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The microservices architectural style has gained widespread acceptance. However, designing applications

according to this style is still challenging. Common difficulties concern finding clear boundaries that guide

decomposition while ensuring performance and scalability. With the aim of providing software architects

and engineers with a systematic methodology, we introduce a novel actor-driven decomposition strategy to

complement the domain-driven design and overcome some of its limitations by reaching a finer modulariza-

tion yet enforcing performance and scalability improvements. The methodology uses a multi-level scalability

assessment framework that supports decision-making over iterative steps. At each iteration, architecture

alternatives are quantitatively evaluated at multiple granularity levels. The assessment helps architects to

understand the extent to which architecture alternatives increase or decrease performance and scalability.

We applied the methodology to drive further decomposition of the core microservices of a real data-intensive

smart mobility application and an existing open-source benchmark in the e-commerce domain. The results

of an in-depth evaluation show that the approach can effectively support engineers in (i) decomposing mono-

liths or coarse-grained microservices into more scalable microservices and (ii) comparing among alternative

architectures to guide decision-making for their deployment in modern infrastructures that orchestrate light-

weight virtualized execution units.
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1 INTRODUCTION

The microservices architectural style [1] is based on the so-called “share as little as possible” prin-
ciple by emphasizing the concept of bounded context [2], that is, the identification of logical bound-
aries where particular terms, definitions, and rules apply in a consistent way. The adoption of this
style leads to a higher decentralization (in terms of control and development) and to the adop-
tion of continuous integration and deployment practices during the engineering life-cycle. This
decentralization is an important enabling factor to increase the scale of operation. Each piece of
functionality can be replicated on demand depending on the workload (i.e., the amount of concur-
rent users) and the relative frequency of invocation.

As reported by several leading companies (e.g., Amazon, Netflix, and Uber), the decomposition
of monolithic systems into microservices is anything but trivial [3]. Enterprises that undergo this
process often have the aspiration of increasing both performance and scalability in addition to
reducing maintenance costs. Nevertheless, deriving a good decomposition into microservices is
challenging. This often leads to nontrivial alternative architectural choices that need to be assessed
in a quantitative way to ensure target quality attributes, such as performance and scalability, which
represent key concerns in engineering microservices systems.

This is motivating a growing scientific interest in microservices from academia. Recent research
is focusing on tackling challenges from both technical and organizational perspectives to guide de-
velopers, architects, and technical managers in making decomposition decisions. These decisions
are often guided by design patterns to organize the data and access to services, while determining
the proper granularity of the microservices and managing the distributed resources (either physi-
cal or virtual) are still severe issues [1, 4]. Here, wrong design choices during the decomposition
process may affect important quality attributes of the system. For instance, improper decomposi-
tion might increase networking activity, leading to non-negligible communication overhead and
subsequent performance degradation [1, 5].

Domain-Driven Design (DDD) represents the current mainstream approach to design microser-
vices applications [6]. However, as described in [7], deducing microservices from domain models is
challenging, especially when domain models are underspecified. DDD may lead to coarse-grained
bounded contexts that might limit scalability under a constrained set of resources. This issue is
even exacerbated in data-intensive applications1 that usually operate on large and shared datasets,
as discussed in [8]. Overall, the fundamental lack we address in this article is that DDD ignores

information about user behavior at runtime, thus preventing finer replication criteria from being

applied.
The state-of-the-art and practice in this area are still immature, as reported in [9], even if system-

atic assessment of performance and scalability is recognized as a painful activity by practitioners
in the field [4, 10], especially for large-scale systems. To address these issues, we introduce a novel
decomposition refinement strategy, henceforth referred to as Actor-Driven Decomposition (ADD).
ADD complements existing approaches commonly used to derive the bounded contexts, such as
DDD. Starting from an initial decomposition, our approach takes into account the actors of the

1Applications that are I/O bound or that process large volumes of data.
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target application to split the service interfaces according to their role. The concept of actor (and
role) received less attention than the notion of bounded context in decomposition approaches for
microservices systems. Furthermore, there is a lack of knowledge on how actors should be inte-
grated in established decomposition frameworks and whether the two approaches can be combined
to increase the scale of operation.

To evaluate the ADD strategy, we propose a systematic and quantitative assessment approach
able to guide engineers towards informed architectural decisions that enforce performance and
scalability improvements within the expected production setting. According to [11, 12], historical
data can be used to extract information about users thanks to the availability of online monitoring
tools, such as OpenAPM.2 The quantitative assessment makes use of load testing [12] in order
to stress the system of interest under target operational settings synthesized from the actors in-
teracting with the system in production. Evidence gathered at runtime is then analyzed using a
multi-level approach, taking into consideration multiple granularity levels: system, component, and
operation.

We adopted engineering research [13] to evaluate the ADD approach and multi-level scalabil-
ity assessment by conducting an in-depth, detailed examination of two case studies3 developed
by leveraging modern technology stacks and deployment infrastructures: (1) a real smart mobil-
ity data-intensive system [14] and (2) an existing microservices e-commerce benchmark, called
TrainTicket [15]. By using the proposed methodology, we were able to compare the ADD strat-
egy with the results of the DDD one and to guide the tuning of resource allocation by exploiting
feedback at different levels (system, component, and operation). We ultimately show that ADD
improves the decomposition obtained with DDD and, therefore, leads to finer and more-scalable
modularization of bounded contexts.

The key contributions of the article can be summarized as follows:

• Methodology for designing, deploying, and scalability tuning of microservices applications;
• Actor-driven decomposition of monoliths or bounded contexts into scalable microservices
• Approach for automated, multi-level assessment of scalability
• Application of the proposed methodology to a real application and an existing benchmark

both deployed in modern infrastructures for containers orchestration

The remainder of this article is structured as follows. In Section 2, we introduce an overview
of our methodology, preliminaries, and research questions. In Section 3, we describe the ADD
strategy. In Section 4, we introduce our multi-level scalability assessment framework. In Section 5,
we present our first case study, in which we applied our methodology to a real system in the
domain of smart mobility. In Section 6, we present our second case study, in which we applied
our methodology to a well-known microservices e-commerce system benchmark. In Section 7,
we answer the research questions and we discuss threats to validity. In Section 8, we present the
related work. In Section 9, we present our conclusions and future research directions.

2 METHODOLOGY AND PRELIMINARIES

In this section, we introduce an overview of our methodology (Section 2.1), the research ques-
tions we aim to answer through an experimental campaign (Section 2.2), and the background no-
tions used in the rest of the article (Section 2.3). We briefly review Domain Driven Design; the

2https://openapm.io/.
3The dataset and the scripts that can be used to replicate the experiments are publicly available at https://github.com/

zerodayshack/Microservices-Performance-Assessment.
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Fig. 1. Overview of the methodology.

notion of architecture, component, and deployment; the notion of scalability requirement; scaling
dimensions; the notion of actor; and the operational profile.

2.1 Methodology Overview

Figure 1 illustrates the high-level building blocks of the methodology as well as the dataflow among
them. White boxes represent the main activities that we present as part of our contribution. Gray
boxes refer to existing practices often applied along the software life-cycle, especially in the context
of microservices systems.

As shown in Figure 1, we assume the existence of functional and nonfunctional requirements,
elicited for the purpose of designing and implementing the application of interest, and the domain
knowledge about the actors and their role in terms of used functions provided by the application.
Among the possible nonfunctional requirements (e.g., scalability, reliability, resilience, security),
our methodology mainly focuses on performance and scalability.

We assume that existing methodologies, such as DDD, as well as microservices design patterns
(e.g., aggregate, and subdomains), have been applied to identify a possible initial decomposition
of the application into a set of coherent bounded contexts that separate the application functions
according to the entity model characterizing the domain of interest. At this point, we refine4 the
bounded contexts by 1© applying the ADD strategy. We still apply well-known microservices pat-
terns [6] (e.g., application programming interface (API) gateway, shared database, database per
service) and we possibly complement them with additional patterns (e.g., command query respon-
sibility segregation, saga, events sourcing) to take into account the actors and their role in the
target system.

As outcome of ADD, engineers 2© define a set of alternative deployment architectures specifying
the components, their relations, and the mapping to execution units. These deployment architec-
tures further decompose the services previously identified through DDD, with the ultimate goal
of maintaining or even increasing the scale of operation. The evaluation of the deployment archi-
tectures starts with the 3© definition of the operational profile of the application to characterize the
expected workload in the production environment. This profile is defined by engineers according
to the set of actors identified by ADD, the operations invoked by the actors, and the expected work-
load intensity for each actor. This latter piece of information can be either manually defined by
engineers according to an existing Service Level Agreement (SLA) or mechanically derived from
execution traces collected by observing similar systems or previous versions of the system in a
given observation period.

4Note that starting from a monolithic system rather than refining the results of DDD is possible but undesirable, especially

if additional quality properties other than scalability are important (e.g., maintainability). Indeed, without the boundaries

identified by domain entities, the reuse of (micro)services could be hard.
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For each deployment architecture, an initial 4© resource allocation must be defined. The
allocation maps the available resources to execution units taking into account the computational
complexity of the functions running on such units. At this stage, we aim at ensuring an accept-
able5 response time for the operations exposed by microservices under a baseline workload. After
tuning the resource allocation, the system is 5© deployed in a staging (or pre-production) envi-
ronment to test the application using the 6© multi-level scalability assessment. This latter stage
automatically executes testing sessions replicating the operational setting. Then, it guides engi-
neers in understanding and improving the scalability of the selected deployment architecture(s) at
different levels of abstraction: system, component, and operation levels. The outcome of the multi-
level assessment is then used to select the alternative(s) that better fits the expected operational
condition. The resource allocation of the selected architecture(s) can be further tuned according
to the outcome of the assessment stage. This triggers a new assessment iteration, as shown in
Figure 1. The final outcome of the methodology is a deployment architecture that, at the end of
the iterations, yields better scalability. With this architecture, the system is then deployed into the
production environment.

2.2 Research Questions

To demonstrate the applicability and effectiveness of the proposed methodology, we identify the
following Research Questions (RQs), which we answer in the next sections.

RQ1: To what extent can our scalability assessment workflow support decision-making over alter-

native microservices architectures at the system level?

We use a high-level scalability metric to compare architecture alternatives and evaluate the
performance of the whole system under increasing loads. In doing so, we aim to understand
whether this metric and our scalability assessment can be integrated in a decision-making
process, such as decision gates before the deployment of a release build.

RQ2: To what extent can our scalability assessment workflow support resource allocation improve-

ment at the microservice (or component) level?

We aim to understand whether our scalability assessment can spot issues at each microser-
vice (i.e., component level) and whether the localization of scalability issues can be used
to improve the components’ performance by reallocating the available resources.

RQ3: Is the scalability assessment workflow able to spot scalability and performance issues at the

operational level?

We aim to understand whether our scalability assessment can identify critical microser-
vice operations that, according to their performance behavior, prevent the system from
increasing the scale of operation.

RQ4: Can ADD practically drive further decomposition of bounded contexts yet enforce performance

and scalability improvements?

We aim to understand whether ADD is a practical method able to improve the decomposi-
tion obtained through DDD in terms of scalability. Thus, ADD can effectively complement
DDD to obtain microservices with finer granularity yet enforce performance and scalabil-
ity improvements.

2.3 Preliminaries

2.3.1 Domain Driven Design. The DDD approach [6] is the de-facto standard to design microser-
vices applications. For this approach, a service must be small enough to be developed by a small
team and to be easily tested. The main idea behind this kind of decomposition is to limit the impact

5Generally, “acceptable” is defined according to usability engineering practices and depends on the application domain [16].
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of changed requirements to a single service (Single Responsibility Principle), thus also reducing the
overhead of team management that we can observe in the case of cross-service impacts. To this
end, the domain is initially decomposed in sub-domains by identifying the business capabilities

characterizing the domain, and their boundaries insulate the so-called bounded contexts [6, 17].
To design bounded contexts and materialize them into microservices, existing tactics may be

adopted (e.g., aggregate, entity, root entity, value object). These tactics mainly aim to ensure the
identification of transactional invariants to be used as a non-distributed data model, thus avoiding
the complexity and inefficiency of distributed transactions.

Due to their cohesive structure, the microservices originating from bounded contexts are often
used by a variety of actors that, according to their role, execute different sets of operations, causing
a non-uniform workload directed to the exported operations. This may cause hot spots in the API
of a bounded context, often forcing the replication of the whole context to satisfy the performance
requirements. Bounded contexts improve software maintenance, yet they may limit the scale of
operation when the actors are not considered in the decomposition process.

2.3.2 Architecture, Components, and Deployment. In this work, we stick to the definition of soft-
ware architecture (or simply architecture) introduced in [18]. An architecture α is defined as a set
of components C and a set of relationships R among them and with the environment, where com-
ponents are domain-specific software elements. Software components mapping to the execution
units is henceforth referred to as deployment. In our context, we also use this term to describe the
mapping from component containers to operating system containers (e.g., Docker containers) or
virtual/physical machines.

While software components and relationships among them are defined according to the
functional requirements, the deployment allocates resources and consequently influences non-
functional properties, such as performance and scalability. In modern infrastructures, deployments
can be complex due to the presence of different virtualization layers: application components are
typically hosted by frameworks accessible as servers —for example, application servers, database
management systems (DBMSs), and the like — whereas servers are hosted by lightweight con-
tainers or/and virtual machines. Often, some lightweight containers are deployed as a whole in a
logical unit called a pod. In the rest of the article, we use the term deploymentsp to indicate the

deployment of servers to pods and the term deploymentpm for any deployment of pods to physical

or virtual machines. Finally, we refer to deployment architecture to indicate a software architecture
including both deploymentsp and deploymentpm . The set of alternative deployed architectures is

henceforth denoted by DA.
Microservices applications can be considered as a specialization of component-based software

applications in which each component is hosted and managed by a dedicated executing unit, typ-
ically exposing CRUD6 operations by means of RESTful APIs. This approach often yields advan-
tages such as fine-grained replication for scalability, independent fault management, resilience,
and selective versioning at runtime. More formally, we refer to a microservice application as set S
of independently deployable components (microservices) operating through a set of operations O
exposed by the API.

2.3.3 The Scaling Dimensions. The Scale Cube conceptual model [19, 20] defines three main
dimensions over which system scalability improvements can be achieved. The three dimensions
of the cube describe a method for scaling systems. Single instance (or monolithic) applications
are located at (0, 0, 0), which is the point that represents the lowest scaling capability. Scalabil-
ity improvements can be achieved by moving an application along the three axes towards the

6CRUD stands for “Create, Read, Update, and Delete,” the four basic operations applied to a persistent storage.
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point (1, 1, 1), which represents an ideal cloned, decomposed, and partitioned solution. The three
dimensions represent actions that one may perform taking into account complementary aspects:
horizontal replication (x-axis); functional decomposition (y-axis); and data partitioning (z-axis).
x-Axis scaling consists of instantiating multiple copies of services or applications behind a load

balancer; this is typically performed with containerization. y-Axis scaling requires substantial
(re)design effort since it decomposes the business logic into different services by deploying each
one into different units of execution responsible for only a subset of the data. The z-axis scaling
takes into account the database(s) and is typically used to partition the data across the services.
Each service replica deals with only a subset of the data improving transaction scalability. The
design and implementation of a partitioning scheme is anything but trivial, especially when the
decomposition of the business logic is coarse and services are responsible for many operations
related to one or more domain entities.

In this article, we aim to improve the effect of cloning (x-axis) by introducing an additional de-
composition strategy on the y-axis, which allows for a more selective replication of microservices,
and related patterns that enforce data separation (z-axis), taking into account the expected load
generated by different actors of the system.

2.3.4 The Scalability Requirement. The scalability requirement quantifies the capability of the
system to handle loads while maintaining performance within a desired range [21]. The require-
ment is defined as a pass/fail scalability threshold, which allows failing and successful operations
to be detected at runtime according to their average response time.

To determine the threshold, we first select an operational setting as described in Section 2.3.5.
Then, we identify a reference load λ0 and a deployment architecture α0 for which the system
is expected to be responsive (baseline setting). Under this configuration, the System Under Test
(SUT) is executed to compute the mean μ0

j and standard deviation σ 0
j of the response time of each

operation oj .We then define the scalability threshold Γ0
j for each operation oj as

Γ0
j = μ0

j + 3 · σ 0
j . (1)

During any other test session with target setting (λ,α ), we compute the mean response time μ j

for each operation oj . We say that the operation oj fails if

μ j > Γ0
j (2)

and it succeeds, otherwise. Equation (2) can be explained by means of the Chebyshev inequal-
ity [22, 23], a version for non-parametric distributions of the well-known 3 · σ empirical rule.
Such an inequality states that more than 88.8% of values in a univariate distribution lie within
three standard deviations of the mean. This heuristic allows us to spot whether the average re-
sponse time of oj , under the architecture α , is an outlier of the distribution observed using the
baseline setting.

During a test session with target setting (λ,α ), we measure the scalability share of an operation
oj by leveraging the pass/fail criterion in Equation (2):

sj = νj · δ j , (3)

where δ j is the Dirac function [24] that denotes whether oj has passed (δ j = 1) or failed (δ j = 0)
the test and νj is the frequency of invocation of operation oj over all invocations to all operations
of the SUT. Equation (3) estimates the conditional probability that operation oj succeeds given
deployment architecture α and load λ.

The sensitivity of scalability metrics based on the pass/fail criterion in Equation (2) has been
studied in [12]. The study demonstrates the adequacy of the criterion in detecting scalability
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Table 1. Example of Actors and Usage Profile

Actor Behavior model Behavior mix

a1
bm1 = { o1

t−→ o2 ...
t−→ ol } ω1

bm2 = { o1
t−→ o3 ...

t−→ om } ω2

a2 bm3 = { o5
t−→ o8 ...

t−→ on } ω3

degradation at the fine-grained operational level. If the system is not under stress (relatively low
load), the metric is not sensitive to the threshold value. If the system is under stress, the metric is
sensitive to the threshold because of the degradation in performance observed for these relatively
high load levels.

2.3.5 Operational Setting. The operational setting includes the operating conditions used to
test a given SUT, taking into account the semantic constraints imposed by each actor to the se-
quences of operations that can be invoked. Let A be a set of actors7 given a set of operations
O = {o1,o2, . . . ,on } and let the covering ofO asC (O ) = ∪a∈AOa , whereOa is the set of operations
allowed for actor a ∈ A; we then define the operational setting (extending the one defined in [26])
as the following set of specifications.

• The workload specification model: Given a set of operations O = {o1,o2, . . . ,on } exposed by
the SUT API, a set of allowed sequences of operations and their invocations through the APIs
along with the specification of valid requests (relative paths of the requests, parameters, and
constraints).
• The actor workload specification model: A subset Oa of the workload specification model O

invoked by a specific actor a ∈ A.
• A set of behavior models: A set of user behaviors {bm1, . . . ,bmn }, each one specified by a

sequence in the actor workload specification model, along with a pseudo-random thinking
time t between subsequent invocations.
• The behavior mix: The set of frequencies {ω1, . . . ,ωn }, each approximating the probability

of drawing the corresponding behavior model during the generation of a load, λ, (i.e., the
number of concurrent users interacting with the SUT).
• The usage profile: The set of behavior models with their behavior mix:

Ω = {〈bm1,ω1〉, . . . , 〈bmh ,ωh〉}. (4)

• The operational profile: The probability distribution of load. This distribution can be dis-
cretized by data binning, which groups continuous values into a number of bins to obtain a
discretized distribution f of selected loads Λ = {λ1, . . . , λs } and their frequencies:

f (Λ) = { f (λ1), . . . , f (λz )}. (5)

Similarly, as the workload intensity ρ (i.e., the total number of requests directed to the system
during a time interval T ) depends on the number of concurrent users and their behavior, we can
write ρ =

∑
a∈A ρa , where ρa is the workload intensity generated by the concurrent users who

are instances of actor a ∈ A. Therefore, each actor interacting with the system is specified by one
or more elements in the usage profile as exemplified in Table 1. The usage profile can be either
defined by operators and developers based on their prior knowledge or mechanically derived by
analyzing the historical data of the system using off-the-shelf monitoring tools [11, 27].

7According to the Unified Modeling Language (UML), an actor “specifies a role played by a user or any other system that

interacts with the subject” [25].
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Fig. 2. DDD refinement through Actor-Driven Decomposition applied to operations O .

3 ACTOR-DRIVEN DECOMPOSITION OF MICROSERVICES

In this section, we first present the ADD strategy (Section 3.1) and then introduce some architec-
tural patterns we identified as useful guidelines to follow when data partitioning is not possible to
break down a bounded context into smaller pieces (Section 3.2).

3.1 Actor-Driven Decomposition Strategy

As anticipated in the previous sections, ADD complements and refines the results of DDD with
the goal of improving scalability. According to the Scale Cube model in Section 2, ADD drives
the design of a target application towards a more selective horizontal replication (x-axis scaling)
through a refinement of functional partitioning and data partitioning (y-axis and z-axis scaling,
respectively). While DDD usually decomposes by noun-preserving cohesion of domain entities,
considering the actors (and their roles) takes a complementary perspective and identifies possible
finer splitting according to usage. ADD does not prevent engineers from applying recommended
practices, such as the single responsibility principle or aggregate roots. It starts from a definition
of bounded contexts and considers possible decoupling based on how end-users interact with their
operations. According to [28], we can see ADD as an additional tactical pattern to identify further
boundaries (that do not violate the existing ones) considering non-functional requirements.

This approach has the potential of increasing the operation scale by selectively replicating finer
units according to actors’ needs. The idea is to create a logical separation of the operations belong-
ing to the same bounded context based on how the actors are going to use them. In this case, we can
selectively increase/decrease computational resources to different groups of operations according
to the load generated by the actors.

Figure 2 shows a high-level schema of DDD refinement through ADD. Given the bounded
context BC1 in Figure 2(a), which corresponds to a coarse-grained microservice (derived from a
bounded context) having its own API exposing o1, . . . ,o6, each actor in A = {a1, . . . ,a4} gener-
ates a different workload whose intensity is ρai

for all i . Each workload intensity is directed to a
subset of the operations depending on the behavior model of the corresponding actor. For instance,
ρa2 is directed to {o3,o4,o5}, while ρa3 is directed to {o5,o6}. Since different workloads are handled
by the same service, the whole service needs to be replicated even in cases in which only one of
these workloads is heavy.

As shown in Figure 2(b), the behavior model of the actors yields the covering C (O ) = {Oa1 ,
Oa2 ,Oa3 }, that identifies a logical decomposition into the services S = {s1, s2, s3}. This refinement
of the original service can better exploit the available resources r1, . . . , rk since they can be as-
signed to more granular services according to the generated workloads. The identification of the
coveringC (O ) requires the following prior knowledge that architects typically have at design-time:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 117. Pub. date: July 2023.
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(1) operations exported by each service (e.g., Swagger OpenAPI documentation8) and (2) the actors
using them. The logical decomposition S induced by C (O ) meets the DDD refinement guidelines
suggested by tactical patterns introduced in [17, 28]:

• Each service has a single responsibility since it is a DDD service for a specific actor.
• There are no chatty calls between services since execution traces do not increase their com-

plexity (they are essentially the same but possibly handled by different services according
to the actors who issue the requests).
• Each ADD service is even smaller than the original one; therefore, it can be built by a small

team working independently.
• There are no additional interdependencies that require two or more services to be deployed

in lock-step.
• Services are not tightly coupled and can evolve independently according to the evolution of

the actors.

As shown in Figure 2(b), a coveringC (O ) may lead to partially overlapping sets, such asOa2 and
Oa3 . In this case, alternative strategies to define services are possible. In particular, the operations
in the intersection:

• can be replicated in different microservices;
• can be included in a larger microservice merging the partially overlapping sets of operations;
• can be implemented by a dedicated microservice that is then used by more than one actor.

Binding the final decision to a single choice without proper understanding of the corresponding
impact on quality attributes is dangerous and could lead to violation of the scalability requirement
(Equation (1)) in production. For this reason, whenever the architects have a set of possible alter-
native architectures, proper and systematic assessment of them shall be carried out.

Let r̂i be the amount of resources allocated to service si that ensures the satisfaction of the
scalability requirement in the case of reference load λ0. Then, let us consider a generic load λ > λ0

such that λ generates the workload intensity ρ =
∑

i ρai
. According to the logical decomposition

described earlier, the amount of resources allocated to each service si shall be proportional to
the workload intensity ρai

of the corresponding actor. The mapping from available resources to
services is denoted byM9 and defined as follows:

M = {r̂1 · �Δ(ρa1 )	, r̂2 · �Δ(ρa2 )	, . . . , r̂l · �Δ(ρal
)	}, (6)

where Δ(·) represents a scaling factor expressed as a function (either linear or nonlinear) of the
relative workload intensity, which depends on the number of concurrent users.

The scaling factor function Δ is usually implemented by means of autoscaling components that
automatically adjust the amount of resources per service at runtime. Let us consider an upper-
bound r in the total amount of available resources and the workload intensity ρ̄ =

∑
i ρ̄ai

such
that all of the resources are saturated by the function Δ. Under this condition, the autoscaling
component usually follows the distribution of the workload intensity, that is, the amount of re-
sources for each service si is proportional to the workload intensity ρ̄ai

. Thus, the mapping is
approximately as follows:

M = r ·
{⌈

ρ̄a1

ρ̄

⌉
,

⌈
ρ̄a2

ρ̄

⌉
, . . . ,

⌈
ρ̄al

ρ̄

⌉}
, (7)

8https://swagger.io/.
9Automatically generated by an autoscaler or manually assigned by an operator.
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Fig. 3. Actor-driven CRUD decomposition and database replication.

taking into account the constraints imposed by the available resources on each virtual or physical
machine. These constraints could prevent the ideal mapping from being applied due to the presence
of nondivisible resources.

This condition represents an important scenario that pushes microservice performance to its
limit. Testing the target system under these circumstances is required to study the total amount as
well as the distribution of resources that guarantee the satisfaction of the expected maximum load
defined, for instance, by an SLA. Our methodology systematically replicates these circumstances
in controlled experiments to study the extent to which alternative architectural options (driven by
ADD) improve the scalability of the target system under different distributions of the workload
intensity ρ̄ai

.
Even though the focus of our work is on performance and scalability, it is worth noting that the

increased granularity level obtained through ADD may lead to better fault localization and higher
reliability. For instance, let us consider BC1 in Figure 2(a) andOa1 ,Oa2 ,Oa3 in Figure 2(b) obtained
through DDD and ADD, respectively. While ADD yields better distribution of the workload, in the
DDD version the workload of three actors (ρ̄a1 , ρ̄a2 , and ρ̄a3 ) may generate a substantial amount
of traffic directed to a unique service. In this case, BC1 may become a scalability bottleneck, prone
to server errors due to saturation of resources, thus reducing the reliability of the system [29].

3.2 Databases and Stateful Services Decomposition

The decomposition of a bounded context into smaller pieces may lead to difficulty in splitting the
database due to the high cohesion of the related schema, leading to a shared database solution that
may limit scalability. Here, we propose two different approaches that can be applied in different
situations according to the chracteristics of the services identified by ADD.

3.2.1 CRUD Decomposition and Database Replication. The first option we consider works at
the functional level by separating write-and-read operations. A database can always be separated
in two types of instances as shown in Figure 3:

• CRUD-DB, with a full feature database that exposes the CUD (Create, Update, and Delete) and
R (Read) interfaces to manage all operations (or only CUD ones);
• R-DB, optimized for read-only operations. It exposes the R interface that manages only read

operations performed on instances of the database obtained by periodically synchronizing
CRUD-DB transactions.

As illustrated in Figure 3, R-DB depends on CRUD-DB since each successful CUD transaction
must be propagated to all of the read-only instances to enforce data consistency. This is typically
supported by modern DBMSs or can be implemented through a publish/subscribe connector be-
tween the instances. CRUD-DB is used by microservices that expose both write and read operations,
whereas R-DB is used by microservices that expose read operations only. As an example, let us
consider the set of operations O exposed by a microservice (bounded context) of a smart mobility
application. The microservice handles road networks and is used by the administrator actor a1,
who can both read available roads and insert new roads, and the end user a2, who can read only
the existing roads to calculate shortest paths. According to the ADD strategy, the service can be
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Fig. 4. Microservices architectures with CRUD decomposition.

decomposed according to the covering O = {Oa1 ,Oa2 }. Since Oa2 contains read-only operations,
the corresponding microservice s2 will expose a subset of the original API and will communicate
only with the R-DB instances.

Figure 4 illustrates two alternative architectural patterns to decompose a microservice whose
operations are used by different actors. The description of the patterns follows:

• Role Separation (RS). As shown in Figure 4(a), both read and write operations of actor a1

are directed to the CRUD-DB; thus, this actor does not act on R-DB. The two microservices
are separated at each level, with a weak interaction at the DB level due to the need for
propagating changes from CRUD-DB to R-DB.
• Command and Query Responsibility Segregation (CQRS). Figure 4(b) shows this pattern, in-

spired by the one originally introduced in [6]. Following this approach, we change the archi-
tecture at the DB level by forwarding the CUD operations towards CRUD-DB and the R ones
towards R-DB. Even if there is a link between s1 and the R-DB used by actor a2, this architec-
ture does not violate separation since a dedicated R-DB can be assigned to each instance of
s1. This architecture requires careful management of data propagation to avoid data incon-
sistency issues. For example, a write operation performed by an instance of actor a1 could
not be seen by a short time subsequent read operation from the same client. All of these
considerations apply not only to databases but also to any stateful service.

3.2.2 Database Partitioning. Another option we propose is to split the data of a single database
into different database instances having the same schema. This approach can be applied when
each actor accesses a disjoint subset of the data contained in the original database. As an ex-
ample, consider an e-commerce application used to sell train tickets of different types, such as
high-speed train tickets and other tickets. Users buying other tickets typically generate a heavier
workload than buyers of first-class tickets. In this case, rather than maintaining a single database
for all of the tickets, we may split the data into two instances. This separation, again, enables a dif-
ferentiated replication or resources allocation depending on the expected or actual load generated
by high-speed train ticket buyers and other buyers.

As illustrated in Figure 5, the workload generated by a1, . . . ,an is directed to different ser-
vices exposing the same API. Each one of these services works on its own database instance. The
databases p1, . . . ,pn have the same schema and their disjoint union gives the data contained in the
original database.

4 MULTI-LEVEL SCALABILITY ASSESSMENT

To support decision-making while applying the ADD approach, we present a methodology for
scalability assessment of alternative architectures that takes into account both logical and deploy-
ment relationships. In the following, we first introduce a high-level overview of the workflow
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Fig. 5. Actor-driven database partitioning.

to guide the decisions of architects (Section 4.1). Then, we dive deeper into the definition of the
operational setting (Section 4.2), the measurement workflow (Section 4.4), and the analysis work-
flow (Section 4.5).

4.1 Overview

The objective of our assessment approach is to guide architects on deployment architecture selec-
tion, in the set of all available alternatives DA, that better fits the operational setting in terms of
performance and scalability.

Figure 6 shows an overview of the main stages: 1© derivation of the operational setting, 2© load

testing, 3© measurement framework, and 4© analysis workflow.
The operational setting derived in stage 1© describes the system usage and is typically obtained

from operational data generated during system execution and SUT specification [11, 30]. In stage
2©, load tests are designed taking into account a target operational setting and alternative deploy-
ment architectures. The tests are then automatically executed to collect response times of invoca-
tions to each SUT operation. In stage 3©, raw data are automatically processed to compute a set
of metrics according to our measurement framework. In stage 4©, the analysis workflow guides
engineers to informed decisions by means of a cockpit that displays plots and measures tailored
to the questions of interest.

4.2 Derivation of the Operational Setting

In this stage, the operational setting (Section 2.3.5) is determined by combining the information
on SUT specification (e.g., the allowed sequences of operations and invocations from the RESTful
APIs for the workload specification model) with the historical data generated by the SUT during
its operations (e.g., the frequency of occurrence of a certain behavior model). The usage profile
can be manually defined or automatically derived from operational data. The manual definition
of the usage profile is typically conducted by deriving user-application interaction patterns of
relevant scenarios. The automatic extraction is performed on historical data and is carried out
using process mining [31], or clustering algorithms, such as the WESSBAS approach [27]. For
instance, for a cloud provider delivering an application as a service, the load and behavior mix
represent the precondition for defining the guarantee terms of an SLA, which specifies Service
Level Objects (SLOs), such as response time, against the declared preconditions [32].

The operational profile is typically determined by observing the target system during operations
in a certain period of time. The load is periodically recorded and its frequency is computed. The
load values in a given interval (e.g., 0–300 in Figure 7(a)) are binned to obtain the discretized
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Fig. 6. High-level overview of the scalability assessment.

Fig. 7. Operational profile.

distribution over a set of equally distant load values λ1, . . . , λk ∈ Λ. The cumulative frequency
between each two consecutive loads is then assigned to the smaller one. For instance, the result of
the binning process on the data in Figure 7(a) is the polygon illustrated in Figure 7(b).

4.3 Load Testing

As shown in Figure 8, this stage includes two load testing sessions to collect the response time of
the invocation to each SUT operation. For both sessions, the usage profile is the same. The former
is referred to as the baseline test session and the SUT is executed under a baseline deployment
architecture α0 and load λ0 for which the SUT is expected to operate with acceptable performance
as described in Section 2.3.4. During this session, the response time of each operation is collected
and the scalability threshold in Equation (1) is computed. The latter session is referred to as target

test session and it tests the SUT under a target operational profile defined by the selected loads
Λ and the alternative deployment architectures DA. For each pair (λ,α ) ∈ Λ × DA, a test is
executed.10 During each test, all invocations to SUT operations and corresponding response times
are collected. The outcome of each test is the mean response time and the invocation frequency
for each SUT operation.

According to our definition of architecture in Section 2, α also includes deployment aspects: de-
ployment of servers to pods (deploymentsp ) and deployment of pods to physical or virtual machines

10Multiple parallel tests are desirable (to speed up the process) and feasible as long as each test can replicate the same

amount of resources available in the production environment without interfering with each other.
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Fig. 8. Load testing.

Fig. 9. Measurement framework.

(deploymentpm ). This means that the results of the tests also depend on the adopted infrastructure,

that is, scalability requires the identification of proper separation boundaries in the software ar-
chitecture to enable an effective exploitation of the underlying (scalable) infrastructure.

4.4 Measurement Framework

This stage is fully automated and follows the measurement framework illustrated in Figure 9. It
starts with the high-level goal of assessing the SUT scalability in terms of its capability of meeting

the performance requirement under increasing load. It processes the response time and invocation
frequency of all operations to provide four metrics for the analysis stage: the (relative) Domain

Metric, scalability footprint, scalability gap, and performance offset described in the following.

Relative Domain Metric. The relative Domain Metric measures the overall scalability of a de-
ployment architecture at a given load, as described in [12]. It represents the probability that the
SUT with deployment architecture α does not fail under a given load λ ∈ Λ and is computed as
follows:

DMα (λ) = f (λ) ·
n∑

j=1

sα
j (λ), (8)

where f (·) is the discretized distribution of loads (Section 2.3.5), n is the number of operations, and
sα

j (λ) is the scalability share of oj (Equation (3)). When no operation fails with load λ,DMα (λ) is

equal to f (λ) and is less than f (λ) otherwise. This difference measures the scalability degradation
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Fig. 10. Plots of relative DM over loads and value of the total DM for three deployment architectures. The

difference between α ■ and β ■ cannot be distinguished using the quantitative (DM value) or qualitative

comparison (plots).

due to the failed operations with load λ:

SDα (λ) = f (λ) − DMα (λ) = f (λ) ·
∑
j ∈S

(1 − sα
j (λ)) (9)

where S is the set of indices of the operations that fail. Thus, a failing operation contributes with
its scalability share (Equation (3)) to the overall scalability degradation of the SUT. At each load,
performance degradation can be visualized as the gap between the plot of the relative Domain
Metric (outermost polygon) and the one of the discretized distribution (inner polygon), as shown
in Figure 10. Internal polygons approaching the outermost line yield scalability closer to optimal
from a system-level perspective.

By applying the Bayesian rule, we can also compute the total Domain Metric, as follows:

DMα =
∑
λ∈Λ

f (λ) ·
n∑

j=1

sα
j (λ). (10)

DMα provides engineers with a single value that measures the overall SUT scalability with the
deployment architecture α [33].

Even though the total Domain Metric represents an effective instrument to decide over differ-
ent deployment architectures, in some cases it may not explain subtle differences; thus, further
investigation might be necessary. Figure 10 illustrates an example of such a situation. The two de-
ployment architectures α and β have the same total Domain Metric (0.72) but different scalability
behavior over loads. To understand what is better in these cases, we need to analyze the system
at a lower abstraction level. To this end, we introduce the Scalability Footprint, which represents
the scalability capability per individual operation.

Scalability footprint. The scalability footprint measures the scalability level of each operation

exposed by the SUT. To obtain it, we first define the Greatest Successful Load (GSL) λ̂j for an opera-

tion oj as the greatest load in Λ for which oj succeeds. This implies that oj fails for all λ > λ̂j . When

λ̂j equals the maximum load in Λ, oj exhibits optimal scalability. The set of GSLs for all operations

is referred to as Scalability Footprint Λ̂α of the SUT with deployment architecture α . In some cases,
the footprint represents a strong boundary: when the average response time μ j increases mono-

tonically with the load, the operation oj also succeeds for all λ ≤ λ̂j . In this case, the Scalability
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Fig. 11. Visualization of two scalability footprints for the deployment architectures α ■ and β ■ with com-

ponents A (red operations) and B (black operations).

Footprint represents the boundary for which each operation always succeeds before and always
fails after its GSL value.11

We use the scalability footprint to compare the alternative deployment architectures in both
qualitative and quantitative manners. The qualitative comparison relies on a specific visualization
method, that is, a radar plot as illustrated in Figure 11. Each circle in the grid of the radar represents
a load λ ∈ Λ. The distance between two circles is the frequency of the discretized distribution
f at the greater load. Each closed polygon in the radar represents the scalability footprint of a
deployment architecture. Each vertex of a polygon is the GSL of the corresponding operation. For
example, the blue and pink polygons in Figure 11 represent the footprints of α and β over the five
operations {o1, . . . ,o5}. Operations exposed by the same architectural component have the same
font color (e.g., red and black operations in Figure 11 belong to components A and B, respectively).
The vertices either reaching or exceeding the outermost grid circle indicate optimal scalability for
the corresponding operation (e.g., o5).

The quantitative comparison between alternative deployment architectures relies on the Mann-
Whitney U-test statistic [34] and the Cliff’s delta effect size to classify its magnitude [35]. The

Mann-Whitney statisticUα β measures how many times the GSLs in Λ̂α are greater than the GSLs in

Λ̂β for the same operations. According to [34], the Mann-Whitney effect sizeuα β is then computed
as follows:

uα β =
Uα β

|Λ̂α | |Λ̂β |
, (11)

where | · | indicates the set cardinality. To classify the effect size, the Mann-Whitney effect size is
first converted to the non-parametric Cliff delta effect size d :

d = 2 · uα β − 1. (12)

It is then classified according to the standard categorization introduced in [36]:

• negligible (N) effect size, if |d | < 0.147;
• small (S) effect size, if |d | < 0.33;
• large (L) effect size, otherwise.

11If μ j does not increase monotonically, the scalability footprint only indicates that operations fail for all loads greater than

their GS. In this case, the scalability footprint can be still used to compare alternative deployment architectures, but only

in terms of their failing behavior after the GLS.
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Fig. 12. Scalability gap of the two alternative architectures α ■ and β ■ with components A (red operations)

and B (black operations).

The categories measure the strength of the difference between two footprints. For instance, the
value Uα β = 13% with large (L) effect size indicates that architecture α is largely (L) less scalable
(13% < 50%) than β .

This quantitative evaluation can be applied considering all of the operations of the SUT or just
those exposed by a specific component depending on the desired granularity level.

Scalability gap and performance offset. With the aim of providing engineers with additional in-
formation at the operation level, we define two additional metrics: the scalability gap and the
performance offset of failing operations. The former measures the scalability loss and the latter
the performance loss due to a failing operation. The scalability gap SG j of a failing operation oj is
the scalability share (Equation (2)) at the minimum λ ∈ Λ greater than the GLS of oj :

SGα
j (λ) = να

j (λ). (13)

The performance offset POj of a failing operation oj is the distance from the mean response time
to the scalability threshold Γ0

j at the minimum λ ∈ Λ greater than the GLS of oj :

POα
j (λ) =

μα
j (λ) − Γ0

j

Γ0
j

. (14)

We visualize the scalability gaps and performance offsets of failed operations by means of his-
tograms. Figure 12 shows the scalability gap under two alternative deployment architectures α and
β . Horizontal lines represent the loads in Λ. A bar lying on an horizontal lines at l —say, l = 250 —
represents the scalability gap of an operation (o5) that has the GSL value equal to the maximum λ

smaller than l (λ̂5 = 200). Thus, higher bars correspond to failing operations having higher nega-
tive impact on SUT scalability. We use the same representation to compare the performance offsets:
higher bars correspond to failing operations having higher impact on the performance degradation
of the SUT.

4.5 Analysis Workflow

The analysis workflow is tailored to understand (Figure 13(a)) and then improve (Figure 13(b)) the
scalability of the system. The analysis starts from the following three goals:

• G1: Understand the scalability of the SUT with a given architecture α .
• G2: Compare the scalability of the SUT with alternative architectures α and β .
• G3: Improve the scalability of the SUT.

The decision process is then guided by questions derived from the goals. Our visualization and
measurement framework is then used to answer the questions listed in Figure 13.
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Fig. 13. Analysis workflow.

Understanding the target deployment architectures. Considering G1, the workflow starts by
visualizing the DM polygon of a deployment architecture α to determine whether the architec-
ture satisfies a scalability requirement. Specifically, the architect would like to answer Q1 and Q2

for α . If the correspondingDM polygon is very close to the outer one, the architect may consider
α as optimal. If so, the analysis ends with the decision: no change in the architecture is needed and

α is recommended. In case the architect observes scalability issues for some loads (e.g., λ = 150
and architecture α in Figure 10), the architect can compute the totalDM value and answer Q3. If
the total DM is far from optimal, the architect can then consider G2 and compare the polygon α
and the total DM with alternative deployment architectures to answer Q4. For instance, β and δ
are two alternative deployment architectures in Figure 10. Compared to α and β , δ has no scala-
bility issues up to λ = 150, but the overall DM is lower. With this information, the architect can
understand that δ represents a worse choice.

If the DM polygons and the total DM value are not sufficient to identify the deployment
architecture closer to optimal, the architect uses the scalability footprints and applies a pairwise
comparison of the alternative deployment architectures considering the effect size and magnitude.
As an example, α and β in Figure 10 have the same total DM value but different DM polygons
that may be equally good. In this case, differences may emerge analyzing the scalability footprints.
In case multiple architectures still exhibit similar scalability, the architect can refine and improve
the deployment configuration (e.g., allocation of resources to components or operations) of one or
more architectures and then apply our approach to compare them, as follows.

It is worth noting that both α and β are initial assignments that improved over one or more iter-
ative steps. These assignments are usually based on domain knowledge (coming from the analysis
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of historical data [27]) or can be produced by using sampling techniques [37] driving the selection
of the initial and subsequent candidate sets of architectures/configurations.

Improving the target deployment architectures. Starting from G3, the workflow considers the scal-
ability footprints of one or more deployment architectures to answer Q5 and Q6. The architect
compares the effect size and magnitude of the scalability footprints of alternative deployment ar-
chitectures and selects the components and their operations that require further investigation. The
scalability footprints in the radar plot show the failing operations at each load level and the overall
differences for components, as for components A and B in Figure 11. For instance, the footprint of β
shows worse scalability for component A and better scalability for B. The effect size and magnitude
calculated at component level may further indicate that B is largely more scalable with β and A is
less scalable with β but by a negligible difference with α . In this case, the architect can choose β
and change the deployment configuration for component A to improve the overall scalability of
the SUT.

By following the workflow, the architect analyzes each operation by means of the scalability gap
and performance offset. The main objective here is to identify failing operations whose impact
is higher on performance and scalability. Operations associated with the largest impact yield a
severe negative effect that can be mitigated by using suitable architectural choices and resource
allocation (within the limits of the physical constraints of the underlying hardware). As an example,
by inspecting Figure 12, we can observe that with β , the operations o1, and o2 exhibit a scalability
gap at load 150, while o3 yields a scalability gap at load 200. With this information, the architect
can allocate more resources to B (operations o1, o2, o3). Considering instead α , the operation o5

fails at load 250 with a large scalability gap, whereas all other operations fail at load 200 but with
a smaller gap. This means that the operation o5 of B is the most critical one since its invocation
frequency is higher compared with the other operations.

5 CASE STUDY 1: TRAFFIC SERVICE

The first case study used for our evaluation is a smart mobility application implemented as a data-
intensive microservices system that monitors road networks traffic.

In this section, we briefly present the SUT in Section 5.1 and describe the application of ADD
to decompose a bounded context of this application in Section 5.2. In Section 5.3, we discuss the
operational setting that has been deployed in our testing environment, presented in Section 5.4, to
carry out controlled experiments with multiple deployment architectures, presented in Section 5.5.
We describe the execution’s workflow of our experiments in Section 5.6 and analyze major results
in Section 5.7.

5.1 System Under Test

The system is able to collect data through sensors installed on road networks (or by exploiting
a dedicated emulator when data are only available offline for a deferred analysis) and to process
those data in the cloud by exploiting technologies for distributed and high-performance processing
of large amounts of data. It is an example of a large class of software systems in the context of the
edge-to-cloud paradigm that today are very common due to the widespread adoption of Internet of
Things (IoT) technologies for the development of smart solutions in city environments. We focus
on an extract of the whole system, a specific service used for road network management. We refer
the reader to [14, 38] for comprehensive descriptions.

The system handles the API requests by managing the road networks as graph-based data struc-
tures, where nodes represent road intersections, relationships (edges) between nodes represent
streets, and their weights are the average travel times streamed by other platform components
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Fig. 14. Data entities within the bounded context of the DomainService.

Table 2. REST Operations Exposed by the TrafficService DDS

DDD id description Action URI (relative path) actor ADD

T
ra

ffi
cS

er
v
ic

e

o1 addIntersection POST /intersections Admin

AdminService

o2 addStreet POST /streets Admin
o3 getIntersection GET /intersections/{osmid} Admin
o4 getStreet GET /streets/{id} Admin
o5 getStreets GET /intersections/{id}/streets Admin
o6 setStreetInterruption PUT /streets/interruptions/{id} Admin
o7 setStreetWeight PUT /streets/{id} Admin

o8 getStreetByIntersection GET /streets?i1=x&i2=y EndUser

EndUserService
o9 getNearestIntersection GET /intersections?lat=x&lon=y EndUser
o10 getShortestPath GET /paths?i1=x&i2=y&type=s EndUser
o11 getTopCriticalNodes GET /intersections?BCtop = x EndUser

towards the service layer. Figure 14 shows the class diagram modeling a road network whose
elements are the data entities characterizing the specific bounded context. The Streets are char-
acterized by a series of coordinates, useful for managing the geometry during the visualization on
a map. Every edge is directed. Thus, a two-way street is represented as two edges with opposite
orientations. To test our system with real data, the road network of the metropolitan city of Rome
was loaded into the database, including 42,753 intersections and 89,251 streets, respectively, graph
nodes and edges.

5.2 Actor Driven Decomposition

The application exposes the REST operations listed in Table 2, which are used by two actors.

• EndUser: Obtains information via HTTP interactions through dynamic city maps in Web
GUIs;
• Admin: Manages data with CRUD operations, exposed as RESTful services, that allow streets

and intersections to be inserted and changed.

We observed that these two actors operate on the application in different ways, by invoking
two different sets of operations as reported in Table 2. This way, from the initial bounded context
materialized by TrafficService, we derived two smaller microservices, named AdminService and En-

dUserService. In the following, we will refer to services derived from DDD as Domain-Driven Ser-
vices (DDS) whereas the services derived from ADD are referred as Actor-Driven Services (ADS).

Using the Scale Cube model, in this case study we exploit the ADD strategy to guide a further
decomposition of bounded contexts along the y-axis. This enables a differentiated replication of
the operations according to the expected load generated by different actors onto the system.

We then decompose the database according to the CRUD decomposition introduced in Sec-
tion 3.2. The details of this decomposition and the related deployment architecture are discussed
in Section 5.5.
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Table 3. Behavior Models of the Two Actors Admin and EndUser

Actor model ID Operations’ sequence

Admin
bm1 {o3

ta−→ o5
tu−→ o3

ta−→ o5
tu−→ o2}

bm2 {o1
tu−→ o1

tu−→ o1
tu−→ o2

tu−→ o2}

bm3 {o3
ta−→ o5

tu−→ o4
tu−→ o7

tu−→ o6
tu−→ o4}

EndUser
bm4 {o9

tu−→ o9
ta−→ o10

tu−→ o9}

bm5 {o11
tu−→ o9

ta−→ o8
tu−→ o8}

bm6 {o8
tu−→ o9

tu−→ o9}

Table 4. Two Behavior Mixes Specified by the Usage Profiles Ω and Ω′

Ω Ω′

model ID behavior mix #operations behavior mix #operations

bm1 0.166 ∼ 2.5k 0.083 ∼ 1.25k
bm2 0.166 ∼ 2.5k 0.083 ∼ 1.25k
bm3 0.166 ∼ 2.5k 0.083 ∼ 1.25k
bm4 0.166 ∼ 2.5k 0.250 ∼ 3.75k
bm5 0.166 ∼ 2.5k 0.250 ∼ 3.75k
bm6 0.166 ∼ 2.5k 0.250 ∼ 3.75k

5.3 Operational Setting

5.3.1 Workload Specification and Behavior Models. Starting from the operations presented in
Table 2, we defined six behavior models operating on two corresponding sets of REST operations.
Each set corresponds to one actor (equivalently, component) of the system, according to our pro-
posed decomposition strategy. Each behavior model is defined by sequences of operations and a
thinking time for each service invocation sampled from two different uniform distributions: ta be-
tween 1 and 200 msec to simulate automated elaboration of results, and tu between 1,000 and 5,000
msec to simulate human interaction. Table 3 lists the six behavior models (with IDs {bm1, . . . ,bm6})
that we used to define the operational profile of the SUT.

5.3.2 Usage Profiles. For each testing session, we considered a behavior mix as reported in
Table 4. The two behavior mixes in the table represent two usage profiles derived from two al-
ternative assumptions: Ω, that is, a balanced distribution of the users per component (i.e., 50%
EndUsers and 50% Admins); and Ω′, that is, an unbalanced distribution of the users per component
(i.e., 75% EndUsers and 25% Admins).

5.3.3 Operational Profile. With the information reported earlier in mind, throughout the exper-
iments we assumed an arbitrary target operational profile that represents the expected workload
in production. For each testing session, we set the discretized distribution of the load as follows:

Λ = {2, 50, 100, 150, 200, 250, 300, 350}
f (Λ) = {0.008, 0.045, 0.049, 0.207, 0.239, 0.247, 0.155, 0.031}. (15)

5.4 Testing Environment

5.4.1 Hardware Constraints. To deploy and test the SUT, we used two blade servers12 man-
aged by VMWare vSphere and ESXi hypervisor. Each blade is equipped with 64 GB of RAM and

12The blade servers have been kindly provided by TIM S.p.A. in the framework of a research collaboration.
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two physical processors Intel Xeon E5-2667 v3 at 3.20GHz. Each processor is composed of eight
physical cores with hyper-treading (32 virtual cores per blade). The blades are connected to a 2-TB
capacity datastore.

5.4.2 Virtualization Layers. The hardware infrastructure is virtualized by using OpenStack.13

We created six virtual machines (VMs) with six virtual cores (vCPUs) each and a maximum fre-
quency of 3.20GHz per virtual core. The six VMs provided by OpenStack are used to deploy
OpenShift on top of Kubernetes.14 Two of these machines are used for infrastructure man-
agement, collecting metrics, managing images, routing, and load balancing. The remaining four
nodes (compute1, . . . , compute4), have 5.6 cores used to run the SUT. In this environment, we used
Kubernetes Pods as atomic deployment units.

5.4.3 Platforms. On the virtualized hardware, we deployed the graph-based DBMS Neo4j15 in
causal clustering with three core servers to ensure fault-tolerance and a variable number of read
replica servers. Each core server is deployed into a separate Kubernetes Pod of a StatefulSet that
guarantees data persistence. The application business logic is encapsulated and deployed onto the
Wildfly16 application servers that expose RESTful endpoints. The SUT running on the aforemen-
tioned virtualization layers have been tested by using Jmeter.17

5.5 Deployment Architectures

Taking available resources into consideration, we evaluated different deployment architectures
with our methodology. In particular, we adopted the same deployments of application servers
on software pods (deploymentsp ) and we changed the deployments of pods to virtual machines

(deploymentpm ), as follows.

5.5.1 Deploymentsp . Figure 15 illustrates the deploymentsp of the original DDS and two alter-

native decompositions of the ADS.

Domain-Driven Service. According to the schema in Figure 15(a), the microservice is encapsu-
lated and deployed within a Wildfly pod that can be replicated for scaling purposes, as noted by
symbol ∗ in the name. This tier is directly connected to the database tier formed by a cluster of
pods hosting Neo4j DBMS instances. The Neo4j RAFT Cluster manages the CRUD operations
requested from the upper tier. To face increasing loads, client requests can be mediated by a load
balancer that ensures horizontal scaling by replicating the microservice.

Actor-Driven Services. As shown in Figure 15(b), ADD has been applied by splitting
the TrafficService component of the DDS into two different pods, AdminService and
EndUserService, corresponding to the two actors interacting with it. According to Table 2, the
operations of Admin (o1, . . . o7) have been moved to the first pod, whereas EndUser operations
(o8, . . . ,o11) have been moved into the latter one. Departing from the former architecture, we con-
sidered also read-only replica servers of a Neo4j cluster. These replicas mirror the values stored
by core servers by periodically executing update procedures to ensure eventual consistency. We
derived two alternative deploymentsp ADS-RS and ADS-CQRS in which core and replica servers

were used in two different configurations, according to the patterns RS and CQRS, introduced in
Section 3.2. Figure 15(b) shows the deployment of the two alternative decompositions. The schema

13https://www.openstack.org/.
14https://kubernetes.io/.
15https://neo4j.com/.
16https://www.wildfly.org/.
17https://jmeter.apache.org/.
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Fig. 15. Application deploymentsp with Domain-Driven and Actor-Driven Decomposition architectures.

illustrates common interactions and components (black), the interactions that hold only for
ADS-RS (blue), and the ones that hold only for ADS-CQRS (red). In both cases, an API Gateway is
used to route the client requests towards the right microservice.

Considering ADS-RS, EndUserService can leverage horizontal scaling of read queries provided
by the R-DB servers. This option is more convenient than scaling up CRUD-DB servers since they
do not need additional work for leader election and consistency management. There is a complete
separation of AdminService and EndUserService through the presence of two different execution
environments. The deployment of AdminService is quite similar to the TrafficService architec-
ture, whereas EndUserService requires an additional Kubernetes Load Balancer placed between
the Wildfly and Neo4j pods, since read replicas scaling is not directly managed by Neo4j.

Considering ADS-CQRS, Read (R) and Write (CUD) operations are assigned to core servers and
read replicas, respectively, as shown in Figure 15(b) (red arrow).

5.5.2 Deploymentpm . For each alternative deploymentsp architecture (DDS, ADS-RS, and ADS-
CQRS), we considered different deployments of containers to virtual machines in each of the two
aforementioned iterations. Essentially, we reproduced alternative conditions in which all of the
available resources are allocated to the set of microservices, as discussed in Section 3.1. It is worth
noting that this is usually achieved by means of autoscaling components in charge of dynamically
assigning the available resources to the services. To replicate the same experimental settings over
multiple runs, in our experiments we systematically applied the same resource mapping according
to Equation (7). The resulting resource mapping of the first iteration is shown in Figure 16, which
illustrates the deployment of the Kubernetes pods hosting the components described in Figure 15.
The labels on the x-axis indicate the computational nodes (compute1, . . . , compute4) used for the
deployment in our virtualized testing environment.

The DDS deployment (Figure 16(a)) assigns a dedicated machine to each Neo4j-CRUD instance,
due to the high demand of DBMS resources of the exposed operations, while the remaining re-
sources (compute4) were assigned to the Business Logic (BL) split into three Wildfly pods (WF-T0,
WF-T1, WF-T2). The splitting between the resources assigned to BL and DBMS was empirically com-
puted by analyzing the actual consumption of resources under the maximum throughput sustain-
able by the system.

The deployment of the two actor-driven architectures splits the functions of the DBMS com-
ponent by exploiting the optimized Neo4j-R instances. Resource allocation was carried out by
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Fig. 16. Initial deploymentpm and resource allocation.

considering the higher computational complexity of the operations performed by EndUsers (e.g.,
calculation of shortest paths) compared with Admins. We reserved either two or three compute
nodes for the Neo4j-Rs. Then, we equally split the three BL pods between the AdminService and
EndUserService and obtained 6 Kubernetes pods (WF-A0, WF-A1, WF-A2, WF-EU0, WF-EU1, WF-EU2)
as replicated BL of the two services. Finally, we allocated the vCPUs to optimize the available
resources taking into account the technology constraints (e.g., the Wildfly application server for
the BL pod needs a minimum number of vCPUs greater than 0.5). As a result, we obtained the
two deployment configurations in Figure 16(b) and Figure 16(c) that have been used as the initial
configuration for assessing the scalability level of the two architectures.

5.6 Experiment Execution

To answer our research questions (RQ1–RQ4), we designed and conducted a set of controlled ex-
periments in two iterations. In each iteration, the three alternative software architectures (DDS,
ADS-RS, ADS-CQRS) have been deployed in our testing environment. For each iteration and de-
ployment architecture, we executed our multi-level scalability assessment (Section 4) with the two
behavior mixes Ω and Ω′ defined in Table 4 and increasing loads as in Λ (Equation (15)). In each test-
ing session, we sampled a large amount of data to avoid the risk of obtaining results by chance. We
collected ∼15k operation calls, excluding possible spurious data during the rump-up/ramp-down
phases as recommended in [27]. Then, each session was repeated three times and the absence of
statistical difference among consecutive sessions was assessed by conducting a pairwise compari-
son through the Mann-Whitney U Test. A total amount of ∼ 45k operation calls was sampled per
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Table 5. DM Over Iterations and Usage

Profiles

First Iteration Second Iteration
Ω Ω′ Ω Ω′

DDS 0.462 0.461 0.462 0.461
ADS-RS 0.728 0.768 0.688 0.779
ADS-CQRS 0.715 0.768 0.827 0.808

Table 6. Mann-Whitney Analysis of

System-Level Footprints in the First Iteration

Iteration Profile UDDS RS UDDS CQRS UCQRS RS
First Ω (29%, M) (31%, M) (57%, N)

Ω′ (5%*, L) (5%*, L) (50%, N)
Second Ω (45%, N) (13%*, L) (30%, M)

Ω′ (4%*, L) (1%*, L) (62%, S)
∗Statistical significance (p-value < 0.05).

Fig. 17. First iteration under profile Ω. Architectures: DDS ■, ADS-RS ■, and ADS-CQRS ■. Components:

Admin (red) and EndUser (black).

each individual deployed architecture in each iteration. Overall, a total of 240 load testing sessions
was executed throughout the two iterations.

In each iteration, we used the DDS as baseline deployment architecture α0 executed under the
baseline load λ0 = 2 from which a scalability requirement (1) was extracted. After executing the
measurement workflow, we applied the analysis workflow to extract insights and possibly guide
future iterations. Results from the first iteration were interpreted to plan and apply architectural
changes that were assessed in the second iteration.

5.7 Experiment Results

5.7.1 Results of the First Iteration. We evaluated the three architectures by means of measure-
ment workflow under the deployment presented in Figure 16 and the two usage profiles Ω and Ω′

in Table 4. Then, we applied the analysis workflow to extract insights and drive the decisions of
the software architect, as reported in the following.

Usage profile Ω. The results in Table 5 highlight better scalability with the ADS-RS deployment
architecture over DDS and ADS-CQRS. The DDS yields the lowestDM score equal to 0.462. ADS-
RS improves the scores up to 0.728, whereas ADS-CQRS exhibits a slightly lower score equal to
0.715. The results of the scalability footprint in Table 6 confirm better scalability with the ADS-RS
architecture over the Domain Driven architecture and ADS-CQRS. The comparison (ADS-CQRS,
ADS-RS) returns 57% with a negligible effect size. To understand this outcome at the system and
component levels, we further inspected the visualizations reported in Figure 17. As shown in Fig-
ure 17(a), DDS exhibits optimal performance up to λ = 150 users and shows thereafter a rapid
decrease toward poor performance. Both ADS-RS and ADS-CQRS architectures are optimal up
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Fig. 18. First iteration under profile Ω′. Architectures: DDS ■, ADS-RS ■, and ADS-CQRS ■. Components:

Admin (red) and EndUser (black).

to λ = 100 and the ADS-RS architecture outperforms ADS-CQRS for the highest loads. The scal-
ability footprint at component-level in Figure 17(b) explains the difference between ADS-RS and
ADS-CQRS. The radar plot shows that with ADS-CQRS, the operations of the EndUser component
(i.e., o8, . . . ,o11) fail at lower load compared with ADS-RS (i.e., 250 vs. 300), whereas the operations
exposed by Admin have no uniform scalability behavior for all of the architectures.

Usage profile Ω′. Table 5 shows that ADS-RS and ADS-CQRS have the sameDM score equal to
0.768. The results in Table 6 confirm an inconclusive pairwise comparison between ADS-CQRS and
ADS-RS. Both ADS-CQRS and ADS-RS are significantly largely closer to optimal compared with
DDS. By inspecting the visualization reported in Figure 18(a), we can observe that both ADS-RS
and ADS-CQRS achieve optimal scalability up to λ = 200 and have better scalability than DDS for
all loads. The scalability footprint in Figure 18(b) shows that both ADS-RS and ADS-CQRS achieve
optimal scalability for five out of seven operations exposed by the Admin component, whereas
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Fig. 19. Refined deploymentpm and resource allocation.

the EndUser component is in general less scalable as the GSL is at most 250. This outcome is
consistent with profile Ω′ since 75% of the load target operations impacted the EndUser component.
This suggests that all of the deployment architectures are not able to properly support this load
condition.

We deepen the investigation by analyzing the operations in terms of scalability gap and perfor-
mance offset reported in Figure 18(c) and Figure 18(d), respectively. The scalability gap is higher
for all EndUser component operations across all deployment architectures. We detected that the
negative impact associated with failing operation o9 is the highest impact. Figure 18(d) confirms its
relevance in terms of performance offset. With DDS, o9 fails at load 250 and the average response
time is 92% higher with respect to its scalability requirement. With ADS-RS and ADS-CQRS, o9

fails at load 300 and exhibits the performance offset values 20% and 34%, respectively. According to
Figure 18(d), we can grasp fine-grained differences between ADS-RS and ADS-CQRS. For instance,
operation o10 has the same scalability gap at load 250 but different performance offset values.

To sum up, during the first iteration, we found that EndUserService for both ADS-RS and
ADS-CQRS architectures was the most critical when the system is overloaded. We leveraged this
observation to guide a second iteration in which we reallocated the available resources from the
BL of AdminService to that of the EndUserService in order to increase the scale of operation of
this latter component (i.e., the most critical one according to Figure 18(c)).

5.7.2 Results of the Second Iteration. Figure 19 shows the refined deploymentpm used for ADS-

RS and ADS-CQRS in the second iteration. We deployed four BL pods: one for AdminService and
three for EndUserService.

Due to the resource constraints of the underlying infrastructure and those imposed by the ar-
chitectural choices for RS (Figure 19(a)), we were not able to allocate additional resources to the
Neo4j-R replicas. Hence, we decided to reduce the AdminService BL to a single pod and reduce
to 2.4 vCPUs the resources assigned to each Neo4j-CRUD instance in order to save about 2 vCPUs
and assign them to the EndUserService BL pods. ADS-CQRS offered instead more flexibility (see
Figure 19(b)). In this case, we reduced the amount of resources for Neo4j-CRUDs (from 1.8 vCPUs
to 1.65 vCPUs) and the number of BL pods of AdminService in order to increase the amount of
resources assigned to Neo4j-Rs from 13.2 vCPUs to 15 vCPUs.

Profile Ω. Both ADS-RS and ADS-CQRS improve theDM score up to 0.768, as shown in Table 5.
Table 6 shows significantly large scalability improvement for both ADS-CQRS and ADS-RS over

the core architecture. This result is confirmed by the relative DM in Figure 20(a). As shown by
Figure 20(b), ADS-CQRS also yields homogeneous scalability behavior within each component: all
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Table 7. Mann-Whitney Analysis of Component-Level

Footprints in the Second Iteration

Component Profile UDDS RS UDDS CQRS UCQRS RS

Admin Ω (67%, M) (19%*, L) (88%*, L)
EndUser Ω (0%*, L) (0%*, L) (75%, L)
Admin Ω′ (0%*, L) (1%*, L) (17%*, L)
EndUser Ω′ (19%, L) (0%*, L) (88%, L)
∗Statistical significance (p-value < 0.05).

but one operation exposed by the Admin component fail at load 200, whereas all of the EndUser
component operations do not fail under the highest load, 350. Table 7 shows that the Admin compo-
nent with ADS-CQRS is significantly closer to optimal compared with ADS-RS (i.e., Mann-Whitney
U-test, 88%). It is worth noting that for this component, RS is even worse than the core (i.e., Mann-
Whitney U-test, 67%) with a medium effect size. For the EndUser component, both ADS-RS and
ADS-CQRS are significantly closer to optimal compared with DDS. Finally, data exhibit significant
support of ADS-CQRS over ADS-RS for both Admin and EndUser.

As can be seen in Figure 20(d), the analysis at operation level detects a very large performance
offset for the operations exposed by the Admin component with ADS-CQRS (e.g., the offset of o3

is 267%). Thus, improving this operation is challenging. A similar observation holds for the Admin
component operations with RS. Considering the EndUser operations, we can observe that o8 has
the same scalability gap (highest gap at load 350) in ADS-CQRS and ADS-RS, whereas the offset
is different: 6% in ADS-CQRS and 31% in ADS-RS. Hence, further improvement of ADS-CQRS is
easier in this case. It is worth noting that o9 with Monolith has a very high scalability gap. Since
the corresponding offset is relatively low (i.e., 13%) we could reserve more resources to EndUser
in order to improve o9, which has a severe negative impact. Nonetheless, fine-grained reallocation
of resources between the two components is not feasible in this case since, as described earlier, the
Monolith deploys the two components within the same execution unit.

Profile Ω′. Table 5 identifies ADS-CQRS as superior to DDS and ADS-RS. Compared with Ω,
the score slightly decreases for ADS-CQRS (0.808), whereas it increases for ADS-RS (0.779). This
effect is due to the larger amount of resources for Admin with ADS-RS that produce the difference
in performance of the two architectures at 250 and 300, as illustrated in Figure 21(a). Figure 21(b)
shows that both RS and CQRS are closer to optimal compared with DDS. However, the ADS-CQRS
architecture achieves a homogeneous scalability footprint, where the GSL for all operations but
two is 250. RS yields instead nonhomogeneous results. The GSL of all of the Admin operations
is higher than EndUser operations. Also, Table 7 shows a significant dominance of ADS-RS over
ADS-CQRS (i.e., Mann-Whitney U-test 17%) for Admin, while for EndUser, it shows a significant
dominance of ADS-CQRS over both DDS and ADS-RS.

According to Ω′, the scalability gap of the EndUser operations is higher with respect to Admin
operations. As shown in Figure 21(c), failures of o9 to o11 yield in general a more severe negative
impact compared with failures of o1 to o8. We detected that the negative impact associated with
the failing operation o9 is the highest one. This operation fails at load 300 for both ADS-CQRS and
ADS-RS. Nevertheless, the results in Figure 18(d) show diverse performance offsets: 5% and 48%,
respectively. The smaller performance offset of ADS-CQRS implies higher potential improvement
through allocation of additional resources to the EndUser component. These fine-grained insights
could be used in principle to drive another iteration of our methodology. In our case, the physical
constraints of our testing environment leave limited room for further improvement since all of the
available resources have been saturated.
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Fig. 20. Second iteration under profile Ω. Architectures: DDS ■, ADS-RS ■, and ADS-CQRS ■. Components:

Admin (red) and EndUser (black).

6 CASE STUDY 2: TRAINTICKET SYSTEM

In this section, we discuss another case study in which we applied our methodology to the
TrainTicket system [15]. This is a popular open-source microservices system, widely used in the
scientific community as a benchmark. We use this second case study to further generalize our
results by enlarging the scope of our experiments.

In Section 6.1, we briefly present the SUT. In Section 6.2, we describe again the application of
ADD to refine the existing services. In Section 6.3, we discuss the operational setting that has been
reproduced in our testing environment, which we present in Section 6.4, to carry out controlled
experiments with multiple deployment architectures as discussed in Section 6.5. In Section 6.6, we
describe the workflow of our experiments and analyze major results in Section 6.7.
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Fig. 21. Second iteration under profile Ω′. Architectures: DDS ■, ADS-RS ■, and ADS-CQRS ■. Components:

Admin (red) and EndUser (black).

6.1 System Under Test

TrainTicket is an e-commerce application designed to manage train ticket booking for the Chinese
train system. It exposes an end-point for Web browsers and a REST API gateway that conveys
external requests to 41 internal services and 22 databases.

The application can be used by a number of actors that have access to the operations exposed
by the API. As shown in Figure 22, the actors can be divided in three groups: (1) logged users who
need authentication; (2) external users who do not need any authentication; and (3) admin users
who have more privileges and can directly access to CRUD operations for management reasons.
Both logged and external users are specialized into hs (high speed) and other depending on the
kind of trains they search or buy (high speed or other, respectively).

In this case study, we focus on the application of our methodology to three selected bounded
contexts that collectively compose the main business logic of TrainTicket:
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Fig. 22. TrainTicket Actors.

Table 8. Train Ticket Auxiliary APIs

Service id description Action URI (relative path) actor

d1 Home GET /index.html External, Logged,
Dashboard

d2 Admin Home GET /admin.html Admin

User u1 Perform Login POST /api/v1/users/login Logged, Admin

Route r1 Get all routes GET /api/v1/adminrouteservice/adminroute Admin

Assurance a1 Get assurance type GET /api/v1/assuranceservice/assurances/types Logged

Food f1 Get travel food GET /api/v1/foodservice/foods/{date}/{startStation}/{endStation}/{tripId} Logged

Contact c1 Get user’s contacts GET /api/v1/contactservice/contacts/account/{accountId} Logged

Payment y1 Pay an order POST /api/v1/inside_pay_service/inside_payment Logged

Table 9. Main REST Operations Exposed by the Train Ticket Gateway

DDD id description Action URI (relative path) actor ADD

Travel

t1 Search hs travel POST /api/v1/travelservice/trips/left
Logged-hs

Travel-hs
External-hs

t2 Search other travel POST /api/v1/travel2service/trips/left
Logged-other

Travel-other
External-other

t3 Get all Travels GET /api/v1/admintravelservice/admintravel
Admin Travel-admin

t4 Create Travel POST /api/v1/admintravelservice/admintravel

Preserve
p1 Preserve hs train POST /api/v1/preserveservice/preserve Logged-hs Preserve-hs

p2 Preserve other train POST /api/v1/preserveotherservice/preserveOther Logged-other Preserve-other

Order

o1 Refresh hs order POST /api/v1/orderservice/order/refresh Logged-hs Order-hs

o2 Refresh other order POST /api/v1/orderOtherService/order/refresh Logged-other Order-other

o3 Get all Orders GET /api/v1/adminorderservice/adminorder
Admin Order-admin

o4 Update Order PUT /api/v1/adminorderservice/adminorder

• Travel: Allows the trains to be searched by using start and destination stations as input as
well as management operations to be invoked by administrators.
• Preserve: Allows tickets to booked by logged users specifying a train and other options, such

as assurance and food.
• Order : Allows reserved tickets to be managed by logged users and CRUD operations to be

executed by administrators.

Since we do not focus on the other (auxiliary) microservices, we considered their exposed op-
erations (see Table 8) as a whole group hosted by a large execution unit running on a large set of
resources (see Figure 25).

6.2 Actor-Driven Decomposition

Taking into account the identified actors, we applied ADD to further decompose the three main
bounded contexts into smaller microservices, as reported in Table 9. Figure 23 shows a schema
of the ADD outputs, where the three initial bounded contexts are decomposed into smaller
actor-driven microservices, following two dimensions of the Scale Cube model: functions (y-axis)
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Fig. 23. DDD and ADD decomposition of TrainTicket.

Table 10. Behavior Models of Admin, Logged-hs, Logged-other, External-hs, and External-other

Actor model ID Operations’ sequence

Admin
bmt1 {d2

tu−→ u1
ta−→ d2

ta−→ t3
tu−→ r1

tu−→ t4}
bmt2 {d2

tu−→ u1
ta−→ d2

ta−→ o3
tu−→ o4}

Logged-hs
bmt3 {d1

tu−→ u1
ta−→ d1

tu−→ t1
tu−→ a1

ta−→ f1
ta−→ c1

tu−→ p1
tu−→ o1

tu−→ y1
tu−→ t1

tu−→ a1
ta−→ f1

ta−→ c1
tu−→ p1

tu−→ o1
tu−→ y1}

bmt4 {d1
tu−→ u1

ta−→ d1
tu−→ t1

tu−→ a1
ta−→ f1

ta−→ c1
tu−→ p1

tu−→ o1
tu−→ y1}

Logged-other
bmt5 {d1

tu−→ u1
ta−→ d1

tu−→ t2
tu−→ a1

ta−→ f1
ta−→ c1

tu−→ p2
tu−→ o2

tu−→ y1
tu−→ t2

tu−→ a1
ta−→ f1

ta−→ c1
tu−→ p2

tu−→ o2
tu−→ y1}

bmt6 {d1
tu−→ u1

ta−→ d1
tu−→ t2

tu−→ a1
ta−→ f1

ta−→ c1
tu−→ p2

tu−→ o2
tu−→ y1}

External-hs
bmt7 {d1

tu−→ t1
tu−→ t1}

bmt8 {d1
tu−→ t1}

External-other
bmt9 {d1

tu−→ t2
tu−→ t2}

bmt10 {d1
tu−→ t2}

and data (z-axis). For instance, Preserve-hs serves only Logged users who are interested in
high-speed trains. Travel-hs is another example of granular service that handles a subset of
the whole travel dataset but serves both External and Logged users who can both search for
high-speed trains.

As illustrated in Figure 23, ADD identifies finer building blocks implemented as microservices
and deployed onto dedicated execution units. This enables a differentiated replication schema of
the operations according to the expected load generated by different actors of the system.

To separate the inner logical levels of each microservice as well, we also decomposed the
databases using the data-partitioning approach introduced in Section 3.2. The details of this de-
composition and the corresponding deployment architecture are discussed in Section 6.5.

6.3 Operational Setting

6.3.1 Workload Specification and Behavior Models. By taking into account the pre- and post-
conditions of the operations in Table 9 and Table 8, we defined 10 behavior models operating on 5
sets of REST operations, each one for each actor. Each behavior model is defined by sequences of
operations and a thinking time for each service invocation sampled from two different uniform dis-
tributions: ta between 1 and 200 msec to simulate automated elaboration of results, and tu between
1,000 and 5,000 msec to simulate human interaction. Table 10 lists the models {bmt1 , . . . ,bmt10 } we
used to define the operational profile of the SUT.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 117. Pub. date: July 2023.



117:34 M. Camilli et al.

Table 11. Behavior Mixes Specified by Usage Profiles

Actors Distribution model Id behavior mix #operations

Admin
5%

bmt1 0.025 ∼ 0.5k
bmt2 0.025 ∼ 0.5k

Logged
35%

Logged-hs
7%

bmt3 0.035 ∼ 0.7k
bmt4 0.035 ∼ 0.7k

Logged-other
28%

bmt5 0.140 ∼ 2.8k
bmt6 0.140 ∼ 2.8k

External
60%

External-hs
12%

bmt7 0.060 ∼ 1.2k
bmt8 0.060 ∼ 1.2k

External-other
48%

bmt9 0.240 ∼ 4.8k
bmt10 0.240 ∼ 4.8k

6.3.2 Usage Profile. We derived the usage profile from the documentation of TrainTicket18 and
by considering our prior knowledge of the usage of similar e-commerce applications. We assumed
the following realistic distribution of actors: 5% working as Admin, 35% behaving as Logged users
and 60% behaving as External users. We further characterized Logged and External according to
a common distribution of travelers into the high speed and other categories. We assumed that 20%
of the whole set of users (either Logged or External) are hs, while 80% are other. The distribution
is reported in Table 11.

6.3.3 Operational Profile. We assumed a target workload for the system in production and, for
each testing session, we discretized the load as follows:

Λ = {5, 10, 20, 40, 50, 60, 80, 100, 150, 200, 250, 300, 350}
f (Λ) = {0.008, 0.010, 0.015, 0.023, 0.037, 0.045, 0.059, 0.124, 0.211, 0.198, 0.152, 0.107, 0.011} (16)

6.4 Testing Environment

6.4.1 Hardware Constraints. To deploy and test this second SUT, we used a server machine19

equipped with two CPUs, Intel Xeon Gold 6238R 2.20GHz, each equipped with 28 physical cores
(a total of 112 virtual cores). The machine is also equipped with 256 GB of RAM, 15.36 TB of SSD
SATA, and 3.2 TB SSD NVMe disk storage.

6.4.2 Virtualization Layers. The server machine is managed by Openstack, which we have
used to create a cluster of five VMs. We have configured on them a Kubernetes cluster using the
Rancher Kubernetes engine.20 Four of these VMs are equipped with 10 vCPUs, 16 GB of RAM
and 100 GB of storage. An additional machine is equipped with 30 vCPUs, 64 GB or RAM and
200 GB of storage. We can exploit 9.2 vCPUs of the 10-vCPU machine (0.8 vCPUs are reserved
by the virtualization system) and 27.6 vCPUs of 30-vCPU machine. One of the 10-vCPU machine
is used as the Kubernetes master. To prevent control interference on the application, we did not
deploy other services on this machine.

6.4.3 Platforms. The virtualized hardware resources have been exploited to deploy TrainTicket
with the support of Kubernetes pods. The VM equipped with 30 vCPUs (labelled as machineAux)

18https://github.com/FudanSELab/train-ticket.
19Hosted by RCOST (Research Center On Software Technology) at University of Sannio, Department of Engineering.
20https://www.rancher.com/products/rke.
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Fig. 24. TrainTicket deploymentsp with DDD and ADD architectures.

hosts all of the auxiliary service (see Table 8) and their DBs, the Web-UI, and the REST API
Gateway. One of the 10-vCPU machines (labelled as machineDB) hosts the databases of Table 9.
The remaining two 10-vCPU machines (labelled as machineX and machineY) host the application
business logic of the services in Table 9. The API gateway is implemented with OpenResty.21 The
services hosting the business logic are implemented using the Spring22 framework and Apache
Tomcat23 server engine. The data are managed using MongoDB.24

6.5 Deployment Architectures

6.5.1 Deploymentsp . Figure 24 illustrates how TrainTicket domain-driven services (TT-DDS)
and TrainTicket actor-driven services (TT-ADS) are containerized for their deployment. For the
sake of readability, we present only one representative service (Travel) among the TT-DDS and
how it has refined into a TT-ADS. The figure also shows the related infrastructural elements sup-
porting the deployment onto the underlying hardware as well as horizontal scaling.

Domain-Driven Service. As shown in Figure 24(a), the TT-DDS encapsulates the whole Travel

domain business logic in a single execution unit (a Kubernetes pod). It groups different compo-
nents hosted by Tomcat: Travel-admin, which manages the service’s stored data and operates as
an authorization proxy towards the other two components, Travel-hs and Travel-other, used
for accessing high-speed or other trains and for the related administration operations. All service
data are stored in an instance of MongoDB (the TravelDB). As denoted by the symbol ∗, the whole
service, including the three components, can be replicated.

Actor-Driven Service. As shown in Figure 24(b), the TT-ADS decouples the deployment of the
constituent parts of each service to dedicated execution units (pods). The API Gateway redirects
the incoming requests to a larger number of load balancers (3 load balancers in the case of Travel).
Under this decomposition, requests are handled by different services according to the needs of the

21https://openresty.org/.
22https://spring.io/.
23https://tomcat.apache.org/.
24https://www.mongodb.com/.
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Fig. 25. TT-DDS and TT-ADS deploymentpm and resource allocation.

actors. For instance, Logged-hs and External-hs users interact only with Travel-hs. The service
Travel-admin does not directly communicate with Travel-hs and Travel-other. The requests
can then be distributed among a higher number of execution units that better exploit the available
resources due to their finer granularity. As shown in Figure 24, the database of the Travel service is
partitioned into two different datasets managed by dedicated instances of MongoDB. One dataset
holds the high-speed trains data only, while the other holds the data of the other trains. This way,
each microservice serves an individual actor and operates on a specific database. This yields a finer
replication schema that can be applied in case of an unbalanced distribution of actors generating
a heavy workload.

6.5.2 Deploymentpm . The deploymentsp architectures introduced in the previous section map
to the IT resources managed by a Kubernetes cluster with 4 virtual machines. Figure 25 shows
the deploymentpm , for both the TT-DDS and TT-ADS, obtained by applying our methodology.

The machineAux VM has enough computational resources (30 vCPUs) to host TrainTicket aux-
iliary services, whose operations are reported in Table 8. In order to avoid bottlenecks in this part
of the system, we did not assign limits to the services hosted by this machine.

The machineDB VM hosts the DBs of the main services we consider in our analysis (see Table 9).
In the case of TT-DDS, the VM hosts OrderDB and TravelDB, used by the related microservices,
whereas with TT-ADS, the VM hosts the partitions of the DBs of the original service (OrderDB-hs,
OrderDB-other, TravelDB-hs, TravelDB-other).

Both machineX and machineY host the main components of the business logic. In the case of
TT-DDS, we deployed one instance for each service identified with DDD. In particular, nearly half
of the available computational resources (4.8 vCPUs) were assigned to the Travel service, which is
the most loaded service according to our operational setting (see Table 11). The rest of the resources
have been assigned to the remaining two services (2.4 vCPUs to Order and 2 vCPUs to Preserve).
In the case of TT-DDS, machineY uses the same resource allocation schema as machineX.

As illustrated in Figure 25, ADD adopts a finer resource allocation schema. The machineX VM
hosts the same mapping per domain as in TT-DDS, but the amount of resources assigned to indi-
vidual services can be controlled with higher granularity. This yields finer replication strategies
and, therefore, better usage of the resources for x-axis scaling. Computational resources not used
by Travel-admin and Preserve-hs can be assigned to a third replica of Order-other to handle a
higher load.
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6.6 Experiment Workflow

To address the research questions (RQ1–RQ4) and further generalize the previous results, we de-
signed and conducted additional controlled experiments. We followed a number of iterations of our
methodology with the same design used in the first case study (see Section 5). In each iteration, TT-
DDS and TT-ADS have been deployed using the corresponding deploymentsp and deploymentpm ,

and we applied the behavior mix reported in Table 11 under the increasing load, according to Λ
(Equation (16)). A total amount of ∼ 20k operation calls was sampled per each deployed architec-
ture in each iteration. Table 11 reports the sample size of each operation per testing session. We
used the starting point, TT-DDS with no business logic replication, as baseline deployment archi-
tecture α0 and extracted the scalability requirement under the baseline load λ0 = 5 (i.e., the number
of actors). In each iteration, the multi-level scalability assessment was executed to understand and
improve the scalability of the system by refining the deploymentpm of each architectural solution.

6.7 Experimental Results

For the sake of brevity, we do not provide the results of each iteration for this second case study. We
present a summary of the final results obtained using deploymentsp in Figure 24 and deploymentpm

in Figure 25. Figure 26 contains the plots obtained by applying the scalability assessment
framework.

The system-level DM in Figure 26(a) shows that both architectures can handle up to 100 con-
current users without failures. The totalDM of TT-ADS (0.657) is 30% higher compared with TT-
DDS (0.941). The plot shows that TT-ADS is optimal up to λ = 200. Furthermore, for all λ > 200,
TT-ADS is closer to optimal compared with TT-DDS.

Even though smaller services may lead to communication overhead, the finer resource manage-
ment obtained through ADD yields higher scalability.

The scalability footprint in Figure 26(b) shows that TT-ADS yields a bigger area compared with
TT-DDS. All of the operations but for p1 and t1 exhibit higher GSL value. Even though p1 and
t1 exhibit better results in TT-DDS, the GSL values are very close to optimal also in TT-ADS.
The TT-DDS polygon is also less regular than TT-ADS. This means that the components yield
a very diverse scalability attitude since some of them cannot exploit the available resources (better
allocated by using ADD).

Figure 26(c) and Figure 26(d) show a scalability gap and performance offset, respectively. Here,
we can observe that the operation t2 is the most critical one since it exhibits the highest scalability
gap. In TT-DDS, t2 fails at λ = 200 with very high performance offset (177%), whereas in TT-ADS
it fails at the highest load λ = 350 with small performance offset (6%). This result is consistent with
the DM metric and explains the rapid degradation of TT-DDS from 150 to 200 concurrent users.

7 FINDINGS AND THREATS TO VALIDITY

On the basis of our experience in operating the proposed methodology and the results obtained
from the controlled experiments, in this section we answer the research questions (RQ1–RQ4)
introduced in Section 2. Then, we discuss validity threats in the following categories [39]: external,
internal, conclusion, and construct validity.

7.1 Answers to the Research Questions

RQ1. To what extent can our scalability assessment workflow support decision-making over alter-

native microservices architectures at the system level?

The results of the controlled experiments show that both the domain metric and the derived scal-
ability footprint are suitable quantitative instruments for providing engineers with the ability to
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Fig. 26. TrainTicket methodology application results. Architectures: TT-DDS ■ and TT-ADS ■. Actors: Admin

(red), {Actor}-hs (purple), {Actor}-other (black).

compare alternative architectures at the system level. In both case studies, we consistently found
that the initial microservices (identified through DDD) yield worst scalability for all of the usage
profiles and deployment configurations. We also found an edge case in which the coarse-grained
system-level analysis prevented us from recognizing differences between the target decomposed
architectures. In the first iteration of our first case study (i.e., smart mobility application), we could
not find differences between ADS-RS and ADS-CQRS under the unbalanced usage profile Ω′. In
this case, an analysis at finer granularity levels was required.

RQ2. To what extent can our scalability assessment workflow support resource allocation improve-

ment at the microservice (or component) level?

According to our experience with the two case studies, the analysis workflow at component level
can help achieve better performance and scalability by identifying a proper configuration in terms
of software architecture, deployment, and resource allocation. For instance, during the first iter-
ation with a smart traffic application, we identified the EndUser component as the most critical
one. This result guided the reallocation of the available resources to obtain scalability improve-
ments. The component-level analysis shows that the reallocation is effective, especially with the
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architecture ADS-CQRS (under the unbalanced operational profile Ω′). The TrainTicket case study
confirmed this result. The component-level analysis shows that the resource reallocation in TT-
ADS is better compared with TT-DDS. In both case studies, the ADD yields higher scalability across
operations of all components.

RQ3. Is the scalability assessment workflow able to spot scalability and performance issues at the

operational level?

In both case studies, we were able to spot failing operations and measure their contribution to the
overall scalability and performance degradation in each iterative step of our methodology. The
results at the operational level show that the behavior of the failing operations is heterogeneous.
By quantifying the scalability gap and performance offset, we were able to spot operations having
a similar impact on scalability but different performance degradation. This highlights existing
room for improvements by means of resource reallocation. For instance, with the smart mobility
application, ADS-CQRS yields the same scalability gap for o10 and o11 (second iteration under
profile Ω′). Nevertheless, o10 exhibits a very high performance offset compared with o11.

RQ4. Can ADD practically drive further decomposition of bounded contexts yet enforce performance

and scalability improvements?

The results of our controlled experiments show that ADD can be effectively used to further decom-
pose microservices and achieve scalability improvements by taking proper architectural choices to
better fit the target operational setting. The results obtained in our two case studies show that our
methodology guided us towards a fine-grained decomposition yet enforced scalability improve-
ments. In our experience, the analysis workflow provided us with decision support instruments
able to compare alternative architectures and identify system components that require better re-
source allocation. Concerning practicability, we would like to point out that ADD can refine each
bounded context that has limited dimension even though the size of the overall system is large.
For instance, TrainTicket has 41 microservices, but we could selectively apply ADD to a subset
of them. In this way, each bounded context can be refined by a different development and quality
assurance team to split the effort and improve scalability.

7.2 Threats to Validity

External validity. External validity concerns the generalizabilty of the results. Threats in this cat-
egory have been addressed by selecting two representative case studies in our target application
domain, that is, performance-sensitive, service-based systems. One is representative of a wide class
of modern data-intensive, edge-cloud systems whereas the other is a widespread benchmark mi-
croservices application in the e-commerce domain. We also chose a common technology stack that
is modern enough to justify a decomposition through incremental refactoring actions rather than
a complete rewrite and replacement. Our approach needs to work within a preproduction testing
environment in which we can have control over the factors of interest. This setting is common with
DevOps practices and tools in modern infrastructure that support continuous deployment [11].

Internal validity. Threats to internal validity are related to internal factors that could have influ-
enced the results. To reduce threats in this class, we carefully designed our experimental campaign
to control the factors of interest in both case studies. We controlled load, usage profiles, deploy-
ment architectures, and resources allocation. We avoided the adoption of auto-scaling mechanisms
provided by our deployment infrastructure to reduce the risk of obscuring causal inferences due
to uncontrolled events. This manual manipulation has been crucial to assess cause-and-effect rela-
tions between external factors and the effects measured by using the multi-level analysis. We also
mitigated the effects of uncontrolled events as much as we could. The tests have been repeated
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multiple times and during all the tests we monitored the network to avoid anomalous traffic
conditions (e.g., peaks) affecting the experiments’ results.

Conclusion validity. Since testing sessions were guided by stochastic sampling of synthetic users
from multiple categories, there existed the possibility that results had been produced by chance. We
addressed this threat by following the practical guidelines in [40]. We sampled a large number of
invocations per individual operation by repeating each test session three times. We also conducted
a pairwise comparison among samples between consecutive sessions to assess absence of statistical
difference using the Mann-Whitney U-test. We also adopted this latter statistical test to compare
the scalability footprints and compute the p-value with significance level α = 0.05 (detailed results
are available in the dataset paired with this article). The Cliff delta has been adopted to measure
the effect size. Finally, we use multiple visualization techniques complemented with quantitative
analysis to draw our conclusions. This helped us to collectively agree on the interpretation of
the analysis and collectively formulate the answers to the research questions.

Construct validity. The applicability of our multi-level analysis approach depends on the accu-
racy of the target operational setting under consideration, which determines the scalability re-
quirement described in Section 4. Therefore, a careful analysis of the production usage is required.
As discussed in [12], approaches to deal with this threat include: using related systems as a proxy
for the SUT, conducting user surveys, and analyzing log data from an existing version of the SUT.
Therefore, while some specific results about the quality of the considered architectures depend on
the settings considered for the case studies, the overall methodology, decomposition strategy, and
multi-level scalability assessment can be generalized.

8 RELATED WORK

The main contribution of this article is a methodology that complements existing approaches and
provides better mechanisms to decompose microservices enforcing scalability improvements. We
discuss related work by focusing on approaches for decomposing and modularizing microservices
and approaches to assess their scale of operation. In the following, for both areas, we discuss the
state-of-the-art, highlighting the main shortcomings.

8.1 Microservices Decomposition

Architectural patterns and antipatterns. A broad literature review of the challenges associated
with the microservices architectural style can be found in [41]. According to the existing princi-
ples in microservices architecture, there are common mistakes occurring during the decomposi-
tion process. These pitfalls can be identified by looking at the so-called bad smells in the source
code [42]. A number of bad practices, antipatterns, and their potential solutions have been col-
lected by conducting interviews with experienced developers of cloud-native applications based
on microservices [43–45]. The outcome is a taxonomy of bad practices and possible refactoring
actions both from the organization perspective (e.g., organization of the development team) and
from the technical perspective (e.g., code smells and communication issues). The work in [46] in-
troduces guidelines for companies that need to migrate to microservices based on the analysis
of a set of metrics they should collect before re-architecting their monolithic system. To extract
these metrics, the authors conducted interviews with professionals to derive an assessment frame-
work based on grounded theory [47]. As stated in [6, 43, 46], (anti) patterns and guidelines are
system agnostic and can be adopted by companies to decide whether to adopt microservices or
not and how to define migration plans by following successful stories from past experience. These
approaches cannot be reasonably used to conduct a quantitative assessment of system-specific
alternative architectures, which is instead the major goal of our methodology.
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Automated decomposition of monolithic systems. Automated suggestions of candidate service
cuts based on static analysis of a target codebase have been recently proposed [48, 49]. The
authors propose the adoption of clustering techniques to extract microservices from monoliths
by maximizing high cohesion and minimizing low coupling. These approaches do not take into
account the impact of possible dependencies due to dynamically typed languages on architecture-
level maintainability. Recent studies reveal that the impact is higher than that of explicit
dependencies [50]. Other existing semi-automated approaches based on clustering recommend
microservice candidates and suggest possible refactoring actions to be applied in a migration
scenario [51]. Microservice candidates are selected by limiting the average development team
size and the service size (lines of code) according to recent empirical studies [52]. Even though
these approaches suggest possible decomposition strategies grounded on traditional architectural
principles, they do not provide engineers with suitable methods to assess the given decomposition
taking into account the expected operational setting and perceived quality of the product by end
users. The Mono2Micro platform [53] applies semi-automated refactoring of Java monolithic
applications into microservices. The approach uses static analysis if the codebase, combined with
runtime dynamic analysis of the execution, traces to make recommendations in terms of group-
ings of classes in the monolith that can serve as starting points for the identification of bounded
contexts. The Functionality-Oriented Service Candidate Identification framework [54] suggests
service candidates by analyzing the execution traces using a search-based approach that opti-
mizes three quality criteria of service candidates: independence of functionality, modularity, and
independence of evolvability. CARGO [55] is a microservice partitioning and refinement tool that
statically analyzes JEE applications to build a system dependency graph enriched with semanti-
cally meaningful relationships (e.g., call-return, and database transaction). This graph yields better
community detection (candidate microservices) by reducing distributed database transactions.

These approaches are conceptually different from ADD since they automatically recommend
candidate microservices starting from a monolithic system. Our approach can then complement
these methods to refine the suggested microservices contexts taking into account the actors and
their role.

Actor- and role-driven decomposition. Actor-based and role-based abstractions provide alterna-
tive perspectives to develop decomposition processes. Even though the notion of actor is an estab-
lished modeling concept used to decompose and modularize complex service collaborations —for
instance, in business process management [56] and multi-agent systems [57] — it received less at-
tention for microservices systems. Mainstream approaches focus instead on the notion of bounded
context. For this reason, there is a lack of knowledge regarding how actors should be systemati-
cally integrated in established decomposition frameworks as well as the impact of this integration.
Workload data–aided approaches have been proposed [44], still with the ultimate goal of identi-
fying the domain entities that may collectively represent the bounded contexts of a monolithic
system. ADD is conceptually different since it assumes the existence of bounded contexts and re-
fines them according to the actors and their role, that is, the embodiment of the participation of
an actor [58].

8.2 Scalability Assessment of Microservices

The systematic gray literature review in [4] recognizes performance testing and scalability analysis
of microservices as painful activities. Motivated by this issue, the research community conceived of
novel methodologies that provide engineers with decomposition decision support based on quanti-
tative analysis of nonfunctional qualities. The process presented in [59] evaluates a target architec-
ture by balancing nonfunctional requirement satisfaction at the level of individual microservices
as well as the overall system. The authors introduce a managing subsystem (i.e., adaptation layer)
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that monitors the trade-off and assists the managed microservices in achieving such a balance.
However, the managing layer can introduce non-negligible overhead that could even limit perfor-
mance or scalability. Other common approaches based on runtime management of resources are
those enacting auto-scaling mechanisms. The work presented in [60] addresses the problem of
selecting appropriate performance metrics to activate such mechanisms. The authors investigate
the use of relative and absolute metrics to understand when to activate the appropriate actions. In
contrast to our approach, these frameworks work at runtime along with the target system in pro-
duction. In principle, they could complement our assessment methodology since they assume the
existence of a microservices system, whereas we aim at guiding towards the “right” architecture
before the production phase.

The conceptual framework introduced in [5] envisions an iterative technique to guide the mi-
gration steps by continuously monitoring a system in production in order to collect operational
data and use performance analysis as feedback for the decomposition process. Following the same
principle, our assessment methodology leverages instead the runtime evidence collected through
load testing. Our scalability assessment framework is grounded on the quantitative system-level
domain metric introduced in [12, 21]. This approach aims at evaluating the performance of al-
ternative deployment configurations for microservice systems. Performance here is defined as a
function of the workload intensity as originally introduced in [61]. The PPTAM software tool im-
plements the domain metric assessment method and has been presented in [33]. The domain metric
approach as well as its own modifiable software tool [62] turned out to be effective in evaluating
microservice architectures based on the notion of scalability requirement [21], as a performance
threshold empirically extracted by observing the responsiveness of individual services under “no
load” [63–65]. A first draft of our vision has been introduced in [8]. This work describes a scala-
bility assessment methodology able to guide the decomposition process through coarse-grained
information extracted by applying the domain metric to evaluate the target system as a whole.
Our assessment methodology extends this approach by introducing a multi-level analysis method
to extract insights on the target application from different angles: system, service, and operation.
The idea is to aid engineering decisions at different granularity levels in order to choose among
alternative decomposition strategies as well as extract insights for resource allocation.

9 CONCLUSION

In this article, we introduced the ADD strategy to refine bounded-contexts into fine-grained mi-
croservices used by multiple actors with the aim of increasing the scalability of the target system.
ADD is complemented by a scalability assessment framework to compare alternative deployment
architectures at multiple granularity levels (system, component, and operation). The framework
builds on qualitative and quantitative methods that exploit the so-called domain metric and guide
the refinement of resource allocation and the re-deployment. We adopted engineering research to
evaluate our methodology by conducting an in-depth, detailed examination of two case studies:
(1) a real smart mobility system and (2) a popular e-commerce benchmark commonly adopted by
the research community. We demonstrated the benefits of the proposed strategy and the assess-
ment methodology, showing that a finer-grained decomposition of bounded contexts driven by
ADD led to scalability improvements in both case studies.

As future work, we aim to leverage the metrics and instruments introduced in this work to
automatically apply architectural reconfiguration under the constraints imposed by the available
resources. We believe that this automated reconfiguration along with the ADD approach has the
potential of improving existing autoscaling methods. We also plan to study the usage of ADD over
evolutionary steps of the life cycle. Understanding how to approach evolution in a cost-effective
manner requires systematic techniques to interpret cause-and-effect relations between changes of
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domain aspects and changes of the actors as well as the magnitude of such changes to determine
the minimal set of assets (modified bounded contexts, services, actors) that need to be refined and
(re)analyzed. In addition to performance and scalability, we are going to consider rigorous and
quantitative analysis of the impact of the ADD on other important nonfunctional properties, such
as reliability as well as the relationships between reliability and performance [29]. Concerning
reliability, we envisage potential benefits since ADD microservices (1) are more granular, thus,
faults are more localized; and (2) are used by specific actors, thus, a faulty microservice typically
affects only a limited number of users. Preliminary results collected over our experimental
campaign confirmed these observations as we observed in general less failures (higher reliability)
after applying ADD.
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