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Estimating vehicle braking distance over wet and rutted pavement surface 
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A B S T R A C T   

Due to repeated load cycles and climate impacts, road pavement deteriorates. One of the primary causes of 
pavement degradation is the formation of rutting under the wheel path on the road surface. Rutting’s impact on 
vehicle performance, especially on rainy days (since the rain would fill the rutting depression), leads to longer 
braking distances compared to dry conditions. This study developed a MATLAB-based model for calculating 
vehicle braking distance on wet asphalt pavement affected by rutting, using dynamic skid resistances generated 
through Back-Propagation Neural Network (BPNN) analysis. This study addresses the worst-case scenario in 
which rutting is filled with water, then calculates the required vehicle braking distance under various Water Film 
Thickness (WFT) conditions. The developed model can perform these evaluations for different operational 
conditions across various input ranges, such as precipitation intensity, number of lanes, lane width, cross slope, 
average texture depth, rutting depths, and accumulated WFT. As an outcome, the vehicle braking distance can be 
estimated as a function of Rutting Depth (RD) within a known vehicle speed interval. After validating the 
proposed model against existing approaches from the literature, several sensitivity analyses are conducted to 
assess the impact of influencing parameters on the results. Moreover, the study examines the relationship be
tween AASHTO braking distance requirements and the RD threshold levels adopted by several highway agencies. 
Furthermore, this model is also applicable to real-world case studies, enabling the calculation of vehicle braking 
distances with varying RDs in the presence of various WFTs on the pavement surface.   

1. Introduction 

Vehicle braking distance constitutes a significant portion of the total 
stopping distance, and its accurate determination is a fundamental ne
cessity in the design of highways and urban roads. With today’s 
improved understanding of the dynamic skid resistance mechanism, a 
more rational and mechanistic interpretation of vehicle braking dis
tances can now be offered, connecting them with the tire-pavement skid 
characteristics (bituminous pavement texture). In essence, ensuring 
sufficient dynamic skid characteristics between the tire and the pave
ment is imperative for accurately calculating vehicle braking distances, 
thereby maintaining safe driving conditions across any road network. 

Pavement rutting is a prevalent form of deterioration on road sur
faces, resulting from repeated load cycles and environmental factors 
(high temperature). It is widely acknowledged by highway agencies and 
researchers that pavement rutting can diminish pavement surface per
formance, particularly in wet weather conditions, thereby posing safety 
risks such as hydroplaning and skidding. Consequently, there is a 

pressing need to establish an analytical model for estimating vehicle 
braking distances on wet and rutted pavements, to comply with road 
safety standards. 

The current challenge in assessing the impact of Rutting Depth (RD) 
on vehicle braking distance on wet asphalt pavement lies in determining 
effective skid performance between the tire and pavement. This is 
particularly complicated by variations in water accumulation under 
different RD severity conditions. Existing literature highlights a scarcity 
of data on the dynamic skid performance within significant intervals of 
Water Film Thicknesses (WFTs), such as those ranging from 10 to 35 
mm. Additionally, there is a lack of clarity on how to measure the in
fluence of RD on vehicle braking distance in wet pavement conditions. 
This information is crucial for establishing the threshold RD level 
necessary to comply with road safety standards in pavement mainte
nance and rehabilitation. 

To tackle these challenges, this study develops an analytical model 
designed to simulate tire-fluid-pavement interactions. Its primary 
objective is to assess vehicle braking distance on wet pavement under 
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the influence of rutting. The study considers various boundary condi
tions, including intense precipitation, the number of road lanes, lane 
width, road cross slope, pavement average texture depth, RD, and 
accumulated WFT (ranging from 0 to 35 mm). Moreover, vehicle speed, 
ranging from 0 to 100 km/h, is considered in the analysis. 

2. Literature review 

Stopping distance represents a crucial road safety requirement, as it 
signifies the minimum distance required for a vehicle to come to a 
complete stop. However, measuring stopping distance in the field can be 
both energy and time-consuming, mainly due to the presence of various 
environmental uncertainties. According to American Association of 
State Highway and Transportation Officials (AASHTO) recommenda
tions [1], mechanical principles are employed to calculate stopping 
distance, making the tire-pavement friction coefficient a pivotal factor in 
determining braking accuracy. 

In the latter half of the 20th century, the knowledge of tire-pavement 
skid resistance primarily relied on experimental data and observations 
in the absence of a comprehensive understanding of complex tire-fluid- 
pavement interactions. In early 1960s, the British pendulum tester was 
first popularized in the UK for low-speed skid resistance measurements 
of in-service pavements [2]. Then a significant breakthrough in skid 
resistance development occurred with the conduct of full-scale experi
mental tests by the National Aeronautics and Space Administration 
(NASA) and the Federal Aviation Administration (FAA) [3]. Vehicle 
skidding and hydroplaning were first assessed encompassing the influ
ence of tire properties, WFT, and pavement conditions. Subsequently, 
extensive research and studies have been undertaken, mainly through 
field and laboratory experiments [4–6]. These experiments have resul
ted in the derivation of numerous empirical relationships to express 
pavement skid resistance. Regrettably, these empirical relationships 
have proven inadequacy for predicting pavement skid resistance in 
pavement engineering due to their limited vehicle operation conditions. 

The early 2000s witnessed a significant advancement with the 
advent of high-speed computers and available numerical software. This 
progress enabled the prediction of skid resistance under diverse vehic
ular operating conditions, WFT variations, and pavement characteris
tics. Researchers started employing computer simulation models to 
address the tire-pavement skid resistance issue, particularly concerning 
vehicle speed and WFT, while also factoring in measured values [7–9] 
and the matter of hydroplaning speed on wet pavements garnered 
attention [10–12], the results are validated with the previous experi
ments and field measurements. 

A noteworthy development came from the National University of 
Singapore (NUS) research group, which pioneered efforts to tackle wet- 
weather pavement skid resistance and hydroplaning issues using finite 
element computer software ADINA in 2005 [13]. They deviated from 
traditional approaches, which relied on statistical predictive equations 
or estimated ground friction values. Instead, they proposed an analytical 
simulation model grounded in engineering mechanics and fluid dy
namics theory to calculate wet-pavement aircraft braking distance. 

Furthermore, stopping distance has been incorporated into pave
ment management systems to improve road safety and operational ef
ficiency, in accordance with mechanistic principles [14]. The 
tire-pavement friction coefficient plays a crucial role in the calculation 
of stopping distance. The model developed by Chu and Fwa monitors the 
available skid resistance across a range of WFT (i.e., 0–10 mm) and 
vehicle speeds (20–100 km/h). It’s worth noting that each skid simu
lation analysis generated by their model is quite time-consuming. 

In 2011, Pasindu et al. [15] enhanced the procedure for calculating 
wet-pavement braking distance based on the 3D tire-fluid-pavement 
model developed by Fwa and Ong [7,8]. They considered the intricate 
relationship between wet-pavement skid resistance and various aircraft 
operating conditions, which encompass aircraft tire type, landing speed 
(i.e., 20, 30, 40, 45 m/s), wheel load (i.e., 10, 25, 50 KN), tire inflation 

pressure, and WFT (i.e., 1, 2, 5, 10 mm). This model underwent vali
dation using measured data by Horne et al. [16]. 

In 2019, the group of researchers involved in this study (Ketabdari 
et al. [17]) introduced a comprehensive aircraft risk model based on the 
probability of excursion accidents and an aircraft braking distance 
model proposed by Pasindu et al. [15]. Within this model, they devel
oped five distinct MATLAB codes for simulating runway braking dis
tance under varying conditions, encompassing different weather 
conditions, WFT, aircraft weight, and touchdown speed probability 
distributions. 

During years 2020 and 2021, Ketabdari et al. [18,19] further 
improved the previous aircraft braking distance model, factoring in the 
impact of longitudinal and transverse slopes on aircraft braking distance 
under wet pavement conditions, as well as their influence on the prob
ability of landing overrun accidents. 

On the other hand, pavement rutting is a common pavement distress, 
often occurring in both bituminous bonded layers and underlying un
bound layers [20]. In 2012, Fwa et al. classified rutting severity (i.e., 5, 
10, 15, 20, and 25 mm) based on threshold values, hydroplaning risk, 
and the required braking distance at specific speeds (i.e., 50–100 km/h) 
[21]. In 2016, Pasindu et al. conducted an analysis of the effect of rutting 
depths (i.e., 5, 10, 15, and 25 mm) on aircraft hydroplaning risk in 
flooded pavement conditions [22], utilizing the well-established 3D 
tire-fluid-pavement model developed by Fwa and Ong [7–9]. 

In 2023, the authors of this paper (Toraldo et al.) investigated the 
impact of airport runway RDs, ranging from 1 to 26 mm, on aircraft 
landing braking distance [23]. This analysis considered dynamic skid 
resistance under heavy precipitation. The model used in this research 
was validated using examples developed by Pasindu et al. [15]. 

Machine learning is rising as a new technology of artificial intelli
gence and has been used in civil engineering in recent years. In 2022, 
Nyirandayisabye et al. [24] detected pavement distresses, specifically 
emphasis on rutting, cracks and roughness level by comparing the 
various regression machine learning algorithms. In 2023, Pan et al. [25] 
proposed a generative adversarial network to segment pavement cracks 
automatically, which diminished the effect of noise and segments cracks 
with more details. However, data scarcity is the main issue in civil en
gineering field due to experiments and data collection process are quite 
time-consuming and difficult. In 2023, Chen et al. [26] proposed to 
expand the liquefaction data set using wasserstein generative adversa
rial networks, after enhancing the training dataset, support vector 
regression, random forest, naive byes, and K-nearest neighbor were used 
to validate the improved accuracy of proposed model. 

As concluded from the existing literature in the field, there have been 
no studies addressing the influence of RD on vehicle braking distance 
under intense precipitation on road pavement. This study aims to fill this 
knowledge gap. 

3. Methodology 

The model proposed in this study comprises four sub-models 
designed to assess the impact of RD on vehicle braking distance under 
intense precipitation, representing the worst-case scenario where the 
ruts are filled with water. These integrated sub-models collectively yield 
the final results for vehicle braking distance on wet and rutted 
pavements. 

The first sub-model employs the WFT empirical formula developed 
by Gallway et al. [27] to determine the thickness of existing water film 
over the wet, but undeteriorated pavement surface during precipitation. 
For this matter, input parameters include average texture depth, 
drainage-path length, rainfall intensity, and cross slope. 

On the other hand, rutting is a significant pavement surface distress 
that can alter drainage pathways and create water pooling areas. In this 
regard, the second sub-model assumes a transversal rectangular rut 
shape, where the RD remains constant within each rut, and the WFT at 
the rut position is the sum of RD and WFT over the undeteriorated 
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pavement surface. 
The third sub-model introduces an innovative approach by employ

ing Back-Propagation Neural Network (BPNN) algorithms to simulate 
dynamic skid resistance based on existing data according to the litera
ture, offering a novel contribution to this study. In fact, BPNN is chosen 
after comparative investigation with Random Forest (RF) algorithm. 

In the final step, the output from the first three sub-models serves as 
input for calculating vehicle braking distance on a wet and rutted 
pavement surface, as executed in the fourth sub-model. 

3.1. WFT calculation model on undeteriorated pavement surface 

Over the past years, several empirical and analytical formulas have 
been developed to calculate the WFT on the pavement surface under 
specific rainfall intensities. In sub-model 1, the formula developed from 
experimental data by Gallaway et al. [27] has been selected for this 
calculation, as demonstrated by Equation (1). 

d=

[

3.38× 10− 3 ×

(
1
T

)− 0.11

× L0.43 × I0.59 ×

(
1
S

)0.42
]

− T (1)  

Where, d is water depth above top of texture, which is defined as WFT in 
this study [in.]; T is the average texture depth [in.]; L is drainage-path 
length [ft]; I is rainfall intensity [in./h]; S is cross slope [ft/ft]. 

The selected formula relates the water depth above the top of the 
pavement texture to average texture depth, drainage-path length, rain
fall intensity, and cross slope. In this study, this water depth above the 
pavement texture is referred as WFT (Fig. 1). 

According to Equation (1), an increase in average texture depth re
sults in a lower WFT over the pavement surface. The longer the 
drainage-path length, the higher the WFT. Greater rainfall intensities 
lead to an increase in WFT over the pavement surface, while an increase 
in cross slope results in a reduced WFT. 

3.2. WFT calculation model on rutted pavement surface 

It is widely acknowledged that pavement rutting can lead to driving 
safety issues, such as hydroplaning and skidding, as rutting alters the 
surface runoff of water, leading to reduced tire-pavement friction. 
Although the adverse effects of pavement rutting on driving safety are 
well-known, there has been limited research quantifying this risk. When 
a vehicle travels at a certain speed on a particular pavement surface, the 
impact of RD can be viewed as an increase in the vehicle’s braking 
distance. Previous studies have shown that during intense rainfall, the 
pair of ruts tends to become fully filled with water [12,21], with runoff 
directed toward the road’s lateral borders. Along the cross slope (Fig. 2), 
the WFT on the road border is higher than at any other position. 

Additionally, a constant RD at all positions within the rut has been 
considered in this study. 

Consequently, sub-model 2 calculates the accumulated WFT within 
the rut as the sum of RD and the WFT on the undeteriorated pavement 
surface, as demonstrated by Equation (2). 

WFTrut =WFTsurface + RD (2)  

where, WFTrut represents the height of the water surface to the bottom of 
the rut; RD denotes the depth of the rut, which is assumed to be constant; 
WFTsurface, represents the WFT over the non-deteriorated road pavement 
surface. 

By integrating Equations (1) and (2), Equation (3) can be obtained, 
which relates rainfall intensity, average pavement texture depth, num
ber of lanes, lane width, and cross slope in the proposed model. 

WFTrut =

[

3.38× 10− 3
(

1
T

)− 0.11

L0.43I0.59
(

1
S

)0.42
]

− T + RD (3) 

Table 1 indicates the thresholds for RD severity classification as 
defined by various highway agencies. Based on the sources mentioned 
below, rut severity is categorized into three clusters: low, medium, and 
high, which are also adopted in this study. 

3.3. Predictive model of dynamic skid resistance using AI machine 
learning algorithms 

Understanding the skid resistance state of a pavement is crucial for 
assessing the braking distance on that pavement. Once the skid resis
tance performance of a pavement is predicted, the braking distance for 
any vehicle speed and WFT can be calculated. Therefore, it becomes 
essential to assess the skid resistance effectively for any boundary con
ditions (i.e., WFT and vehicle speed) through sub-model 3. 

The first step involves inputting scattered published skid resistance 
data corresponding to WFT (0–10 mm) and vehicle speed (20–100 km/ 
h) from Chu and Fwa’s research [14]. However, it’s worth noting that 
establishing the database of skid resistance performance state in Chu and 
Fwa’s skid resistance simulation model is a time-consuming process. 
Each skid resistance simulation analysis is an extensive iterative pro
cedure, which may take up to several hours on a high-end workstation 
[14]. 

In this study, to obtain a skid resistance for any WFT, ranging from 
0 to 10 mm, and vehicle speed, ranging from 0 to 100 km/h, a linear 
interpolation within the MATLAB environment is employed (Fig. 3a). 
Since these ranges are limited and not covering wider boundary condi
tions possibilities, a linear extrapolation is adopted to predict the skid 
resistance at higher WFT levels, ranging from 0 to 35 mm and vehicle 
speeds, ranging from 0 to 100 km/h. The interpolated data serve as the 
foundation for extrapolating dynamic skid resistance (Fig. 3b). 

However, it’s important to note that this method only considers the 
gradient at the boundary when WFT equals 10 mm. As a result, there are 
negative predicted values when WFT approaches 35 mm and vehicle 
speed approaches 100 km/h. Given that skid resistance is always a 
positive value, the linear extrapolation model cannot be accepted as 
input for calculating vehicle braking distance. Therefore, two types of AI 
Machine Learning algorithms are employed and compared to predict the 
dynamic skid performance. 

The first adopted AI Technique is RF regression analysis, which is an 
ensemble learning technique that combines multiple decision trees to 
predict dynamic skid resistance when the WFT exceeds 10 mm (i.e., 
10–35 mm). As the first step, the database generated by linear inter
polation (Fig. 3a) is inputted and all variables (i.e., WFT and vehicle 
speed) used in this study are identified. Then, the entire database (with a 
total of 4572 samples) is divided into separate training and testing 
datasets, with 80 % allocated to the training dataset (3728 samples) and 
20 % to the testing dataset (844 samples). Typically, 80 % of the data
base is used for training to ensure a sufficiently large dataset for model 

Fig. 1. Diagrammatic representation of water flow over an impermeable road 
surface [27]. 
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training, while the remaining 20 % is reserved for testing to validate the 
model’s predictive performance. 

On the second step, RF regression randomly selects features from the 
dataset to build each tree. Each tree is trained on a random subset of the 
original database. During the training process, each node of the tree is 
split based on the best feature and split point found among a random 
subset of features. A leaf node represents the end node of a decision tree. 
In this study, the number of trees at 100 is set, with a minimum of 5 
samples per leaf. 

In the last phase, once the forest is built, predictions are made by 
aggregating the predictions of all the individual trees. For regression 
tasks, the most common aggregation method involves taking the average 
of the predicted values from all the trees. Finally, the performance of the 
RF regression model is evaluated using the coefficient of determination 
(R2), as demonstrated by Equation (4), and Mean Absolute Error (MAE), 
as calculated by Equation (5). 

R2 = 1 −

∑m
i=1(Yi − Ŷ i)

2

∑m
i=1(Yi − Yi)

2 (4)  

In Equation (4), m represents the size of the dataset; Yi stands for the 
individual observed value; Ŷ i is the predicted output; Yi denotes the 

mean value of the dataset; R2 quantitatively describes the accuracy of 
the predicted model in relation to the variations in the observed values. 
An R2 value close to 1 indicates that the predictions align well with the 
observed data. 

MAE=
1
m
∑m

i=1
|Yi − Ŷ i| (5)  

In equation (5), MAE serves as a parameter to evaluate predictive per
formance in terms of error accumulation. When MAE approaches 0, it 
signifies a better predictive performance. 

The R2 value for both the training and testing datasets of the RF 
regression model is 99.9 %. The MAE values for the training and testing 
datasets of the RF regression model are 11.7 % and 12.1 %, respectively. 
The statistical evaluation indicates a good fit between the observations 
and predictions. This suggests that RF regression models perform well 
when WFT ranges from 0 to 10 mm, and vehicle speed ranges from 0 to 
100 km/h, as shown in Fig. 4a. 

However, the primary aim of this study is to predict skid resistance 
performance within a broader range, where WFT ranges from 0 to 35 
mm, and vehicle speed ranges from 0 to 100 km/h. The RF regression 
model, being relatively simple, is insufficient to capture the variability 
in WFT under these conditions. Therefore, when expanding the WFT 
range (e.g., from 10 to 35 mm) while keeping vehicle speed constant, the 
RF regression model cannot provide accurate predictions. This limita
tion arises because the model has only two input variables (i.e., WFT and 
vehicle speed) and the extension of skid performance is too vast for the 
model to capture the trend in WFT. Therefore, another AI Machine 
Learning technique is investigated. 

The second adopted AI Technique is BPNN, which is a machine 
learning algorithm used to train artificial neural networks, specifically 
Multi-Layer Perceptron (MLP). BPNN improves the output by propa
gating the error backward and calculating the gradient of the cost 
function for each weight. The input database (with a total of 4572 
samples) is also generated through linear interpolation (Fig. 3a) and 
then divided into separate training and testing datasets, with 80 % (3728 

Fig. 2. Schematic diagram of accumulated WFT within the rut and at the road border.  

Table 1 
Rut severity classification by highway agencies [28–31].  

Highway agency Low 
[mm] 

Medium 
[mm] 

High 
[mm] 

Pavement Condition Index [28] 6.3–12.7 12.7–25.4 >25.4 
Washington State Department of 

Transportation [29] 
6.3–12.7 12.7–19.1 >19.1 

Ohio Department of Transportation 
[30] 

3.2–9.5 9.5–19.1 >19.1 

Ministry of Transportation & 
Infrastructure, British Columbia [31] 

3–10 10–20 >20 

Average 4.7–11.2 11.2–20.9 >20.9  

Fig. 3. Skid resistance performance in MATLAB environment: (a) linear interpolation for WFT ranges from 0 to 10 mm, (b) linear extrapolation for WFT ranges from 
0 to 35 mm. 
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samples) allocated to training and 20 % (844 samples) to testing data
sets. Fig. 5 illustrates the BPNN framework used in this study. 

The input layer comprises WFT and vehicle speed, while there are 
two hidden layers with 5 and 4 artificial neurons, respectively. The 
model’s output is the prediction of Skid Number (SN) corresponding to 
each WFT, and vehicle speed. The R2 values for both the training and 
testing datasets of the BPNN model is 99.9 %. The MAE values for the 
training and testing datasets of BPNN are 8 % and 9 %, respectively. 
Fig. 4b displays the predicted skid performance results using BPNN. For 
instance, when WFT is 35 mm and vehicle speed is 100 km/h, BPNN 
predicts an SN value of 4.5. This prediction is acceptable for use as input 
in calculating vehicle braking distance on wet and rutted pavement 
surfaces in sub-model 4. 

3.4. Calculation model for vehicle braking distance on wet and rutted 
pavement 

The first step involves determining whether the vehicle wheels are 
positioned within the rut path. If the vehicle wheel is located at the 
Rutting Position (RP), then the RD affects the vehicle braking distance. 
Otherwise, rutting has no impact on the vehicle’s operation. Vehicle 
Track Width (VTW) is the distance measured across an axle from the 
centerline of one tire tread to the centerline of the opposite tire tread. 
The centerline of the lane refers to the middle line of the lane along the 
longitudinal direction, dividing it into two halves. This study aims to 
analyze the impact of RD on vehicle braking distance during rainy days. 
Therefore, the core assumption in this framework is that VTW/2 equals 
RP. 

In the second step, the accumulated WFT over the pavement surface 
is determined based on the outputs from sub-models 1 and 2. Sub-model 
1 provides data on rainfall intensity, average texture depth, number of 
lanes, lane width, and cross slope, which are used to calculate WFT over 
the undeteriorated pavement surface. Sub-model 2 extends this calcu
lation by considering the additional impact of RD on the accumulated 
WFT over the rutted pavement position. Consequently, inputs for this 
step include rainfall intensity, average texture depth, number of lanes, 
lane width, cross slope, and RD to pave the way for the subsequent 
analysis. 

The third step involves predicting skid resistance performance, 
considering WFT, ranging from 0 to 35 mm, and vehicle speed, ranging 

from 0 to 100 km/h. In this step, BPNN algorithms is adopted to input 
SN-V-WFT data into the proposed model. 

In the final step, the vehicle braking distance can be obtained by 
combining all the input parameters. This comprehensive algorithm for 
vehicle braking distance computation is executed within the MATLAB 
environment. The initial condition at t = 0 represents the time when the 
driver initiates the vehicle’s braking process. The initial input, v (t1) =
vb, indicates the vehicle speed at the beginning of braking. Subse
quently, an incremental “for-loop” is employed to accumulate the 
braking distance, step by step, until the condition v (t2)>0 is no longer 
met, which means the vehicle comes to full stop. As a result of this “for- 
loop” algorithm, the output is the vehicle’s braking distance required to 
stop on rutted and wet pavement. 

Fig. 6 illustrates the overall framework for computing vehicle 
braking distance through sub-model 4, considering various factors 
including weather conditions, vehicle speed, pavement conditions, 
WFT, road geometry, and RD. 

4. Model validation and calibration 

4.1. Model validation 

Validating the results from the developed model is crucial for 
assessing the precision of the outcomes. It’s important to note that there 
are no existing identical models in the literature that can evaluate 
vehicle braking distance on road pavement under the influence of both 
wet and rutted conditions. This underscores the innovation of this study. 
However, it is possible to find similar models that calculate vehicle 
braking distance under dry conditions and within limited ranges of WFT 
[14,32]. Therefore, three different approaches are adopted in the vali
dation process, as explained in the following.  

• Comparing the results of the proposed model on dry pavement with 
the existing model,  

• Comparing the results of the proposed model on wet pavement with 
the existing model, 

• Comparing the results of wet pavement conditions with dry pave
ment conditions in the proposed model of this study. 

Fig. 4. Skid resistance performance in AI Machine Learning algorithms: (a) RF regression Method, (b) BPNN Method.  

Fig. 5. Adopted framework of BPNN exclusive to this study.  
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4.1.1. Validation according to existing model on dry pavement 
The first validation consists of restimulating the predefined condi

tions available in existing literature (as per the Australian Standard 
[32]), using the proposed model in this study for calculating vehicle 
braking distance on dry road pavement. In the Australian Standard, the 
vehicle braking distance on dry road pavement is calculated using 

Equation (6), with the definitions of v, μ, and g listed in Table 2. 

braking distance= 0.039 ×
v2

μg (6) 

After re-simulating the illustrative example of the Australian stan
dard on dry pavement using the proposed model in this study, with a 
given SN0 of 50, a given vehicle speed of 50 km/h, and a WFT of 0 mm, 
the comparison yielded the following results: the simulated vehicle 
braking distance by the proposed model in this study was 19.66 m, while 
the Australian standard’s result was 19.9 m [32]. The relative error 
between them is only 1.21 %, which is the first proof of the reliability of 
the proposed model. 

Fig. 6. The framework of vehicle braking distance simulation model on wet and rutted pavement.  

Table 2 
Boundary conditions adopted by Australian Standard [32].  

Adopted parameters Values 

μ: Coefficient of Friction in dry condition for cars 0.50 
v: design speed [km/h] 50 
g: gravitational acceleration [m/s2] 9.81  
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4.1.2. Validation according to existing model on wet pavement 
The second validation consists of restimulating the predefined con

ditions available in existing literature (as proposed by Chu and Fwa 
[14]), for calculating vehicle braking distance on wet road pavement. 
Three illustrative examples from Chu and Fwa’s model are re-simulated, 
with the input boundary conditions as presented in Table 3. 

Table 4 displays the relative error between the re-simulation con
ducted using the proposed model and the results from the literature, 
which falls within an acceptable range. 

As it can be interpreted from Table 4, it can be declared that also the 
second validation approach proofs the validity of the proposed model. 
These validations not only confirm the legitimacy of the proposed model 
but also address the limitations observed in prior studies. Specifically, 
the shortcomings related to the insufficient coverage of limited WFTs 
and the lack of consideration for the coupled effect with RD can now be 
effectively resolved through the application of the proposed model. 

4.1.3. Validation according to proposed model on dry and wet pavement 
surfaces 

The third validation involves comparing the results of wet pavement 
conditions (i.e., WFT = 1.5 mm) with dry pavement conditions (i.e., 
WFT = 0 mm) using the proposed model in this study. In dry surface 
conditions, the SN is assumed to be constant with SN0 equal to 50 for any 
vehicle speed. However, in the presence of water, dynamic SN values 
corresponding to specific vehicle speeds must be calculated from the 
skid resistance state surface developed in sub-model 3. The results, as 
shown in Fig. 7, indicate that the proposed model, as expected, is sen
sitive to the presence of water, resulting in increased braking distances. 

4.2. Model calibration 

Due to the presence of a transversal slope, the WFT at the left wheel 
position is lower than that at the right wheel position, implying that the 
skid resistance at the left wheel position is greater than at the right wheel 
position. Consequently, the braking distance for the left wheel is shorter 
than that for the right wheel. To calibrate this model, an average braking 
distance is computed between the left wheel and the right wheel using 
Equation (7). 

DB =(Dleft
B +Dright

B
)/

2 (7) 

After calibrating the proposed model, the same illustrative examples 
are re-simulated. Vehicle braking distance decreases, indicating that the 
proposed model is sensitive to the WFT, resulting in slightly shorter 
vehicle braking distances, as shown in Table 5. 

5. Sensitivity analysis: results and discussion 

To study the impact of each input parameter available for different 
lanes on vehicle braking distance under wet and rutted pavement con
ditions, several sensitivity analyses are conducted using the proposed 
model in this study. A simple road section with two lanes per direction 
(Fig. 8) is selected for these sensitivity analyses. Both the 1st and 2nd 
lanes have a lane width of 3.5 m. The cross slope is set at 2.5 % in 
sections 5.1, 5.2, and 5.4, while the sensitivity analysis related to cross 

slope is performed in section 5.3, considering cross slopes of 2.5 % and 7 
%. The average texture depth is 0.127 mm (0.005 in.), and the vehicle 
track width is 1.5 m. A rainfall intensity of 100 mm/h is considered as 
the intense weather condition for the simulation. 

5.1. Impact of variable RDs and vehicle speeds on the braking distance 

The first scenario considers RD and vehicle speed at the time of 
braking initiation as variables but maintains the lane, WFT, and cross 
slope as constant parameters. Fig. 9 illustrates the vehicle braking dis
tance on the external lane under different pavement deterioration con
ditions with varying RDs (ranging from 0 to 25 mm) and various WFT 
layers existing on different parts of the road surface. These predicted 
braking distances correspond to specific vehicle speeds (i.e., 50, 60, 70, 
80, 90, 100 km/h) at the moment of braking initiation. WFT on the road 
surface is determined by factors such as rainfall intensity, cross slope, 
mean texture depth, the number of lanes per direction, and lane width, 
as calculated by sub-model 1. An RD value of 0 indicates the absence of 
rut over the pavement. 

In Fig. 9, the vehicle braking distance exhibits a gradual rise with an 
increase in RD (Rainfall Depth) at a consistent vehicle speed. This 
observed trend is attributed to the diminishing skid resistance of wet and 
rutted pavement surfaces associated with the growing RD. It’s crucial to 
emphasize that, at each designated vehicle speed, the vehicle braking 
distance experiences an accelerating escalation in tandem with the ris
ing RD. This acceleration is directly linked to the declining skid per
formance, a correlation illustrated in Fig. 4b. As an example, for a 
vehicle speed of 70 km/h, AASHTO [33] recommends that the braking 
distance should be 56.2 m, while the simulated vehicle braking distance 
by proposed model is 42.8 m on wet pavement without rutting. As RD 
increases to 5, 10, 15, 20, and 25 mm, the vehicle braking distance in
creases by 11 %, 17 %, 27 %, 43 %, and 67 %, respectively. 

5.2. Impact of variable lanes, vehicle speeds and WFTs on the braking 
distance 

The second scenario investigates lane, WFT, and vehicle speed var
iations on the braking distance. According to sub-model 1, the WFT on 
the external lane is thicker than the WFT on the inner lane at the same 
non-deteriorated road cross section. Consequently, the vehicle’s braking 
distance on the external lane is longer than on the inner lane since the 
tire-pavement interaction is less. Fig. 10 illustrates the vehicle’s braking 
distance with different vehicle speeds and WFT levels, allowing a com
parison between the simulated scenarios on the inner and external lanes. 
As an example, for a vehicle speed of 70 km/h, the difference in vehicle 
braking distance is 2 m when the WFT is 5 mm, and 1.6 m when WFT is 
10 mm, increasing to 26.5 m for a WFT of 35 mm. This results in per
centage increases in vehicle braking distance of 4.5 %, 3.5 %, and 45.8 % 
for WFT values of 5, 10, and 35 mm, respectively. It can be observed 
graphically that there is a sudden change of vehicle braking distance 
increasing trend for a WFT threshold value of 10 mm, this is due to the 
changing of gradient in skid performance as shown in Fig. 4b. 

5.3. Impact of variable cross slopes, vehicle speeds and WFTs on the 
braking distance 

Cross slope is another important influencing factor in determining 
the vehicle braking distance on wet and rutted pavements. Therefore, as 
the third scenario, the value of RD and the understudy lane are 
considered as constant parameters, while the cross slope, WFT level, and 
vehicle speed are variables. Fig. 11 illustrates the vehicle braking dis
tance with different vehicle speeds on various WFT levels regarding the 
external road lane, allowing a comparison between the simulated sce
narios on the 2.5 % and 7 % cross slopes. 

According to Fig. 11, it is important to emphasize that increases in 
road cross slope result in reduction of water depths as the drainage 

Table 3 
Boundary conditions adopted by Chu and Fwa [14].  

Inputted Boundary Conditions Values 

Vt=0: vehicle speed at time 0 90, 80, 50 [km/h] 
SN(Vt=0): SN at vehicle speed at time zero 50 
μ(t = 0): friction coefficient at time zero 0.50 
Δt: numerical integration time step 0.1 [s] 
G: roadway grade 0 [%] 
g: gravitational acceleration 9.81 [m/ s2] 
w: water film thickness 0.5, 3, 8 [mm]  
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process happens faster. Therefore, flatter road section leads to longer 
vehicle braking distances. As an example, for a vehicle speed of 70 km/ 
h, the vehicle braking distance difference is 1.7 m when the WFT is 5 
mm, and 1.4 m when the WFT is 10 mm, increasing to 25.4 m for a WFT 
of 35 mm. The corresponding percentage increase in vehicle braking 
distance is 3.8 %, 2.9 %, and 43.1 % for WFT values of 5, 10, and 35 mm. 

6. Confronting rutting severity thresholds with AASHTO braking 
distance requirements 

For illustrative purposes, three rutting severity threshold levels (i.e., 
low, medium, high) adopted by several highway agencies are simulated 

and examined with the proposed model in this study and the results are 
compared to the accepted braking distances at each vehicle speed, 
required by AASHTO [33]. For this matter, a set of boundary conditions 
are considered as explained in Fig. 12. This figure displays the predicted 
braking distances by the proposed model according to the average 
threshold levels set by four highway agencies for low, medium, and high 
rutting severities, which are 4.7–11.2 mm, 11.2–20.9 mm, and >20.9 
mm, respectively. 

As demonstrated by the figure, the vehicle braking distance on wet 
and rutted pavement increases with higher vehicle speed, which aligns 
with expectations. In other words, the vehicle speed is directly propor
tional to vehicle braking distance, as demonstrated in sub-model 4. The 
rate of increase in vehicle braking distance becomes notably steeper 
when the vehicle speed surpasses approximately 60 km/h. For a RD of 
4.7 mm, the vehicle braking distance increases by 90.8 m when the 
vehicle speed increases from 60 to 100 km/h, while the corresponding 
increases are 113.4 and 174.5 m for RD values of 11.2 and 20.9 mm, 
respectively. 

Graphical analysis reveals a comparison between the estimated 
braking distances on the wet and rutted pavement surface and the 
AASHTO required braking distance under dry and non-deteriorated 
pavement conditions. It can be seen that the effect of various rut 
severity on vehicle braking distance can be negligible when the vehicle 
speed is lower than 60 km/h. However, when the vehicle speed exceeds 
60 km/h, RD contributes significantly to the results of vehicle braking 
distance. Depending on the rut severity and vehicle speed there is a 
region where the braking distance requirements are met. To illustrate, 
for a low rut severity threshold, the vehicle speed must not exceed 80 
km/h; for a medium rut severity threshold, the vehicle speed must not 
exceed 60 km/h to meet the safe braking requirements. According to 
Fig. 12, the area above the AASHTO requirements may be considered as 
a risk zone. 

Table 4 
Comparison of braking distances between the literature [14] and the proposed model.  

SN0 Braking distance by Chu and Fwa [14] Braking distance by proposed model Relative error [%] 

WFT [mm] Vehicle speed [km/h] Braking distance [m] WFT [mm] Vehicle speed [km/h] Braking distance [m] 

50 0.5 90 70.3 0.5 90 69.94 0.51 
3 80 59.4 3 80 61.96 4.13 
8 50 21.6 8 50 21.93 1.53  

Fig. 7. Illustrative results of wet pavement conditions (WFT = 1.5 mm) and dry 
pavement conditions (WFT = 0 mm) simulated using the proposed model in 
this study. 

Table 5 
Simulated examples result before and after model calibration.  

SN0 WFT 
[mm] 

Vehicle 
speed 
[km/h] 

Braking 
distance before 
calibration [m] 

Braking 
distance after 
calibration [m] 

Variation 
percent [%] 

50 0.5 90 69.94 68.45 − 3.13 
3 80 61.96 59.53 − 3.92 
8 50 21.93 21.83 − 0.46  

Fig. 8. Schematic diagram of 2-lane road cross section.  

Fig. 9. Vehicle braking distance corresponding to various RD and 
vehicle speed. 
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7. Conclusions 

This study introduces an analytical model, based on AI Machine 
Learning, for calculating vehicle braking distance under wet and rutted 
pavement conditions. The model considers various factors, including 
rainfall intensity, number of lanes, lane width, cross slope, average 
texture depth, rutting depth, accumulated water film thickness, and a 
wide range of vehicle speeds. The outcomes of this model underscore the 
following points.  

• An investigation of the best-fitted Machine Learning algorithm to 
train the existing but limited dynamic skid resistance in literature,  

• An effective prediction of dynamic skid resistance in the tire- 
pavement interaction, accomplished through Back-Propagation 
Neural Network (BPNN) with rapid computation times,  

• The quantitative assessment of the influence of rutting depth on 
vehicle braking distance under wet road pavement conditions,  

• The correlation between AASHTO braking distance requirements 
and the simulated vehicle braking distance for permissible rutting 
depth across different vehicle speeds,  

• A precise estimation of vehicle braking distance on wet and rutted 
road pavement. 

It is worth noting that the wide and reliable prediction of dynamic 
skid resistance, achieved through the application of a Machine Learning 

Fig. 10. Vehicle braking distance corresponding to various road lanes scenarios (i.e., inner/external lane).  
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method in this study, is a novel contribution not found in previous 
literature. While there exist analytical models for predicting pavement 
skid resistance performance, the process of establishing a database of 
skid resistance performance states is notably time-consuming. With the 
model proposed in this study, skid resistance prediction, employing 
Back-Propagation Neural Network (BPNN) in the MATLAB environ
ment, takes only a matter of seconds. Subsequently, the obtained dy
namic skid resistance data can be directly utilized as input for 
calculating vehicle braking distances on wet and rutted pavements. 

Furthermore, this model integrates the influence of weather condi
tions, pavement conditions, and road geometry into the evaluation of 

vehicle braking distances. The results obtained from this study also 
allow for the assessment of how cross slope, the number of lanes, and 
lane width affect vehicle braking distances on wet and rutted 
pavements. 

As indicated in this study, a key input for the proposed model is in
formation concerning the depth of rutting along the road section. The 
accuracy of the results generated by this model hinges on the availability 
of pavement condition data and, subsequently, the frequency of survey 
execution. In essence, to achieve predictions closely aligned with the 
actual vehicle performance on the pavement, real-time pavement con
dition data is crucial. Regrettably, this demand is not always met due to 

Fig. 11. Vehicle braking distance corresponding to various cross slope scenarios (i.e., 2.5 % and 7 %).  
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challenges such as the time-consuming and expensive nature of 
obtaining such information. 

It is worth emphasizing that by furnishing the proposed model with 
real-time pavement condition information, including precise data 
derived from on-site rutting tests, it becomes feasible to predict the 
performance of vehicles on the studied road section. This predictive 
capability represents a fundamental step in assessing the operational 
risks associated with the road. Furthermore, this information is essential 
for equipping road engineers with valuable insights into the pavement’s 
performance throughout its useful lifespan. This, in turn, enables the 
scheduling of appropriate maintenance interventions, directly influ
encing the safety and comfort of road users. 
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