NSELVTN subsection where PV sources are inserted.

Table 2: Modified parameters for NSELVTN

Parameter Phasing Node P Q
[kW] [kVAR]

1ϕ PV Generator C 1279 53 26.5
1ϕ PV Generator C 1283 60 30
1ϕ Constant load A 1279 26 13
1ϕ Constant load A 1283 05 2.5
1ϕ Constant load C 1279 20 10
1ϕ Constant load C 1283 19 9.5

sources are observed at bus 1284 which is placed in between injecting buses

1279 and 1283. In this first example, power absorbed by loads are assumed to

be constant as reported in Table. 2. The two powers sources are statistically

correlated and are represented by the two random variables x1, x2 whose joint

probability is described mathematically by the GMM model (1). In the first

case, GMM model fits the power data, i.e. x1 ≈ PS1 and x2 ≈ PS2 for the

strongly correlated case reported in Fig. 1. Power values are scaled in order to
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simulate ≈ 53kW and ≈ 60kW of maximum power respectively.

In the second case, instead, random variables x1, x2 are assumed to be statis-

tically independent and described by their marginal distribution probabilities.

This latter modeling approach is referred to as the Independent method [27].

Fig. 7 reports the voltage distribution at bus 1284, Phase C, over the hourly

time window 11:00AM – 12:00PM, computed using the GMM method and In-

dependent method modeling. We see how a voltage variability range of ≈ 32V

is observed at Phase C when correlation among PV sources is included into

the model. By contrast, when the same PV sources are assumed statistically

independent, the variability range reduces to ≈ 22V, for the considered hourly

time window.
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Figure 7: Phase C voltage distribution at node 1284 due to power injection by PV sources at
node 1279 and 1283 connected to Phase C. The distribution is given for the hourly time window
considered for 11:00AM – 12:00PM. The data used are of same PV sources with considering
correlation using GMM and without considering the correlation using the independent method.

The PDFs of the nodal voltage considered and computed for several hourly

time windows exhibit different shapes: the mean value and standard deviation

of voltage distribution are much varied in the morning and evening hours but
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not in the afternoon. Fig. 8 shows the mean value of the Phase C voltage

distributions of bus 1284 and the standard deviations analyzed for every hour

from 09:00AM to 06:00PM using the GMM and Independent methods.

It is worth noticing how the standard deviations computed with GMM meth-

ods, i.e., properly considering PV correlation, are always greater than those

estimated assuming PV sources independence.
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Figure 8: Mean and standard deviation of Phase C voltage distribution at node 1284 analyzed
for every hour from 09:00AM to 06:00PM while comparing the modelling technique that
consider the correlation using GMM and discards such correlation using Independent method
considering the same data set of PV.

PV power injection at Phase C induces variations in the voltage at phase C

while the other 2 phases, Phase A and B, remain almost unchanged. This leads

to voltage unbalance in the network. Voltage unbalance is commonly defined as

the ratio of the negative sequence voltage component to the positive sequence

voltage component, and it is usually expressed in percentage as V UF%. The

voltage distributions obtained in the hourly analysis is classified to three groups

for easy understanding and visualization. The groups are morning 09:00AM–

12:00PM, afternoon 12:00PM–03:00PM and evening 03:00PM–06:00PM.
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The V UF% is determined for both the voltage distribution data sets of cor-

related PV sources, and the uncorrelated PV sources is shown in the Fig. 9. Also

in this case, it is evident how the precise determination of V UF% can only be

obtained by considering the correct correlation among PV sources. Correlation

in fact tends to produce a wider range of V UF% at all time instants.

Figure 9: Violin plots representing the distribution and box plot representing the median and
mean(–) of Percentage voltage unbalance factor (V.U.F) of the network at bus 1284 due to
PV sources connected to phase C of nodes 1279 and 1283. The two curves are obtained former
modelling the PV with GMM and latter considering them independent.

6.2. NSELVTN with PV sources and uncertain loads

In this subsection, we study the case where the statistical uncertainty of loads

is included in the model. In fact, now loads are modeled as random variables,

whose active power consumption is a statistical parameter modeled using the

measurement data set available for the NSELVTN. The active power data is

fitted to a beta distribution, and the respective distribution is scaled back to

the desired rated power as given in Table. 3 and used in simulations.

Fig. 10 shows the simulated Phase C voltage distribution of bus 1284 for hour

window of 11:00AM – 12:00PM . We note how the shape and variability range

of the distribution are significantly varied compared to the case investigated in

previous subsection with constant loads.
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With uncertain loads, the variability range of Phase C voltage distribution

of Bus 1284 grows to ≈ 44V while the same variability range but computed

assuming PV sources are independent is ≈ 37V.

We conclude that including loads uncertainty and considering PV sources

correlation provides the modeling scenario with the greatest variability range of

the considered observation variable.
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Figure 10: Phase C voltage distribution at node 1284 due to power injection by PV sources
and variable load connected to node 1279 and 1283 in Phase C. The distribution is given for
the hourly time window considered for 11:00AM – 12:00PM.

Similar conclusions can be drawn when looking at the mean value and stan-

dard deviations computed over several hourly windows of the day. Fig. 11 shows

such statistical quantities computed for the Phase C voltage: standard devia-

Table 3: Beta parameters to fit the load measurement data

Active Power [kW] KL [kW] a b
PL1 15 1.24 19.48
PL2 15 0.59 11.44
PL3 15 1.29 29.72
PL2 15 0.833 4.74
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tions computed with GMM method are always greater than those estimated

assuming that PV sources are independent.
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Figure 11: Mean and standard deviation of Phase C voltage distribution at node 1284 analyzed
for every hour from 09:00AM to 06:00PM with varying load, comparing the consideration of
correlated and uncorrelated PV sources.

Finally, loads uncertainty contributes to increase voltage unbalance in the

network as shown in in Fig. 12. Here, the V UF% is presented for three groups

of time, i.e., morning, afternoon, and evening. PV sources correlation and loads

uncertainty is the modeling scenario with the greatest variability range of VUF.

6.3. Comparison with Monte Carlo Simulations

Monte Carlo (MC) simulation is the primary and reference method to com-

pare other analytical and approximation probabilistic load flow analysis meth-

ods. In this subsection, for accuracy check, the proposed ME-gPC method is

compared with the results obtained with Monte Carlo simulations. The simu-

lation times of ME-gpPC and Monte Carlo methods are also compared.
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Figure 12: Violin plots representing the distribution and box plot representing the median
and mean(–) of Percentage voltage unbalance factor of the network at bus 1284 due to PV
sources connected to phase C and varying load connected to phase A and C of nodes 1279
and 1283. The comparison among the highly correlated and uncorrelated case is given.
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Figure 13: PDF of Bus 1284 Phase C voltage of the test network, with highly correlated PV
and constant power load, computed with Monte Carlo for different number of iterations and
ME-gPC method for highly correlated Ausgrid data set analyzed for 11:00AM–12:00PM time
window.
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Figure 14: PDF of Bus 1284 Phase C voltage of the test network with highly correlated PV
and statistically varying load. computed with Monte Carlo for different number of iterations
and ME-gPC method for highly correlated Ausgrid data set analyzed for 11:00AM–12:00PM
time window

Fig. 13 and Fig. 14 show the PDFs of Phase C Voltages of bus 1284 computed

with the Monte Carlo method running 1000 and 10,000 iterations along with

the same PDFs calculated with the proposed ME-gPC method. The PDF curve

obtained with Monte Carlo method (10,000 samples) is almost indistinguishable

from the PDF curve computed with ME-gPC method, i.e. their relative differ-

ence being always < 0.003, thus confirming the accuracy of ME-gPC method.

On the other hand, the probabilistic load flow simulation of NSELVTN using

ME-gPC with 2 correlated PV sources requires a simulation time of about 28s,

whereas MC running 10,000 iterations requires more than 48minutes. ME-gPC

simulation with 6 parameters (2 correlated PV and 4 loads) runs in about 55s

whereas, for the same accuracy, MC simulation requires about 65minutes. As a

result, in both cases the proposed ME-gPC method introduces a two orders of

magnitude speedup factor compared to MC simulation for the same accuracy.
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7. Conclusion

In this paper, we have illustrated an original technique for modeling and

simulating PV-penetrated residential power distribution grid. The method pro-

posed in the paper is data driven since it relies on the availability of measure-

ments data sets of PV-generated and consumer-absorbed power. It has been

shown how the statistical uncertainty of correlated PV sources can be properly

reproduced in simulations by adopting a Gaussian-Mixture-Model (GMM). We

have described how the parameters of the GMM can be extracted from the

available PV data measurements grouped for different daily time windows. It

has been observed how for residential consumer loads, instead, the uncertainty

is better represented by independent random variables.

In view of that, a novel probabilistic analysis technique based on Multi-

Expansion generalized Polynomial Chaos (ME-gPC) has been described in de-

tails that is able to handle the general modeling scenario. Several numerical

experiments have been discussed comparing different modeling cases where cor-

relation of PV sources and loads uncertainty have been either included into the

model i.e. thanks to ME-gPC method, or they have been disregarded. Nu-

merical results highlight the importance of including both the above-mentioned

uncertainty aspects. In fact, neglecting PV correlation and/or loads uncertainty

always results in the under-quantification of uncertainty impact on the grid.
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