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Ionic-electronic halide perovskite memdiodes enabling
neuromorphic computing with a second-order
complexity
Rohit Abraham John1,2*†, Alessandro Milozzi3†, Sergey Tsarev1,2, Rolf Brönnimann2,
Simon C. Boehme1,2, Erfu Wu2, Ivan Shorubalko2, Maksym V. Kovalenko1,2*, Daniele Ielmini3*

With increasing computing demands, serial processing in von Neumann architectures built with zeroth-order
complexity digital circuits is saturating in computational capacity and power, entailing research into alternative
paradigms. Brain-inspired systems built with memristors are attractive owing to their large parallelism, low
energy consumption, and high error tolerance. However, most demonstrations have thus far only mimicked
primitive lower-order biological complexities using devices with first-order dynamics. Memristors with
higher-order complexities are predicted to solve problems that would otherwise require increasingly elaborate
circuits, but no generic design rules exist. Here, we present second-order dynamics in halide perovskite mem-
ristive diodes (memdiodes) that enable Bienenstock-Cooper-Munro learning rules capturing both timing- and
rate-based plasticity. A triplet spike timing–dependent plasticity scheme exploiting ion migration, back diffu-
sion, and modulable Schottky barriers establishes general design rules for realizing higher-order memristors.
This higher order enables complex binocular orientation selectivity in neural networks exploiting the intrinsic
physics of the devices, without the need for complicated circuitry.
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INTRODUCTION
Digital systems based on von Neumann architectures and built with
zeroth-order complexity circuits have carried the workload of com-
puting till date. However, with the exponential growth of computing
needs, serial processing in such architectures is quickly saturating in
terms of both computational capacity and power, entailing research
into alternate paradigms (1). Because of their large parallelism, low
energy consumption, and high error tolerance, brain-inspired neu-
romorphic systems are attracting considerable interest, especially
for tasks such as classifying billions of images and powering
speech recognition services (2). At the hardware level of the com-
puting stack, the discovery of memristors has fueled approaches
based on intrinsic device dynamics to replace complicated digital
circuits, paving way for more efficient and simpler in-memory com-
puting architectures (3, 4). However, most demonstrations have
thus far centered only around mimicking primitive lower-order bi-
ological complexities using devices with first-order dynamics (5, 6).
Although theoretical predictions of the benefits of higher-order
devices exist, experimental demonstration of memristors with
higher-order complexity is far and few (7–9). Memristors with
higher-order complexities are predicted to solve problems that
would otherwise require increasingly elaborate circuits (10), but
no generic design rules exist.

One of the intriguing features of biological neural networks
(NNs) is their plasticity, which helps them to learn through experi-
ential change in configuration. The human brain constantly evolves

over time, creating new synaptic associations dependent on lifelong
learning experiences and knowledge. Reproducing this ability of
plasticity to perform in-memory computations in hardware is at
the very core of neuromorphic engineering (11). Bearing functional
resemblance to biological synapses, memristors are at the heart of
such in-memory computing technology, and hence, biorealistic re-
alization of synaptic plasticity in memristors is considered a crucial
step toward realizing NNs with high accuracy and unsupervised
learning capabilities.

Need for complex learning rules
In this context, selection of a plasticity model plays a vital role in
designing neuromorphic systems. The first generation of neuro-
morphic systems typically implements some form of the pair or
doublet spike timing–dependent plasticity (DSTDP) model—a
local event-based weight update scheme that maps synaptic
weight changes as a function of the timing between the pre- and
postsynaptic spikes (12–15). This simple timing-based model is
highly convenient because it allows for low-power operations
within a specifically defined domain. However, the positive-feed-
back process this paired timing–based model adopts, in which
strong synapses are further strengthened and weak synapses are
further weakened, does not explain several key aspects of biological
plasticity (16). It destabilizes the useful dynamic range of synaptic
weights and fails to address time-variant problems such as online
modeling of dynamic processes in visual surveillance. Hence, we
need to look beyond simple DSTDP rules to model the next gener-
ation of NNs.

Information processing in the brain involves a high connectivity
—each neuron is estimated to be connected to up to 104 other
neurons via synaptic junctions. Thus, synaptic plasticity can be in-
tuitively considered to be a multifactor phenomenon. In biology,
several factors are hypothesized to contribute to the learning
process such as the timing between spikes (17), rate of pre- and
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postsynaptic firing (18), historical pattern of activity at the synapse
(19), and global parameters like electrochemical environment, ionic
concentration, and temperature (20). Despite the impressive pro-
gress already demonstrated with memristor-based computing ar-
chitectures, many of the abovementioned factors are hitherto
unaddressed, entailing innovative hardware approaches to
emulate the plasticity and connectivity of biological NNs. This
calls for a second generation of neuromorphic materials and
devices, whose switching physics are capable of adhering to bioreal-
istic plasticity models that capture both timing- and rate-based cor-
relations, and encompass history-dependent activation and global
regulatory controls.

In this work, we show second-order dynamics in halide perov-
skite semiconductors, an archetypal ionic-electronic material. With
a compositional space of >106 formulations that can be explored via
solution-based simple processing, halide perovskites, as a material
technology platform, offer a wide range of design options for mem-
ristive and neuromorphic devices. These materials are relevant for a
wide range of neuromorphic architectures because they support a
rich variety of switching physics, such as electrochemical metalliza-
tion reactions with reactive electrodes, valence change mechanisms
via halide ion migration, spin-dependent charge transport, and
multiferroicity (21–23). Their mixed ionic-electronic conductivity
enables comprehensive demonstration of Bienenstock-Cooper-
Munro (BCM) learning rules, capturing both timing- and rate-
based plasticity effects in a memdiode configuration. Ion migration
and back diffusion result in modulable Schottky barriers at the
halide perovskite–transport layer interfaces that are exploited by a
triplet spike timing–dependent plasticity (TSTDP) scheme. This
protocol establishes general design rules for realizing higher-order
memristors with similar ionic-electronic materials.

Going beyond the conventional Hebbian learning rule, the BCM
rule is a biorealistic pattern-based plasticity law that captures the
effect of both the timing between paired spikes (as in the case of
common DSTDP) and the spike train rate, also known as spike
rate–dependent plasticity (SRDP), and describes history-dependent
synaptic modification (Fig. 1A). In contrast to previous investiga-
tions that use SRDP and DSTDP schemes (24–26), we exploit the
TSTDP plasticity model (27) to map BCM rules in our memristive
diodes, also known as memdiodes. Using a spike train stimulation
protocol, we faithfully emulate the high connectivity of biological
neurons and demonstrate advanced plasticity features, going
beyond simple synaptic learning functions previously shown
using single and paired spikes, e.g., excitatory postsynaptic
current (EPSC), paired-pulse facilitation (PPF), and DSTDP. The
migration and back diffusion of ions in halide perovskites introduce
an internal timing factor akin to Ca2+ dynamics in biology that, to-
gether with a last spike–dominating rule and state-dependent for-
getting effects, captures both temporal and rate-based correlations.
We successfully demonstrate two main characteristics of the BCM
rule, frequency dependence and sliding threshold (28), and estab-
lish a negative feedback process to regulate synaptic weight
updates within a useful dynamic range, thus improving the stability
of the NN. Inspired by the BCM rules that explain orientation se-
lectivity in the mammalian visual cortex, we develop simulations of
binocular orientation–selective NNs where the mechanism of plas-
ticity involves temporal competition between input patterns instead
of spatial competition between synapses as in Hebbian learning. We

demonstrate all the features predicted by BCM learning with mem-
ristive devices.

RESULTS
Design of halide perovskite memdiodes
The halide perovskite memdiodes have the following structure:
indium tin oxide (ITO; 83 nm)/tin oxide (SnO2, 60 nm) + [6,6]-
phenyl-C61-butyric acid (PCBA; ~1 nm)/methylammonium lead
iodide (CH3NH3PbI3, MAPI; 207 nm)/poly(3-hexylthiophene-
2,5-diyl) (P3HT; 19 nm)/molybdenum trioxide (MoO3; 11 nm)/
silver (Ag; 30 nm) (Fig. 1B). In ABX3 halide perovskites
[A = CH3NH3, CH(NH2)2, Cs, Rb; B = Pb, Sn, Ge; X = I, Br, Cl,
F], the soft lattice allows easy diffusion of ions across the octahedral
structure, resulting in intimate coupling of ionic transport with
electronic transport (of electrons and holes). Ionic transport is the
process of hopping between ions’ equilibrium locations in intersti-
tials, defects, or defect hopping (29). Hence, halide perovskite is an
archetypal mixed ionic-electronic conductor (30). A vast body of
evidence supporting the idea of ion movement in halide perovskites
has been uncovered through careful spectroscopy studies, electrical
parameter evaluations, device modeling, and microscopic simula-
tions (31–35). Although the migration of halide (X) vacancies is
the most favored kinetics (36, 37), under external driving forces
such as voltage, light, and temperature, all the different types of
ions (A, B, and X) will move in the halide perovskite structure
(36, 38, 39).

In our devices, we show second-order switching dynamics and
ascribe this to ion drift under the electric field in the perovskite layer
(Fig. 1C). Theoretical calculations and experimental observations
have substantiated localized p- and n-type doping under the accu-
mulation of negatively charged Pb (VPb′) and MA (VMA′) vacancies
and positively charged I (VI*) vacancies, respectively (40, 41). Upon
applying positive bias to Ag, we hypothesize the migration of neg-
atively charged VPb′ and VMA′ toward the hole transport interlayer,
locally p-doping the perovskite-P3HT interface. Parallelly, the pos-
itively charged VI* n-dopes the SnO2 + PCBA-perovskite interface,
forming a p-i-n structure. As a result, the Schottky barriers at these
interfaces are modulated, resulting in analog-type resistive switch-
ing (13). P3HT is chosen specifically to introduce a significant
Schottky barrier with MAPI at the hole extraction side as indicated
in the band diagram (Fig. 1B). The flavor of resistive switching can
be tuned to emulate both short- and long-term plasticity of biolog-
ical synapses based on the input stimulation (12). Upon removing
bias, the ion vacancies can relax back to their initial or new meta-
stable states depending on the history of stimulation. This decay
caused by the back diffusion of the ions or ion vacancies introduces
an additional rate factor, which we exploit for emulating BCM
learning rules using a TSTDP scheme as detailed below. Further-
more, reverse biasing flips the p-i-n structure to n-i-p by forcing
ions or ion vacancies to drift in the opposite direction. The
concept of localized p- and n-doping is further supported by the
observation of photoluminescence (PL) quenching at the respective
interfaces (note S1 and fig. S1).

Simple learning rules: Timing-based plasticity
We begin by demonstrating simple timing-based plasticity in our
devices. Figure 2A shows I-V curves of the halide perovskite mem-
diode, gradually increasing and decreasing in conductivity with
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positive- and negative-bias sweeps on the Ag electrode. The asym-
metric I-V curves indicate the existence of Schottky barrier at the
perovskite–transport layer interfaces. The continuous adjustment
of conductance/synaptic weight resembles the nonlinearity of a bi-
ological synapse. Analogous to PPF in biology, the devices show
short-term synaptic plasticity, which manifests itself as an enhance-
ment in the amplitude of the second of the two rapidly evoked ex-
citatory postsynaptic currents (note S2 and fig. S2, A to C) (6). This
is critical for a synapse to make correlations between the temporal
spike pairs. Upon repeated stimulation, the synaptic weights transit
from short- to long-term states, and demonstrate potentiation and
depression with good signal-to-noise ratio and low write noise
(Fig. 2B). Transient dynamics of the raw currents reveal spontane-
ous decay to intermediate metastable states, indicating second-
order dynamics in the halide perovskite memdiode (note S2 and
fig. S3) (42). This can be attributed to the drift of ionic vacancies
under the external bias and their back diffusion upon removal of
the bias under the built-in electric field present in the device, par-
alleling the influx and extrusion of Ca2+ through synaptic cells. This,
in turn, results in a permanent change of the Schottky barrier at the
MAPI-P3HT interface (Fig. 1C), mimicking the intracellular neural
membrane potential. Last, we implement the DSTDP learning rule
using nonoverlapping spikes in our devices. Contrary to most im-
plementations using heavily engineered overlapping spikes (43),
here, the physics of the devices determine the magnitude and polar-
ity of the weight update, mitigating the need for complex peripheral
circuitry. Here, the weight modification G(Δt) after a spike pairing

depends in a characteristic way on the time lag Δt = tpost − tpre
between presynaptic and postsynaptic spike times. Around Δt = 0,
the DSTDP model assumes a sharp transition from maximal long-
term depression (LTD) to maximal long-term potentiation (LTP).
For Δt > 0, we observe LTP, and LTD for Δt < 0 (Fig. 2C), following
Hebbian rules.

The devices also exhibit history-dependent plasticity at the
short-term memory scale—a form of pseudosynaptic adaptation.
To demonstrate this, we first apply a series of postsynaptic high-fre-
quency (75.9 Hz) and low-frequency (17.5 Hz) patterns to the
device to mimic “experience.” This phase defines the history of
the device and sets the value of the experienced conductance G0.
Next, a phase of 53.6-Hz spikes is applied to monitor the device re-
sponse. As shown in Fig. 2D, it is interesting to note that the same
inputs (53.6-Hz spikes) induce contrasting changes in conductance
based on the previous experience. When the device has first expe-
rienced low-frequency (17.5 Hz) patterns, it exhibits a potentiation
behavior to the 53.6-Hz spike inputs. However, an initial experience
of high-frequency (75.9 Hz) patterns produces a depression trend to
the same 53.6-Hz spike inputs. Systematic studies with different ex-
perienced devices reveal a monotonic trend in depression behavior
with low-frequency activation and potentiation with high-frequen-
cy activation, contradictory to the ideal homeostatic rules seen in
biology (note S2 and fig. S4). This behavior deviates from rate-
based learning rules in biology because of the lack of (i) long-
term changes to the memory (these are short-term changes) (28,
44, 45), (ii) a multiplicative relationship between presynaptic and

Fig. 1. Design of higher-order ionic-electronic memristors. (A) Conventional first-order electronic devices are capable of capturing only simple timing-based plasticity
rules such as DSTDP (highlighted in the blue box on the left). On the other hand, higher-order memristors can follow a multifactor BCM learning rule (highlighted in the
blue box on the right), where both timing and rate of firing are captured for a more robust learning. High firing rates induce LTP because they evoke strong postsynaptic
depolarization and calcium signals, low to moderate firing rates induce LTD because they evoke moderate depolarization and calcium signals, and very low firing rates do
not induce plasticity. Plasticity depends on the pre-post spike timing for different ranges of firing rate, illustrated by the colored boxes and arrows (63). Thus, the net
plasticity reflects an interaction between the pre-post spike timing and firing rate. Here, second-order dynamics are observed in halide perovskite memdiodes with the
structure ITO/SnO2 + PCBA/MAPI/P3HT/MoO3/Ag. (B) Scanning electron microscopy cross-sectional image of the sample. The built-in potential due to band alignment
and the Schottky barrier introduced at the MAPI-P3HT interface allows tunable temporal dynamics, a critical design feature of the second-order halide perovskite mem-
diode. (C) The intrinsic ion/ion vacancy migration in halide perovskites locally dopes the perovskite–transport layer interfaces, enabling finely modulable conductance/
weight changes. The back diffusion of ions introduces an additional rate dependency, which we exploit to capture the BCM learning rules.
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postsynaptic neuron activities (these are responses to postsynaptic
activities alone), and (iii) a nonmonotonic dependence on spike rate
with an enhanced depression effect (EDE) (here, a monotonic trend
exists with no EDE region) (28). Therefore, a higher adherence to
biological learning rules is needed for the device characteristics to
enable biorealistic, brain-like cognitive learning.

Complex BCM learning rules using a TSTDP model: Timing-
and rate-based plasticity
To address the aforementioned issues, we subject the devices to se-
quences of specific spike patterns as shown in Fig. 3A and experi-
mentally extract BCM learning rules in our devices based on a
TSTDP model. In the TSTDP scheme, each individual spike
applied on the memristor has the same shape as for DSTDP but in-
troduces an additional triplet term that interacts with these spikes.
Hence, the net spike sequence is assumed to be a combination of
two spike pairing events, and the weight change is an integration
of the LTP and LTD processes induced by these two events (27).
However, this is not a direct summation of the two events
because the weights are further modified by interaction with the ad-
ditional triplet term, thus capturing both timing- and rate-based
effects in the learning rule. Figure 3A illustrates two typical triplet
sequences adopted for analysis—“post-pre-post” and “pre-post-
pre.” For the post-pre-post triplet, LTD is induced by the first
pairing (“post-pre,” Δt1 < 0) and LTP by the second pairing (“pre-
post,” Δt2 > 0). For the pre-post-pre triplet, the order of LTD and
LTP activation is reversed as indicated in the figure. The results of
this extensive testing protocol are presented in Fig. 3 (B and C). The
other sequence types, namely,“pre-post-post,” “post-post-pre,” “pre-

pre-post,” and “post-pre-pre,” are shown as insets. The synaptic
weight change (ΔGc) as a function of the timing intervals (Δt1
and Δt2) reveals a last spike–dominating TSTDP behavior in
our devices.

For the case of pre-post-post, quadrant I of Fig. 3B, LTP is ob-
served for all combinations of Δt1 and Δt2. Large weight changes are
observed when the spike pairs are closely spaced and the triplet in-
teraction is strongest, i.e., for low numerical values of Δt1 and Δt2.
With longer intervals, the weight change decreases as expected. For
the case of post-pre-post, quadrant II of Fig. 3B, the weight changes
transit from LTD to LTP as Δt1 becomes larger or Δt2 becomes
smaller or a combination of both and vice versa. The net magnitude
of weight change depends on a nonlinear integration of the post-pre
and pre-post combinations. For the case of post-post-pre, quadrant
III of Fig. 3B, LTD is observed for all combinations of Δt1 and Δt2.
Large weight changes are once again observed when the spike pairs
are closely spaced and the triplet interaction is strongest, i.e., for low
numerical values of Δt1 and Δt2. Similar logic follows for all quad-
rants in Fig. 3C. For the case of pre-pre-post, quadrant I of Fig. 3C,
LTP is induced by both the spike pair combinations. The weight
changes transit from LTD to LTP as Δt1 is reduced or Δt2 is in-
creased or a combination of both and vice versa for the case of
pre-post-pre, quadrant IV of Fig. 3C. Last, LTD is observed for all
cases of pre-post-post, quadrant III of Fig. 3C. In all these cases, the
device conductance is read out after a delay time of 120 s to ensure
stable long-term states. Please refer to note S3 and fig. S5 for a sim-
plified version of Fig. 3 (B and C) and fig. S6 for details of the testing
protocol.

Fig. 2. Simple learning rules: Timing-based plasticity. (A) I-V curves of a halide perovskite memdiode under continuous positive (0 to 4 V) and negative (0 to −4 V)
sweeps. (B) LTP and LTD of synaptic weights/conductance (G) caused by repeated stimulation of 100 positive [+6 V, 100 ms] and 100 negative [−6 V, 100 ms] pulses. All
states were read 1 s after the stimulation using a reading pulse of +0.1 V, 100 ms. The statistics shown as box plots represent 2000 write-erase operations. (C) Emulation of
Hebbian DSTDP learning rules with the perovskite memdiodes. Here, the time lag Δt = tpost − tpre between presynaptic and postsynaptic spike times determines LTP and
LTD. (D) Response of the excitatory postsynaptic currents to a group of spike trains [−1 V, 10 ms] with a frequency sequence (75.9 Hz → 53.6 Hz → 17.5 Hz → 53.6 Hz).
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The synaptic weight change ΔGc shows an additional depen-
dence on the pre-(ρx) and postsynaptic (ρy) spike rates, as shown
in note S3 and fig. S7. Here, ρx is defined as 1/Δtr, where Δtr = t′pre-
− tpre (time interval between two presynaptic spikes), and ρy is
defined as 1/Δto, where Δto = t′post – tpost (time interval between
two postsynaptic spikes), and they are considered to be equal in
this case. The results indicate a directly proportional enhancement
of LTP and an inversely proportional enhancement of LTD with in-
creasing spike frequency, consistent with the biological TSTDP rule
and contrasting to the DSTDP rule.

BCM rule as explanation for binocular direction selectivity
in mammal visual cortex
The BCM rule was originally proposed to explain biological mea-
surements showing input selectivity observed in the mammal
visual cortex (19). In particular, it was observed that cortical cells
are binoculars, receiving inputs from both the eyes through optic
nerves that, reaching the lateral geniculate nucleus, send the
signals to the visual cortex (Fig. 4A). In this specialized brain
area, cortical cells are locally selective to specific inputs after expo-
sure to different stimuli such as differently oriented light bars
showing orientation selectivity (28, 46). It was observed that the
properties of the cortical cells are modified by the visual experience
of the animal (28), such as in a metaplasticity behavior. In the un-
derlying biological mechanisms, there is a specific dynamics for

cortical plasticity. Measurements on biological samples reveal tem-
poral dependence of the synaptic weights (both the sign and mag-
nitude) on the postsynaptic response with a threshold dividing
potentiation from depression. As shown in Fig. 4B reported from
(44, 47), this threshold is not fixed in time, but it depends on the
history of the postsynaptic activity. This results in a temporal com-
petition between input patterns, different from Hebbian-related
plasticity mechanisms that involve a spatial competition between
synapses (19, 28). For this reason, the BCM rule opens the possibil-
ity to explain high-order spatiotemporal neural mechanisms in the
visual cortex (48) and can enable high-order neuromorphic func-
tions in hardware.

From a mathematical point of view, the general BCM rule de-
scribes the synaptic weight change as

_w ¼ aw½yðtÞ�xðtÞ � rðwÞ ð1Þ

where x(t) is the presynaptic activity, α is a fixed learning rate, ϕ is a
function of the postsynaptic activity y(t), and ρ(w) is a uniform term
to account for metaplasticity. ϕ determines the sign of the variation
of synaptic weight for ρ = 0 and in particular

w½yðtÞ� . 0 if yðtÞ . qmðtÞ
w½yðtÞ� , 0 if yðtÞ , qmðtÞ

(

ð2Þ

where ϑm is a threshold with dimensions of activity that, by

Fig. 3. Experimental demonstration of BCM learning rules using TSTDP schemes in halide perovskite memdiodes. (A) Schematic of the typical post-pre-post and
pre-post-pre triplet inputs applied to the devices. The weights are modified by the timing between each pulse-pair combination (similar to DSTDP) and also the super-
position of the LTP and LTD processes (rate dependent). Each pre/postsynaptic spike pattern comprises hundred pulses with an amplitude of ±3 V and a pulse width of 50
ms. For the post-pre-post combination, LTD is activated in the first post-pre pair, with a spike timing of Δt1 < 0. This is followed by an LTP process induced by the second
pre-post pair, with a spike timing of Δt2 > 0. (B and C) Summary of the experimental TSTDP results. LTP and LTD are induced using different spike sequences and timing
intervals, as indicated by the insets. ΔG units are in μS.
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definition, separate positive variation (potentiation) from negative
variation (depression) of the synaptic weights. This value is not
fixed, but it depends on the history of postsynaptic activity such
that we can write the variation of the weight as

_w ¼ awðy; yÞx � rðwÞ ¼ awðy;qmÞx � rðwÞ ð3Þ

In particular, ϑm(t) is a nonlinear function of time-averaged
postsynaptic activity y that determines the long-term synaptic
weight (19). As reported before, the ρ(w) term is introduced to
include the dependence of the dynamics by the value of the
weight itself (note S4 and figs. S8 to S10).

Using the TSTDP-based mapping presented in Fig. 3 (B and C)
as a guideline, we experimentally demonstrate BCM learning rules
in our halide perovskite memdiodes (Fig. 4C). For analysis, we
choose the case of post-pre-post triplet with |Δt1| = |Δt2| (refer to
the diagonal of quadrant II of Fig. 3B). Theweight changes are mon-
itored for three values (2.1, 3.9, and 7.1 μS) of the experienced

conductance G0 as a function of the postsynaptic spike rate ρy,
defined as 1/(|Δt1| + |Δt2|). The synaptic weight changes ΔGc
depict a nonmonotonic dependence with the spike rate, transition-
ing from depression to potentiation with a threshold value ϑm. The
depression behavior is enhanced at low spike rates for all values of
G0, clearly indicating an EDE region, absent in previous implemen-
tations. Moreover, the threshold ϑm appears to be modulable, in-
creasing for strongly experienced systems, i.e., large G0, and
reducing for inactive scenarios (low G0). This sliding threshold
effect faithfully replicates the BCM curve observed in biology. We
can clearly identify two regions of the synaptic weight (potentiation
and depression) depending on the postsynaptic activity. Moreover,
the threshold value that separates the two regions depends on the
initial conductance stateG0 of the device, i.e., the history of postsyn-
aptic activity, as described in the previous section.

Fig. 4. From biological BCM rule to the visual cortex network. (A) Binocular vision in mammalian brain: Visual inputs from both eyes propagate through optic nerves
reaching visual cortex in the back part of the brain. Here, the neurons show binocular orientation selectivity (19). (B) Biological measurements of BCM rule on rats andmice
with different ambient exposition [data reproduced from (44, 47)]. There are two regions of potentiation and depression depending on the neural activity of the post
neuron. Moreover, the threshold between potentiation and depression depends on the history of neural activity. (C) Device measurements of halide perovskite mem-
diodes: The behavior of these devices resembles the synaptic dynamics of biological curves (B). Potentiation and depression regions for each curve can be clearly iden-
tified. The separation value between these two regimes is not fixed, but it depends on the history of postsynaptic activity. (D) Binocular orientation–selective network:
There are two input layers, one for each eye, where the correlated patterns are fed. The first layer is connected to the cortical neuron through synapses that in this case are
modeled on the halide perovskite memdiode characteristics. (E) BCM model: We choose a parabolic shape for ϕ, indicated with full lines. Dotted lines instead show the
weight updating curves for synapses that take into account also the ρ(w) term. This simple shape is also the one originally proposed by Bienenstock et al. (19) and is of
common use for BCM applications. The main idea is to properly follow the separation between LTP and LTD as a function of the history of postsynaptic activity. This
request is fulfilled by our model based on the device threshold behavior. (F) Inputs of the simulated NNmimicking different orientations of visual exposure. The inputs are
built as 100 × 100 matrices, which are transformed into a 10K array, fed to the first layer of the NN.
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Bioinspired second-order NN demonstrates binocular
direction selectivity
The BCM learning rule finds application in designing binocular ori-
entation–selective networks. To demonstrate this, we simulate a
feedforward neural network (FNN) where synapses are realized
with the halide perovskite memdiodes. It is important to note
that the positive and negative variations of the synaptic weight
and the sliding threshold dependence on the time-averaged
output activity are intrinsic to the physics of the devices, rather
than a complex circuit deployment. As illustrated in Fig. 4D, we
simulate two different input layers, one for the right eye and one
for the left eye. These layers are connected through the memdiode
synapses to the visual cortex cell. To implement the simulation of
the FNN synapses, we extract _w from the device characteristics,
choosing for ϕ(y, ϑm) the classical form

wðy;qmÞ ¼ yðy � qmÞ ð4Þ

It should be noted that the parabolic shape is an idealization to
capture the essential features with a simple model. This is a
common use approximation in neuroscience (28). As reported
before, the real BCM curves measured in biological cells show a
more complex shape that can be simplistically described with a par-
abolic model (42, 48, 49). The crucial point for the model is to prop-
erly follow the dynamics of the threshold between potentiation and
depression. This is well described in our model as reported in
Fig. 4E, where variations of the weight and ϕ(y, ϑm) are reported
as a function of G0. In the simulation, the G0 value is obtained
with a temporal moving average on G(t) that is compatible with
effect of average postsynaptic activity on BCM rule (50) and physical
updating properties of the perovskite memdiodes. This value deter-
mines the moving threshold, i.e., which particular curve we use to
update G(t). Once the specific BCM curve is determined, the vari-
ation of the weight is calculated with Eq. 3 and the synaptic weight
values are updated (refer to note S4 and figs. S8 to S10 for details).

As shown in Fig. 4F, we select eight different directions as inputs
to mimic different orientations of a light bar exposed to the
mammal eyes. These inputs are correlated, i.e., both the eyes see
the same input. A noise term with randomly distributed pixels is
shown with a probability P = 0.2 to take into account imperfect cor-
relations and to test the robustness of the system. The input patterns
are presented as a 100 × 100 matrix, where the activity is coded with
xlow = 2 Hz for white pixels and xhigh = 20 Hz for black pixels. The
matrix is transformed to a 10K array and fed to the first layer of the
left and right eye. The inputs are sequentially and randomly shown
to the network with the same probability P = 0.1 for each pattern,
the postsynaptic activity is recorded, and the system is let free to
evolve. It should be noted that no winner-take-all or back propaga-
tion is present in this network.

Figure 5A shows how, after some epochs, the postsynaptic activ-
ity becomes higher, compared to other patterns, for a specific
random chosen pattern selected by the network (−22.5° in this
case). Moreover, despite the noise, both the eyes select the same di-
rection, as theoretically predicted by BCM theory. This is due to the
presence of correlation between inputs that involves a temporal
competition between patterns, which, in the end, is won by the
same input (19). From a biological perspective, the correlation
between signals reaching cortical cells corresponds to a spatial

organization in the visual cortex that becomes locally selective to
a specific pattern (51). As a corollary, the type and the order in
which the stimuli reach the cortical cells are crucial to determining
the spatial arrangement of selectivity in visual cortex (52).

The evolution of the synaptic weights in Fig. 5B illustrates learn-
ing of a specific pattern with a small misalignment between the two
eyes. In general, the BCM learning mechanism is expected to allow
the network to maximize the response of neurons to a particular
input after some time of exposure. This is highlighted by Fig. 5C,
where the postsynaptic activity for eight different neurons
exposed to different temporal arrangement of the inputs is present-
ed. The neurons are responsive such that each one is selective to one
of the possible inputs. The postsynaptic activity is observed to be
maximum for the selected direction of the neuron (always the
same for both eyes comparing the bottom and top plots).

It is also worthwhile to notice that the presentation of “false” pat-
terns results in a nonzero response in Fig. 5A. This residual false-
positive response can be attributed to the overlap between the false
pattern and the true map of synaptic weights. Even when the bar is
orthogonal to the synaptic weights, an overlap will occur at the
center of the pattern. This is in good alignment with the BCM
rules as well. Orthogonal patterns with respect to the true one
will lead to relatively low postsynaptic activity, while patterns with
small rotations from the true pattern will show a slightly larger ac-
tivity (see details in note S4). However, despite this residual re-
sponse, the selectivity, i.e., the ratio between the response to the
true pattern and the average response to the false patterns, is rela-
tively high, as reported in Fig. 5D. The resulting selectivity value is
nearly constant and around 0.9, in notable agreement with original
results for cortical neurons (19). Inspired by the functioning of cor-
tical neurons, these results show the capability for hardware imple-
mentation of advanced spatiotemporal pattern recognition
networks with binocular topology in a totally unsupervised way.

DISCUSSION
Performing computing based on the intrinsic device dynamics,
where each device replaces complicated digital circuits in a func-
tional sense, is a potential strategy to enable adaptive complex com-
puting (53, 54). Second-order memristors such as the ones
presented in this work enable us to capture both timing- and
rate-based learning rules using the devices’ intrinsic physics (7).
In comparison to digital circuit implementations of higher-order
synapses and first-order memristors (55), these devices portray ad-
vantages in area and circuit complexity.

The need for second-order memristor comes from the complex-
ity of implementing synaptic learning rules with first-order mem-
ristors. In the latter devices, the implementation of plasticity rules,
such as spike time dependent plasticity (STDP), requires to encode
the timing information in the shape of programming pulse. The
memristor is used as a simple programmable memory in which
the overlapping of spikes results in the right shape of amplitude
and duration to encode the timing between presynaptic and post-
synaptic neurons. These mechanisms are necessary because there
are no other ways to encoding timing information in a first-order
memristor. Instead, in second-order memristors, because of a
second internal state variable, the activity of synapse controls the
plasticity rather than the amplitude or pulse duration. The history
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of activity of the memristor is stored in the device itself and influ-
ences the future behavior (7).

In our work, the halide perovskite memdiodes show second-
order characteristics encoding timing and rate of spikes, because
of their mixed ionic-electronic conduction. The possibility to
encode this information in the activity of the synapses instead of
a particular shape and/or duration of the pulses permits the use
of these devices as second-order elements instead of a simple
memory element for high-complexity neuromorphic computing.
These devices act as a new building block to implement algorithms
and systems without the need for complicated timing circuitry and
unaffordable system complexity that first-order elements and digital
implementations require. High complexity in this context refers to
all neuromorphic computing systems in which a simple first-order
memory element is not sufficient to implement the desired learning
rule or algorithm, such as the BCM learning rule.

Because of the specific physical properties of our devices, we suc-
cessfully demonstrate the two main characteristics of the BCM rule,
namely, the frequency dependence and the sliding threshold. The
weight update trace reveals multiplicative correlations between pre-
synaptic and postsynaptic activities and a nonmonotonic behavior

in the depression region (EDE)—features that previous investiga-
tions (24–26) with SRDP and DSTDP schemes fail to address. In
comparison to filamentary memristors, these devices have a larger
dynamic range due to the rate-dependent negative-feedback process
and the EDE region. The richer dynamics can be attributed to the
back diffusion of ionic vacancies that introduce an additional mod-
ulatory mechanism along with the inbuilt electronic Schottky
barrier (due to band alignment) and stimulation history. As men-
tioned before, P3HT is chosen specifically to introduce a significant
Schottky barrier with MAPI at the hole extraction side (Fig. 1B), and
thus, we focus on this part of the device. For analysis, we compare
the initial states of a (i) low-experienced conductance state G0 = 2.1
μS, (ii) medium-experienced conductance stateG0 = 3.9 μS, and (iii)
high-experienced conductance state G0 = 7.1 μS. The two extreme
states are shown in Fig. 6. Here, the Schottky barriers arising from
the ionic vacancy accumulation are schematically represented for
qualitative understanding. As shown, the high-experienced conduc-
tance state G0 = 7.1 μS has a smaller Schottky barrier when com-
pared to the low-experienced (G0 = 2.1 μS) and medium-
experienced (G0 = 3.9 μS) conductance state due to accumulation
of large number of negatively charged VPb′ and VMA′ during the

Fig. 5. Simulation results for the binocular orientation–selective network. (A) Postsynaptic activity due to the exposure of the network to a particular input pattern.
Initially, different input patterns show the same postsynaptic activity. After some epochs, the postsynaptic activity becomes higher for a random direction selected by the
network, in this case−22.5°. Comparing the left and right eyes, we can see how they select the same direction. Nonselected patterns showa lower response in the activity,
whereas slightly higher activity is observed for patterns with smaller rotation with respect to selected pattern, i.e., 0° and−45°. (B) Temporal evolution of synaptic weights
for the left and right eyes: A random weighted matrix is initialized with μ = 4 μS and σ = 0.1. After consecutive exposure to input patterns, the rise of selectivity can be
evidently seen. (C) Selectivity of different orientated neurons: We show eight different neurons that select the eight different possible inputs. We can see how the
maximum response corresponds to a specific direction. (D) Selectivity parameter is nearly constant for all the cortical neurons, showing that the specific input is not
relevant in the value of selectivity.
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initialization process. Consequently, upon bias removal, more
metastable ionic vacancies exist at the MAPI-P3HT interface for
back diffusion in the case of G0 = 7.1 μS, resulting in larger relative
changes in the Schottky barrier, and enhanced forgetting and de-
pression effects.

In comparison to the recent demonstration with second-order
oxide memristor (42) and two-dimensional (2D) heterostructure
memtransistor (56), the mixed ionic-electronic conduction of
halide perovskites offers a simpler processing route, device architec-
ture, and higher yield approach to implement homeostatic regula-
tory mechanisms at the individual device level, thus establishing a
universal design strategy. While other devices require preprogram-
ming to a high conductance state to enable EDE, our device design
allows EDE control via band structure and interface engineering
and requires no preprogramming step, resulting in power saving.
The above observations are expected to provide inspiration for
similar ionic-electronic materials systems, such as lithium-

intercalated battery-like synapses (57) and proton-doped organic
electrochemical transistor–based synapses (58, 59).

These device properties enable the implementation of new learn-
ing mechanisms exploiting temporal competition between inputs in
contrast to classical Hebbian learning where spatial competition
between synapses is captured. Further studies, however, are neces-
sary to investigate different materials with second-order dynamics
that can add different physical time constants to cover a large spec-
trum of temporal processing capability. A large set of second-order
devices is required to cover different applications with different
specifications of operative frequencies and timing. Moreover, the
presence of two state variables in these devices requires a deeper un-
derstanding of the underlying physics and suitable models to
achieve proper optimization. On this point, it is important to
note that the classical BCM model is parabolic, while experiments
show a more complex functional shape. However, the perfect fitting
of experimental curve is detrimental, increasing the complexity of
the model without adding any critical features. The crucial point of
this rule is to follow the dynamics of the variation of the weight
rather than the absolute value of the variation of the weight (19,
28, 50). The latter would just result in a small change in the conver-
gence speed, while the dynamics that we properly reproduce deter-
mines the properties and stability of the system.

To conclude, simulations of binocular orientation–selective net-
works (60) mimicking visual cortex cells demonstrate an example of
the relevance of halide perovskite memdiodes in the context of
high-complexity computing: The timing/frequency processing
properties of these devices enabled the development of a totally un-
supervised system that implements a temporal-competition pro-
cessing between input patterns, which can also be useful in many
other general applications (25, 61). This concept will enable a new
generation of NNs with higher-order spatiotemporal functions that
are useful to capture time-variance features in dynamic environ-
ments (62). Natural candidates that could benefit from that are
video and audio processing systems, which, with these properties,
become more similar to the biological learning mechanisms seen
in mammalian brains. Furthermore, self-supervised learning for
edge computing and efficient spatiotemporal recognition systems
will also benefit from these devices, thus introducing an important
new building block, significantly advancing beyond state-of-the-art
demonstrations.

MATERIALS AND METHODS
Perovskite ink preparation
A total of 175 mg of methylammonium iodide (MAI) (Greatcell
Solar) and 507 mg of PbI2 (Thermo Fisher Scientific; 99.9%) were
dissolved in 900 μl of N,N′-dimethylformamide and 100 μl of di-
methyl sulfoxide under nitrogen atmosphere. The ink was heated
at 80°C for 1 hour to aid the dissolution of powders.

Device fabrication
Glass/ITO substrates (Zhuhai Kaivo, 18 ohm/sq.) were sequentially
cleaned with soap, water, acetone, and isopropanol. Then, the ITO
slides were ultraviolet-ozone–treated for 15 min and immediately
coated with the tin dioxide (SnO2) layer. The SnO2 layer was ob-
tained by spin coating 10% aqueous SnO2 suspension (Alfa
Aesar) at 4000 rpm for 40 s, followed by annealing at 100°C for
10 min and at 165°C for 15 min in air. All subsequent steps were

Fig. 6. Mechanistic illustration of frequency dependence and sliding thresh-
old of BCM learning rules with halide perovskite memdiodes. Schematic
diagram of thememristivemechanism showing the accumulation of ion vacancies,
dynamic change in energy band alignment of the MAPI-P3HT Schottky interface,
and ion vacancy relaxation at different memristive states.
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performed under inert atmosphere inside a nitrogen glove box. The
solution of PCBA (concentrations ranging from 0.1 mg/ml in
toluene) was spin-coated at 3000 rpm for 30 s and annealed at
100°C for 10 min. The MAPbI3 ink (60 μl) was spin-coated at
4000 rpm and quenched with 400 μl of toluene dropped 10 s after
the start of spin coating. The deposited films were annealed for
10 min at 100°C on a hot plate. For P3HT deposition, a solution
(15 mg/ml) of P3HT (Lumtech) in toluene was deposited at 4000
rpm for 30 s. Molybdenum oxide (15 nm)/Ag (100 nm) electrodes
were evaporated through a shadow mask. The device active area was
0.16 cm2 as defined by a shadow mask.

PL measurements
PL experiments were performed via a FluoTime300 setup (Pico-
quant), using pulsed excitation at 531.5 nm (80 MHz repetition
rate), with illumination and detection from the ITO side, and a de-
tection bandwidth of 3 nm. The PL intensity quenching data were
obtained at the PL peak (770 nm). For the time-resolved measure-
ments, the repetition rate was reduced to 20 MHz, to ensure a full
decay of the PL signal before arrival of the next excitation pulse, and
the detection bandwidth was increased to 27 nm, to accommodate
potential spectral shifts of the PL peak. Electrical bias was applied
via a voltage source for the in operando studies.

Supplementary Materials
This PDF file includes:
Notes S1 to S4
Figs. S1 to S10
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