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ABSTRACT

We study a repeated information design problem faced by an informed sender who tries to influence 
the behavior of a self-interested receiver. We consider settings where the receiver faces a sequential 
decision making (SDM) problem. At each round, the sender observes the realizations of random events 
in the SDM problem. This begets the challenge of how to incrementally disclose such information 
to the receiver to persuade them to follow (desirable) action recommendations. We study the case 
in which the sender does not know random events probabilities, and, thus, they have to gradually 
learn them while persuading the receiver. We start by providing a non-trivial polytopal approximation 
of the set of sender’s persuasive information structures. This is crucial to design efficient learning 
algorithms. Next, we prove a negative result: no learning algorithm can be persuasive. Thus, we 
relax persuasiveness requirements by focusing on algorithms that guarantee that the receiver’s regret 
in following recommendations grows sub-linearly. In the full-feedback √setting—where the sender 
observes all random events realizations—, we provide an algorithm with Õ( T ) regret for both the 
sender and the receiver. Instead, in the bandit-feedback setting—where the sender only observes the 
realizations of random events actually occurring in the SDM problem—, we design an algorithm 
that, given an α ∈ [1/2, 1] as input, ensures Õ(T α) and Õ(T max{α,1− α2 }) regrets, for the sender and 
the receiver respectively. This result is complemented by a lower bound showing that such a regrets 
trade-off is essentially tight.

1 Introduction

Bayesian persuasion [Kamenica and Gentzkow, 2011] (a.k.a. information design) is the problem faced by an informed
sender who wants to influence the behavior of a self-interested receiver via the provision of payoff-relevant information.
This captures the problem of “who gets to know what”, which is fundamental in all economic interactions. Thus,
Bayesian persuasion is ubiquitous in real-world problems, such as, e.g., online advertising Bro Miltersen and Sheffet
[2012], voting [Alonso and Câmara, 2016, Castiglioni and Gatti, 2021, Castiglioni et al., 2020a], traffic routing [Bhaskar
et al., 2016, Castiglioni et al., 2021a], security [Rabinovich et al., 2015, Xu et al., 2016], auctions [Emek et al., 2014,
Badanidiyuru et al., 2018, Bacchiocchi et al., 2022, Castiglioni et al., 2022b], and marketing [Babichenko and Barman,
2017, Candogan, 2019].
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We study Bayesian persuasion in settings where the receiver plays in a sequential decision making (SDM) problem. An
SDM problem is characterized by a tree structure made by: decision nodes, where the receiver takes actions, and chance
nodes, in which partially observable random events occur. The sender perfectly observes the realizations of random
events, and their goal is to incrementally disclose the acquired information to induce the receiver towards desirable
outcomes. In order to do so, the sender commits to a signaling scheme specifying a probability distribution over action
recommendations for the receiver at each decision node. Specifically, the sender commits to a persuasive signaling
scheme, meaning that the receiver is incentivized to follow recommendations. We consider the case of a farsighted
receiver, meaning that they take into account all the possible future events when deciding whether to deviate or not
from recommendations at each decision node.

With some notable exceptions (see, e.g., [Zu et al., 2021]), Bayesian persuasion models in the literature make the
stringent assumption that both the sender and the receiver know the prior, which, in our setting, is defined by the
probabilities of random events in the SDM problem. We relax such an assumption by considering an online learning
framework in which the sender, without any knowledge of the prior, repeatedly interacts with the receiver to gradually
learn the prior while still being persuasive.

Original contributions. Our goal is to design online learning algorithms that are no-regret for the sender, while being
persuasive for the receiver. We start by providing a non-trivial polytopal approximation of the set of sender’s persuasive
signaling schemes. This will be crucial in designing efficient (i.e., polynomial-time) learning algorithms, and it also
shows how a sender-optimal signaling scheme can be found in polynomial time in the offline version of our problem,
which may be of independent interest. Next, we prove a negative result: without knowing the prior, no algorithm can be
persuasive at each round with high probability. Thus, we relax persuasiveness requirements by focusing on learning
algorithms that guarantee that the receiver’s regret in following recommendations grows sub-linearly, while guaranteeing
the same for sender’s regret. First, we study the full-feedback case, where the sender observes the realizations of
all the random events that may potentially happen in the SDM problem. In such a setting, we provide an algorithm
with Õ(

√
T ) regret for both the sender and the receiver. Then, we focus on the bandit-feedback setting, where the

sender only observes the realizations of random events on the path in the tree traversed during the SDM problem. In
this case, we design an algorithm that achieves Õ(Tα) sender’s regret and Õ(Tmax{α,1−α2 }) receiver’s regret, for any
α ∈ [1/2, 1] given as input. The crucial component of the algorithm is a non-trivial exploration phase that uniformly
explores the tree defining the SDM problem to build suitable estimators of the prior. This is needed since, with bandit
feedback, playing a signaling scheme may provide insufficient information about its persuasiveness. Finally, we provide
a lower bound showing that the regrets trade off achieved by our algorithm is tight for α ∈ [1/2, 2/3].

Related works. Some works addressed Bayesian persuasion in Markov decision processes (MDPs). Gan et al.
[2022] and Wu et al. [2022] show how to efficiently find a sender-optimal policy when the receiver is myopic (i.e., it
only optimizes one-step rewards) in MDPs with infinite and finite horizon, respectively. Moreover, the former assume
that the environment is known, while the latter do not. These works considerably differ from ours, since we assume a
farsighted receiver and also model partial observability of random events.1 Another work close to ours is [Zu et al.,
2021], which studies a (non-sequential) persuasion problem in which the sender and the receiver do not know the
prior and interact online. Zu et al. [2021] provide a persuasive learning algorithm, while, in our model, we show
that the ignorance of the prior precludes the possibility of committing to persuasive signaling schemes, and, thus, we
need to resort to new techniques to circumvent the issue. Another line of research, that uses similar techniques as
the one employed in this work, studies learning in sequential decision making problems while satisfying unknown
constraints [Bernasconi-de-Luca et al., 2021, Bernasconi et al., 2022]. Finally, Celli et al. [2020a] study Bayesian
persuasion with multiple receivers interacting in an imperfect-information sequential game. Differently from ours, their
model adopts a different notion of persuasiveness, known as ex ante persuasiveness, and it assumes that the prior is
known. Other works study learning problems in which the sender does not know the receivers’ payoffs (but knows the
prior); see, e.g., [Castiglioni et al., 2020b, 2021b, 2022a].

2 Preliminaries

2.1 Sequential decision making problems

An instance of an SDM problem is defined by a tree structure, utilities, and random events probabilities. The tree
structure has a set of nodesH := Z ∪Hd ∪Hc, where: Z contains all the terminal nodes in which the problem ends
(corresponding to the leaves of the tree),Hd is the set of decision nodes in which the agent acts, whileHc is the set of

1Gan et al. [2022] also study a model with farsighted receiver, where they show that the problem of finding a sender-optimal
policy is NP-hard. Thus, they do not provide any algorithmic result for such a model.
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chance nodes where random events occur. Given any non-terminal node h ∈ H \ Z , we let A(h) be the set of arcs
outgoing from h. If h ∈ Hd, then A(h) is the set of receiver’s actions available at h, while, if h ∈ Hc, then A(h)
encodes the possible outcomes of the random event occurring at h. Furthermore, the utility function u : Z → [0, 1]
defines the agent’s payoff u(z) when the problem ends in terminal node z ∈ Z . Finally, each chance node h ∈ Hc is
characterized by a probability distribution µh ∈ ∆A(h) over the possible outcomes of the corresponding random event,
with µh(a) denoting the probability of action a ∈ A(h).2

In an SDM problem, the agent has imperfect information, since they do not perfectly observe the outcomes of random
events. Thus, the set of decision nodes Hd is partitioned into information sets (infosets for short), where an infoset
I ⊆ Hd is a subset of decision nodes that are indistinguishable for the agent. We denote the set of infosets as I. For
every infoset I ∈ I and pair of nodes h, h′ ∈ I , it must be the case that A(h) = A(h′) =: A(I), otherwise the agent
could distinguish between the two nodes. We assume that the agent has perfect recall, which means that they never
forget information once acquired. Formally, this is equivalent to assume that, for every infoset I ∈ I, all the paths from
the root of the tree to a node h ∈ I identify the same ordered sequence of agent’s actions.

2.2 Bayesian persuasion in sequential decision making problems

We study Bayesian persuasion in SDM (BPSDM) problems. These extend the classical Bayesian persuasion frame-
work [Kamenica and Gentzkow, 2011] to SDM problems by introducing an exogenous agent that acts as a sender by
issuing signals to the decision-making agent (the receiver).3 By following the Bayesian persuasion terminology, the
probability distributions µh for each chance node h are collectively referred to as the prior. Thus, the sender observes
the realizations of random events occurring in the SDM problem and can partially disclose information to influence
the receiver’s behavior. Moreover, the sender has their own utility function defined over terminal nodes, denoted as
f : Z → [0, 1], and their goal is to commit to a publicly known signaling scheme that maximizes their utility in
expectation with respect to the prior, the selected signaling scheme, and the receiver’s strategy.

Formally, a signaling scheme for the sender defines a probability distribution φh ∈ ∆S(h) at each decision node h ∈ Hd,
where S(h) is a finite set of signals available at h. During the SDM problem, when the receiver reaches a node h ∈ Hd
belonging to an infoset I ∈ I, the sender draws a signal s ∼ φh and communicates it to the receiver. Then, based
on the history of signals observed from the beginning of the SDM problem (s included), the receiver computes a
posterior belief over the nodes belonging to the infoset I and plays so as to maximize their expected utility in the SDM
sub-problem that starts from I , taking into account the just acquired information.

As customary in these settings, a simple revelation-principle-style argument allows us to focus on signaling schemes
that are direct and persuasive [Arieli and Babichenko, 2019, Kamenica and Gentzkow, 2011]. In particular, a signaling
scheme is direct if signals correspond to action recommendations, namely S(h) = A(h) for all h ∈ Hd. A direct
signaling scheme is persuasive if the receiver is incentivized to follow action recommendations issued by the sender.
Moreover, we assume that, if the receiver does not follow action recommendations at some decision node, then
the sender stops issuing recommendations at nodes later reached during the SDM problem. This is without loss of
generality.4

2.3 The sequence-form representation

The sequence form is a commonly-used, compact way of representing (mixed) strategies in SDM problems [Koller
et al., 1996]. In this work, the sequence-form representation will be employed for receiver’s strategies, and to encode
the signaling schemes and priors, as we describe in the following.

Receiver’s strategies. Given any h ∈ H, we let σr(h) be the ordered sequence of receiver’s actions on the path from
the root of the tree to node h. By the perfect recall assumption, given any infoset I ∈ I, it holds that σr(h) = σr(h

′) =:
σr(I) for every pair of nodes h, h′ ∈ I . Thus, we can identify sequences with infoset-action pairs, with σ = (I, a)
encoding the sequence of actions obtained by appending action a ∈ A(I) at the end of σr(I), for any infoset I ∈ I.
Moreover, ∅ denotes the empty sequence. Hence, the receiver’s sequences are Σr := {(I, a) | I ∈ I, a ∈ A(I)}∪{∅}.
In the sequence-form representation, mixed strategies are defined by specifying the probability of playing each sequence
of actions. Thus, a receiver’s strategy is represented by a vector x ∈ [0, 1]|Σr|, where x[σ] encodes the realization
probability of sequence σ ∈ Σr. Furthermore, a sequence-form strategy is well-defined if and only if it satisfies the

2For a finite set X we denote with ∆X the set of probability distributions over X .
3Appendix A shows that BPSDM reduces to classical Bayesian persuasion when there is no sequentiality.
4For a discussion on a similar problem in the field of correlation in sequential games, we refer to [Morrill et al., 2021, Von Stengel

and Forges, 2008].
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following linear constraints:

x[∅] = 1 and x[σr(I)] =
∑
a∈A(I) x[σr(I)a] ∀I ∈ I.

We denote by Xr the polytope of all receiver’s sequence-form strategies. We will also need to work with the sets
of receiver’s strategies in the SDM sub-problem that starts from an infoset I ∈ I, formally defined as Xr,I :=
{x ∈ Xr | x[σr(I)] = 1} .

Signaling schemes. We represent signaling schemes in sequence form by leveraging the fact that the sender can be
thought of as a perfect-information agent who plays at the decision nodes of the SDM problem, since their actions
correspond to recommendations for the receiver. Thus, since sender’s infosets correspond to decision nodes, their
sequences Σs := {(h, a) | h ∈ Hd, a ∈ A(h)} ∪ {∅}. Then, we denote the polytope of (sequence-form) signaling
schemes as Φ ⊆ [0, 1]|Σs|, where each signaling scheme is represented as a vector φ ∈ [0, 1]|Σs| satisfying:

φ[∅] = 1 and φ[σs(h)] =
∑
a∈A(h) φ[σs(h)a] ∀h ∈ Hd,

where, similarly to σr(h) for the receiver, σs(h) denotes the sender’s sequence identified by h ∈ H. We also define
Π := Φ ∩ {0, 1}|Σs| as the set of deterministic signaling schemes, which are those that recommend a single action with
probability one at each decision node.

Priors. We also encode prior probability distributions µh by means of the sequence form. Indeed, these can be though
of as elements of a fixed strategy played by a (fictitious) perfect-information agent that acts at chance nodes. Thus, for
such a chance agent, we define Σc, Xc, and σc(h) as their counterparts previously introduced for the receiver. Moreover,
in the following, we denote by µ? ∈ Xc the (sequence-form) prior, recursively defined as follows:

µ?[∅] := 1 and µ?[σc(h)a] := µ?[σc(h)]µh(a) ∀h ∈ Hc,∀a ∈ A(h).

Ordering of sequences. For the sake of presentation, we introduce a partial ordering relation among sequences.
Given two sequences σ = (I, a) ∈ Σr and σ′ = (J, b) ∈ Σr, we write σ � σ′ (read as σ precedes σ′), whenever there
exists a path in the tree connecting a node in I to a node in J , and such a path includes action a. We adopt analogous
definitions for sequences in Σs and Σc.5

3 Learning to persuade

In this work, we relax the strong assumption that both the sender and the receiver know the prior µ? by casting the
BPSDM problem into an online learning framework in which the sender repeatedly interacts with the receiver over a
time horizon of length T . At each round t ∈ [T ], the interaction goes as follows:6 (i) the sender commits to a signaling
scheme φt ∈ Φ; (ii) a vector yt ∈ {0, 1}|Σc| encoding realizations of random events is drawn according to µ?; (iii)
the sender and the receiver play an instance of the (one-shot) BPSDM problem (detailed in Section 2.2), in which
the sender commits to φt, random events at chance nodes are realized as defined by yt, and the receiver sticks to the
recommendations issued by the sender; and (iv) the sender observes a feedback on the realization of random events at
chance nodes, which can be of two types: full feedback when the sender observes yt, which specifies the realizations of
all the random events at chance nodes that are possibly reachable during the SDM problem; bandit feedback when the
sender observes the terminal node zt ∈ Z reached at the end of the SDM problem. The latter is equivalent to observing
the realizations of random events at the chance nodes that are actually reached during the SDM problem, namely σc(zt).

By letting Φ�(µ?) be the set of persuasive signaling schemes, i.e., such that the receiver is incentivized to following
recommendations (a formal definition is provided in Definition 2), the goal of the sender is to select a sequence of
signaling schemes, namely φ1, . . . ,φT , which maximizes their expected utility, while guaranteeing that each signaling
scheme φt is persuasive, namely φt ∈ Φ�(µ?).

We measure the performance of a sequence φ1, . . . ,φT of signaling schemes by comparing it with an optimal (fixed)
persuasive signaling scheme. Formally, given a signaling scheme φ ∈ Φ, we first define U(φ,µ?), respectively
F (φ,µ?), as the expected utility achieved by the receiver, respectively the sender, whenever the former follows action
recommendations. These can be expressed as linear functions of φ, which, for any µ ∈ Xc, are defined as follows:

U(φ,µ) :=
∑
z∈Z

µ[σc(z)]φ[σs(z)]u(z), F (φ,µ) :=
∑
z∈Z

µ[σc(z)]φ[σs(z)]f(z).

5We refer the reader to Appendix B for an example of SDM problem and its sets of sequences.
6Throughout this work, for n ∈ N, we denote with [n] the set {1, . . . , n}.
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Finally, by letting φ? ∈ argmaxφ∈Φ�(µ?) F (φ,µ?) be an optimal (fixed) persuasive signaling scheme, the sender’
performance over T rounds is measured by the (cumulative) sender’s regret:

RT :=
∑
t∈[T ]

(
F (φ?,µ?)− F (φt,µ

?)
)
.

The goal is to design learning algorithms (for the sender) which select sequences of persuasive signaling schemes such
that RT grows asymptotically sub-linearly in T , namely RT = o(T ).

4 On the characterization of persuasive signaling schemes

4.1 A local decomposition of persuasiveness

In this section, we formally introduce the set of persuasive signaling schemes Φ�(µ?) as the set of signaling schemes
for which the receiver’s expected utility by following recommendations is greater than the one provided by an optimal
deviation policy (DP).7 In addition, we show how to decompose any DP into components defined locally at each infoset,
which will be crucial in the following Section 4.2. Intuitively, a DP for the receiver is specified by two elements: (i) a
set of deviation points in which the DP prescribes to stop following action recommendations; and (ii) the continuation
strategies to be adopted after deviating from recommendations.

We represent deviation points by vectors ω ∈ {0, 1}|Σr|, which are defined so that ω[σ] = 1 if and only if the DP pre-
scribes to deviate upon observing the sequence of action recommendations σ ∈ Σr. Moreover, by leveraging the w.l.o.g.
assumption that the sender stops issuing recommendations after the receiver deviated from them, we focus on DPs such
that each path from the root of the tree to a terminal node involves only one deviation point. As a result, the set of all
valid vectors ω ∈ {0, 1}|Σr| is formally defined as Ω :=

{
ω ∈ {0, 1}|Σr|

∣∣ ∑
σ∈Σr:σ�σr(z) ω[σ] ≤ 1 ∀z ∈ Z

}
.

We represent the continuation strategies of DPs by introducing the set of continuation strategy profiles, denoted as
P :=×σ=(I,a)∈Σr

Xr,I . A continuation strategy profile ρ ∈ P , with ρ = (ρσ)σ∈Σr , defines a strategy ρσ ∈ Xr,I for
every receiver’s sequence σ = (I, a) ∈ Σr. Intuitively, ρσ is the strategy for the SDM sub-problem starting from infoset
I that is used by the receiver after deviating upon observing sequence σ ∈ Σr. As a result, any pair (ω,ρ) ∈ Ω×P
specifies a valid DP; formally:

Definition 1 (Deviation policy). Given a vector ω ∈ Ω and a profile ρ ∈ P , the (ω,ρ)-DP prescribes to follow
sender’s recommendations until action a is recommended at infoset I for some sequence σ = (I, a) such that ω[σ] = 1;
from that point on, it prescribes to play according to strategy ρσ .

We denote by Uω→ρ(φ,µ?) the receiver’s expected utility obtained with a (ω,ρ)-DP, so that we can state the following
formal definition of persuasive signaling schemes.

Definition 2 (Persuasiveness). A signaling scheme φ ∈ Φ is ε-persuasive, namely φ ∈ Φ�ε (µ
?), if

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤ ε. (1)

Moreover, a signaling scheme φ ∈ Φ is persuasive, namely φ ∈ Φ�(µ?), if it is 0-persuasive.

Intuitively, the above definition states that a signaling scheme is ε-persuasive if the receiver’s expected utility by
following recommendations is at most ε less than the one obtained by an optimal DP, which is a DP maximizing
receiver’s expected utility.

Our local decomposition of DPs is based on suitably-defined, simple deviation policies, which we call single-point DPs
(SPDPs). These are a special case of DPs that stop following sender’s action recommendations only when a specific
single infoset is reached and a particular action is recommended therein. 8 SPDPs are formally defined as follows:

Definition 3 (Single-point deviation strategy). Given a receiver’s sequence σ = (I, a) ∈ Σr and a receiver’s
strategy ρσ ∈ Xr,I for the SDM sub-problem starting from infoset I , the (σ,ρσ)-SPDP prescribes to follow sender’s
recommendations until action a is recommended at infoset I; from that point on, the strategy prescribes to play
according to ρσ .

7For ease of exposition, all the definitions and results in this section are provided for the prior µ?. It is straightforward to
generalize them to the case of a generic µ ∈ Xc.

8SPDPs are based on the idea of trigger agents, which have been originally introduced for computing correlated equilibria in
sequential games [Celli et al., 2020b, Dudik and Gordon, 2012].
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We denote by Uσ→ρσ (φ,µ?) the receiver’s expected utility obtained by following an (σ,ρσ)-SPDP.

The following theorem provides the key result underlying our decomposition.9 It shows that the difference between the
utility achieved by a (ω,ρ)-DP and that obtained by following recommendations can be decomposed into the sum over
all the sequences σ ∈ Σr of analogous differences defined for the (σ,ρσ)-SPDPs, where each difference is weighted by
ω[σ].

Theorem 1. Given a signaling scheme φ ∈ Φ and a (ω,ρ)-DP, it holds:

Uω→ρ(φ,µ?)− U(φ,µ?) =
∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
.

4.2 A polytopal approximation of the set of persuasive signaling schemes

In the following, we show how to exploit Theorem 1 to provide an approximate characterization of the set Φ�ε (µ
?) using

a polynomially-sized polytope. First, we state a corollary of Theorem 1 showing that persuasiveness can be bounded by
suitably defined SPDPs. Formally:10

Corollary 1. Given a signaling scheme φ ∈ Φ, the following holds:

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤
∑

σ=(I,a)∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

.

By exploiting Corollary 1, we introduce the following definition of ε-persuasive polytope (Lemma 1 justifies the term
polytope), as the set of signaling schemes for which there is no (σ,ρσ)-SPDP that achieves a receiver’s utility that
exceeds by more than ε/|Σr| that of following recommendations.

Definition 4 (Persuasive polytope). The ε-persuasive polytope is defined as:

Λε(µ
?) :=

{
φ ∈ Φ

∣∣∣ max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?) ≤ ε/|Σr| ∀σ ∈ Σr

}
.

Moreover, we denote by Λ(µ?) the 0-persuasive polytope.

As we show in the following lemma, Λε(µ
?) is an efficiently-representable polytope.

Lemma 1. The set Λε(µ
?) can be described by means of a polynomial number of linear constraints.

The following lemma shows that the ε-persuasive polytope is contained in Φ�ε (µ
?), and that the set of persuasive

signaling schemes is contained in the former. Formally:

Lemma 2. It is always the case that Φ�(µ?) ≡ Λ(µ?) ⊆ Λε(µ
?) ⊆ Φ�ε (µ

?).

Lemma 2 also implies that the polytope Λ(µ?) exactly characterizes the set of persuasive signaling schemes Φ�(µ?).
Thus, by adding the maximization of the sender’s expected utility F (φ,µ?) on top of the linear constraints describing
Λ(µ?), we obtain a polynomially-sized linear program for finding an optimal sender’s signaling scheme in any instance
of the BPSDM problem in which µ? is known.

Theorem 2. The BPSDM problem can be solved in polynomial time when the prior µ? is known.

5 Always being persuasive is impossible: a relaxation is needed

In this section, we prove that it is impossible to design an algorithm that returns a sequence of persuasive signaling
schemes for a generic BPSDM problem. Motivated by this result, we introduce a new online learning problem that
relaxes persuasiveness requirements.

First, we provide the following impossibility result:

Theorem 3 (Impossibility of persuasiveness). There exists a constant γ ∈ (0, 1) such that no algorithm can guarantee
to output a sequence φ1, . . . ,φT of signaling schemes such that, with probability al least γ, all the signaling schemes
φt are persuasive.

9All the proofs are provided in the Appendices D, E, F, and G.
10Given any x ∈ R, we let [x]+ := max(x, 0).
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Notice that this result is in contrast with what happens in the basic case of non-sequential Bayesian persuasion (see
the work by Zu et al. [2021]), where it is possible to design no-regret algorithms that output sequences of signaling
schemes that are guaranteed to be persuasive with high probability.

Theorem 3 motivates the introduction of a less restrictive requirement on the signaling schemes output by a learning
algorithm. In particular, we look for algorithms that output sequences φ1, . . . ,φT of signaling schemes such that the
expected utility loss incurred by the receiver by following sender’s recommendations rather than playing an optimal DP
is small. To capture such a requirement, we introduce the following definition of (cumulative) receiver’s regret:

VT :=
∑
t∈[T ]

max
(ω,ρ)∈Ω×P

Uω→ρ(φt,µ
?)−

∑
t∈[T ]

U(φt,µ
?).

Therefore our goal becomes that of designing algorithms guaranteeing that the cumulative receiver’s regret grows
sub-linearly in T , namely VT = o(T ), while continuing to ensure that RT = o(T ).

In Sections 6 and 7, we design algorithms achieving sub-linear VT and RT for the learning problem described in
Section 3. The algorithms implement two functions: (i) SELECTSTRATEGY(), which, at each t ∈ [T ], draws a signaling
scheme φt ∈ Φ on the basis of the internal state of the algorithm; and (ii) UPDATE(ot), which modifies the internal
state on the basis of the observation ot received as feedback. Each algorithm alternates these two functions as the
interaction between the sender and the receiver unfolds as described in Section 3. Specifically, under full feedback the
sender observes yt and calls UPDATE(yt), while in the bandit feedback it observes zt and calls UPDATE(zt).

6 Learning with full feedback

Algorithm 1: Full-feedback algorithm
function SELECTSTRATEGY():
φt ← arg max

φ∈Λβt (µ̂t)
F (φ, µ̂t)

return φt

function UPDATE(yt):

µ̂t+1[σ]← 1
t

t∑
τ=1

yτ [σ] ∀σ ∈ Σc

εt+1 ←
√

log(2T |Σc|/δ)
2t

βt+1 ← 2|Z||Σr|εt+1

We start by providing a learning algorithm (Algorithm 1) working with full
feedback, i.e., when the sender observes the realizations of all the possi-
ble random events. The main idea of the algorithm is to choose signaling
schemes φt that belong to suitable sets Λβt(µ̂t) which are designed to be
“close” to the set Φ�(µ?) of persuasive signaling schemes. At each round
t ∈ [T ], Algorithm 1 defines the desired set as follows. First, it maintains
an estimate µ̂t of µ?; formally, it defines a radius εt such that the event
E := {‖µ̂t − µ?‖∞ ≤ εt ∀t ∈ [T ]} holds with probability at least 1− δ. Sec-
ond, it defines a parameter βt such that, conditionally to the realization of the
event E , the following two conditions hold: (i) the decision space Λβt(µ̂t)
contains the optimal signaling scheme φ?; (ii) Λ2βt(µ

?) contains the signal-
ing scheme φt. Intuitively, the first condition is needed to have low sender’s
regret, while the second one yields signaling schemes that are approximately
persuasive.11

The polytopal approximation that we provide in Section 4.2 plays a crucial role in the complexity of Algorithm 1.
Specifically, it allows it to select the desired φt in polynomial time by optimizing over the set Λβt(µ̂t), which can be
done efficiently. The use of the set Λβt(µ̂t) over Φ�βt(µ̂t) is necessary due to the fact that the latter is not known to
admit an efficient representation. Formally:
Theorem 4. Given any δ ∈ (0, 1), with probability at least 1− δ, Algorithm 1 guarantees:

RT = O
(
|Z|
√
T log(T |Σc|/δ)

)
, VT = O

(
|Σr||Z|

√
T log(T |Σc|/δ)

)
.

Moreover, the algorithm runs in polynomial time.

7 Learning with bandit feedback

In this section, we build on Algorithm 1 to deal with bandit feedback, i.e., when at each round t ∈ [T ] the sender only
observes the terminal node zt reached at the end of the SDM problem. The main difficulties of such a setting can be
summarized by the following observations. First, the feedback zt only reveals partial information about the prior, and
such information also depends on the selected signaling scheme φt. Second, even if the sender plays a signaling scheme
φ ∈ Φ for an arbitrarily large number of rounds, there is no guarantee that they collect enough information to tell
whether φ ∈ Φ�ε (µ

?) or not for some ε > 0. Indeed, the persuasiveness of a signaling scheme depends on all receiver’s
utilities in the SDM problem, and some parts of the tree may not be reached during a sufficiently large number of rounds
by committing to φ. Thus, any algorithm for the bandit-feedback setting must guarantee a suitable level of exploration
over the entire tree, so as to keep track of the entity of the violation of persuasiveness constraints.

11See Lemma 9 and 10 in Appendix F for the formal statements of these properties.
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Algorithm 2: Bandit-feedback algorithm
function SELECTSTRATEGY():

if t ≤ N then . First Phase
σ = (h, a)← arg minσ∈Σc Ct[σ]
Σs 3 σ′ ← σs(h)
Choose φt ∈ Φ : φt[σ

′] = 1
else . Second Phase
φt ← arg max

φ∈ΛβN
(µ̂N )

max
µ∈Ct(δ)

F (φ,µ)

return φt
function UPDATE(zt):

Build path pt ∈ {0, 1}|Σc| from σc(zt)
Sample πt ∼ φt s.t. pt[σ] = 1⇒ σ ∈ Σ↓(πt)
for σ ∈ Σ↓(πt) do

Ct+1[σ]← Ct[σ] + 1

µ̂t+1[σ]← 1
Ct+1[σ]

∑Ct+1[σ]
τ=1 pτ [σ]

εt+1[σ]←
√

log(4T |Σc|/δ)
2Ct+1[σ]

Ct+1(δ)←
{
µ
∣∣∣ |µ[σ]− µ̂t+1[σ]| ≤ εt+1[σ] ∀σ ∈ Σc

}
βt+1 ← 2|Z||Σc|

√
|Σc| log(4T |Σc|/δ)

2(t+1)

We design a two-phase algorithm, whose pseudo-code is pro-
vided in Algorithm 2. The algorithm takes as input the number
N ∈ [T ] of rounds devoted to the first phase guaranteeing the
necessary amount of exploration, as detailed in Section 7.1.
During this phase, the SELECTSTRATEGY() procedure imple-
ments an efficient deterministic uniform exploration policy,
which builds an unbiased estimator µ̂N of µ?. This allows
to restrict the space of feasible signaling schemes used in the
subsequent phase to those that are approximately persuasive,
i.e., those in the set ΛβN (µ̂N ). In Section 7.2, we discuss the
second phase of the the algorithm, composed by the rounds
t > N , during which the algorithm focuses on the minimization
of sender’s regret by exploiting the optimism in face of uncer-
tainty principle. Finally, in Section 7.3, we provide a lower
bound on the trade-off between sender’s and receiver’s regrets,
matching the upper bounds achieved by Algorithm 2 for a large
portion of the trade-off frontier. This result formally motivates
the necessity of the uniform exploration which is performed in
the first phase of the algorithm.

7.1 Minimizing the receiver’s regret

At each round t ∈ [T ], the sender observes a terminal node zt ∈ Z that uniquely determines a path in the tree defining
the SDM problem. We encode such a path by means of a vector pt ∈ {0, 1}|Σc| such that pt[σ] = 1 if and only if the
chance sequence σ ∈ Σc lies on the path from the root of the tree to zt, namely σ � σc(zt). If the sender commits
to a signaling scheme φt ∈ Φ, then it is easy to see that, for every σ = (h, a) ∈ Σc, the element pt[σ] is distributed
as a Bernoulli of parameter φt[σs(h)]µ?[σ]. The crucial observation behind the design of our estimator is that, if the
sender commits to a deterministic signaling schemes πt ∈ Π at some round t ∈ [T ], then for all the chance sequences
σ ∈ Σc that are compatible with πt, i.e., that can be observed when πt is played, we have that pt[σ] is distributed as a
Bernoulli of parameter µ?[σ]. Formally, a sequence σ ∈ Σc is compatible with πt if there exists a chance node h ∈ Hc
and an outcome a ∈ A(h) satisfying σ = (h, a) and πt[σs(h)] = 1. This observation leads to the following result:
Lemma 3. For every deterministic signaling scheme π ∈ Π, let

Σ↓(π) := {σ = (h, a) ∈ Σc | a ∈ A(h) ∧ π[σs(h)] = 1} .
Then, during each round t ≤ N of Algorithm 2, it holds E [pt[σ]] = µ?[σ] for every σ ∈ Σ↓(πt).

Thus, during the first phase, Algorithm 2 builds the desired estimator µ̂N of µ? as follows. At each round t ≤ N ,
after observing the feedback zt, the algorithm samples a deterministic signaling scheme πt ∈ Π according to φt (the
one actually selected at t), so that all the sequences σ ∈ Σc such that pt[σ] = 1 (or, equivalently, σ � σc(zt)) belong
to Σ↓(πt).12 Then, for every σ ∈ Σ↓(πt), the algorithm updates the estimator component µ̂t[σ] according to pt[σ].
Since the probability of visiting a sequence σ ∈ Σc depends on φt (and, thus, can be arbitrarily small), the first N
rounds must be carefully used to ensure that each sequence is explored at least N/|Σc| times. To explore a specific
sequence σ ∈ Σc, we choose a signaling scheme φt such that σ ∈ Σ↓(πt) for every deterministic πt ∼ φt. The
procedure described above is needed for minimizing the receiver’s regret, since, in the second phase, the algorithm
selects signaling schemes φt from ΛβN (µ̂N ). In particular, as shown by the following lemma, Algorithm 2 guarantees
that the receiver’s regret is upper bounded by 2βN at each round t > N , since it defines εt[σ] for each sequence σ ∈ Σc
so that the event Ẽ := {|µ?[σ]− µ̂t[σ]| ≤ εt[σ] ∀(t, σ) ∈ [T ]× Σc} holds with probability at least 1− δ/2.

Lemma 4. Under the event Ẽ , Algorithm 2 guarantees that φt ∈ Λ2βN (µ?) at each round t > N .

7.2 Minimizing the sender’s regret

Algorithm 2 also needs to guarantee small sender’s regret. To do so, we would like that φ? is a valid pick for the
algorithm, i.e., it belongs to ΛβN (µ̂t). However, differently from the full-feedback setting, stopping exploration after
the first N round does not guarantee optimal rates. In order to fix this issue, in the second phase, the algorithm selects
φt optimistically by maximizing the sender’s expected utility F (φ,µ) over both φ ∈ ΛβN (µ̂N ) and µ ∈ Ct(δ), where
Ct(δ) is a suitably-defined confidence set centered around µ̂t such that {µ? ∈ Ct(δ)} ≡ Ẽ , and, thus, it holds with high
probability. This guarantees that maxµ∈Ct(δ) F (φ?,µ) ≥ F (φ?,µ?). Formally:

12The sampling can be done efficiently by a straightforward modification of the recursive procedure in Farina et al. [2021a,b].
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Lemma 5. If the event Ẽ holds, then, for every round t > N , it holds that φ? ∈ ΛβN (µ̂t) and maxµ∈Ct(δ) F (φ?,µ) ≥
F (φ?,µ?).

Thus, F (φt,µ
?) ≈ F (φt, µ̂t) ≥ maxµ∈Ct(δ) F (φ?, µ̂) ≥ F (φ?,µ?) holds in the limit, implying that F (φt,µ

?)
converges to F (φ?,µ?) after sufficiently many rounds. Formally:
Theorem 5. Given any δ ∈ (0, 1) and N ∈ [T ], Algorithm 2 guarantees:

RT = O
(
N +

√
log(T |Σc|/δ)|Σc|T

)
and VT = O

(
N + T |Z|

√
|Σc| log(T |Σc|/δ)/N

)
,

with probability at least 1− δ. Moreover, the algorithm runs in polynomial time.

In contrast to the case with full feedback, the optimization problem solved by Algorithm 2 belongs to the class of
bilinear problems, which are NP-hard in general Hillar and Lim [2013]. However, in Theorem 5 we prove that our
specific problem can be solved in polynomial time. Furthermore, notice that Theorem 5 takes as input the number N of
rounds devoted to the first phase. Given an α ≥ 1/2, by choosing any N = bTαc we get bounds of RT = Õ(Tα) and
VT = Õ(Tmax{α,1−α2 }).

7.3 The lower bound frontier

1
2

2
3

1

1
2

2
3

3
4

1

Order of T in RT

O
rd
er

of
T

in
V
T

Lower Bound
Algorithm 2

Figure 1: Trade-off between RT and VT in
the bandit feedback.

We conclude by showing that the trade offs between VT and RT achieved
by Algorithm 2 are essentially tight. Previously, we provided an intuition as
to why the algorithm needs to uniformly explore the entire tree of the SDM
problem. Here, we provide a lower bound that corroborates such a statement.
In particular, the following theorem shows that, for any α ∈ [1/2, 1], in
order to guarantee a sender’s regret of the order of O(Tα), it is necessary
to suffer a receiver’s regret of the order of Ω(T 1−α/2).13

Theorem 6. For any α ∈ [1/2, 1], there exists a constant γ ∈ (0, 1) such
that no algorithm guarantees both RT = o(Tα) and VT = o(T 1−α/2) with
probability greater than γ.

Figure 1 shows on the horizontal axis the order of the T term in RT , while,
on the vertical axis, it shows the order of the T in VT . The shaded area over the blue line shows the achievable trade
offs, while the marked red line shows the performances proved in Theorem 5. Thus, we show that Algorithm 2 matches
the lower bound for α ∈ [1/2, 2/3]. However, when α ∈ [2/3, 1], the guarantees proved in Theorem 5 diverge from
the ones proved in the lower bound. This is due to the N = bTαc component in the receiver’s regret that becomes
dominant when α ≥ 2/3. We conjecture that it is possible to reduce this term to

√
N , hence matching the lower bound

of Theorem 6. The reason for such a gap between the lower and upper bounds is that, during the first phase, Algorithm 2
utilizes signaling schemes without taking into account their persuasiveness, thus incurring in large receiver’s regret
during the first steps. We leave as future work addressing the question of whether it is possible to design exploration
strategies by only using approximately-persuasive signaling schemes.

13For α ≤ 1/2, a simple reduction from a standard multi-armed bandit problem provides a lower bound of Ω(
√
T ) on both

sender’s regret RT and receiver’s regret VT .
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A Relation with the classical Bayesian persuasion framework

θ1 θi θd

I

a1 aj ak a1 aj ak a1 aj ak

z1,1 z1,j z1,k zi,1 zi,j zi,k zd,1 zd,j zd,k

h0

h1 hi hd
. . . . . .

. . . . . . . . . . . . . . . . . .

Figure 2: Instance of BPSDM problem corresponding to a given instance
of Bayesian persuasion problem.

In this section, we clarify the relationship between
the BPSDM problems that we study in this paper
and the classical Bayesian persuasion framework
introduced by Kamenica and Gentzkow [2011]. In
particular, we show that any instance of the classical
Bayesian persuasion problem can be mapped to an
instance of the BPSDM problem.

A Bayesian persuasion problem instance is defined
by a set A of k := |A| actions for the receiver, a set
S of signals for the sender, and a set Θ of d := |Θ|
possible outcomes of a (single) random event (called
states of nature in the classical Bayesian persuasion
terminology). The receiver’s payoff function is uR :
Θ×A → [0, 1], while the sender’s one is uS : Θ×A → [0, 1]. The sender observes the realized state of nature, which
is drawn according to a commonly-known prior distribution µ ∈ ∆Θ. Then, they partially disclose information about
the state by committing to a signaling scheme ϕ : Θ→ ∆S , which is a randomized mapping from states of nature to
signals for the receiver. Thus, the interaction between the sender and the receiver is as follows:

(i) The sender commits to a publicly known signaling scheme ϕ.

(ii) The sender observes the state of nature θ ∼ µ.

(iii) The sender samples a signal s ∼ ϕ(θ, ·) and sends it to the receiver.

(iv) The receiver computes their posterior belief over the states Θ.

(v) The receiver plays an action a ∈ A that maximizes their expected payoff.

The posterior beliefs that the receiver computes in step (iv) after observing a signal s ∈ S are defined by a probability
distribution ξs ∈ ∆Θ such that:

ξs(θ) :=
µ(θ)ϕ(θ, s)∑

θ′∈Θ µ(θ′)ϕ(θ′, s)
,

and, thus, after observing signal s the receiver plays an action

a ∈ arg max
a′∈A

∑
θ∈Θ

ξs(θ)u
R(θ, a′).

A revelation-principle-style argument [Kamenica and Gentzkow, 2011] allow the sender to focus on direct and persuasive
signaling schemes, where the latter property means that S ≡ A, with signals corresponding to actions recommendations
for the receiver. A persuasive signaling scheme ϕ : Θ→ ∆S is such that the receiver is always incentivized to follow
action recommendations; formally:∑

θ∈Θ

µ(θ)ϕ(θ, a)uR(θ, a) ≥
∑
θ∈Θ

µ(θ)ϕ(θ, a)uR(θ, a′) ∀a, a′ ∈ A. (2)

Instance mapping. Given an instance of the classical Bayesian persuasion problem [Kamenica and Gentzkow, 2011],
a corresponding (equivalent) instance of our BPSDM problem can be constructed as follows:

(1) There is a unique chance node h0 which is the root of the tree defining the SDM problem.

(2) At the chance node, there are d possible outcomes (namely A(h0) ≡ Θ), each corresponding to a state of
nature θ ∈ Θ and having probability µ(θ) of occurring, so that with a slight abuse of notation we can write
µ?[∅] = 1 and µ?[θ] = µ(θ) for all θ ∈ Θ.

(3) The receiver has a unique infoset I , which contains one decision node for each possible outcome at the chance
node.

(4) At infoset I , the receiver has a set A(I) ≡ A of available actions.

(5) Terminal nodes Z are determined by state of nature, receiver’s action pairs, so that each θi ∈ Θ and aj ∈ A
define a corresponding terminal node zi,j in the SDM problem.
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The following theorem formally states that our definition of persuasiveness (Definition 2) instantiated to the BPSDM
problem instances described above is equivalent to the definition of persuasiveness for classical Bayesian persuasion
problems (Equation (2)). This establishes that our framework encompasses classical Bayesian persuasion problems as a
special case.
Theorem 7. Given any Bayesian persuasion instance, a signaling scheme is persuasive (Equation (2)) if and only if it
is persuasive (Definition 2) in the corresponding instance of BPSDM problem.

Proof. It is sufficient to prove the equivalence between Equation (1) for ε = 0 and Equation (2) applied to the BPSDM
problem instance representing the given Bayesian persuasion instance. To do that, we employ Theorem 1 and Lemma 6
in such a BPSDM problem instance, so that, using the notation introduced in this section, it is straightforward to see
that Equation (1) reads as follows:

max
a′∈A

∑
θ∈Θ

ϕ(θ, a)µ(θ)uR(θ, a′)−
∑
θ∈Θ

ϕ(θ, a)µ(θ)uR(θ, a) ≤ 0 ∀a ∈ A.

By rearranging the terms, we get Equation (2), which concludes the proof.

B Example of SDM problem and its sets of sequences

Figure 3 shows a simple instance of a SDM problem. This is defined by a tree whose set of chance nodes isHc = {h0},
while the set of decision nodes is Hd = {h1, h2, h3}. The set of terminal nodes is Z = {z1, . . . , z6}. Moreover, the
set of decision nodesHd is partitioned into the set partition I = {I, J}, which is made by two infosets I = {h1} and
J = {h2, h3}.

a b c

J

d e f g f g

z1 z2

h0

h1

I

z3 z4 z5 z6

h2 h3

Figure 3: Example of SDM problem and its sets of sequences Σr , Σs, and Σc.

The sets of sequences are constructed as follows. For the chance agent, we have that Σc = {(h0, a), (h0, b), (h0, c)},
while for the receiver we have that Σr = {(I, d), (I, e), (J, f), (J, g)}. Let us remark that, since the receiver cannot
distinguish between nodes h2 and h3, it only has 2 sequences originating from such nodes; namely (J, f) and (J, g).
Finally, the sender can be thought of as a perfect-information agent selecting action recommendations for the receiver at
decision nodes, so that their set of sequences is Σs = {(h1, d), (h1, e), (h2, f), (h2, g), (h3, f), (h3, g)}.

C Additional notation needed in the proofs

In this section, we introduce some additional notation that will be useful in the proofs.

We denote by Πr := Xr ∩ {0, 1}|Σr| the set of deterministic sequence-form strategies (a.k.a. pure strategies) of
the receiver, which are the strategies specifying to play a single action with probability one at each infoset. The
set of receiver’s deterministic strategies in the SDM sub-problem that starts from an infoset I ∈ I is denoted as
Πr,I := Xr,I ∩ {0, 1}|Σr|. Moreover, we let Σr,I ⊆ Σr be the set of receiver’s sequences in the SDM sub-problem that
starts from an infoset I ∈ I; formally, Σr,I := {σ ∈ Σr | σr(I) � σ ∧ ∃z ∈ Z(I) : σ � σr(z)}
Given any infoset I ∈ I, we let Z(I) ⊂ Z be the set of terminal nodes z ∈ Z such that the path from the root of the
tree to z passes through a node in I . Moreover, given σ = (I, a) with a ∈ A(I), we define Z(σ) = Z(I, a) ⊂ Z(I) as
the set of terminal nodes whose corresponding paths include playing action a at a node in I . For every infoset I ∈ I,
we also introduce a function hI : Z(I)→ I such that hI(z) defines the unique node h ∈ I on the path from the root of
the tree to z.

Given an infoset I ∈ I and an action a ∈ A(I), we define C(I, a) ⊆ I as the set of all the infosets which immediately
follow infoset I through action a, i.e., those infosets J ∈ I such that σr(J) = (I, a). Moreover, we let C(I) ⊆ I be
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the set of all infosets that follow I, i.e., those infosets J ∈ I such that there exits a ∈ A(I) with σ = (I, a) such that
σ � σr(J).

D Proofs omitted from Section 4

Let us remark that all the results in Section 4 can be straightforwardly generalized to the case of a generic µ ∈ Xc,
as needed for the proofs of the results in Sections 6 and 7. For ease of exposition, we state and prove the results of
Section 4 for the prior µ?.

First, we prove a preliminary lemma that allows us to express the receiver’s expected utility difference between using a
(σ,ρσ)-SPDP and following action recommendations by only considering the terminal nodes under the infoset in which
the SPDP prescribed to deviate. A similar result for the case of correlated strategies can be found in [Celli et al., 2020b,
Appendix A].
Lemma 6. Given φ ∈ Φ, for every (σ,ρσ)-SPDP with σ = (I, a) ∈ Σr and ρσ ∈ Xr,I , it holds:

Uσ→ρσ (φ,µ?)− U(φ,µ?) =
∑

z∈Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z)+

−
∑

z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z).

Proof. We define the following three disjoint events for any (σ,ρσ)-SPDP, where σ = (I, a).

(C1): A terminal node z ∈ Z(σ) is reached.

(C2): A terminal node z ∈ Z(I, a′) for some a′ 6= a ∈ A(I) is reached.

(C3): A terminal node z ∈ Z/Z(I) is reached.

Next, under each event, we define the probability pσ→ρσ (z) of reaching a terminal node z:

(C1): Since z ∈ Z(σ), the node z is reached by means of the continuation strategy ρσ . Thus:

p(1)
σ→ρσ (z) := φ[(hI(z), a)]µ?[σc(z)]ρσ[σr(z)].

(C2): Since z ∈ Z(I, a′) for a′ 6= a ∈ A(I), the node z can be reached either by deviating and then committing to
the continuation strategy ρσ or by following recommendations. Moreover, these two cases are exclusive, and,
thus, we can write:

p(2)
σ→ρσ (z) := φ[(hI(z), a)]µ?[σc(z)]ρσ[σr(z)] + φ[σs(z)]µ

?[σc(z)].

(C3): Since z ∈ Z/Z(I), the node z is reached by following recommendations:

p(3)
σ→ρσ (z) := φ[σs(z)]µ

?[σc(z)].

We observe that p(2)
σ→ρσ (z) = p

(1)
σ→ρσ (z) + p

(3)
σ→ρσ (z), and, thus, we can write Uσ→ρσ (φ,µ?) as:

Uσ→ρσ (φ,µ?) :=
∑

z∈Z(σ)

p(1)
σ→ρσ (z)u(z) +

∑
z∈Z(I,a′):
a′ 6=a∈A(I)

p(2)
σ→ρσ (z)u(z) +

∑
z∈Z/Z(I)

p(3)
σ→ρσ (z)u(z)

≤
∑

z∈Z(I)

p(1)
σ→ρσ (z)u(z) +

∑
z∈Z/Z(σ)

p(3)
σ→ρσ (z)u(z).

Furthermore, by using the definition of p(3)
σ→ρσ (z), we can write U(φ,µ) :=

∑
z∈Z u(z)p

(3)
σ→ρσ (z). Thus:

Uσ→ρσ (φ,µ?)− U(φ,µ?) =
∑

z∈Z(I)

p(1)
σ→ρσ (z)u(z)−

∑
z∈Z(σ)

p(3)
σ→ρσ (z)u(z),

which is the statement of the lemma by substituting the definitions of p(1)
σ→ρσ (z) and p(3)

σ→ρσ (z).
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Now, we exploit Lemma 6 to prove the following local decomposition of a DP into SPDPs.
Theorem 1. Given a signaling scheme φ ∈ Φ and a (ω,ρ)-DP, it holds:

Uω→ρ(φ,µ?)− U(φ,µ?) =
∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
.

Proof. For any terminal node z ∈ Z , let pω→ρ(z;φ,µ?) be the probability of reaching node z when the receiver
employs the (ω,ρ)-DP under the signaling scheme φ and the prior µ?. It holds:

pω→ρ(z;φ,µ?) :=
∑

σ=(I,a)∈Σr:σ�σr(z)

ω[σ]φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]+

+ φ[σs(z)]µ
?[σc(z)]

1−
∑

σ∈Σr:σ�σr(z)

ω[σ]

 .

The sum in the first term in the definition of pω→ρ(z;φ,µ?) accounts for the probabilities of reaching z when the
receiver reaches infoset I , is recommended to play action a, and deviates by following the continuation strategy ρσ
thereafter, for all the sequences σ = (I, a) that precede the sequence σr(z) reaching z. Instead, the second term in
the definition of pω→ρ(z;φ,µ?) accounts for the probability of reaching z by following recommendations. Thus,
Uω→ρ(φ,µ?) =

∑
z∈Z p

ω→ρ(z;φ,µ?)u(z).

By rearranging the terms in Uω→ρ(φ,µ?), we get to the following result:

Uω→ρ(φ,µ?) = U(φ,µ?) +
∑
z∈Z

[ ∑
σ=(I,a):σ�σr(z)

ω[σ]φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z)+

−
∑

σ∈Σr:σ�σr(z)

ω[σ]φ[σs(z)]µ
?[σc(z)]u(z)

]

= U(φ,µ?)−
∑
σ∈Σr

ω[σ]
∑

z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z)+

+
∑
σ∈Σr

ω[σ]
∑

z∈Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z). (3)

Thus, by combining Lemma 6 with Equation (3) we get that:

Uω→ρ(φ,µ?)− U(φ,µ?) =
∑
σ∈Σr

ω[σ]
[
Uσ→ρσ (φ,µ?)− U(φ,µ?)

]
,

which concludes the proof.

Corollary 1. Given a signaling scheme φ ∈ Φ, the following holds:

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤
∑

σ=(I,a)∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

.

Proof. By using Theorem 1, we derive the following:

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) = max
(ω,ρ)∈Ω×P

∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
≤ max

(ω,ρ)∈Ω×P

∑
σ∈Σr

ω[σ]
[
Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+
≤ max
ρ∈P

∑
σ∈Σr

[
Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+
=
∑
σ∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

.

This concludes the proof.
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Lemma 1. The set Λε(µ
?) can be described by means of a polynomial number of linear constraints.

Proof. In order to prove that the set Λε(µ
?) can be described by means of linear constraints, we employ duality

arguments related to the max problem in the definition of Λε(µ
?) (Definition 4).

By Lemma 6, for every sequence σ = (I, a) ∈ Σr, we can rewrite the expression in the left-hand side of the inequality
characterizing Λε(µ

?) in Definition 4 as follows:

max
ρσ∈Xr,I

 ∑
z∈Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z)

− ∑
z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z),

so that Λε(µ
?) can be expressed as the set of all φ ∈ Φ such that the above expression has value less than or equal to

ε/|Σr| for every σ ∈ Σr. Observe that the expression in the max operator is a linear function of ρσ, and that the set
Xr,I is a polytope by definition. Thus, for every σ = (I, a) ∈ Σr, the maximization above can be equivalently rewritten
as the following linear program:

max
xI,a≥0

(
xI,a

)>
c(φ,µ?) s.t. (4a)

F Ix
I,a = f I (4b)

where xI,a is a vector of variables indexed over sequences Σr,I ∪ {σr(I)}. Notice that c(φ,µ?) ∈ R|Σr,I | is a vector
of coefficients such that the component corresponding to each σ′ ∈ Σr,I is

c(φ,µ?)[σ′] :=
∑

z∈Z(I):σr(z)=σ′

φ[(hI(z), a)]µ?[σc(z)]u(z),

while c(φ,µ?)[σr(I)] := 0. Moreover, F I ∈ {−1, 0, 1}(1+|C(I)|)×|Σr,I | is a matrix of coefficients whose components
are defined as follows: [F I ]I∅,σr(I) := 1 and [F I ]I∅,σ′ := 0 for all sequences σ′ ∈ Σr,I , where I∅ is a fictitious infoset
indexing the first row, while, for every infoset J ∈ C(I) following I (this included) and sequence σ′ ∈ Σr,I ∪ {σr(I)}:

[F I ]J,σ′ :=


−1 if σ′ = σr(J)

1 if σ′ = (J, a′) for some a′ ∈ A(J)

0 otherwise
.

Finally, f I ∈ {0, 1}1+|C(I)| is a vector whose components are all zero apart from that one corresponding to the
sequence σr(I), which is one (see also [Koller et al., 1996]).

The dual linear program of Problem (4) reads as:

min
yI,a

yI,a[I∅] s.t. (5a)

F>I y
I,a ≥ c(φ,µ?), (5b)

where yI,a is a vector of dual variables indexed over C(I) ∪ {I∅}. For ease of notation, we let OPTI,a be the optimal
value of Problem (5) instantiated for the sequence σ = (I, a).

By strong duality, we have that the optimal value of the primal (Problem (4)) is equal to the optimal value of the dual
(Problem (5)), and this allows us to readily rewrite the set Λε(µ

?) as follows:

Λε(µ
?) =

{
φ ∈ Φ

∣∣∣OPTI,a − ∑
z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z) ≤ ε

|Σr|
∀σ = (I, a) ∈ Σr

}
. (6)

Moreover, we can remove OPTI,a in Equation (6) since it appears in in the right-hand side of a ≤ inequality and
Problem (5) is a min problem. Thus, the set Λε(µ

?) can be written as follows:

Λε(µ
?) =

{
φ ∈ Φ

∣∣∣∃yI,a ∈ R1+|C(I)| : yI,a[I∅]−
∑

z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z) ≤ ε

|Σr|

∧ F>I yI,a ≥ c(φ,µ?) ∀σ = (I, a) ∈ Σr

}
, (7)
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which is comprised of a polynomial number of inequalities and variables, concluding the proof.

Let us also notice that, by expanding the constraints of Problem (5), one can easily check that they can be equivalently
rewritten recursively, as follows. For every sequence σ′ = (J, a′) ∈ Σr,I , Constraints (5b) can be rewritten as:

yI,a[J ] ≥
∑

z∈Z(I):σr(z)=(J,a′)

φ[(hI(z), a)]µ?[σc(z)]u(z) +
∑

K∈C(J,a′)

yI,a[K], (8)

while, for sequence σr(I), Constraint (5b) can be written as yI,a[I∅] ≥ yI,a[I]. Intuitively, at any optimal solution
to Problem (5), we can interpret the value of the dual variable yI,a[I∅] as the receiver’s expected utility obtained by
playing the best possible continuation strategy after being recommended action a at infoset I . Indeed, the first term in
the right-hand-side of Equation (8) is the utility immediately obtainable after playing a′ at infoset J , while the second
term recursively encodes the utilities obtained (non-immediately) following a′ at J .

Lemma 2. It is always the case that Φ�(µ?) ≡ Λ(µ?) ⊆ Λε(µ
?) ⊆ Φ�ε (µ

?).

Proof. First, we prove that Φ�(µ?) ≡ Λ(µ?). Suppose that φ ∈ Φ�(µ?). Then, Definition 2 implies

Uω→ρ(φ,µ?)− U(φ,µ?) ≤ 0,

for every ω ∈ Ω and ρ ∈ P . Thus, by Theorem 1 we have that:∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
≤ 0,

for every ω ∈ Ω and ρ ∈ P , which implies that:

max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?) ≤ 0 ∀σ ∈ Σr,

and φ ∈ Λ(µ?), proving the first part of the statement.

On the other hand, Λ(µ?) ⊆ Φ�(µ?) is directly implied by Corollary 1. Thus, Λ(µ?) ≡ Φ�(µ?). Moreover, from
Definition 4 it trivially follows that Λ(µ?) ⊆ Λε(µ

?).

Finally, we prove that Λε(µ
?) ⊆ Φ�ε (µ

?). Given ε > 0, let φ ∈ Λε(µ
?). By Corollary 1, it holds:

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤
∑

σ=(I,a)∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

≤
∑

σ=(I,a)∈Σr

ε

|Σr|
= ε,

which implies that φ ∈ Φ�ε (µ
?). This concludes the proof.

Theorem 2. The BPSDM problem can be solved in polynomial time when the prior µ? is known.

Proof. It easy to check that the problem can be written as the following linear program:

max
φ∈Λ(µ?)

F (φ,µ?),

where the objective function is linear and Λ(µ?) is a polytope that can be represented by a polynomial number of linear
inequalities, by Lemma 1.

E Proofs omitted from Section 5

Theorem 3 (Impossibility of persuasiveness). There exists a constant γ ∈ (0, 1) such that no algorithm can guarantee
to output a sequence φ1, . . . ,φT of signaling schemes such that, with probability al least γ, all the signaling schemes
φt are persuasive.
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Figure 4: Tree structure used in the proof of Theorem 3. Black round nodes are decision nodes Hd. White round nodes are the
chance nodesHc, while grey square nodes are the terminal nodes Z .

Proof. We define two instances i and j of BPSDM problem based on the tree structure presented in Figure 4. In instance
i, respectively j, the prior is defined as follows:

i :=


µ?[(h1, c)] = 1

2 + ε

µ?[(h1, d)] = 1
2 − ε

µ?[(h2, e)] = 1
2 − ε

µ?[(h2, f)] = 1
2 + ε

,

j :=


µ?[(h1, c)] = 1

2 − ε
µ?[(h1, d)] = 1

2 + ε

µ?[(h2, e)] = 1
2 + ε

µ?[(h2, f)] = 1
2 − ε

.

Moreover, for both instances u(z1) = u(z3) = 1 and u(z2) = u(z4) = 0. A direct computation shows that, in instance
i, it holds V i

T = 2ε
∑T
t=1 φt[(h0, b)], while one can similarly compute that V j

T = 2ε
∑T
t=1 φt[(h0, a)]. Let Pi and Pj

be the probability measures of instance i and j, respectively. Assume that Pj[V j
T ≤ 0] ≥ 1− δ. Then, we know from the

Pinsker inequality that:

Pi

[
T∑
t=1

φt[(h0, a)] ≤ 0

]
≥ 1−

√
1

2
K(i, j)− δ,

where K(i, j) is the Kullback-Leibler divergence between instance i and j. By using the Kullback-Leibler decomposition
(see, e.g., Lattimore and Szepesvári [2020] for more details), we can state that:

K(i, j) = 2TK(B1/2+ε, B1/2−ε),

where K(B1/2+ε, B1/2−ε) ≤ 16ε2 is the Kullback-Leibler divergence between a Bernoulli of parameter 1/2 + ε and
one of parameter 1/2− ε. Thus:

Pi

[
T∑
t=1

φt[(h0, a)] ≤ 0

]
≥ 1− 4ε

√
T − δ.

Moreover, in instance i, we have that V i
T = 2ε

∑T
t=1 φt[(h0, b)], which implies:

Pi
[
V i
T ≥ 2εT

]
≥ 1− 4ε

√
T − δ.

By setting ε = 1
16
√
T

, we have that:

Pi

[
V i
T ≥

1

8

√
T

]
≥ 0.75− δ.

Thus, any algorithm that guarantees with high probability RrT ≤ 0 in instance j fails with high probability in instance i.
This proves the claim.
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F Proofs omitted from Section 6

Before presenting the proofs of the results in Section 6 ,we introduce some preliminary lemmas.
Lemma 7. Given any φ ∈ Φ and µ,µ′ ∈ Xc, if it is the case that φ ∈ Λε(µ) and ‖µ− µ′‖∞ ≤ γ, then it holds that
φ ∈ Λε′(µ

′) with ε′ = 2|Z||Σr|γ + ε.

Proof. For every (σ,ρσ)-SPDP with σ = (I, a), the following inequalities hold:

Uσ→ρσ (φ,µ′)−U(φ,µ′)

=
∑
Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
′[σc(z)]u(z)−

∑
z∈Z(σ)

φ[σs(z)]µ
′[σc(z)]u(z)

≤
∑
Z(I)

φ[(hI(z), a)]ρσ[σr(z)] (µ′[σc(z)]− µ[σc(z)])u(z)

−
∑

z∈Z(σ)

φ[σs(z)] (µ′[σc(z)]− µ[σc(z)])u(z) +
ε

|Σr|

≤2|Z|‖µ− µ′‖∞ +
ε

|Σr|
≤ 2|Z|γ +

ε

|Σr|
,

where in the first inequality we added and subtracted the difference Uσ→ρσ (φ,µ)− U(φ,µ) and used the fact that
φ ∈ Λε(µ), while the second-to-last inequality follows from Hölder’s inequality. Since Uσ→ρσ (φ,µ′)− U(φ,µ′) ≤
2|Z|γ + ε

|Σr|
:= ε′

|Σr| holds for every (σ,ρσ)-SPDP, we have that φ ∈ Λε′(µ
′) with ε′ = |Z||Σr|γ + ε, concluding the

proof.

Lemma 8. Given any δ ∈ (0, 1), Algorithm 1 guarantees that P[E ] ≥ 1− δ, where:

E := {‖µ̂t − µ?‖∞ ≤ εt ∀t ∈ [T ]} ,
and εt is chosen according to Algorithm 1.

Proof. Let Bt(δ) be defined as follows:

Bt(δ) :=

{
µ
∣∣∣ |µ[σ]− µ̂t[σ]| ≤

√
log(2T |Σc|/δ)

2t
∀σ ∈ Σc

}
.

Clearly, P[E ] = P[µ? ∈ Bt(δ)∀t ∈ [T ]]. By Hoeffding’s inequality, we have that:

P

(
|µ?[σ]− µ̂t[σ]| ≤

√
log(2T |Σc|/δ)

2t

)
≥ 1− δ

T |Σc|
.

By a union bound over σ ∈ Σc and t ∈ [T ], we get that:

P

(
|µ?[σ]− µ̂t[σ]| ≤

√
log(2T |Σc|/δ)

2t
∀σ ∈ Σc ∀t ∈ [T ]

)
≥ 1− δ.

This concludes the proof of the lemma.

Lemma 9. If the event E holds, Algorithm 1 guarantees that φ? ∈ Λβt(µ̂t) for all t ∈ [T ].

Proof. By definition, we have that φ? ∈ Λ(µ?). Moreover, since we conditioned on E , we have that:

‖µ? − µ̂t‖∞ ≤ εt ∀t ∈ [T ].

Thus, we can exploit Lemma 7, which, by letting βt := 2|Z||Σr|εt, gives that φ? ∈ Λβt(µ̂t).

Lemma 10. If the event E holds, Algorithm 1 guarantees that φt ∈ Λ2βt(µ
?) for all t ∈ [T ].

Proof. Given how Algorithm 1 works, we have that φt ∈ Λβt(µ̂t). On the other hand, since we conditioned on the
event E , it must be the case that ‖µ? − µ̂t‖ ≤ εt for all t ∈ [T ]. Thus, by Lemma 7 we obtain that φt ∈ Λ2βt(µ

?),
where βt is defined as in the proof of Lemma 9.
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Theorem 4. Given any δ ∈ (0, 1), with probability at least 1− δ, Algorithm 1 guarantees:

RT = O
(
|Z|
√
T log(T |Σc|/δ)

)
, VT = O

(
|Σr||Z|

√
T log(T |Σc|/δ)

)
.

Moreover, the algorithm runs in polynomial time.

Proof. First, we bound the computational complexity of the algorithm, then we separately analyze the sender’s regret
RT and the receiver’s regret VT .

Complexity. With an argument analogous to the one used for the proof of Theorem 2, we have that the optimization
problem solved by SELECTSTRATEGY() in Algorithm 1 is a polynomially-sized linear problem (Lemma 1). Hence, it
can be solved in polynomial time.

Sender’s regret. If the event E holds, which happens with probability at least 1− δ, then:

µ?[σ]− εt ≤ µ̂t[σ] ≤ µ?[σ] + εt,

for every sequence σ ∈ Σc and round t ∈ [T ]. This implies that, for every φ ∈ Φ, we have:

F (φ,µ?)− |Z|εt ≤ F (φ, µ̂t) ≤ F (φ,µ?) + |Z|εt.

Moreover, under the event E , we have that φ? ∈ Λβt(µ̂t) and, thus, F (φ?, µ̂t) ≤ F (φt, µ̂t) as φt is computed by
optimizing F (·, µ̂t) over Λβt(µ̂t). By putting all the above results together, we get that, under event E , the following
holds:

F (φ?,µ?) ≤ F (φ?, µ̂t) + |Z|εt ≤ F (φt, µ̂t) + |Z|εt ≤ F (φt,µ
?) + 2|Z|εt.

By rearranging the terms, taking the sum over t ∈ [T ], and using
∑T
t=1

1√
t
≤ 2
√
T , we get:

RT :=
T∑
t=1

(
F (φ?,µ?)− F (φt,µ

?)
)
≤ 2|Z|

T∑
t=1

εt ≤ 2|Z|
√

2 log(2T |Σc|/δ)T ,

which holds under the event E , and, thus, with probability at least 1− δ.

Receiver’s regret. If the event E holds, thanks to Lemma 10 we have that φt ∈ Λ2βt(µ
?). Thus, by using Lemma 2,

we can conclude that φt ∈ Φ�2βt(µ
?). This implies that, with probability at least 1− δ, the following holds:

VT ≤ 2

T∑
t=1

βt ≤ 4|Σr||Z|
√

2 log(2T |Σc|/δ)T ,

which concludes the proof.

G Proofs omitted from Section 7

Lemma 3. For every deterministic signaling scheme π ∈ Π, let

Σ↓(π) := {σ = (h, a) ∈ Σc | a ∈ A(h) ∧ π[σs(h)] = 1} .

Then, during each round t ≤ N of Algorithm 2, it holds E [pt[σ]] = µ?[σ] for every σ ∈ Σ↓(πt).

Proof. For any signaling scheme φ ∈ Φ, we have that the probability of reaching any node h ∈ Hc during a
round t < N (or, equivalently, that pt[σ] = 1 for some chance sequence σ = (h, a)) is a Bernoulli with parameter
µ?[σ]φ[σs(h)]. Thus:

E[pt[σ]] = φt[σs(h)]µ?[σ].

If we consider any deterministic signaling scheme π ∈ Π and a chance sequence σ = (h, a) ∈ Σ↓(π), we have that
φt[σs(h)] = 1, and, thus, the above equation simplifies to:

E[pt[σ]] = µ?[σ],

which concludes the proof.
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Lemma 11. Given any δ ∈ (0, 1), Algorithm 2 guarantees that with probability at least 1− δ/2:

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)] ≤
√

log(4T |Σc|/δ)|Σc|T + |Z|
√

log(2/δ)T ,

where the terms εt[σ] for σ ∈ Σc and t ∈ [T ] are defined according to Algorithm 2.

Proof. First, let us consider the deterministic signaling scheme πt ∈ Π sampled by the algorithm according to φt at
round t ∈ [T ]. For convenience, in the following we report the definition of εt[σ] (according to Algorithm 2) for each
σ ∈ Σc and t ∈ [T ]:

εt[σ] :=

√
log(4T |Σc|/δ)

2Ct[σ]
,

where Ct[σ] represents the number of rounds t′ ≤ t in which it is the case that σ ∈ Σ↓(πt′). Then, the following chain
of inequalities holds:

T∑
t=N+1

∑
z∈Z

εt[σc(z)]πt[σs(z)] (9a)

=
T∑

t=N+1

∑
σ∈Σc:

∃z∈Z:σ=σc(z)

εt[σ]
∑
σ′∈Σs:

∃z∈Z:σ=σc(z)∧σ′=σs(z)

πt[σ
′]

 (9b)

≤
T∑

t=N+1

∑
σ=(h,a)∈Σc

εt[σ]πt[σs(h)] (9c)

=
∑

σ=(h,a)∈Σc

∑
t∈[T ]:

t≥N+1∧πt[σs(h)]=1

εt[σ] (9d)

=
∑
σ∈Σc

CT [σ]∑
t=CN+1[σ]

√
log(4T |Σc|/δ)

2t
(9e)

≤
∑
σ∈Σc

√
log(4T |Σc|/δ)CT [σ] (9f)

≤
√

log(4T |Σc|/δ)|Σc|T , (9g)

where Equation (9c) follows by the definition of sequence-form signaling scheme of the sender, Equation (9d) follows
by exchanging the sums over σ ∈ Σc and t ∈ [T ] and recalling that πt is a deterministic signaling scheme, Equation (9e)
holds by definition of ε, while Equation (9f) comes from

∑T
t=1

1√
t
≤ 2
√
T . Finally, Equation (9g) follows from the

Cauchy-Schwarz inequality.

Next, we provide a similar bound on
∑T
t=N+1

∑
z∈Z εt[σc(z)]φt[σs(z)]. We do this by exploiting the Azuma-

Hoeffding inequality [Cesa-Bianchi and Lugosi, 2006]. Indeed, we have that E[πt[σ]|Ft−1] = φt[σ], where Ft−1 is
the filtration generated up to time t− 1 from the interaction between the algorithm and the BPSDM problem. Thus,
with probability at least 1− δ/2 the following holds:

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)] ≤
T∑

t=N+1

∑
z∈Z

εt[σc(z)]πt[σc(z)] + |Z|
√

log(2/δ)T .

By combining the equation above with Equation (9f), we obtain:

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)] ≤
√

log(4T |Σc|/δ)|Σc|T + |Z|
√

log(2/δ)T .

This concludes the proof.
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Lemma 4. Under the event Ẽ , Algorithm 2 guarantees that φt ∈ Λ2βN (µ?) at each round t > N .

Proof. The proof is similar to the one of Lemma 10. If the event Ẽ holds, then we have that:

‖µ? − µ̂N‖∞ ≤ max
σ∈Σc

εt[σ] := εN .

Moreover, φt ∈ ΛβN (µ̂N ) and we can use Lemma 7 to conclude that φt ∈ ΛβN+2εN |Σr||Z|(µ
?) for all t > N . The

proof follows from βN ≥ 2εN |Z||Σr|, since εN ≤
√

log(4T |Σc|/δ)|Σc|
2N .

Lemma 5. If the event Ẽ holds, then, for every round t > N , it holds that φ? ∈ ΛβN (µ̂t) and maxµ∈Ct(δ) F (φ?,µ) ≥
F (φ?,µ?).

Proof. Since φ? ∈ Λ(µ?) and, under the event Ẽ , it holds that:

‖µ? − µ̂N‖∞ ≤ max
σ∈Σc

εt[σ] := εN ,

we can use Lemma 7 to conclude that φ? ∈ Λ2|Σc||Z|εN (µ̂N ). The proof of the first statement is concluded by observing

that βN ≥ 2|Σr||Z|εN , since εN ≤
√

log(4T |Σc|/δ)|Σc|
2N . The second statement directly follows from the observation

that, under the event Ẽ , it holds µ? ∈ Ct(δ).

Theorem 5. Given any δ ∈ (0, 1) and N ∈ [T ], Algorithm 2 guarantees:

RT = O
(
N +

√
log(T |Σc|/δ)|Σc|T

)
and VT = O

(
N + T |Z|

√
|Σc| log(T |Σc|/δ)/N

)
,

with probability at least 1− δ. Moreover, the algorithm runs in polynomial time.

Proof. First, we bound the computational complexity of the algorithm, then we separately analyze the sender’s regret
RT and the receiver’s regret VT .

Complexity. First, observe that F (φ,µ) is a linear function inµ and it only has positive terms. Thus, for everyφ ∈ Φ,
the maximum over Ct(δ) in the optimization problem solved during the second phase of the SELECTSTRATEGY()
procedure is reached on the boundary of Ct(δ), so that larger entries of µ provide larger objective values. Formally, we
define:

µt ∈ arg max
µ∈Ct(δ)

F (φ,µ),

which is independent of φ. Then, for every σ ∈ Σc, we have that µt[σ] = µ̂t[σ] + εt[σ]. Thus, we can compute the
signaling scheme φt with a linear program as follows:

φt max
φ∈Λβt (µ̂t)

F (φ,µt), (10)

and, similarly to the proof of Theorem 4, we have that the optimization problem in Equation (10) is a polynomially-sized
linear program by Lemma 1. Hence, it can be solved in polynomial time.

Sender’s regret. Under the event Ẽ , which happens with probability at least 1− δ/2, we have that |µ?[σ]− µ̂t[σ]| ≤
εt[σ] for all t > N . Thus,

‖µ? − µ̂t‖∞ ≤ max
σ∈Σc

εt[σ] := εN . (11)

Then, we can conclude that, under event Ẽ , it holds µ?[σ] + 2εt[σ] ≥ µt[σ]. This in turn implies:

F (φt,µt) ≤ F (φt,µ
?) + 2

∑
z∈Z

εt[σc(z)]φt[σs(z)].

By Lemma 5, we have that, under event Ẽ , it holds φ? ∈ ΛβN (µ̂N ). Hence, F (φ?,µt) ≤ F (φt,µt) as φt is computed
as the optimum over ΛβN (µt). Moreover, by Lemma 5 we also have that F (φ?,µ?) ≤ F (φ?,µt), which implies:

F (φ?,µ?) ≤ F (φ?,µt) ≤ F (φt,µt) ≤ F (φt,µ
?) + 2

∑
z∈Z

εt[σc(z)]φt[σs(z)].
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Then, we can decompose the sender’s regret as:

RT =
N∑
t=1

(
F (φ?,µ?)− F (φt,µ

?)
)

+
T∑

t=N+1

(
F (φ?,µ?)− F (φt,µ

?)
)

≤ N + 2
T∑

t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)].

By using Lemma 11 and a union bound, we can conclude that with probability at least 1− δ:

RT ≤ N + 2
(√

log(4T |Σc|/δ)|Σc|T + |Z|
√

log(2/δ)T
)
.

Receiver’s regret. By Lemma 4, under the event Ẽ , we have that φt ∈ Λ2βN (µ?) for all t ≥ N . Moreover, by
Lemma 2, it holds that Λ2βN (µ?) ⊆ Φ�2βN (µ?). Hence, with probability at least 1− δ:

VT ≤ N + 2TβN = N + 4T |Z||Σr|
√
|Σc| log(4T |Σc|/δ)

2N
.

This concludes the proof.

Theorem 6. For any α ∈ [1/2, 1], there exists a constant γ ∈ (0, 1) such that no algorithm guarantees both
RT = o(Tα) and VT = o(T 1−α/2) with probability greater than γ.

Proof. We define two instances i and j of a BPSDM problem whose tree structures are as in Figure 4. In both
instances, we have that f(z1) = f(z2) = 0 and f(z3) = f(z4) = 1 for the sender, while u(z1) = u(z3) = 1
and u(z2) = u(z4) = 0 for the receiver. Moreover, in both instances we have that for the chance node h1 it holds
µ?[(h1, c)] = µ?[(h1, d)] = 1/2. Instead, the two instances differ in the probabilities of chance node h2, which are
defined as follows:

i :=

{
µ?[(h2, e)] = 1

2 − ε
µ?[(h2, f)] = 1

2 + ε
,

j :=

{
µ?[(h2, e)] = 1

2 + ε

µ?[(h2, f)] = 1
2 − ε

.

Simple calculations show that, in instance j, we have that the regret of the sender is:

Rj
T =

T∑
t=1

φt[(h0, a)]

Hence, if we require that (in high probability with respect to the measure Pj of instance j) the sender’s regret is smaller
than a threshold K, then:

Pj

[
T∑
t=1

φt[(h1, a)] ≤ K

]
≥ 1− δ.

The Pinsker’s inequality states that:

Pi

[
T∑
t=1

φt[(h1, a)] ≤ K

]
≥ 1− δ −

√
1

2
K(j, i),

where K(j, i) is the Kullback-Leibler divergence between instance j and instance i. By the well-known decomposition
theorem of the divergence, we know that:

K(j, i) = Ej

[
T∑
t=1

φt[(h1, a)]

]
K(B1/2+ε, B1/2−ε) ≤ 16ε2Ej

[
T∑
t=1

φt[(h1, a)]

]
,

where K(B1/2+ε, B1/2−ε) is the Kullback-Leibler divergence between two Bernoulli random variable with parameter

1/2 + ε and 1/2− ε. Now, we can upper bound Ej
[∑T

t=1 φt[(h1, a)]
]

in terms of the probability Pj with the reverse
Markov inequality, as follows:

Ej

[
T∑
t=1

φt[(h1, a)]

]
≤ Pj

[
T∑
t=1

φt[(h1, a)] ≥ K

]
(T −K) +K
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≤ δ(T −K) +K.

Thus, we can conclude that:

Pi

[
T∑
t=1

φt[(h1, a)] ≤ K

]
≥ 1− δ − 2ε

√
2(δ(T −K) +K). (12)

Now, we consider the receiver’s regret in instance i, which can be computed as:

V i
T = ε

T∑
t=1

φt[(h0, b)].

This, together with Equation (12), allows us to conclude that:

Pi
[
V i
T ≥ ε(T −K)

]
≥ 1− δ − 2ε

√
2(δ(T −K) +K).

By setting K = Tα

8 and ε = T−α/2

8 , we can conclude that if

Pj

[
T∑
t=1

φt[(h0, a)] ≤ Tα

8

]
≥ 1− δ,

then

Pi

[
V i
T ≥

T 1−α/2

16

]
≥ 1−

√
2

16
− δ ≥ 0.91− δ,

where we used that T
1−α/2

8 − Tα/2

64 ≥
T 1−α/2

16 for T ≥ 1 and that we can assume δ ≤ Tα−1

4 .
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