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Abstract

In this study the non-linear hereditariness of knee tendons and ligaments is framed in the context of stochas-
tic mechanics.Without losing the possibility of generalization, this work was focused on knee Anterior Cruci-
ate Ligament (ACL) and the tendons used in its surgical reconstruction. The proposed constitutive equations
of fibrous tissues involves three material parameters for the creep tests and three material parameters for
relaxation tests. One-to-one relations among material parameters estimated in creep and relaxations were
established and reported in the paper. Data scattering, observed with a novel experimental protocol used to
characterize the mechanics of the tissue, was modelled as the outcome of the random mechanical parameters.
The numerical example proposed in the paper shows that for an assigned probability density function of the
material random parameters, the parameters of the probability density function (pdf) may be obtained by a
statistical analysis of the experimental data.
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1. Introduction

Surgical reconstruction of tendons and ligaments
of the human knee yields successful outcomes as
long-term optimal performances are achieved [1, 2].
Indeed, in surgical procedures used to treat Ante-
rior Cruciate Ligament (ACL) injury, that autolo-
gous tissue replacements presents long-term draw-
back [3, 4, 5]. Such aspects may result in to over
stiffness or excessive laxity of the joint, thus lead-
ing to sub-optimal outcomes of the surgery [6, 7] as
well as to osteochondritis and early development of
osteoarthritis [8, 9].
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The long-term outcome of tendons and ligaments 
reconstruction is ruled by the so called ”Hereditari-
ness” of fibrous biological tissues. This feature, be-
side the well known material elasticity, is a peculiar 
aspects of organic materials such as polymers, rub-
bers [10, 11, 12] among others and, more important, 
of biological tissues.

Several studies involving knee fibrous tissue 
hereditariness were reported [13, 14, 15, 16]. In such 
studies partial experimental campaign on small ani-
mal ligaments and tendons involved: i) long-standing 
displacement-control mechanical tests leading to the 
so-called relaxation function G(t) or ii) long-standing 
force-control mechanical tests leading to well-known 
creep function J(t). Additional experimental data on 
ligaments and tendons hereditariness showed that the 
relaxation function does depend on the reached strain 
during the experiment, so that G(ε, t) can be defined 
as the strain-dependent relaxation function
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[17, 18]. Similar outcomes were found also for the
long-standing load-control tests, thus yielding to the
stress-dependent creep function J(t)[17, 19].

The application of Boltzmann superposition inte-
grals to strain/stress dependent relaxation G(t)/creep
J(t) function yields the so-called quasi-linear hered-
itariness [20]. Such a formulation is analogous to
the well-known linear hereditariness expressed by
the strain/stress independence of the relaxation G(t)
and creep J(t) functions, respectively [21]. In uni-
axial condition, several kind of expressions for re-
laxations and creep functions, namely G(t) and J(t)
were proposed [22] but, in order to fit experimental
data, no mathematical consistency was achieved. Re-
cently, in the context of material hereditariness the so
called fractional-order calculus has been introduced
to describe linear hereditariness of different kind of
materials [23, 24, 25].

Fractional calculus is considered as generaliza-
tion of classical differential calculus involving real
or complex differentiation orders. It is defined by
means of convolution integrals with power-law ker-
nels as t±β with 0 ≤ β ≤ 1 representing the dif-
ferentiation order [26]. Expression for relaxation as
G(t) ∼ t−β or creep J(t) ∼ tβ yields fractional-order
hereditary materials (FHM) that were previously in-
troduced [27, 28, 29, 30].

The use of fractional-order calculus for the analy-
sis of hereditariness of ligaments and tendons of the
knee was recently proposed showing that: i) a strong
dependence of the relaxation/creep function on the
level of reached strain/stress may be observed and ii)
the order of relaxation decay, t−βr is larger then creep
increment, tβc so that βr > βc. Such inequality is not
mathematical consistent by FHM [31], yielding that
no prediction of relaxation order βr by creep mea-
sures βc and,conversely of βc by measures of βr can
be provided.

In this study the authors aimed to model the pres-
ence of strain/stress dependence of relaxation G(ε, t)
and creep J(σ, t) by means of quasi-linear fractional
hereditary materials theory [32].This approach al-
lows for a prediction of creep parameters from relax-
ation tests as well as for a prediction of the relaxation
parameters from creep measures. The scattering of
material parameters observed in experimental tests
was modelled as outcomes of random variables and

a phenomenological model of non-linear creep and 
relaxation functions with random parameters was in-
troduced.

The paper is organized as follows: In 
Section 2 the experimental campaign 
conducted at the Bio/NanoMechanics 
Laboratory of University of Palermo is shortly 
outlined; In Section 3 Power-law hereditariness 
is discussed for the linear hereditari-ness (Section 
3.1), the non-linear hereditariness (Section 3.2) 
and the phenomenological random constitutive 
equation for the creep and relaxation is presented 
(Section 3.3). Conclusions have been 
withdrawn in Section 4.

2. Experimental campaign on ligaments and ten-
dons hereditariness: Non-linear relaxation
and creep

In this section the results of an experimental cam-
paign conducted on ligaments and tendons of human
knee is outlined. The experimental campaign in-
volved thirty samples of human patellar tendons and
hamstring ligament, subjected to simple uniaxial ten-
sile. Several details about the used protocol as well
as about the finding are provided in next subsections.

2.1. Materials and methods

The experimental campaign has involved two kind
of human tissue, namely patellar (P) and hamstring
(H) tendons. The human tissues were obtained by a
tissue bank (Lifelegacy Foundation, Arizona, USA)
with the requirements that each ensemble of P and
H were obtained by the same human knee to avoid
donor variability. Biological specimens were stored
at 80 ◦C and thawed in a 37◦C water bath for 15 min
prior to testing [20], then prepared for the test and
finally each specimen was there cut approximately
at the same length before clamping for the uniaxial
test. commercial electromechanic system (Electro-
force, Bose 3330) was used to test both the tendons’
groups. We have used a specific protocol for the re-
peatability of the experimental campaign. Initially,
the samples were preconditioned by cycling between
20 and 100 N, for twenty cycles at 0.25 Hz to remove
any crimping in the tendon fibrils [33]; after pre-
conditioning, we performed relaxation test with pre-
scribed values of the strain level in the range 1 − 5%
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[34, 33]. We conducted the relaxation tests applying 
a linear ramp of displacement with speed 250 mm/s 
and after the hold fixed for 100s at the achievement 
of preselected value of strain, at the end of relaxation 
test resting the sample for 15 min in order to achieve 
the same length of the initial specimen measured at 
the end of the first phase. In last phase, the creep 
test obtained applying the same initial stress reached 
at the end of the relaxation test with a linear load 
ramp of 315 N/s and holding the load 100 s. Dur-
ing the test, the sample was continuously moistened 
with saline solution.

2.2. Data analysis

The experimental data in terms of the axial engi-
neering strain ε(σ, t) were averaged, for each level of 
applied stress. The averaged creep functions, namely 
µ(
ε
P) ( ̄σi, t) and µ(

ε
H) ( ̄σi, t) are reported in fig.(1), re-

spectively. A more detailed representation of the av-
eraged creep functions may be observed in a logµε − 
logt plot reported in figs.(1,2) for the patellar and 
hamstring tendons, respectively.

Figure 1: averaged creep functions hamstring ligaments

Figure 2: averaged creep functions Patellar tendons

Figure 3: log-log plots averaged creep functions hamstring lig-
aments

Figure 4: log-log plots averaged creep functions Patellar ten-
dons

Data analysis reported in fig.(3,4) for the log-log
plots reveals that good candidate to fit averaged val-
ues of creep functions µ(P)

ε (σ̄i, t) and µ(H)
ε (σ̄i, t) is the

a linear model with equation:

log µ̄( j)
ε (σ, t) = β j log

(
t

τ
( j)
c

)
+ α j log

(
σ̄ j

)
(1)

where j = P,H denotes the specific tissue consid-
ered, τ( j)

c and σ̄ j are respectively a characteristic time

and the non-dimensional stress σ̄ j =
σ j

E
where E

is the tangent elastic modulus obtained at the origin
of a monotone test. Straightforward manipulation of
eq. (1) yields the relation for the average of the strain
omitting j-dependence:

µε (σ, t) = σ̄α

(
t
τc

)β
(2)

with 0 ≤ β ≤ 1 and 0 ≤ α ≤ 1 two material param-
eters and [τc] = [T ] and additional material constant
representing the characteristic time of the material
observed in a creep test. It may be observed that val-
ues of α, β and τc are represented in figs.(3,4) for the
considered tissues.
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Solid lines in fig.(3) represents fits of the data with
eq.(1) and excellent agreement among curves and
data may be observed.

Previous considerations about the averaged values
of the creep test results may be reported for the relax-
ation averaged data in figs.(5,6) and for the log-log
plots reported in figs.(7,8) for the patellar and ham-
string tendons, respectively. Solid lines in figs.(7,8)
represents the linear fitting with equations (omitting
j-dependence)

Figure 5: averaged relaxation functions hamstring ligaments

Figure 6: averaged relaxation functions Patellar tendons

Figure 7: log-log plots averaged relaxation functions
hamstring ligaments

log
[
µσ̄ (ε, t)

]
= −δ log

(
t
τr

)
+ γ log (ε) (3)

Figure 8: log-log plots averaged relaxation functions Patellar
tendons

that corresponds, after straightforward manipula-
tions to the stress average relaxation expressed as:

µσ̄ (ε, t) = εγ
(

t
τr

)−δ
(4)

with γ, δ relaxation material parameters and [τr] =

[T ] the characteristic time of the fibrous tissue ob-
tained in a relaxation test.

The observation of eqs.(2, 4) shows that both creep
and relaxation functions of the fibrous tissue are non-
linear functions of the stress and the strain respec-
tively. Under the assumption that α = γ = 1 a linear
dependence is experienced so that the creep and re-
laxation may be expressed as:

µε (t) = σ̄

(
t
τc

)β
= σ̄J (t) (5a)

(5b)

µσ̄ (t) = ε

(
t
τr

)−δ
= εG (t)

with J(t) and G(t) the well-known creep and relax-
ation functions of linear hereditariness.

The non-linear dependence of the strain and the
stress observed in the experimental campaign was
extensively investigated in several papers on liga-
ments and tendons hereditariness [19, 20, 18]. De-
spite the large efforts in the description of material
parameters observed in relaxation tests no relations
among α, β, τc for the creep tests and γ, δ, τr for the
relaxation could be observed as reported by several
authors.
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3. The stochastic non-linear hereditariness of fi-
brous tissues

Data analysis of the experimental campaign re-
ported in previous section showed that constitutive
equations for creep and relaxation involves three sets
of parameters α, β, τc, and γ, δ, τr without any rela-
tion among them. In this section we aim to show that,
under the formalism of fractional differential calcu-
lus, the explicit relations among the coefficients es-
timated in creep and relaxation tests may be estab-
lished for the 1D case.

We introduce at first the linear 1D case in order
to introduce the fundamental definitions of material
hereditariness.

3.1. Fractional Hereditary Material (FHM)

The assumption of α = γ = 1 reported in Sec.2.2
showed that creep and relaxations may be evaluated
with the aid of the creep J(t) and relaxation G(t)
functions multiplied by the non dimensional stress
σ̄ or strain ε. In such a case, it is well-known that the
creep and relaxation functions, in Laplace domain
must be compliant with the relation:

_

G (s)
_

J (s) =
1
s2 (6)

where [s] = T−1 is the Laplace parameter and
[
_
·
]

denotes Laplace transforms.
Power-laws expressions, tβ or t−δ for creep and re-

laxation, respectively, are assumed in this section as:

J (t) =
1

Γ (β + 1)

(
t
τc

)β
(7a)

G (t) =
1

Γ (δ)

( t
τ r

)−δ
(7b)

where Γ (·) is the Euler-Gamma function.
Evaluation of Laplace transform of eqs.(7a, 7b) sub-
stitution into eq.(6) yields that the fundamental re-
lation of linear hereditariness is fulfilled only if the
time evolution orders β = δ and the characteristic
times τc = τr = τl coalesce.
Under such circumstances, creep and relaxation
function may be reported as:

J (t) =
1

Γ (β + 1)

(
t
τl

)β
(8a)

G (t) =
1

Γ (β)

(
t
τl

)−β
(8b)

The knowledge of creep and relaxation function in
presence of linear dependence of strain ε(t) on the
stress σ̄(t) and of the stress σ̄(t) on the strain ε(t)
allows Boltzmann superposition as:

ε (t) =
∫ t

0
J (t − τ)˙̄σ (τ) dτ =

= 1
Γ(β)τβl

∫ t

0
(t − τ)β−1σ̄ (τ) dτ = 1

τlβ

(
Iβ0+σ̄

)
(t) (9)

σ̄ (t) =
∫ t

0
G (t − τ) ε̇ (τ) dτ =

=
τ
β
l

Γ(β)

∫ t

0
(t − τ)−βε̇ (τ) dτ = τ

β
l

(
Dβ

0+ε
)

(t)
(10)

where Dβ
0+ [·] (t) and Iβ0+ [·] (t) are, respectively, the

Caputo fractional derivative and Riemann-Liouville
fractional integral of order β with 0 ≤ β ≤ 1. Some
details on fractional-order calculus.

3.2. The Non-linear Fractional Hereditary Materi-
als (NFHM)

Different orders of the decaying functions measured
by creep and relaxation tests in Sec.2 yield that
fractional-order linear hereditariness is not appropri-
ate to describe the long-term behaviour of biological
fibrous tissue.

Such conclusion is further supported by direct in-
spection of eq.2, and eq.4 reporting the averaged val-
ues of the strain/stress functions, respectively.

In the following, NFHM will be defined with re-
spect to strain/stress functions so that the evolution
of the strain ε(t) and of the stress σ(t) is accounted
by means of the phenomenological dependence ob-
served in Sec.(2) as:

ε (t) =
σ̄α

Γ (1 + β)

(
t
τc

)β
= σ̄αJc (t) (11a)

σ̄ (t) =
εγ

Γ (δ)

(
t
τr

)−δ
= εγGr (t) (11b)

5



where the creep function Jc (t) and Gr (t) are, respec-
tively, the non-linear creep and the non-linear relax-
ation functions that differs from their linear coun-
terparts in eqs.(8a, 8b) for the different time-order
(namely β and δ) and the different characteristic
times, namely τc and τr, measured in creep and ex-
perimental tests.

Eq.(11a) eq.(11b) may be considered as general-
ization of the well-known Nutting relation [22] in-
troduced at the beginning of the last century to de-
scribe the non-linear creep of polymers and rubbers.
The non-linear relaxation model, instead, was used
by several authors to represent the relaxation fibrous
tissues [19, 35] but no relations among creep and re-
laxation parameters were established [18].

In the following the main relations among creep
and relaxation parameters for the phenomenological
model observed in (11a) eq.(11b) are established, for
the first time, at the best of authors’ knowledge. To
this aim let us evaluate the strain ε (t) at time instant
t = τc yielding a one-to-one relation among the ap-
plied stress σ̄ and the measured strain ε (τc) , thus
obtaining by, neglecting arguments:

σ̄ = (εΓ (β + 1))1/α (12)

that, after substitution in eq.(11b) yields the equality:

(εΓ (β + 1))1/α =
εδ

Γ (δ)
τc

τr
(13)

that may be cast as:

ε( 1
α−γ)Γ (δ) Γ(1 + β)1/α =

(
τc

τr

)−δ
(14)

that holds true, for any value of the strain ε as γ =
1
α

so that a relation among the material characteristic
times observed in creep and relaxation may be estab-
lished as:

τr = τcΓ(β + 1)1/(αδ)Γ(δ)1/δ (15)

that, in. conjunction with the relation γ =
1
α

allows
to estimate the characteristic time of the relaxation
upon measure of the characteristic time observed in
creep once a relation among the decay δ and the order
β has been established.

This latter condition may be obtained as we search
the estimates of creep parameters with direct mea-
sures of the relaxation parameters, namely, γ, δ, τr.
Under this condition the relation among the charac-
teristic time in creep estimate τc and the characteris-
tic time observed in relaxation reads:

τc = τr

[
Γ (δ)

1
γβ Γ (β + 1)

1
β

]−1
(16)

yielding:

τr = τc

[
Γ (δ)

1
γβ Γ (β + 1)

1
β

]
(17)

Direct comparison of eq.(17) with eq.(15) yields the
relation among the orders:

β = αδ (18a)

δ = γβ (18b)
Eqs.(18) allows for a relation among the decaying
order of the relaxation, given the creep parameters
as:

δ =
β

α
(19)

that corresponds, in conjunction with γ = 1/α, to
eq.(18b).

Time-order of relaxation δ of the stress σ̄ (t) yields
that under the condition α < 1 the order of the
relaxation δ ≥ β according to the well-established
paradigms that relaxation run faster than creep as
reported by several authors [36, 37, 38].

Summing up, the results of the experimental cam-
paign of creep and relaxation may be described as
power-law relations containing each three material
parameters: i) the order of the non-linearity of the
materials; ii) the time-order and iii) the characteris-
tic times. On one hand, if linear material behavior
is considered, then the material parameters reduces
to two and coalesces in creep and relaxation, that is
linear-order hereditariness. On the other hand if ma-
terial non-linearity is experienced then the three ma-
terial parameters observed in creep and relaxations
do not correspond each other and, in this study, the
specific relations among them have been reported for
the case of power-law non-linearity as in Nutting re-
lations.
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The results obtained in this section was listed in
tables 1 and 2 reporting the averaged data of mea-
sured creep parameters for hamstring ligaments and
patellar tendons in figs(3,4,7,8) at each level of the
stress, namely α and β in column two and three.
Measured values of the corresponding parameters for
relaxations were reported in columns three and five
whereas their analytic estimates have been reported
in columns four and six.

σ[MPa] α β δ β/α

16.26 0.5945 0.02461 0.0414 0.0414
9.98 0.4249 0.0232 0.05473 0.0547
8.60 0.5112 0.0232 0.0455 0.0454
5.65 0.7349 0.0326 0.0437 0.0444
2.60 0.6459 0.0485 0.0369 0.0751

σ[MPa] γ 1/α
16.26 1.6819 1.6818
9.98 2.3511 2.2534
8.60 1.9571 1.9561
5.65 1.3698 1.3607
2.60 1.5481 1.5482

Table 1: parameters for Patellar tendons

σ[MPa] α β δ β/α

7.58 0.7112 0.0362 0.0500 0.0509
6.88 0.3841 0.0224 0.0566 0.0583
5.37 0.5448 0.0294 0.0528 0.0540
4.55 0.6228 0.0291 0.0426 0.0468
2.21 0.7705 0.0192 0.0277 0.0249

σ[MPa] γ 1/α
7.58 1.4197 1.4059
6.88 2.6108 2.6034
5.37 1.9029 1.8355
4.55 1.699 1.6056
2.21 1.2777 1.2978

Table 2: parameters for Patellar tendons

The observation of the data obtained with the
proposed model of non-linear hereditariness showed
that, beside a small difference unavoidable for data
scattering, estimated and measurements presented
fair agreement.

3.3. The stochastic model of non-linear hereditari-
ness

Results collected in experimental campaign re-
ported in Sec.2 showed that data scattering observed
in experimental tests result in averaged expressions
of the strain evolution µε (t) and µσ̄ (t) as well as in
standard deviation, namely S ε (t) and S σ̄ (t).

In this section we assume that the source of data
scattering is due to the outcomes of the characteris-
tic times of the material, considered a random vari-
ables namely, τc → Tc and τr → Tr with prescribed
probability density functions pτc (τc) and pτr (τr), re-
spectively for the characteristic times in creep and
relaxations.

Under these circumstances the random description
of the stress/strain evolution equations read, in creep
and relaxation, respectively:

E (t) =

(
1
Tc

)β
σ̄αtβ

Γ (β + 1)
(20a)

Σ (t) =

(
1
Tr

)−δ
εγt−δ

Γ (δ)
(20b)

Eqs.(20a,20b)) allow for the evaluation of the av-
erages of the stress and strain functions as:

µ (t) =<

(
1
Tc

)β
>

σ̄αtβ

Γ (β + 1)
(21a)

µσ̄ (t) =<

(
1
Tr

)−δ
>
εγt−δ

Γ (δ)
(21b)

where < • > denotes the mathematical expectation
operator that reads:

<

(
1
Tc

)β
>=

∞∫
−∞

(
1
τc

)β
pc (τc) dτc (22a)

<

(
1
Tr

)−
δ >=

∞∫
−∞

(
1
τr

)δ
pr (τr) dτr (22b)

Similar comments hold true also for the mean square
error of the random functions E (t) and Σ (t) resulting
into:
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S ε (t) =< (E (t) − µε (t))2 >=< E(t)2 > −µε(t)2

(23a)

S σ̄ (t) =< (Σ (t) − µσ̄ (t))2 >=< Σ(t)2 > −µσ̄(t)2

(23b)

with second-order moments:

< E(t)2 >=<

(
1
Tc

)2β

>
σ̄2αt2β

Γ(1 + β)2 (24a)

< Σ(t)2 >=<

(
1
Tr

)−2δ

>
ε2γt−2δ

Γ(δ)2 (24b)

and the mathematical expectation reads:

<

(
1
Tc

)2β

>=

∞∫
−∞

(
1
τc

)2β

pc (τc) dτc (25a)

<

(
1
Tr

)2δ

>=

∞∫
−∞

(
1
τr

)2δ

pr (τr) dτr (25b)

In the following we assume that the probability den-
sity functions pτc (τc) and pτr (τc) are described by
uniform density in the interval [τ̄c − ac; τ̄c + aC] and
[τ̄r − ar; τ̄r + ar] with 2ar and 2ac the amplitude of
the interval representing the boundary of the charac-
teristic times.

The results of the proposed model of random
hereditariness was reported in figs.(9,10,11,12) with
solid lines for the averaged and the second-order
statistics of the strain evolution and stress decay in
conjunction with the amplitude of the interval of the
pdf obtained by best fitting of the data to characterize
the density function.

Observation of figs.(9,10,11,12) shows that the
second-order moments of data scattering is well de-
scribed by the proposed random model of the char-
acteristic times reported in this section.

Figure 12: second-order moment relaxation Patellar tendons

Figure 9: second-order moment creep hamstring ligaments

Figure 10: second-order moment creep Patellar tendons

In passing we observe also that the relation among 
the characteristic times τr and τc provided in

8

Figure 11: second-order moment relaxation hamstring 
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sec.(3.2) holds true also with the random description
of the characteristic times as:

< Tc >=< Tr > Γ(β + 1)1/αδΓ(δ)1/δ (26a)

< Tc
2 >=< Tr

2 > Γ(β + 1)2/αδΓ(δ)2/δ (26b)

allowing to define the statistics of the characteristic
times with only the relaxation or the creep tests.

4. Conclusions

In this study a random model for the 1D non-linear
hereditariness of human tendons and ligaments was
proposed.
Non-linear hereditariness was observed by data ob-
tained during the experimental campaign on liga-
ments and tendons of the human knee showing a
marked stress-dependence and the strain influence on
creep and relaxations of fibrous tissues respectively.
This study specifically showed that averaged val-
ues and standard deviations of the experimental data
yielded to averaged material parameters that were re-
lated in order to achieve creep parameters from re-
laxation measures as well as relaxation parameters
on creep measures.

Data scattering involved in the experimental mea-
sures have been represented with a random model as-
suming that the characteristic times in creep and re-
laxation are modelled as random variables with pre-
scribed probability density. The parameters of the
density may be obtained by the measured first and
second-order statistics of the creep and relaxation ob-
tained from the experimental campaign.

A monte-carlo simulation conducted with the pro-
posed random model shows that first-order statistics
obtained with the proposed approach coalesces with
the measured data allowing to use the random ap-
proach introduced in sec.3.3 for the prediction of the
mechanical outcomes in terms of increments of the
strain and the decaying of the stress in tendons and
ligaments.
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