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Abstract

In this work we will focus on the existence of weak solutions for a system describing a
general compressible viscous fluid in the case of the pressure being a linear function of the
density and the viscous stress tensor being a non-linear function of the symmetric velocity
gradient. More precisely, we will first prove the existence of dissipative solutions and study
under which conditions it is possible to guarantee the existence of weak solutions.
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1 Introduction

The motion of fluids can be modelled through a system of partial differential equations

∂t̺+ divx(̺u) = 0,

∂t(̺u) + divx(̺u⊗ u) +∇xp = divx S,
(1.1)

which can be seen as a mathematical transcription of mainly two physical conservation laws:
conservation of mass and conservation of momentum. For a general non-Newtonian fluid, we
can suppose the viscous stress tensor S to be related to the symmetric velocity gradient

Dxu =
1

2
(∇xu+∇T

xu)

through an implicit rheological law of the type

S : Dxu = F (Dxu) + F ∗(S), (1.2)

with F a proper lower semi-continuous function and F ∗ its conjugate. The physical background
of writing the constitutive equation for S in this form is the fact that S is monotone in the
velocity gradient and vice versa, as clearly explained in the recent survey on a new classification
of incompressible fluids by Blechta, Málek and Rajagopal [3]. It is worth noticing that choosing

F (Dxu) =
µ

2
|Dxu|2 +

λ

2
|divx u|2, with µ > 0,

2

d
+ λ ≥ 0,

we obtain the compressible Navier-Stokes system. Even though in the latter case there are
several results on the existence of global-in-time weak solutions (see e.g. [5], [7], [9], [10]), much
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less is known for the case where the viscous stress tensor is not a linear function of the velocity
gradient: the existence of large-time weak solutions was proved by Feireisl, Liao and Málek
[8] in the case where the bulk viscosity λ = λ(|divx u|) becomes singular for a finite value of
|divx u|; choosing a linear pressure

p(̺) = a̺, (1.3)

the existence was proved by Mamontov [11], [12] in the context of exponentially growing viscosity
coefficients, and by Matuš̊u-Nečasová and Novotný [13], exploiting the concept of measure-
valued solutions.

In this work, we are going to study under which hypothesis on the convex potential F
appearing in (1.2) it is possible to guarantee the existence of global-in-time weak solutions for
system (1.1),(1.2) and with a linear pressure of the type (1.3), cf. Theorem 5.2. The proof will
done via the concept of dissipative solutions, satisfying system (1.1) in the distributional sense
with an extra defect term in the second equation that we may call Reynolds stress. Recently,
Abbatiello, Feireisl and Novotný [1] proved the existence of dissipative solutions for system (1.1)
with S satisfying (1.2) and the isentropic pressure

p(̺) = a̺γ with γ > 1.

Our goal is to focus on the case γ = 1, for which we will prove the existence of dissipative
solutions, cf. Theorem 4.9. The advantage of relaying on this very weak concept of solution is
that they can be easily identified as limits of weakly convergent subsequences of approximate
solutions, as we will see in Section 4.5. It is worth noticing that our approach represents
an alternative and improvement to the “standard” measure–valued framework applied in this
context by Matuš̊u-Nečasová and Novotný [13].

The paper is organized as follows.

• In Section 2 we introduce the system we are going to study, fixing the necessary hypothesis
on the pressure potential F appearing in (1.2).

• In Section 3 we provide the definition of dissipative solution for system (1.1)–(1.2) with
the pressure being a linear function of the density, cf. Definition 3.1.

• Section 4 will be devoted to the proof of the existence of dissipative solutions, cf. Theorem
4.9. More precisely, we will perform a three-level approximation scheme: addition of
artificial viscosity terms in the continuity equation and balance of momentum in order to
convert the hyperbolic system into a parabolic one, regularization of the convex potential
to make it continuously differentiable, approximation via the Faedo-Galerkin technique
and a family of finite-dimensional spaces.

• In Section 5 we prove the existence of weak solutions for particular choices of the convex
potential F , cf. Theorem 5.2.

• In the Appendix A we provide a slightly modified version of the De la Vallée–Poussin
criterion as we require the stronger condition, with respect to the standard formulation,
that the Young function satisfies the ∆2-condition, cf. Theorem A.2, necessary to get the
existence of weak solutions.
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2 The system

We are going to study the system described by the following couple of equations

∂t̺+ divx(̺u) = 0, (2.1)

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺) = divx S. (2.2)

The unknown variables are the density ̺ = ̺(t, x) and the velocity u = u(t, x) of the fluid,
while the viscous stress tensor S is assumed to be connected to the symmetric velocity gradient
Dxu through an implicit rheological law of the type

S : Dxu = F (Dxu) + F ∗(S). (2.3)

where, denoting with R
d×d
sym the space of d-dimensional real symmetric tensors,

F : Rd×d
sym → [0,∞) is convex and lower semi-continuous with F (0) = 0, (2.4)

and F ∗ is its conjugate. As clearly motivated in [1], Section 2.1.2, we will suppose F to satisfy
relation

F (D) ≥ µ

∣∣∣∣D− 1

d
Tr[D]I

∣∣∣∣
q

− c for all D ∈ R
d×d
sym, (2.5)

for some µ > 0, c > 0 and q > 1. Notice that condition (2.3) is equivalent in requiring

S ∈ ∂F (Du),

where ∂ denotes the subdifferential of a convex function. Furthermore, we will consider a linear
barotropic pressure

p(̺) = a̺, a > 0; (2.6)

the pressure potential P , satisfying the ODE

̺P ′(̺)− P (̺) = p(̺),

will be then of the form
P (̺) = a ̺ log ̺, (2.7)

which implies that P is a strictly convex superlinear continuous function on [0,∞). We will
study the system on the set

(t, x) ∈ (0, T )× Ω,

where the time T > 0 can be chosen arbitrarily large and the physical domain Ω ⊂ R
d is assumed

to be bounded and Lipschitz, on the boundary of which we impose the no–slip condition

u|∂Ω = 0. (2.8)

Finally, we fix the initial conditions

̺(0, ·) = ̺0, (̺u)(0, ·) = m0. (2.9)

We conclude this section with the following result, collecting the significant properties of
the conjugate function F ∗.

Proposition 2.1. Let the function F satisfy conditions (2.4). Then, its conjugate

F ∗ : Rd×d
sym → [0,∞] is convex, lower semi-continuous and superlinear. (2.10)
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Proof. First of all, we recall that F ∗ is defined for every A ∈ R
d×d
sym as

F ∗(A) := sup
B∈Rd×d

sym

{A : B− F (B)}.

The non-negativity of F ∗ is trivial if F (0) = 0 since

F ∗(A) ≥ A : 0− F (0) = 0 for every A ∈ R
d×d
sym.

It is also well-know that the conjugate is convex and lower semi-continuous as it is the supremum
of a family of affine functions. It remains to prove the superlinearity:

lim
|A|→∞

F ∗(A)

|A| = +∞. (2.11)

Let BR(0) be the ball centred at origin and radius R > 0; using the fact that for any A ∈ R
d×d
sym

sup
B∈BR(0)

A : B = sup
B∈BR(0)

{A : B− F (B) + F (B)} ≤ F ∗(A) + sup
B∈BR(0)

F (B)

we have
F ∗(A)

|A| ≥ sup
0<r≤R
|V|≤1

{
r
A

|A| : V
}
− 1

|A| sup
B∈BR(0)

F (B) ≥ R− c

|A| ,

where we used the fact that F (B) is finite for any B ∈ R
d×d
sym. We conclude that

lim inf
|A|→∞

F ∗(A)

|A| ≥ R,

and, since R can be chosen arbitrarily large, we obtain (2.11).

3 Dissipative solution

Following [1], we introduce to the concept of dissipative solutions, which satisfy the system in
the distributional sense but with an extra “turbulent” term R in the balance of momentum
(2.2) that we may call Reynolds stress. As pointed out in [2], Section 4.1.1, in this context,
i.e. when the pressure is a linear function of the density, it is only the possible concentrations
and/or oscillations in the convective term that contributes to R. It is worth noticing that when
R ≡ 0, we get the standard notion of weak solution. From now on, it is better to consider
the density ̺ and the momentum m = ̺u as state variables, since they are at least weakly
continuous in time.

Definition 3.1. The pair of functions [̺,m] constitutes a dissipative solution to the problem
(2.1)–(2.9) with initial data

[̺0,m0] ∈ L1(Ω)× L1(Ω;Rd)

if the following holds:

(i) ̺ ≥ 0 in (0, T ) × Ω and

[̺,m] ∈ Cweak([0, T ];L
1(Ω))× Cweak([0, T ];L

1(Ω;Rd));
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(ii) the integral identity

[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺∂tϕ+m · ∇xϕ] dxdt (3.1)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω), with ̺(0, ·) = ̺0;

(iii) there exist

S ∈ L1(0, T ;L1(Ω;Rd×d
sym)) and R ∈ L∞

weak(0, T ;M+(Ω;Rd×d
sym))

such that the integral identity

[
ˆ

Ω
m ·ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω

[
m · ∂tϕ+ 1̺>0

m⊗m

̺
: ∇xϕ+ a̺divxϕ

]
dxdt

−
ˆ τ

0

ˆ

Ω
S : ∇xϕ dxdt+

ˆ τ

0

ˆ

Ω
∇xϕ : dR dt

(3.2)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × Ω;Rd), ϕ|∂Ω = 0, with m(0, ·) = m0;

(iv) there exists

u ∈ Lq(0, T ;W 1,q
0 (Ω;Rd)) such that m = ̺u a.e. in (0, T ) × Ω;

(v) there exists a constant λ > 0 such that the energy inequality

ˆ

Ω

[
1

2

|m|2
̺

+ a̺ log ̺

]
(τ, ·) dx+

1

λ

ˆ

Ω
dTr[R(τ)] +

ˆ τ

0

ˆ

Ω
[F (Du) + F ∗(S)] dxdt

≤
ˆ

Ω

[
1

2

|m0|2
̺0

+ a̺0 log ̺0

]
dx

(3.3)

holds for a.e. τ ∈ (0, T ).

Remark 3.2. Here and in the sequel, M+(Ω) represents the space of all the positive Borel
measures on Ω, while M+(Ω;Rd×d

sym) denotes the space of tensor–valued (signed) Borel measures
R such that

R : (ξ ⊗ ξ) ∈ M+(Ω),

for all ξ ∈ R
d, and with components Ri,j = Rj,i. L

∞
weak(0, T ;M(Ω)) denotes the space of all the

weak–∗ measurable mapping ν : [0, T ] → M(Ω) such that

ess sup
t∈(0,T )

‖ν(t, ·)‖M(Ω) <∞,

which can also be identified as the dual space of L1(0, T ;C(Ω)).

4 Existence of dissipative solutions

As in [1] Abbatiello, Feireisl and Novotný proved the existence of dissipative solutions of system
(2.1)–(2.9) with p(̺) = a̺γ and γ > 1, in this section we aim to show existence for γ = 1. We
employ an approximation scheme based on
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(i) addition of an artificial viscosity term of the type ε∆x̺ in the continuity equation (2.1)
in order to convert the hyperbolic equation into a parabolic one and thus recover better
regularity properties of ̺;

(ii) addition of an extra term of the type ε∇xu · ∇x̺ in the balance of momentum (2.2) in
order to eliminate the extra terms arising in the energy inequality to save the a priori
estimates;

(iii) regularization of the convex potential F through convolution with a family of regularizing
kernels to make it continuously differentiable.

More precisely, we will study the following system:

• continuity equation

∂t̺+ divx(̺u) = ε∆x̺, (4.1)

on (0, T )× Ω, with ε > 0, the homogeneous Neumann boundary condition

∇x̺ · n = 0 on ∂Ω, (4.2)

and the initial condition

̺(0, ·) = ̺0,n on Ω, ̺0,n → ̺0 in L1(Ω) as n→ ∞, (4.3)

with ̺0,n ∈ C(Ω), ̺0,n > 0 for all n ∈ N.

• momentum equation

∂t(̺u) + divx(̺u⊗ u) + a∇x̺+ ε∇xu · ∇x̺ = divx S (4.4)

on (0, T )× Ω, with ε > 0, the no-slip boundary condition

u|∂Ω = 0 on ∂Ω, (4.5)

and the initial condition
(̺u)(0, ·) = m0 on Ω. (4.6)

• convex potential

Fδ(D) = (ξδ ∗ F )(D)− inf
D∈Rd×d

sym

(ξδ ∗ F ) (4.7)

for any D ∈ R
d×d
sym, with {ξδ}δ>0 a family of regularizing kernels in R

d×d
sym, the function F

satisfying (2.4)–(2.5), and such that

S : Fδ(Dxu) = Fδ(Dxu) + F ∗
δ (S). (4.8)

Even if system (4.1)–(4.8) is of parabolic type, we are forced to perform a further approx-
imation known as Faedo-Galerkin technique. The reason is that the unknown state variable u

appears multiplied by ̺ in (4.4), which prevents us from applying the already existing results
for parabolic systems that can be found in literature. The idea is to consider a family {Xn}n∈N
of finite-dimensional spaces Xn ⊂ L2(Ω;Rd), such that

Xn := span{wi| wi ∈ C∞
c (Ω;Rd), i = 1, . . . , n},

where wi are orthonormal with respect to the standard scalar product in L2(Ω;Rd), and to look
for approximated velocities

un ∈ C([0, T ];Xn).

Solvability of the approximated problem will be discussed in the following sections.
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4.1 On the approximated continuity equation

Given u ∈ C([0, T ];Xn), let us focus on identifying that unique solution

̺ = ̺[u]

of system (4.1)–(4.3). As our domain Ω is merely Lipschitz, we cannot simply repeat the same
passages performed for instance by Feireisl [7] in the context of the compressible Navier-Stokes
system since better regularity for the domain would be required. However, since Xn is finite-
dimensional, all the norms on Xn induced by W k,p-norms, with k ∈ N and 1 ≤ p ≤ ∞, are
equivalent and thus, we deduce that

u ∈ L∞(0, T ;W 1,∞(Ω;Rd)),

and there exist two constants 0 < n < n <∞, depending solely on the dimension n of Xn, such
that for any t ∈ [0, T ]

n‖u(t, ·)‖W 1,∞(Ω) ≤ ‖u(t, ·)‖Xn ≤ n‖u(t, ·)‖W 1,∞(Ω). (4.9)

It is now enough to apply the following result to get the existence of weak solutions and the
necessary bounds to recover the existence of the corresponded velocity u.

Lemma 4.1. Let Ω ⊂ R
d be a bounded Lipschitz domain. For any given u ∈ C([0, T ];Xn) and

ε > 0, there exists a unique weak solution

̺ = ̺ε,n ∈ L2((0, T );W 1,2(Ω)) ∩C([0, T ];L2(Ω))

of system (4.1)–(4.3) in the sense that the integral identity
[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
(̺∂tϕ+ ̺u · ∇xϕ− ε∇x̺ · ∇xϕ) dx,

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] ×Ω), with ̺(0, ·) = ̺0,n. Moreover,

(i) (bound from above - maximum principle) the weak solution ̺ satisfies

‖̺‖L∞((0,τ)×Ω) ≤ ̺ exp
(
τ‖divx u‖L∞((0,T )×Ω)

)
, (4.10)

for any τ ∈ [0, T ], with
̺ := max

Ω
̺0,n; (4.11)

(ii) (bound from below) the weak solution ̺ satisfies

ess inf
(0,τ)×Ω

̺(t, x) ≥ ̺ exp
(
−τ‖divx u‖L∞((0,T )×Ω)

)
, (4.12)

for any τ ∈ [0, T ], with
̺ := min

Ω
̺0,n; (4.13)

(iii) let u1,u2 ∈ C([0, T ];Xn) be such that

max
i=1,2

‖ui‖L∞(0,T ;W 1,∞(Ω;Rd)) ≤ K,

and let ̺i = ̺[ui], i = 1, 2 be the weak solutions of the approximated problem (4.1)–(4.3)
sharing the same initial data ̺0,n in (4.3). Then, for any τ ∈ [0, T ] we have

‖(̺1 − ̺2)(τ, ·)‖L2(Ω) ≤ c1‖u1 − u2‖L∞(0,τ ;W 1,∞(Ω;Rd)) (4.14)

with c1 = c1(ε, ̺0, T,K).

Proof. For the existence of weak solutions and for (i) see Crippa, Donadello and Spinolo [6],
Lemmas 3.2 and 3.4, for (ii) see Abbatiello, Feireisl and Novotný [1], Corollary 3.4, and for (iii)
see Chang, Jin and Novotný [5], Lemma 4.3 point 3.

7



4.2 On the approximated balance of momentum

Let us now turn our attention to the approximated problem (4.4)–(4.8). Following the same
approach performed by Feireisl [7], we will first solve the problem on a time interval [0, T (n)]
via a fixed point argument, where T (n) depends on the dimension n of the finite-dimensional
space Xn. Subsequently we will establish estimates independent of time and iterate the same
procedure to finally obtain, after a finite number of steps, our solution u on the whole time
interval [0, T ].

4.2.1 Technical preliminaries

For any ̺ ∈ L1(Ω), consider the operator M[̺] : Xn → X∗
n such that

〈M[̺]v,w〉 ≡
ˆ

Ω
̺v ·w dx, (4.15)

with 〈·, ·〉 the L2-standard scalar product. In particular, we have

‖M[̺]‖L(Xn,X∗
n)

= sup
‖v‖Xn ,‖w‖Xn≤1

|〈M[̺]v,w〉| ≤ c(n)‖̺‖L1(Ω), (4.16)

It is easy to see that the operator M is invertible provided ̺ is strictly positive on Ω, and in
particular we have

‖M−1[̺]‖L(X∗
n;Xn) =

1

inf{‖M[̺]v‖X∗
n
: v ∈ Xn, ‖v‖Xn = 1} ≤ c(n)

infΩ ̺
.

Moreover, the identity

M
−1[̺1]−M

−1[̺2] = M
−1[̺2] (M[̺2]−M[̺1])M

−1[̺1]

can be used to obtain

∥∥M−1[̺1]−M
−1[̺2]

∥∥
L(X∗

n;Xn)
≤ c

(
n, inf

Ω
̺1, inf

Ω
̺2

)
‖̺1 − ̺2‖L1(Ω) (4.17)

for any ̺1, ̺2 > 0.

4.2.2 Fixed point argument

The approximate velocities u ∈ C([0, T ];Xn) are looked for to satisfy the integral identity

[
ˆ

Ω
̺u(t, ·) ·ψ dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[(̺u⊗ u) : ∇xψ + a̺divxψ] dxdt

−
ˆ τ

0

ˆ

Ω
[∂Fδ(Dxu) : ∇xψ + ε∇x̺ · ∇xu · ψ] dxdt

(4.18)

for any test function ψ ∈ Xn and all τ ∈ [0, T ]. Now, the integral identity (4.18) can be
rephrased for any τ ∈ [0, T ] as

〈M[̺(τ, ·)](u(τ, ·)),ψ〉 = 〈m∗
0,ψ〉 + 〈

ˆ τ

0
N[̺(s, ·),u(s, ·)] ds,ψ〉

with M[̺] : Xn → X∗
n defined as in (4.15), m∗

0 ∈ X∗
n such that

〈m∗
0,ψ〉 :=

ˆ

Ω
m0 ·ψ dx

8



and N[̺(s, ·),u(s, ·)] ∈ X∗
n such that

〈N[̺(s, ·),u(s, ·)],ψ〉 :=
ˆ

Ω
[(̺u⊗ u− ∂Fδ(Dxu)) : ∇xψ + a̺divxψ] (s, ·) dx

− ε

ˆ

Ω
∇x̺ · ∇xu · ψ(s, ·) dx.

Here, ̺ = ̺[u] is the weak solution uniquely determined by u and thus by Lemma 4.1, conditions
(i) and (ii), for any t ∈ [0, T ] we have

0 < ̺ exp
(
−t‖divx u‖L∞((0,T )×Ω)

)
≤ ̺(t, x) ≤ ̺ exp

(
t‖divx u‖L∞((0,T )×Ω)

)
, (4.19)

where ̺, ̺ are defined as in (4.11), (4.13) respectively. In particular, the operator M is invertible
and hence, for any τ ∈ [0, T ], we can write

u(τ, ·) = M
−1[̺(τ, ·)]

(
m∗

0 +

ˆ τ

0
N[̺(s, ·),u(s, ·)] ds

)
.

For K and T (n) to be fixed, consider a bounded ball B(0, nK) in the space C([0, T (n)];Xn),
with n defined as in (4.9),

B(0, nK) :=

{
v ∈ C([0, T (n)];Xn)

∣∣ sup
t∈[0,T (n)]

‖v(t, ·)‖Xn ≤ nK

}
,

and define a mapping
F : B(0, nK) → C([0, T (n)];Xn)

such that for all τ ∈ [0, T (n)]

F[u](τ, ·) := M
−1[̺(τ, ·)]

(
m∗

0 +

ˆ τ

0
N[̺(s, ·),u(s, ·)] ds

)
.

Notice that for every u ∈ B(0, nK), from (4.9) we obtain in particular that for all t ∈ [0, T (n)]

‖u(t, ·)‖W 1,∞(Ω;Rd) ≤ K

and thus, from (4.19) we obtain that for all t ∈ [0, T (n)]

̺e−Kt ≤ ̺(t, x) ≤ ̺eKt.

Moreover, it is easy to deduce that for every u ∈ B(0, nK), ̺ = ̺[u] and every t ∈ [0, T (n)]

‖N(̺(t, ·),u(t, ·))‖X∗
n
≤ c2(̺,K, T ),

and for every u1,u2 ∈ B(0, nK), ̺i = ̺[ui], i = 1, 2 and t ∈ [0, T (n)], making use of (4.14),

‖N(̺1(t, ·),u1(t, ·)) −N(̺2(t, ·),u2(t, ·))‖X∗
n
≤ c3(̺,K, T )‖u1(t, ·)− u2(t, ·)‖W 1,∞(Ω;Rd).

Then, for every u ∈ B(0, nK), ̺ = ̺[u] and every t ∈ [0, T (n)]

‖F(u)(t, ·)‖Xn ≤ ‖M−1[̺(t, ·)]‖L(X∗
n ;Xn)(‖m∗

0‖X∗
n
+ ‖N(̺(t, ·),u(t, ·))‖X∗

n
t)

≤ c(n)

̺
eKT (n)

(
‖m∗

0‖X∗
n
+ c2 T (n)

)
,

9



and for every u1,u2 ∈ B(0, nK), ̺i = ̺[ui], i = 1, 2 and t ∈ [0, T (n)],

‖F(u1)(t, ·) − F(u2)(t, ·)‖Xn

≤
∥∥∥∥
(
M

−1[̺1(t, ·)] −M
−1[̺2(t, ·)]

) [ˆ t

0
N(̺1(s, ·),u1(s, ·)) ds

]∥∥∥∥
Xn

+

∥∥∥∥M
−1[̺2(t, ·)]

[
ˆ t

0
[N(̺1(s, ·),u1(s, ·))−N(̺2(s, ·),u2(s, ·))] ds

]∥∥∥∥
Xn

≤ t
∥∥M−1[̺1(t, ·)] −M

−1[̺2(t, ·)]
∥∥
L(X∗

n;Xn)
‖N(̺1(t, ·),u1(t, ·))‖X∗

n

+ t
∥∥M−1[̺2(t, ·)]

∥∥
L(X∗

n,Xn)
‖N(̺1(t, ·),u1(t, ·))−N(̺2(t, ·),u2(t, ·))‖X∗

n

≤ c(n)
c2

(̺)2
e2Ktt ‖̺1(t, ·) − ̺2(t, ·)‖L1(Ω) + c(n)

c3

̺
eKtt ‖u1(t, ·)− u2(t, ·)‖W 1,∞(Ω;Rd)

≤ c(n)

(
c1c2

(̺)2
+
c3

̺

)
e2Ktt ‖u1(t, ·) − u2(t, ·)‖W 1,∞(Ω;Rd)

≤ T (n)
c(n)

n

(
c1c2

(̺)2
+
c3

̺

)
e2KT (n) ‖u1(t, ·)− u2(t, ·)‖Xn .

Now, taking K > 0 sufficiently large and T (n) sufficiently small, so that

c(n)

̺
eKT (n)

(
‖m∗

0‖X∗
n
+ c2 T (n)

)
≤ nK,

and

T (n)
c(n)

n

(
c1c2

(̺)2
+
c3

̺

)
e2KT (n) < 1,

we obtain that F is a contraction mapping from the closed ball B(0, nK) into itself. From
the Banach-Cacciopoli fixed point theorem, we recover that F admits a unique fixed point
u ∈ C([0, T (n)];Xn), which in particular solves the integral identity (4.18).

This procedure can be repeated a finite number of times until we reach T = T (n), as long
as we have a bound on u independent of T (n). the next section will be dedicated to establish
all the necessary estimates.

4.2.3 Estimates independent of time

We start with the energy estimates. It follows from (4.18) that u is continuously differentiable
and, consequently, the integral identity

ˆ

Ω
∂t(̺u) ·ψ dx =

ˆ

Ω
[̺u⊗ u : ∇xψ + a̺divxψ − ∂Fδ(Dxu) : ∇xψ] dx

− ε

ˆ

Ω
[∇x̺ · ∇xu · ψ] dx

(4.20)

holds on (0, T (n)) for any ψ ∈ Xn, with ̺ = ̺[u]. We recall that in this context the pressure
potential P = P (̺) satisfies the following identity

a̺divx u = −∂tP (̺)− divx(P (̺)u) + ε a(log ̺+ 1)∆x̺.

Now, taking ψ = u in (4.20) and noticing that
ˆ

Ω
[∂t(̺u) · u− ̺u⊗ u : ∇xu] dx =

d

dt

ˆ

Ω

1

2
̺|u|2 dx+

1

2

ˆ

Ω
(∂t̺+ divx(̺u))|u|2 dx

=
d

dt

ˆ

Ω

1

2
̺|u|2dx+

ε

2

ˆ

Ω
∆x̺|u|2 dx,

10



where, using the boundary condition (4.2),

ε

2

ˆ

Ω
|u|2∆x̺ dx =

ε

2

ˆ

Ω
|u|2 divx∇x̺ dx

=
ε

2

ˆ

Ω
divx(|u|2∇x̺) dx− ε

2

ˆ

Ω
∇x̺ · ∇xu · 2u dx

=
ε

2

ˆ

∂Ω
|u|2∇x̺ · n dSx − ε

ˆ

Ω
∇x̺ · ∇xu · u dx

= −ε
ˆ

Ω
∇x̺ · ∇xu · u dx,

and
ˆ

Ω
(log ̺+ 1)∆x̺ dx =

ˆ

Ω
(log ̺+ 1) divx∇x̺ dx

=

ˆ

Ω
divx [(log ̺+ 1)∇x̺] dx−

ˆ

Ω
∇x(log ̺+ 1) · ∇x̺ dx

=

ˆ

∂Ω
(log ̺+ 1)∇x̺ · n dSx −

ˆ

Ω

d

d̺
(log ̺+ 1)|∇x̺|2 dx

= −
ˆ

Ω

1

̺
|∇x̺|2 dx = −

ˆ

Ω
P ′′(̺)|∇x̺|2 dx,

we finally obtain

d

dt

ˆ

Ω

[
1

2
̺|u|2 + P (̺)

]
dx = −ε

ˆ

Ω
P ′′(̺)|∇x̺|2 dx−

ˆ

Ω
∂Fδ(Dxu) : ∇xu dx. (4.21)

Note that we got rid of the integral ε
2

´

Ω |un|2∆x̺ndx thanks to the extra term ε∇x̺n ·∇xun in
(4.4). Since all the quantities involved are at least continuous in time, we may integrate (4.21)
over (0, τ) in order to get the following energy equality

ˆ

Ω

[
1

2
̺|u|2 + P (̺)

]
(τ, ·) dx+

ˆ τ

0

ˆ

Ω

[
∂Fδ(Dxu) : ∇xu+ εP ′′(̺)|∇x̺|2

]
dxdt

=

ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx,

(4.22)

for any time τ ∈ [0, T (n)]. In particular, if we suppose the initial value of the (modified) total
energy

ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx ≤ E (4.23)

where the constant E is independent of n > 0, the term on the right-hand side of (4.22) is
bounded.

Now, the following result, collecting all the significant properties of the regularized potential
Fδ, is needed.

Proposition 4.2. For every fixed δ > 0 and F satisfying hypothesis (2.4)–(2.5), the function
Fδ defined in (4.7) is convex, non-negative, infinitely differentiable and such that

Fδ(D) ≥ ν

∣∣∣∣D− 1

d
Tr[D]I

∣∣∣∣
q

− c for all D ∈ R
d×d
sym (4.24)

with ν > 0, c > 0, q > 1 independent of δ.
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Proof. For every fixed δ > 0, the non-negativity of Fδ is trivial while smoothness follows from the
fact that each derivative can be transferred to the mollifiers ξδ. Moreover, for every A,B ∈ R

d×d
sym

and every t ∈ [0, 1], denoting

C1 := inf
D∈Rd×d

sym

ˆ

R
d×d
sym

ξδ(|D − Z|)F (Z) dZ

we have

Fδ(tA+ (1− t)B)

=

ˆ

R
d×d
sym

F
(
t(A+ Z) + (1− t)(B + Z)

)
ξδ(|Z|) dZ+ tC1 − (1− t)C1

≤ t

(
ˆ

R
d×d
sym

F (A+ Z) ξδ(|Z|) dZ+ C1

)
+ (1− t)

(
ˆ

R
d×d
sym

F (B+ Z) ξδ(|Z|) dZ+ C1

)

= tFδ(A) + (1− t)Fδ(B),

where we have simply summed and subtracted terms tZ, tC1 in the second line and used the
convexity of F in the third line. In particular, we get that for every fixed δ > 0, Fδ : Rd×d

sym →
[0,∞) is convex.

Let now D ∈ R
d×d
sym be fixed. From (2.5), we have

Fδ(D) =

ˆ

R
d×d
sym

F (D− Z)ξδ(|Z|) dZ− C1

≥ µ

ˆ

R
d×d
sym

∣∣∣∣
(
D− 1

d
Tr[D]I

)
−
(
Z− 1

d
Tr[Z]I

)∣∣∣∣
q

ξδ(|Z|) dZ− C1.

Applying Minkowski’s inequality, we get
ˆ

R
d×d
sym

∣∣∣∣
(
D− 1

d
Tr[D]I

)
−
(
Z− 1

d
Tr[Z]I

)∣∣∣∣
q

ξδ(|Z|) dZ

≥



(
ˆ

R
d×d
sym

∣∣∣∣D− 1

d
Tr[D]I

∣∣∣∣
q

ξδ(|Z|)dZ
)1

q

−
(
ˆ

R
d×d
sym

∣∣∣∣Z− 1

d
Tr[Z]I

∣∣∣∣
q

ξδ(|Z|)dZ
)1

q



q

;

recalling that for any δ > 0 sufficiently small supp ξδ ⊂ K with K ⊂ R
d×d
sym a compact set and

that for any δ > 0
ˆ

R
d×d
sym

ξδ(|Z|) dZ =
1

δd

ˆ

R
d×d
sym

ξ

( |Z|
δ

)
dZ =

ˆ

R
d×d
sym

ξ(|Z|) dZ = 1,

we obtain the following inequality

Fδ(D) ≥ µ

[∣∣∣∣D− 1

d
Tr[D]I

∣∣∣∣−
(
sup
Z∈K

∣∣∣∣Z− 1

d
Tr[Z]I

∣∣∣∣
q) 1

q

]q
− C1.

Now, for every fixed q > 1 and constant c1 > 0, there exist α = α(q, c1) ∈ (0, 1) and c2 =
c2(q, c1) > 0 such that

(y − c1)
q ≥ αyq − c2 for any y ≥ 0;

in particular, we get that for all D ∈ R
d×d
sym

Fδ(D) ≥ µα

∣∣∣∣D− 1

d
Tr[D]I

∣∣∣∣
q

− (C1 + C2)

and thus (4.24) holds choosing ν = µα and c = C1 + C2.
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From (4.22) and (4.23) we can deduce that

‖Fδ(Dxun)‖L1((0,T )×Ω) ≤ c(E)

which, from (4.24), implies
∥∥∥∥Dxun − 1

d
(divx un)I

∥∥∥∥
Lq((0,T )×Ω;Rd×d)

≤ c(E).

The previous inequality combined with the Lq-version of the trace-free Korn’s inequality, see
[4], Theorem 3.1, gives

‖∇xun‖Lq((0,T )×Ω;Rd×d) ≤ c(E);

the standard Poincaré inequality ensures then

u to be bounded in Lq(0, T (n);W 1,q
0 (Ω;Rd))

by a constant which is independent of n and T (n) ≤ T . Since all norms are equivalent in Xn,
this implies that

u is bounded in Lq(0, T (n);W 1,∞(Ω;Rd));

in particular, by virtue of (4.10) and (4.12), the density ̺ = ̺[u] is bounded from below and
above by constants independent of T (n) ≤ T . Since ̺ is bounded from below, one can use
(4.22) to easily deduce uniform boundedness in t of u in the space L2(Ω;Rd). Consequently,
the functions u(t, ·) remain bounded in Xn for any t independently of T (n) ≤ T . Thus we are
allowed to iterate the previous local existence result to construct a solution defined on the whole
time interval [0, T ].

Summarizing, so far we proved the following result.

Lemma 4.3. For every fixed δ > 0, ε > 0, n ∈ N, and any ̺0,n ∈ C(Ω) such that

ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx ≤ E,

where the constant E is independent of n, there exist

̺ = ̺δ,ε,n ∈ L2((0, T );W 1,2(Ω)) ∩C([0, T ];L2(Ω)),

u = uδ,ε,n ∈ C([0, T ];Xn),

such that

(i) the integral identity

[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
(̺∂tϕ+ ̺u · ∇xϕ− ε∇x̺ · ∇xϕ) dx

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] × Ω), with ̺(0, ·) = ̺0,n;

(ii) the integral identity

[
ˆ

Ω
̺u ·ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺u · ∂tϕ+ (̺u⊗ u) : ∇xϕ+ a̺divxϕ] dxdt

−
ˆ τ

0

ˆ

Ω
∂Fδ(Dxu) : ∇xϕ dxdt− ε

ˆ τ

0

ˆ

Ω
∇x̺ · ∇xu · ϕ dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn), with (̺u)(0, ·) = m0;
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(iii) the integral equality

ˆ

Ω

[
1

2
̺|u|2 + P (̺)

]
(τ, ·) dx+

ˆ τ

0

ˆ

Ω
∂Fδ(Dxu) : ∇xu dxdt+ ε

ˆ τ

0

ˆ

Ω
P ′′(̺)|∇x̺|2dxdt

=

ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx

holds for any time τ ∈ [0, T ].

4.3 Limit δ → 0

Let now ε > 0 and n ∈ N be fixed, and let {̺δ ,uδ}δ>0 be the family of weak solutions to
problem (4.1)–(4.8) as in Lemma 4.3. Proceeding as before, we can deduce that

{uδ}δ>0 is unifrmly bounded in Lq(0, T ;W 1,q
0 (Ω;Rd)).

As n is fixed and all norms are equivalent on the finite-dimensional space Xn, we get that

{∇xuδ}δ>0 is unifrmly bounded in L∞((0, T ) × Ω;Rd×d),

and therefore, we are ready to perform the limit δ → 0. Accordingly, we obtain the following
result.

Lemma 4.4. For every fixed ε > 0, n ∈ N, and any ̺0,n ∈ C(Ω) such that

ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx ≤ E,

where the constant E is independent of n, there exist

̺ = ̺ε,n ∈ L2((0, T );W 1,2(Ω)) ∩ C([0, T ];L2(Ω)),

u = uε,n ∈ C([0, T ];Xn),

such that

(i) the integral identity

[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
(̺∂tϕ+ ̺u · ∇xϕ− ε∇x̺ · ∇xϕ) dx (4.25)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] × Ω), with ̺(0, ·) = ̺0,n;

(ii) there exists
S = Sε,n ∈ L∞((0, T ) × Ω;Rd×d

sym)

such that the integral identity

[
ˆ

Ω
̺u · ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺u · ∂tϕ+ (̺u⊗ u) : ∇xϕ+ a̺divxϕ] dxdt

−
ˆ τ

0

ˆ

Ω
S : ∇xϕ dxdt− ε

ˆ τ

0

ˆ

Ω
∇x̺ · ∇xu · ϕ dxdt

(4.26)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn), with (̺u)(0, ·) = m0;
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(iii) the integral inequality

ˆ

Ω

[
1

2
̺|u|2 + P (̺)

]
(τ, ·) dx+

ˆ τ

0

ˆ

Ω
[F (Dxu) + F ∗(S)] dxdt+ ε

ˆ τ

0

ˆ

Ω
P ′′(̺)|∇x̺|2dxdt

≤
ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx

(4.27)
holds for a.e. τ ∈ (0, T ).

4.4 Limit ε → 0

In order to perform the limit ε→ 0, we need the following result.

Lemma 4.5. Let n ∈ N be fixed and let {̺ε,uε,Sε}ε>0 be as in Lemma 4.4. Moreover, let

f(̺ε) :=
√
ε ∇x̺ε

g(̺ε,uε) :=
√
ε ∇x̺ε · ∇xuε.

Then, passing to a suitable subsequences as the case may be, the following convergences hold as
ε→ 0.

̺ε
∗
⇀ ̺ in L∞((0, T ) × Ω), (4.28)

uε
∗
⇀ u in L∞(0, T ;W 1,∞(Ω;Rd)), (4.29)

̺εuε
∗
⇀ ̺u in L∞((0, T ) × Ω;Rd), (4.30)

̺εuε ⊗ uε
∗
⇀ ̺u⊗ u in L∞((0, T ) × Ω;Rd×d), (4.31)

Sε ⇀ S in L1((0, T ) × Ω;Rd×d), (4.32)

f(̺ε)⇀ f(̺) in L2((0, T ) × Ω;Rd), (4.33)

g(̺ε,uε)⇀ g(̺,u) in L2((0, T ) × Ω;Rd). (4.34)

Proof. From (4.27) it is easy to deduce the following uniform bounds

‖F (Dxuε)‖L1((0,∞)×Ω) ≤ c(E), (4.35)

‖F ∗(Sε)‖L1((0,∞)×Ω) ≤ c(E). (4.36)

Similarly to the previous section, from (4.35) we obtain

‖uε‖Lq(0,T ;W 1,q(Ω;Rd)) ≤ c1

for some q > 1 and a positive constant c1 independent of ε > 0, yielding, in view of Lemmas
4.1, conditions (ii) and (iii),

e−c1T̺ ≤ ̺ε(t, x) ≤ ec1T̺, for all (t, x) ∈ [0, T ]× Ω. (4.37)

We recover convergence (4.28). From the energy inequality (4.27), it is easy to deduce

sup
t∈[0,T ]

‖uε(t, ·)‖W 1,∞(Ω;Rd) ≤ c2, (4.38)

from which convergence (4.29) follows. Combining (4.37) and (4.38), we can recover

̺εuε
∗
⇀m in L∞((0, T ) × Ω;Rd).
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Now, notice that (4.28) can be strengthened to

̺ε → ̺ in Cweak([0, T ];L
p(Ω)) for all 1 < p <∞

as ε→ 0, so that, relaying on the compact Sobolev embedding

Lp(Ω) →֒→֒ W−1,1(Ω) for all p ≥ 1,

we obtain
̺ε → ̺ in C([0, T ];W−1,1(Ω))

as ε→ 0. The last convergence combined with (4.29), implies

m = ̺u a.e. in (0, T )× Ω,

and thus, we get (4.30). Similarly, from (4.29) and (4.30) we can deduce (4.31). Convergence
(4.32) can be deduced from (4.36) using the superlinearity of F ∗ (2.10) combined with the De
la Vallée–Poussin criterion and the Dunford–Pettis theorem. Finally, from (4.37) we have in
particular that

ec1T̺

̺(t, x)
≥ 1, for all (t, x) ∈ [0, T ]× Ω,

and thus, from the energy inequality (4.27),

ε

ˆ τ

0

ˆ

Ω
|∇x̺|2 dxdt ≤ ε ec1T̺

ˆ τ

0

ˆ

Ω
P ′′(̺)|∇x̺|2 dxdt ≤ c(̺, T ).

In this way we get (4.33) and, in view of (4.38), (4.34).

Remark 4.6. It is worth noticing that the limit density ̺ admits the same upper and lower
bounds as in (4.37):

e−c1T̺ ≤ ̺(t, x) ≤ ec1T̺, for all (t, x) ∈ [0, T ]× Ω.

We are now ready to let ε → 0 in the weak formulations (4.25), (4.26); notice in particular
that, in view of (4.34), for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn)

ε

ˆ τ

0

ˆ

Ω
∇x̺ · ∇xu ·ϕ dxdt =

√
ε

ˆ τ

0

ˆ

Ω

√
ε ∇x̺ · ∇xu · ϕ dxdt→ 0

as ε→ 0.

Lemma 4.7. For every fixed n ∈ N, and any ̺0,n ∈ C(Ω) such that

ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx ≤ E,

where the constant E is independent of n, there exist

̺ = ̺n ∈ L∞((0, T ) × Ω),

u = un ∈ C([0, T ];Xn),

with
e−cT̺ ≤ ̺(t, x) ≤ ecT̺, for all (t, x) ∈ [0, T ]× Ω,

for a positive constant c, such that
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(i) the integral identity

[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
(̺∂tϕ+ ̺u · ∇xϕ) dx (4.39)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] × Ω), with ̺(0, ·) = ̺0,n;

(ii) there exists
S = Sn ∈ L1((0, T ) × Ω;Rd×d

sym)

such that the integral identity
[
ˆ

Ω
̺u · ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺u · ∂tϕ+ (̺u⊗ u) : ∇xϕ+ a̺divxϕ] dxdt

−
ˆ τ

0

ˆ

Ω
S : ∇xϕ dxdt

(4.40)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn), with (̺u)(0, ·) = m0;

(iii) the integral inequality
ˆ

Ω

[
1

2
̺|u|2 + P (̺)

]
(τ, ·) dx+

ˆ τ

0

ˆ

Ω
[F (Dxu)+F

∗(S)] dxdt ≤
ˆ

Ω

[
1

2

|m0|2
̺0,n

+ P (̺0,n)

]
dx

(4.41)
holds for a.e. τ ∈ (0, T ).

Remark 4.8. In the energy inequality (4.41) we used the lower semi-continuity of the function

[̺,m] 7→





0 if m = 0,
|m|2

̺
if ̺ > 0,

∞ otherwise,

and the weak lower semi-continuity in L1 of the functions F and F ∗, and thus for a.e. τ > 0
ˆ

Ω

[
1

2
̺|u|2 + P (̺)

]
(τ, ·) dx ≤ lim inf

ε→∞

ˆ

Ω

[
1

2
̺ε|uε|2 + P (̺)

]
(τ, ·) dx,

ˆ τ

0

ˆ

Ω
[F (Dxu) + F ∗(S)] dxdt ≤ lim inf

ε→0

ˆ τ

0

ˆ

Ω
[F (Dxuε) + F ∗(Sε)] dxdt.

4.5 Limit n → ∞
Let {̺n,mn = ̺nun}n∈N be the family of approximate solutions obtained in Lemma 4.7, with
correspondent viscous stress tensor Sn. At this stage, as the initial energies are uniformly
bounded by a constant independent of n, we can perform the same procedure done in [2],
Section 5.1 with γ = 1, to get the following family of convergences as n → ∞, passing to
suitable subsequences as the case may be:

̺n → ̺ in Cweak([0, T ];L
1(Ω)), (4.42)

mn → m in Cweak([0, T ];L
1(Ω;Rd)), (4.43)

un ⇀ u in Lq(0, T ;W 1,q
0 (Ω;Rd)) (4.44)

Sn ⇀ S in L1(0, T ;L1(Ω;Rd×d)), (4.45)

1̺n>0
mn ⊗mn

̺n

∗
⇀ 1̺>0

m⊗m

̺
in L∞(0, T ;M(Ω;Rd×d

sym)). (4.46)
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with
m = ̺u a.e. in (0, T )× Ω,

as a consequence of Lemma 5.2 in [2].
We are now ready to let n → ∞ in the weak formulation of the continuity equation (4.39)

and the balance of momentum (4.40), obtaining that
[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺∂tϕ+m · ∇xϕ] dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] × Ω), with ̺(0, ·) = ̺0, and
[
ˆ

Ω
m · ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω

[
m · ∂tϕ+ 1̺>0

m⊗m

̺
: ∇xϕ+ a̺divxϕ

]
dxdt

−
ˆ τ

0

ˆ

Ω
S : ∇xϕ dxdt+

ˆ τ

0

ˆ

Ω
∇xϕ : dR dt

(4.47)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn), with n arbitrary. As clearly explained by
Abbatiello, Feireisl and Novotný [1], Section 3.4, by a density argument it is possible to extend
the validity of the integral identity (4.47) for any ϕ ∈ C1([0, T ]× Ω), ϕ|∂Ω = 0. Finally, notice
that from the energy inequality (4.41) we have the following uniform bounds

∥∥∥∥
mn√
̺n

∥∥∥∥
L∞(0,T ;L2(Ω;Rd))

≤ c(E),

‖P (̺n)‖L∞(0,T ;L1(Ω)) ≤ c(E),

from which it is possible to deduce that

|mn|2
̺n

∗
⇀

|m|2
̺

in L∞(0,∞;M(Ω))

P (̺n)
∗
⇀ P (̺) in L∞(0,∞;M(Ω))

as n→ ∞. Thus,
R ∈ L∞

weak(0, T ;M+(Ω;Rd×d
sym))

appearing in (4.47) has been chosen in such a way that

dR =

(
1̺>0

m⊗m

̺
− 1̺>0

m⊗m

̺

)
dx+ ψ(t)I,

where the time-dependent function ψ is chosen in such a way to guarantee

1

λ
dTr[R] =

1

2

(
|m|2
̺

− |m|2
̺

)
dx+

(
P (̺)− P (̺)

)
dx

for a.e. τ ∈ (0, T ); see [2], Section 5.4 for further details.
We proved the following result.

Theorem 4.9. For every fixed initial data

[̺0,m0] ∈ L1(Ω)× L1(Ω;Rd),

with
ˆ

Ω

[
1

2

|m0|2
̺0

+ ̺0 log ̺0

]
dx <∞, (4.48)

problem (2.1)–(2.9) admits a dissipative solution in the sense of Definition 3.1.
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5 Existence of weak solutions

Choosing q > d in (2.5), we get the existence of weak solutions to models describing a gen-
eral viscous compressible fluid (2.1)–(2.9), or equivalently, the Reynold stress R appearing in
Definition 3.1 is identically zero. In particular, we improve the work by Matuš̊u-Nečasová and
Novotný [13], where existence was achieved in the framework of measure-valued solutions.

We can repeat the same procedure performed in the previous section until we get to Lemma
4.7. We can now prove the following crucial result.

Lemma 5.1. Let q > d in (2.5) and let {̺n,mn = ̺nun}n∈N be the family of approximate
solutions obtained in Lemma 4.7. Then, passing to a suitable subsequence as the case may be,

̺nun ⊗ un ⇀ ̺u⊗ u in L1((0, T ) × Ω;Rd×d) (5.1)

as n→ ∞.

Proof. Proceeding as in [2], Sections 5.1 and 5.2, we have

̺n → ̺ in Cweak([0, T ];L
1(Ω)),

̺nun → ̺u in Cweak([0, T ];L
1(Ω;Rd))

as n→ ∞, where the sequence {̺nun(t, ·)}n∈N is equi-integrable in L1(Ω;Rd) for a.e. t ∈ (0, T ).
Thanks to the slightly modified De la Vallée–Poussin criterion, which we report in the Appendix,
Theorem A.2, there exists a Young function Ψ satisfies the ∆2-condition (A.1) such that

̺nun
∗
⇀ ̺u in L∞(0, T ;LΨ(Ω;R

d)),

Moreover, due to the compact Sobolev embedding

Lp(Ω) →֒→֒W−1,q′(Ω) for any p ≥ 1,

which is true since q > d from our hypothesis, we can prove that the sequence {̺nun ⊗un}n∈N
is equi-integrable in L1((0, T ) × Ω;Rd×d). Indeed, let ε > 0 be fixed and let the constant c > 0
be such that

‖un‖Lq(0,T ;W 1,q(Ω;Rd)) ≤ c,

uniformly in n. Let ε̃ = ε̃(ε) > 0 be chosen in such a way that

ε̃ <
(
c T

1

q′

)−1
ε.

From the equi-integrability of the sequence {̺nun}n∈N, there exists δ = δ(ε̃) > 0 such that

ˆ

M

|̺nun|(t) dx < ε̃, for every M ⊂ Ω s.t. |M | < δ,

for every n ∈ N. Let (t1, t2)×M ⊂ [0, T ] ×Ω such that

|(t1, t2)×M | < δ.
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Then, for every n ∈ N,
ˆ t2

t1

ˆ

M

|̺nun ⊗ un| dxdt ≤
ˆ T

0

ˆ

M

|̺nun ⊗ un| dxdt

≤ ‖̺nun‖Lq′ (0,T ;L1(M))‖un‖Lq(0,T ;W 1,q(M))

≤ c

[
ˆ T

0

(
ˆ

M

|̺nun|(t) dx
)q′

dt

] 1

q′

≤ c ε̃ T
1

q′

< ε.

Consequently, we can adapt Lemma 5.2 in [2] replacing the sequence of densities {̺n}n∈N with
the sequence of momenta {̺nun}n∈N to obtain (5.1).

Letting n → ∞ in the weak formulation of the continuity equation (4.39) and the balance
of momentum (4.40), we obtain the following result.

Theorem 5.2. Let q > d in (2.5). For every fixed initial data

[̺0,m0] ∈ L1(Ω)× L1(Ω;Rd),

with
ˆ

Ω

[
1

2

|m0|2
̺0

+ ̺0 log ̺0

]
dx <∞, (5.2)

problem (2.1)–(2.9) admits a weak solution

[̺, ̺u] ∈ Cweak([0, T ];L
1(Ω))× Cweak([0, T ];L

1(Ω;Rd)),

meaning that the following holds.

(i) ̺ ≥ 0 in (0, T )× Ω.

(i) The integral identity
[
ˆ

Ω
̺ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺∂tϕ+ ̺u · ∇xϕ] dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × Ω), with ̺(0, ·) = ̺0.

(iii) There exists
S ∈ L1(0, T ;L1(Ω;Rd×d

sym))

such that the integral identity
[
ˆ

Ω
̺u ·ϕ(t, ·) dx

]t=τ

t=0

=

ˆ τ

0

ˆ

Ω
[̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ+ a̺divxϕ] dxdt

−
ˆ τ

0

ˆ

Ω
S : ∇xϕ dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω;Rd), ϕ|∂Ω = 0, with (̺u)(0, ·) = m0.

(iv) the energy inequality
ˆ

Ω

[
1

2

|m|2
̺

+ a̺ log ̺

]
(τ, ·) dx+

ˆ τ

0

ˆ

Ω
[F (Du) + F ∗(S)] dxdt

≤
ˆ

Ω

[
1

2

|m0|2
̺0

+ a̺0 log ̺0

]
dx

holds for a.e. τ ∈ (0, T ).
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A De la Vallée–Poussin criterion

In this section, we prove a slightly modified version of the De la Vallée–Poussin criterion as
we require the stronger condition, with respect to the standard formulation, that the Young
function satisfies the ∆2-condition. We first recall the definitions of Young function and ∆2-
condition.

Definition A.1. (i) We say that Φ is a Young function generated by ϕ if

Φ(t) =

ˆ t

0
ϕ(s) ds for any t ≥ 0,

where the real-valued function ϕ defined on [0,∞) is non-negative, non-decreasing, left-
continuous and such that

ϕ(0) = 0, lim
s→∞

ϕ(s) = ∞.

(ii) A Young function Φ is said to satisfy the ∆2-condition if there exist a positive constant
K and t0 ≤ 0 such that

Φ(2t) ≤ KΦ(t) for any t ≥ t0. (A.1)

Theorem A.2. Let Q ⊂ R
d be a bounded measurable set and let {fn}n∈N be a sequence in

L1(Q). Then, the following statements are equivalent.

(i) The sequence {fn}n∈N is equi-integrable, meaning that for any ε > 0 there exists δ =
δ(ε) > 0 such that

ˆ

M

|fn(y)| dy < ε for any M ⊂ Q such that |M | < δ,

independently of n.

(ii) There exists a Young function Φ satisfying the ∆2-condition (A.1) such that the sequence
{fn}n∈N is uniformly bounded in the Orlicz space LΦ(Q).

Proof. (ii) ⇒ (i) See Pedregal [14], Chapter 6, Lemma 6.4.
(i) ⇒ (ii) For n ∈ N and j ≥ 1 fixed, let

µj(fn) := |{y ∈ Q : |fn(y)| > j}|.

As the sequence {fn}n∈N is equi-integrable, from the Dunford-Pettis theorem there exists a
strictly increasing sequence of positive integers {Cm}m∈N such that for each m

sup
n∈N

ˆ

{|fn|>Cm}
|fn(y)| dy ≤ 1

2m
.

For n ∈ N and m ≥ 1 fixed

ˆ

{|fn|>Cm}
|fn(y)| dy =

∞∑

j=Cm

ˆ

{j<|fn|≤j+1}
|fn(y)| dy ≥

∞∑

j=Cm

j [µj(fn)−µj+1(fn)] ≥
∞∑

j=Cm

µj(fn).

In particular, we obtain

∞∑

m=1

∞∑

j=Cm

µj(fn) ≤
∞∑

m=1

ˆ

{|fn|>Cm}
|fn(y)| dy ≤

∞∑

m=1

1

2m
= 1.
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For m ≥ 0, we define

αm =

{
0 if m < C1,

max{k : Ck ≤ m} if m ≥ C1.

Notice that
αm ≥ j ⇔ Cj ≤ m. (A.2)

It is straightforward that αm → ∞ as m→ ∞. We define a step function ϕ on [0,∞) by

ϕ(s) =

∞∑

m=0

αmχ(m,m+1](s) for any 0 ≤ s <∞.

It is clear that ϕ is non-negative, non-decreasing, left-continuous and such that ϕ(0) = 0,
lims→∞ ϕ(s) = ∞. Then, we can define the Young function Φ generated by ϕ as

Φ(t) =

ˆ t

0
ϕ(s) ds, for any 0 ≤ t <∞.

At this point, notice that we have the freedom to take the constants Cj , j ≥ 1, as large as we
want and consequently, the constants αm, m ≥ 1, will be as small as we want. More precisely,
we may find a positive constant c such that

α2m ≤ c αm for any m ≥ 1.

We then obtain, for all s ∈ [0,∞),

ϕ(2s) =

∞∑

m=0

αmχ(m
2
,m+1

2 )(s) =

∞∑

k=0

α2kχ(k,k+ 1
2)
(s) ≤ c

∞∑

k=0

αkχ(k,k+ 1
2)
(s) ≤ c ϕ(s);

consequently, for all t ∈ [0,∞),

Φ(2t) =

ˆ 2t

0
ϕ(s) ds = 2

ˆ t

0
ϕ(2z) dz ≤ 2c

ˆ t

0
ϕ(z) dz = 2c Φ(t),

and thus we get that the Young function Φ satisfies the ∆2-condition (A.1).
Finally, for n ∈ N fixed, using the fact that Φ(0) = Φ(1) = 0 and for j ≥ 1, noticing that

α0 = 0,

Φ(j + 1) =

ˆ j+1

0
ϕ(s) ds =

j∑

m=0

ˆ m+1

m

ϕ(s) ds ≤
j∑

m=0

ϕ(m+ 1) =

j∑

m=0

αm =

j∑

m=1

αm,

we get
ˆ

Q

Φ(|fn(y)|) dy =

ˆ

{|fn|=0}
Φ(|fn(y)|) dy +

∞∑

j=0

ˆ

{j<|fn|≤j+1}
Φ(|fn(y)|) dy

≤
∞∑

j=1

[µj(fn)− µj+1(fn)] Φ(j + 1)

≤
∞∑

j=1

[µj(fn)− µj+1(fn)]

j∑

m=1

αm

=
∞∑

m=1

αm

∞∑

j=m

[µj(fn)− µj+1(fn)]

=
∞∑

m=1

αmµm(fn) =
∞∑

m=1

µm(fn)

αm∑

j=1

1 =
∞∑

j=1

∞∑

m=Cj

µm(fn) ≤ 1
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where we used (A.2) in the last line. In particular, we obtain that the sequence {fn}n∈N is
uniformly bounded in the Orlicz space LΦ(Q).
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[5] T. Chang, B. J. Jin and A. Novotný, Compressible Navier-Stokes system with inflow-outflow
boundary data, SIAM J. Math. Anal. 51(2): 1238–1278; 2019

[6] G. Crippa, C. Donadello and L. V. Spinolo, A note on the initial-boundary value problem for
continuity equations with rough coefficients, HYP 2012 conference proceedings, AIMS Series
in Appl. Math. 8: 957–966; 2014

[7] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford; 2003
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