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Despite the impressive performance of Artiicial Intelligence (AI) systems, their robustness remains elusive and constitutes
a key issue that impedes large-scale adoption. Besides, robustness is interpreted diferently across domains and contexts
of AI. In this work, we systematically survey recent progress to provide a reconciled terminology of concepts around AI
robustness. We introduce three taxonomies to organize and describe the literature both from a fundamental and applied point
of view: 1) methods and approaches that address robustness in diferent phases of the machine learning pipeline; 2) methods
improving robustness in speciic model architectures, tasks, and systems; and in addition, 3) methodologies and insights
around evaluating the robustness of AI systems, particularly the trade-ofs with other trustworthiness properties. Finally, we
identify and discuss research gaps and opportunities and give an outlook on the ield. We highlight the central role of humans
in evaluating and enhancing AI robustness, considering the necessary knowledge they can provide, and discuss the need for
better understanding practices and developing supportive tools in the future.
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1 INTRODUCTION

AI systems show potential and are expected to revolutionize existing worklows by combining human- and
non-human skills [21]. Yet, there is still little insight into how we should deal with the trade-ofs of combining
human and artiicial agency, or the way in which these systems should be assessed and held accountable
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[70]. Furthermore, concerns about bias [32], inscrutability [12], and vulnerability [101] have also been raised.
Consequently, several social actors, like the European High-Level Expert Group, have highlighted the need for
socio-political deliberation around the design and governance of AI systems, and have deined principles for
Trustworthy AI, i.e., the Ethics Guidelines for Trustworthy AI [190].

One of the core principles of Trustworthy AI is robustness [70], deined in Machine Learning (ML) as the
insensitivity of a model’s performance to miscalculations of its parameters [158, 273]. Examples like Tesla’s Full
Self-Driving mechanism erroneously identifying the moon as a yellow traic light1, or Autopilot being fooled by
stickers placed on the ground2, show that AI systems might be susceptible to errors and vulnerable to external
attacks. This may result in undesired behavior and decreased performance [255]. Given the application of AI
systems in safety-critical areas (e.g., medical diagnosis [23]), it is paramount to design reliable systems, so that
they can be properly and safely integrated in the context of use. In response to this need, a growing body of
literature focuses on developing and testing robust AI systems. Methodologies towards robust AI have addressed
every phase of the ML pipeline, going from data collection and feature extraction, to model training and prediction
[255]. Such methodologies have also been applied to a wide range of tasks and application areas, including (but
not limited to) image classiication [216] and object detection [44] in Computer Vision, or text classiication in
Natural Language Processing [116].

Considering the increasing eforts devoted to this ield within Trustworthy AI, in this paper we seek to analyze
the progress made so far and give a structured overview of the suggested solutions. Furthermore, we also aim
to identify the areas that have received less attention, highlighting research gaps, and projecting into future
research directions. Our work difers from similar eforts in three main ways. (1) As opposed to some previous
work [37, 81, 255], we do not limit the scope of our analysis to adversarial attacks. We argue that, as suggested
by Drenkow et al. [64] or Shen et al. [199], natural (i.e., non-adversarial) perturbations constitute a common
real-world menace that needs further attention. (2) As far as the application area is concerned, and contrary to
surveys solely focusing on tasks like Computer Vision [64] or architectures like Graph Neural Networks [199],
we do not limit our survey to any technology in particular. We rather conduct our search in a task-agnostic
way. Such an approach helps us identify the most prominent trends within the ield and compare the diferences
in efort and interest across applications as part of our survey. (3) Most importantly, as opposed to previous
work, which has predominantly focused on surveying algorithm-centric solutions to AI robustness, we adopt a
human-centered perspective by additionally including terms like human computation or human knowledge (see
section 2.1) to our search. We ind that, even if there are already a few studies that implicitly involve humans
(e.g., crowdworkers, ML practitioners) in their pipelines (e.g., for ML diagnosis), these represent a minority
compared to algorithm-centric approaches. Furthermore, the studies that do include humans in the loop tend to
disregard the challenges that human-led approaches face in practice. We, therefore, emphasize the potential that
human-in-the-loop approaches have for improving AI robustness, while we highlight the need to understand
human-led practices in order to integrate robustness into existing worklows and tools. To inform such research
opportunities, we advocate for a multidisciplinary approach and bring insights from human-centered ields, such
as explainable AI, crowd computing, or human-in-the-loop machine learning. We, therefore, make the following
contributions:

(1) We summarise the main concepts around robust AI (section 3). We consolidate the terminology used in this
context, disentangling the meaning and scope of diferent constructs. We pay special attention to identifying
the commonalities and diferentiating aspects of the used terms.

(2) We systematically summarize around 370 papers on robust AI and related concepts (section 2) and arrange
them in three diferent taxonomies. First, we group papers that improve robustness by addressing diferent

1https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-traic-light/ (access 13.10.2022)
2https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf (access 13.10.2022)
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aspects of the ML pipeline (section 4). We identiied three main aspects that the selected studies work on
input data, in-model attributes, and model post-processing aspects. Second, we discuss prior work that made
progress in improving robustness for speciic architectures (e.g., Graph Neural Networks), speciic tasks (i.e.,
Natural Language Processing and Cybersecurity), and systems conceived within other ields of Trustworthy AI
(i.e., explainable and fairness-aware systems) (section 5). We focus on these particular architectures, systems,
and ields as they have comparatively received little attention in previous surveys despite the importance
of robustness as a desired property. Third, we create a taxonomy related to the assessment (e.g., through
benchmarking or empirical studies) of robust AI systems (section 6).

(3) We identify and discuss disparate research eforts in each of the established ields and identify research
gaps. Speciically, we make a special in-depth analysis of the opportunities brought by one of the identiied
research gaps: the absence of human-centered work in existing methodologies (section 7). We highlight the
multidisciplinary nature of the robust AI ield and provide an outlook for future research directions, bringing
insights from human-centered ields (section 8).

2 SURVEY METHODOLOGY: PAPER COLLECTION

In this chapter, we detail the process applied to collecting the inal list of articles considered in this literature
review. This includes keyword collection and curation, querying multiple databases, de-duplication, manual
iltering, tagging, and analysis.

2.1 Collecting Papers

Deining Keywords. First, we curated the list of keywords to be used for querying articles. We inspected
key deinitions of robustness and robust AI [39, 85, 174] in the context of Computer Science and organized a
preliminary list. We further enriched this list such that it covers aspects related to the trustworthiness of AI
systems and to human-centeredness (including human knowledge) given the lack of a common viewpoint on
robustness. Table 1 shows the complete list of keywords used.

Group Name Keywords

Fundamental Robustness, Robust

Scope Artiicial Intelligence, Machine Learning, Neural Network

Context

Trustworthy, Stability, Resilience, Reliability, Accountability, Transparency, Reproducibility
Accuracy, Conidence, Performance, Design, Adversarial, Unknowns, Noise
Human Computation, Human Knowledge, Human-In-the-Loop, Human Interpretation, Knowledge Base, Knowl-
edge, Knowledge Elicitation, Reasoning
Explainability, Explanation, Interpretability, Interpretable

Table 1. The groups of keywords considered in the data collection process and the corresponding keywords.

Querying Publication Databases. Secondly, we queried multiple bibliographical databases by generating all
possible triples of keywords based on the groups we deined, e.g., "Robustness" AND "Artiicial Intelligence"
AND "Explainability", inally leading to 156 unique search queries. Articles have been collected in July 2022
through Publish or Perish3 by querying the following supported bibliographical databases: Google Scholar, Scopus,
Semantic Scholar, and Web of Science. Moreover, given the breadth of the literature on trustworthy and robust
AI, we inspect literature from the last 10 years, i.e., articles published between January 2012 and July 2022.

3Harzing, A.W. (2007) Publish or Perish, available from https://harzing.com/resources/publish-or-perish
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Fig. 1. Temporal distribution of the 35,800 unique papers published in the last 10 years. A growing trend of published papers

about Robust AI over the years was observed. The amount of papers collected in 2022 is not to be considered relevant to this

trend as the data was collected in July 2022.

2.2 Filtering Papers

Pre-iltering. We collected about 100,000 papers distributed as follows: 31,000 from Google Scholar, 18,450
from Scopus, 30,800 from Semantic Scholar, and 19,400 from Web of Science. Considering the breadth of the data
collection, we sought to remove any duplicate entries in our results. Papers that had the same title and authors
were iltered out, resulting in 45,400 papers. Duplicates that were undetected at this stage were discarded in the
later ones. Then, papers published before the period of interest (January 2012 to July 2022) were iltered out,
leading to 35,800 articles. Figure 1 displays the time distribution of the collected papers. We observe a growing
interest in the considered topics over the years, which (partially) motivates the time constraints applied.

Further Inspecting Papers. At this stage, we manually inspected the abstracts of the collected papers to exclude
the ones whose context or content require domain-speciic expertise (e.g., healthcare), or deal with a notion
of “robustness" that is not related to machine learning (e.g., signal processing). We ended up with 1,800 papers.
While inspecting papers, we marked them with speciic keywords (e.g., “Computer Visionž or “Loss Functionž), to
diferentiate them in terms of content and type of publication (e.g., “Literature Reviewž). Consequently, we used
those keywords to perform a inal iltering step in which the papers tagged with the least frequent keywords (i.e.,
appearing only once) were excluded. Omitted keywords include: “audio signalž and “event detectionž. Throughout
the entire process, we carefully analyzed the papers such that they contained signiicant or late progress in
the area. These include 94.1 % papers published in peer-reviewed venues, 1.9 % non-archived peer-reviewed
papers (i.e., accepted in workshops with no proceedings and published on arXiv), and 4 % non-peer-reviewed
papers (i.e., only published on arXiv). The non-peer-reviewed papers in this survey have at least 50 citations
if they were written before or in 2019 or at least 15 citations if they were written after 2019. In the end, this
thorough inspection led to 560 papers that were systematically analyzed, out of which around 370 papers were
systematically summarized and discussed4. The list of collected, iltered, and summarized papers can be found on
GitHub5. We applied the same criteria when selecting and iltering additional papers for the discussion sections
(section 7 and section 8).

4Due to space limit, we leave the discussions of some papers (about 30%) in the supplementary material.
5https://github.com/AndreaTocchetti/ACMReviewPaperPolimiDelft.git
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3 OVERVIEW OF THE MAIN CONCEPTS SURROUNDING ROBUSTNESS

From our collection of papers, we evinced that the notion of Robustness is ill-deined. A number of Machine
Learning sub-domains refer to robustness from diferent viewpoints. We clarify the relations between these
domains in subsection 3.1. We also identify that a number of concepts directly related to robustness are used
in diferent ways across research papers (Figure 2). We disambiguate the interpretation of related terms in
subsection 3.3. Finally, our analysis of the papers surfaced a few recurring themes, introduced in subsection 3.4,
and used to organize our survey for which the structure and primary references are summarized in Table 2.

Robustness

Certiied 
Robustness

Natural Robustness

Perturbations

Distribution Shifts
Noise

Generalization

Adversarially Robust 
Generalization

Non-Adversaria

Generalization

Test Set

Performance

Adversarial 
Robustness

Adversarial 
Attacks

Lp Robustness

Fairness

ML 
Explainability

Diagnosis

ML Testing

Unknowns

Natural 
Perturbations

Trustworthy AI 

Concepts

Adversarial 
Perturbations

Generalization 

Capabilities

Guarantees on 

Robustness

Fig. 2. Main concepts found through our analysis of the literature on Robust AI.

3.1 The Various Definitions of Robustness

Given the broadness of the literature on robustness and the variety of contexts in which it is considered,
addressed, and analyzed, we discuss and provide a common ground about the deinitions of robustness and its
associated concepts. Particularly, robustness is generally deined as the insensitivity of a model’s performance to

miscalculations of its parameters [158, 273], with Nobandegani et al. [158] stating that robust models should be

insensitive to inaccuracies of their parameters, with little or no decline in their performance. Two main robustness
branches have been identiied: robustness to adversarial attacks or perturbations, and robustness to natural
perturbations.

3.1.1 Adversarial Robustness. Adversarial Robustness refers to the ability of models to maintain their performance
under potential adversarial attacks and perturbations [283]. Adversarial perturbations are imperceptible, non-
random modiications of the input to change a model’s prediction, maximizing its error [221]. The result of such
a process is called an adversarial example, i.e., an input � ′ close to a valid input � according to some distance
metric (i.e., similarity), whose outputs are diferent [38]. Such data is employed to perform adversarial attacks,
whose objective is to ind any � ′ according to a given maximum attack distance [44]. The literature presents
diferent classiications of adversarial attacks: targeted and untargeted [43], and white-, grey-, or black-box
[149]. Targeted attacks generate adversarial examples misclassiied as speciic classes, while untargeted attacks

ACM Comput. Surv.
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Augmenting Data for Adversarial
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[1, 4, 27, 41, 46, 56, 74, 118, 218, 226, 232,
240, 285]

& for Non-Adversarial Robustness [41, 74, 118, 157, 167, 173, 246, 277, 285]
Designing In-Model
Robustness Strategies

4.2 Improving Robustness through
Training

[48, 49, 86, 88, 134, 135, 155, 186, 215,
225, 230, 245, 253, 268, 289] (adversarial
training), [9, 14, 31, 40, 68, 92, 111, 113,
124, 126, 127, 137, 145, 151, 164, 184, 212,
222, 258, 260, 264, 287] (others)

Improving Robustness through
Architecture Design

[106, 108, 148, 256] (tweaking network
layers), [50, 133, 197] (inherent robust-
ness of networks), [57, 128, 135, 147]
(searching network architectures)

Leveraging Model
Post-Processing
Opportunities
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[42, 73, 129]

Fusing Models [51, 172, 183, 218, 250, 266]
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5.1 Graph Neural Networks [29, 47, 71, 77, 107, 132, 168, 239, 276]
Bayesian Neural Networks [36, 142, 231]

Robustness for Speciic
Application Areas

5.2 Robustness for Natural Language
Processing

[42, 66, 125, 172, 264, 284, 286]

Robustness for Cybersecurity [1, 2, 6, 8]
Robustness for Speciic
Trustworthy AI Concepts

5.3 Robustness for Explainability [5, 13, 15, 60, 117, 153, 166, 237, 246, 278]
Robustness for Fairness [3, 15, 178, 244, 269]
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Evaluation Strategies 6.1 Evaluation of Robustness [20, 65, 67, 76, 83, 91, 102, 116, 121, 122,
136, 185, 203, 205, 227, 247, 263, 265, 274,
280, 281]

Benchmarks [54, 58, 63, 82, 90, 139, 159, 169, 223, 283]
Metrics [35, 115, 203, 219, 249, 254, 263, 267]

(adv. robustness), [10, 24, 119, 162] (adv.
attacks)

Studies around
Proposed Robustness
Methods & Insights

6.2 Insights on Adversarial Robust-
ness

[103, 192] (comparisons), [195, 210, 228]
(inner model), [116, 150, 189, 243] (per-
turbations)

Insights on Natural Robustness [22, 288] (noise), [33, 59] (shifts)

Trade-Ofs Between
Robustness and Other
Trustworthy AI Concepts

6.3 Trade-Of with Accuracy [144, 175, 216, 229]
Trade-Of with Fairness [26, 171, 257]
Trade-Of with Explainability [160, 252]

Table 2. Outline of the paper structure and corresponding references.

generate misclassiied samples in general. The main diference between white-, grey-, and black-box attacks is
the attacker’s knowledge about the model or the defense mechanism.

A similarity metric is often deined when generating attacks or evaluating robustness. Depending on the input
domain, diferent metrics can be applied. These metrics are built as a function of a parameter (usually denoted
with the letter �) whose value inluences its computation. For example, Carlini et al. [38] deine a generic �
norm from which diferent metrics with diferent meanings are derived. In their case, when � = 0 (�0 distance),
the number of coordinates for which the valid and perturbed input are diferent is measured; when � = 2 (�2
distance), the standard Euclidean distance between the valid and perturbed input is computed; when � = ininite

ACM Comput. Surv.
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(�∞ distance), the maximum change to any coordinate is measured. A particular type of robustness is Certiied
Robustness that guarantees a stable classiication for any input within a certain range [52].

3.1.2 Natural Robustness. Natural Robustness (a.k.a. Robustness against natural perturbations) is the capability
of a model to preserve its performance under naturally-induced image corruptions or alterations [64]. Natural
Perturbations (a.k.a. Common Corruptions [90] or Degradations [79]) are introduced through diferent types
of commonly witnessed natural noise [242] (e.g., Gaussian noise in low lighting conditions [90]), and represent
conditions more likely to occur in the real world compared to adversarial perturbations [64]. Temporal Pertur-
bations are natural perturbations that hinder the capability of a model to detect objects in perceptually similar,
nearby frames in videos [194]. All these perturbations result in a condition where the distribution of the test
set difers from the one of the training set [112]. This condition is typically referred to in the literature with
overlapping concepts, namely distribution shift [59, 224], Out-of-Distribution data (OOD) [80, 199], and data
outside the training set [167].

3.2 Other Robustness-related Terms

3.2.1 Generalisation. Generalisation is another widely used term in the robustness literature. In general, it is
deined as the model’s performance on unseen test scenarios [165] or as the closeness between the population (or
test error) to the training error, even when minimising the training error [156]. Two other types of generalization
are also reported: adversarially robust [271] and non-adversarial generalizations [80, 167, 251, 282]. While the
irst one refers to the capability of a model to achieve high performance on novel adversarial samples, the second
one is evaluated on non-adversarial samples (e.g., natural perturbations [251, 282], distribution shifts [80, 167],
etc.).

3.2.2 Performance. Across the inspected literature, the term performance is employed with a broad variety of
meanings. Depending on the aspect of interest, it may refer to accuracy [64], robustness [118], runtime [203], or
precision [263]. Given such variety, the actual meaning of performance will be addressed only when relevant to
understand the concepts explained in the core survey.

3.3 Domains Adjacent to Robustness

Machine learning (ML) explainability, fairness, trustworthiness, and testing, are four research domains recurring
across robustness literature. While there is no agreed upon deinition of each of these ields and their goals,
and we acknowledge it is not possible and desirable in the scope of this survey to provide a complete overview
of these ields, we provide here explanations that are suicient to understand the relation these ields bear to
robustness.

3.3.1 Explainability. ML explainability is the ield interested in developing post-hoc (explainability) methods
and (inherently explainable) models that allow the internal functioning of ML systems to be understandable to
humans [39]. We identify three types of relations between the explainability and robustness ields. A number
of papers investigate how explainability methods can be used in order to enhance the robustness of models (see
section 7.1.2). Another set of papers investigates how robust existing explanability methods are to various types of
perturbations (see subsubsection 5.3.1). A last set of papers instead studies how existing methods for enhancing
robustness trade of with the explainability of the models, and especially with the alignment between the model
features, and the features a human would expect the model to learn (see subsubsection 6.3.3).
We also consider the ield of (un)known unknowns [138] close to robustness, as they are typically caused by

OOD samples. In this ield, methods to identify and mitigate the presence of such unknowns are developed and,
while these methods typically fall within explainability [196, 233], they are directly applicable to increase the
robustness of a model.

ACM Comput. Surv.
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Fig. 3. The three themes and their sub-categories that shape our survey.

3.3.2 Fairness. ML fairness in the broad sense is the ield interested in making the outputs of an ML model
non-harmful to the humans who are subject to the decisions made based on these outputs. Researchers in this
ield have developed a number of fairness metrics [236] and methods for mitigating unfairness [140]. We identify
two types of relations between this ield and robustness, similar to the relations between explainability and
robustness: robustness of fairness metrics and methods to diferent types of natural and adversarial perturbations
(see subsubsection 5.3.2) and trade-ofs caused by the application of robustness methods (see subsubsection 6.3.2).

3.3.3 Testing. ML testing [275] is a ield emanated from software testing. It consists in developing methods and
tools to identify and characterize any discrepancy between the expected and actual behavior of a ML model.
While this ield bears a broader scope, since brittleness to diferent perturbations represents one of the many
types of unexpected behavior of a model, it is also narrow as it is solely interested in detecting the issue, but
not its mitigation. Naturally, methods developed in this ield could potentially be adapted in the future to better
detect robustness-related issues.

3.4 Themes in Relation to These Robustness Definitions and Related Domains

Analyzing the collected publications through a thematic analysis approach [30], we iteratively and collaboratively
identiied three primary themes and three recurring categories within each of these themes (nine categories in
total) that were deemed worth emphasizing (summarized in Figure 3).

3.4.1 Methods & Approaches for Improving Robustness. The most studied methods to achieve robustness are
described in section 4. They are categorized according to the stage of the ML pipeline to which they apply, that

ACM Comput. Surv.
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is either the processing of the training dataset, the model creation stage, or the post-processing of the trained
model. Within each of these stages, the approaches vary across publications, and were further clustered into
groups based on types of robustness (e.g., adversarial or natural perturbations), and speciic ML components (e.g.,
training procedure or model architecture) they apply to. For each of the groups, we further delve into sub-groups
based on the types of transformation applied to the component (e.g., diferent loss functions or regularizers), and
describe the main similarities and diferences across transformations (e.g., in terms of technical approach and
performance).

3.4.2 Robustness in Practical Fields. While a majority of papers concentrate their studies and the evaluation of
their robustness methods around computer vision or do not mention a speciic ield, we also identify a consequent
number of papers that bear diferent focuses. We separated these papers from the ones discussed above, because
they present particularities that are worth investigating. We categorize these papers broadly based on their
research ields, and discuss them in section 5. Within each of the categories, we describe the most researched
sub-types for which we retrieved the most literature. Particularly, we identiied focuses relating to speciic model
types (Graph Neural Networks and Bayesian Learning), speciic application areas (Natural Language Processing,
and Cybersecurity), and speciic concepts within the trustworthy AI domain (explainability and fairness). The
latter is particularly interesting because it difers from other works in its objectives. Contrary to all other papers
which investigate model performance under perturbations, it instead investigates the evolution of fairness and
explanations of a model under the efect of perturbations.

3.4.3 Robustness Assessment & Insights. The last theme we identiied, described in section 6, revolves around the
assessment of robustness of a system. Particularly, the importance of developing procedures (methodologies,
benchmarks, and metrics) to evaluate robustness emerged from the analysis and these procedures revealed to
vary greatly across publications (be it publications whose primary contribution is an evaluation procedure, or
a robustness method that requires to be evaluated through a deined procedure). We also identiied a set of
publications whose primary objective is to perform studies to evaluate existing robustness methods and collect
insights to further characterize in which conditions each type of method performs best. Finally, the last recurring
theme was trade-ofs, as many papers that propose or evaluate robustness methods tackle trade-ofs while
striving to achieve other objectives, be it the model performance or the other trustworthy AI concepts identiied
earlier. The publications in this section of the survey are typically falling under the umbrella of computer vision
publications, or of the diferent ields highlighted above.

4 METHODS AND APPROACHES FOR IMPROVING ROBUSTNESS

A large fraction of the literature is devoted to fundamental methods to improve the robustness of AI models across
their lifecycle: training data augmentation with malicious samples, ad-hoc training procedures and architectures,
and post-training pruning and model fusion.

4.1 Processing the Training Data

With the inal aim of improving model robustness against adversarial attacks, noise, or common perturbations,
several approaches focus on generating perturbations to perform data augmentation.

4.1.1 Generating Adversarial Atacks. A number of papers tackle the challenge of developing methods to generate
adversarial attacks that prove deep learning models brittle. The proposed methods vary with regard to three main
objectives. a) The type of task targeted (e.g., natural language processing model [42, 105], image classiication
[38] or object detection models [45]). b) The type of constraints imposed on the attack: attack on the physical
space before capturing the digital data sample (e.g., by sticking images patches on the physical object to be
recognized [242], or by processing this digital input sample [45]); general attack or attack that targets a particular
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component of the model (e.g., rationalizers of rationale models [42]); attacks that preserve certain properties
of the input sample such as human consistency (e.g., Jin et al. [105] talk about human prediction consistency,
semantic similarity, and text luency with regard to the generated adversarial text samples), additionally to satisfy
the constraint on similarity to the original sample [105]. c) The type of brittleness targeted: the model makes a
diferent (wrong) prediction when the transformed sample is inputted, or the explanations of the prediction also
becomes lawed (i.e., the identiied important features are not the correct ones) [252]. The works then difer by
the approach taken to generate the attacks, be it through diferent optimization instances (objective functions)
they use to ind adversarial instances that it the problem [38, 45], by leveraging Generative Adversarial Networks
(GAN) [1], or through a rule-based algorithmic approach [42, 105].

4.1.2 Augmenting Data for Adversarial Robustness. Most of the identiied literature focuses on transforming
[27, 41, 226, 285], generating [4, 46, 118, 218, 240] or employing ready-to-use [56] data and/or adversarial samples
to extend or create datasets to train more robust models. Such a data augmentation process can successfully
improve adversarial robustness [41, 56, 118, 218, 226, 240, 285] and adversarial accuracy [4], while sometimes
reducing time costs [41], and adversarial attack success rate [27]. When defending against adversarial attacks,
GAN-based solutions are proven useful in achieving such an objective [1, 74, 218, 240]. In particular, they are
employed to generate adversarial samples [1], perturbations [240], and boundary samples [218] to defend the
networks against adversarial attacks. While most methods apply complex transformations to improve robustness,
simple transformations, like rotation [226] and image background removal [232], are still proven efective.
However, extending the training set is not always enough by itself. Hence, ad-hoc training procedures [41, 46]
must be set in place to select [46] and adapt [41] the optimal training data to achieve adversarial robustness.

4.1.3 Augmenting Data for Non-Adversarial Robustness. Not all researchers aim to enhance models’ defense
against adversarial robustness. Noise [173], non-adversarial perturbations [74, 118, 157, 285], spurious correlations
[41, 246], and distribution shift [167, 277] hinder the performance and resilience of models. In tackling such
impairments, human rationale collection allows the generation of new datasets [167], counterfactual-augmented
data [41] and the deinition of proper perturbation levels [157], consequently improving performance [41], and
model [157], and distributional shift [167] robustness. Custom [173] and pre-existing approaches are applied
to perform data augmentation, consequently improving noise robustness [173] and performance [173]. On the
other hand, data transformation [74, 285] and training [118] approaches are applied to improve model robustness
[74, 118, 285] and reduce training time [74].

4.2 Designing In-Model Robustness Strategies

4.2.1 Improving Robustness through Training. Training plays an integral part in creating machine learning
models. Concerning robustness, Adversarial Training is the de-facto standard for building robust models. The core
intuition behind it is to complement natural data with perturbed one such that models incorporate information
about data that better represent real-world scenarios’ variability. In this section, we discuss adversarial training
approaches that adaptively change the perturbation magnitude, allow for the learning of robust features, or
include novel loss or regularisation functions. Finally, we discuss approaches alternative to adversarial training.

Adversarial Training. Adversarial Training has proven to be a fundamental tool to build robust models and
that is relected in the amount of literature available for it: researchers have focused on improving the whole
process and proposed a plethora of algorithms [86, 135, 215, 225, 245], borrowing diferent ML paradigms like
self-supervised and unsupervised learning [155, 230], that are applicable to a variety of tasks (e.g., content
recommendation [253, 268]). In this context, Projected Gradient Descent (PGD) [135] is a common white-box
(i.e., the attacker knows everything about the model) algorithm. On the same note, Terzi et al. [225] and Gupta
et al. [86] propose extensions of PGD by using Wasserstein distance in the adversarial search space, by replacing
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the initial adversarial training stages with natural training, or by encouraging the logits from clean examples to
be similar to their adversarial counterparts, respectively. While training models with natural perturbations was
proven efective in improving robustness, researchers demonstrated that generating and employing dynamic

perturbations is another efective way of building robust models. Madaan et al. [134] and Cheng et al. [49]
propose methods to generate dynamic perturbations at the level of single data instances that are then controlled
by enforcing label consistency in the former case, and smooth labels in the latter. Diferently, Rusak et al. [186]
devise a neural network-based adversarial noise generator to tackle the online generation of perturbations. On
the other hand, several works focus on leveraging other types of information. For example, Zoran et al. [289]
adversarially train and analyze a neural model incorporating a human-inspired, visual attention component
guided by a recurrent top-down sequential process. Shifting to model outputs, works from Wang et al. [245]
and Stutz et al. [215] focus on diferently treating misclassiications and rejecting low-conidence predictions.
Similarly, Haase-Schütz et al. [88] and Cheng et al. [48] deal with progressively tuning labels starting from
unlabelled data and through smoothing, respectively.

Beyond Adversarially Training. Other than directly employing enriched data to perform adversarial training,
researchers devised other methods to enhance model robustness. These include techniques such as learning more
robust feature representations, and training models through adapted regularizers and loss functions. Scholars
drove models to learn robust feature representations in multiple ways, from designing novel methods altogether
[113] to employing additional classiiers [14]. For example, Yang et al. [264] to apply perturbations on textual
embeddings such that the corresponding words would be drawn toward positive samples rather than adversarial
ones. Bai et al. [14] take a modelling approach to obtain robust features through the addition of auxiliary models
to identify which channels in CNNs are more robust. Regularisation is another tool that ML engineers can
use when building models and, as such, it has also been used to make them more robust. Li and Zhang [124]
propose a PAC-Bayesian approach to tackle the memorization of training labels in ine-tuning. Chan et al. [40]
suggest an approach that optimizes the saliency of classiiers’ Jacobian by adversarially regularizing the model’s
Jacobian to resemble natural training images. Concerning the usage of adapted loss functions for robustness,
various functions were used to incorporate speciic objectives: triplet loss [137], minimising distance between
true and false classes [127], mutual information [258], consistency across data augmentation strategies [222],
perturbation regularizers [260], adding maximal class separation constraints [151], combining multiple losses
[111] (e.g., Softmax and Center Loss), or approximating existing losses (e.g., Categorical Crossentropy) [68]. It is
worth noting that loss functions tailored for robustness are not exclusive to models trained in isolation, and robust
and natural models (acting as regularizers) can be jointly trained [9]. Conversely to these methods, researchers
have studied alternative training procedures to adversarial training. Staib [212] has analyzed the relationship
between adversarial training and robust optimization, proposing a generalization of the former, which leads to
stronger adversaries. Attention is also directed to leveraging input and output spaces. Li et al. [126] consider
training robust models by leveraging the adversarial space of another model. Diferently, Mirman et al. [145]
and Rozsa et al. [184] leverage abstract interpretation and evolution stalling, respectively. The former generates
abstract transformers to train certiiably robust models. The latter progressively tempers the contributions of
correct predictions toward the loss function. Finally, Mirman et al. [145], Zi et al. [287], and Papernot et al. [164]
leverage Distillation (a knowledge transfer technique in which a smaller model is trained to mimic a larger one)
[31, 92] to obtain robust models.

4.2.2 Improving Robustness through Architecture Design. Researchers have also investigated ways to make neural
models robust from an architectural perspective.

Tweaking Neural Network Layers. We identiied that a considerable amount of efort is directed toward Com-
puter Vision applications, with many solutions aimed at integrating additional mechanisms of Convolutional
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Networks to enhance their robustness. Many adversarial attackers create harmful data instances by injecting
noise perturbations in the input of the model. In line with this, many researchers have attempted to introduce
mechanisms that take advantage of this information or directly try to mitigate the repercussions of such per-
turbations. For example, Jin et al. [106] introduce additive stochastic noise in the input layer of a CNN and
re-parametrize the subsequent layers to take advantage of this additional information. Alternatively, Momeny
et al. [148] introduce a CNN variant that is robust to noise by adapting dynamically both striding of convolutions
and the following pooling operations. Work by Xu et al. [256] operate on the classiication layer by constraining
its weights to be orthogonal. Operating on network layers is not exclusive to the aforementioned discriminative
models, but it has also found applications for generative models. For example, Kaneko et al. [108] propose a
method to obtain Generative Adversarial Networks (GAN) that do not require a large amount of correctly-labeled
instances but still maintain a consistent behavior. They do this by integrating a noise transition model that maps
clean and noisy labels which leads to GANs that are resilient to diferent magnitudes of label noise.

Leveraging the Inherent Robustness of Spiking Neural Networks (SNN). In parallel to such enhancements at the
architectural level, a growing trend is represented by SNN [133]. SNNs are a particular type of neural network
that mimics the behavior of biological neurons by incorporating the notion of time and both operating with and
producing sequences of discrete events (i.e., spikes). Concretely, a neuron in a SNN transmits information only
when its value surpasses a certain threshold. This particular kind of neural network was found to be inherently
robust to certain types of adversarial attacks. Sharmin et al. [197] test Spiking Neural Networks directly against
gradient-based (black-box) attacks and ind that such architectures perform better than non-spiking counterparts
without any kind of adversarial training. Inspired by neuroscience, Cheng et al. [50] formulate Lateral Interactions
(i.e., intra-layer connections) for SNNs which provide both better eiciency when processing a series of spikes as
well as better resistance to injected Gaussian noise.

Searching Neural Architectures. Connected to handcrafting robust neural architectures, scholars have started
applying Neural Architecture Seach (NAS) to such a problem. In general, NAS is an automatic procedure aimed at
discovering the best architecture (e.g., in terms of accuracy) for a neural network for a speciic task. Devaguptapu
et al. [57] analyze the efects that a varying amount of parameters have on adversarial robustness: while NAS
can be an alternative to adversarial training, handcrafted models are more robust on large datasets and against
stronger attacks like PGD [135]. Their insights motivate other works in this space, that focus on strengthening
NAS approaches by including diferent forms of regularization on the smoothness of the loss landscape [147], or
the sensitivity of the network [61, 97]. A diferent take on using NAS is the one of Li et al. [128]: architecture
search was blended with existing models (e.g., ResNet) to ind the minimal increase in model capacity allowing it
to withstand adversarial attacks.

4.3 Leveraging Model Post-Processing Opportunities

Robustness can also be improved through methodologies applied after training the model.

4.3.1 Identifying Unnecessary or Unstable Model Atributes. Pruning (i.e., the act of removing neurons and/or
connections from a model), has become a popular compression approach that aims at reducing the computational
cost of training models [129]. Recent literature in Robust AI has explored the use of pruning techniques or
methodologies inspired by pruning to enhance model robustness [42]. Chen et al. [42], for instance, design a
methodology for selectively replacing ReLU neurons that are identiied as unstable (i.e., neurons that operate
in the lat area of the function) and insigniicant with linear activation functions that help improve robustness
at a minimal performance cost. In a similar vein, additional mechanisms have been suggested for dealing with
unnecessary and/or unstable system attributes. For instance, Gao et al. [73] introduce DeepCloak, a novel method

ACM Comput. Surv.



A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities • 13

to detect and remove unnecessary classiication features in deep neural networks, consequently reducing the
capabilities of attackers to generate such attacks.

4.3.2 Fusing Models. Another approach for achieving post-model-training robustness consists of plugging
additional models into a trained model. These additional models can be used to identify and deal with problematic
data instances (e.g., out-of-distribution, mistaken [172], noisy [183], or adversarially modiied [266] occurrences).
In the irst case, in the context of Natural Language Processing, Pruthi et al. [172] attach a task-agnostic word
recognition model to a classiication model as a means to defend the main classiier against spelling mistakes.
In the context of Computer Vision, Ye et al. [266] use an additional classiier to determine real vs. adversarially
manipulated data instances. This additional classiier would receive an overlap of the data instance and its saliency
map. Furthermore, applying model fusion to infected models allows comparing the robustness of small models
with respect to compression techniques [250]. A prominent line of work in this ield consists in using Generative
Adversarial Networks as auxiliary models. This strategy has been used for dealing with input data [218] and
models [51]. For the former, Sun et al. [218] use a Boundary Conditional GAN to generate boundary samples.
These samples have true labels and are near the decision boundary of a pre-trained classiier. For the latter, Choi
et al. [51] propose Adversarially Robust GAN (ARGAN), that trains the generator model to relect the vulnerability
of the target neural network model against adversarial examples and hence optimizes its parameter values.

5 ROBUSTNESS IN PRACTICAL FIELDS

While in Section 4, we discussed literature that improved AI robustness by working on diferent phases of the
Machine Learning pipeline, in the current section, we discuss prior work that made progress in improving
robustness for speciic model architectures, tasks, and systems. We found a number of methods being tailored for
speciic AI architectures, addressing domain-speciic needs (e.g., word spelling for Natural Language Processing),
or bridging the gap with non-functional requirements of Fairness and Explainability. These less explored settings
are later discussed in 7.1.

5.1 Robustness for Specific Architectures

5.1.1 Graph Neural Networks. A number of papers investigate how to increase the robustness of speciic types
of model architectures. One of the most prominent ones is Graph Neural Networks (GNN), given their high
susceptibility to small adversarial perturbations. For example, on the problem of link prediction on knowledge
graphs, Pezeshkpour et al. [168] propose an attack strategy aimed at inding the minimal perturbation necessary
to produce a label change. Diferently, the approach by Lou et al. [132] determines controllability and connectivity
robustness (i.e., how well a system can keep its connectedness and controllability against node- or edge-removal
attacks) by compressing the high-dimensional adjacency matrix before feeding it to a Convolutional Neural
Network to perform the robustness prediction. Fox and Rajamanickam [71] investigate the impact of structural
noise on the robustness of GNN and ind them to be weak to both local and global structural noise. Geisler et al.
[77] focus on particularly large graphs and devise both high-eicacy attack and low-memory footprint defense
strategies, enabling works on large networks at scale. Finally, attention has also been paid to formally certifying
the robustness of GNN [29, 239].
Interestingly, there have also been several proposals for new GNN frameworks with better robustness char-

acteristics by design. For example, Jin et al. [107] establish a framework to jointly learn clean graph structures
from perturbed ones as well as the parameters for a GNN that is robust to adversarial attacks by preserving
selected low-rank, sparsity, and feature smoothness properties. Instead, [47] devised a framework that leverages
similarity metrics and adaptive regularisation techniques to jointly learn graph strucure and graph embeddings.
Diferently, Zhang and Lu [276] introduce a framework where robustness to noise is achieved by means of an
auxiliary, (node-level) masked model for neighborhood aggregation.
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5.1.2 Bayesian Neural Networks. Many adversarial attack strategies are based on identifying directions of high
variability. Since such variability can be intuitively linked to uncertainty in the prediction, Bayesian Neural
Networks (BNN) are naturally of interest for robustness research. Similarly, Carbone et al. [36] analyze BNN to
show that they are robust to gradient-based attacks. Vadera et al. [231] focus on diferent inference methods and
attacks whose goal is leading the model misclassiications, inding that Markov Chain Monte Carlo inference has
excellent robustness to a variety of attacks. Finally, Miller et al. [142] aim to evaluate robustness by extracting label
uncertainty from the object detection system via dropout sampling and ind that the estimated label uncertainty
can be used to increase performance under open-set conditions.

5.2 Robustness for Specific Application Areas

5.2.1 Robustness for Natural Language Processing. The robustness of Natural Language Processing (NLP) systems
is paramount. Adversarial attacks and training both represent active areas of research in recent years and aim to
make NLP models less susceptible to attacks (e.g., word-level perturbations). As such, a multitude of approaches
have been proposed speciically for this domain.

Zheng et al. [284] present an approach to study both where and how parsers make mistakes by searching over
perturbations to existing texts at the sentence and phrase levels. Furthermore, they design algorithms to create
such examples for white-box and black-box models. Instead, Yang et al. [264] propose a method designed to tackle
word-level adversarial attacks by pulling words closer to their positive samples while pushing away negative ones.
They ind that their method improves model robustness against a wide set of adversarial attacks while keeping
classiication accuracy constant. Similarly, Du et al. [66] study the weakness of many state-of-the-art NLP models
against word-level adversarial attacks and propose Robust Adversarial Training to combine adversarial training
and data perturbation during training. Pruthi et al. [172] look to combat adversarial misspellings by attaching a
word recognition model to the classiication model. They ind that the adversary can degrade the performance of
a text classiier to the point where it is equivalent to random guessing just by altering two characters per sentence.
Concerning noisy text, Zhou et al. [286] employ multi-task learning, where a transformer-based translation
model is augmented with two decoders with diferent learning objectives. Similarly, Li et al. [125] use adversarial,
multi-modal embeddings and neural machine translation to denoise input samples, making it efective against
adversarially obfuscated texts. Finally, Chen et al. [42] found promising (albeit highly variable) results for models
capable of generating rationales for their predictions.

5.2.2 Robustness for Cybersecurity. As AI inds increased interest in the ield of Cybersecurity, the robustness of
the overall system is crucial to achieving a satisfactory resistance to intelligent attacks. A signiicant focus has
been the robustness of malware detection. For instance, Abusnaina et al. [2] improve malware classiier accuracy
by augmenting training data with altered behavioral Control Flow Graphs extracted from the attacked code.
In this direction, more speciic research has been conducted around selected operating systems and platforms
Anupama et al. [8] irst use the Fisher score to identify and select the most relevant attributes for a classiier and
subsequently develop three diferent adversarial attack generation approaches.

Beyond this, defenses against distributed denial-of-service (DDoS) attacks, have been studied through the lens
of robustness as well. Abdelaty et al. [1] present an adversarial, GAN-based training framework to produce strong
adversarial examples for the DDoS domain to exploit the weaknesses of Network Intrusion Detection Systems.
Adversarial samples are produced by combining GAN-generated and benign DDoS samples. Instead, Amarasinghe
et al. [6] apply Layer-wise Relevance Propagation to the trained anomaly detector, yielding relevance scores for
each individual feature.
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5.3 Robustness for Specific Trustworthy AI Concepts

5.3.1 Robustness for Explainability. Robustness has been widely discussed in the context of explainability
methods as well [60, 117]. Explainability is regarded as a fundamental aspect to foster trust in AI systems.
However, explainers have been found to be as fragile as the models they strive to describe [207]. Thus, research
around robust explanations is critical for Trustworthy AI.
Zhang et al. [278], proposed an approach to explore the input space to compute the percentage of inputs on

which the prediction can be consistently explained by the height of the decision tree used to explain a neural
network’s prediction. However, their result is inconclusive as it may seem tied to imbalances in the data used.
In a similar vein, Nanda et al. [153] propose a scalable framework using machine-checkable concepts to assess
the quality of generated explanations with respect to robustness, speciically their vulnerability to adversarial
attacks. Instead, Alvarez-Melis and Jaakkola [5] deine a novel notion of robustness based on the point-wise,
neighborhood-based local Lipschitz continuity. Gradient- and perturbation-based interpretability methods are
evaluated, revealing the non-robustness of such practices and the high instability of perturbation-based methods.
Atmakuri et al. [13] focus on understanding the adversarial robustness of explanation methods in the context of
text modality. In particular, they utilize saliency maps to generate adversarial examples to evaluate the robustness
of the model of interest. They ind the used Integrated Gradient explanation method is weak against misspelling
and synonym substitution attacks.

Robustness for Counterfactual Explanations. Multiple works address the robustness of counterfactual explana-
tions for adversarial inputs. Virgolin and Fracaros [237] explore how to improve robustness by giving a formal
deinition of what it means to be robust towards perturbations and implementing this deinition into a loss
function. To test this deinition, they release ive datasets in the area of fair ML with reasonable perturbations
and plausibility constraints. They ind that robust counterfactuals can be found systematically if we account
for robustness in the search process. Further, Pawelczyk et al. [166] explore counterfactual explanations by
formalizing the similarities between popular counterfactual explainers and adversarial example generators, iden-
tifying conditions when they are equivalent. On the other hand, Bajaj et al. [15] generate robust counterfactual
explanations on GNNs by explicitly modeling the common decision logic of GNNs on similar input graphs. The
robustness of the explanations is due to the common decision boundaries being derived from several, similar
input graphs. Finally, the generation of robust text-based counterfactual explanations has also been studied for
NLP tasks [246].

5.3.2 Robustness for Fairness. A key attribute of any system to be put into production is fairness. The relationship
between fairness and robustness, and how one contributes to the other, has been receiving increased attention.
Rezaei et al. [178] aim to make classiications that have robust fairness without relying on previously labeled data,
as these may carry some inherent biases. Wang et al. [244] study the efect of relying on noisy protected group
labels, providing a bound on the fairness violation concerning the true group. Similarly, Yurochkin et al. [269]
propose an adversarial approach to fairness, using a distributionally robust approach to enforcing individual
fairness during training. Further, there have also been eforts to improve the fairness of graph-based counterfactual
explanations. For example, Agarwal et al. [3] aim to establish a connection between counterfactual fairness
and graph stability by developing layer-wise weight normalization and enforcing fairness and stability in the
objective function. They see increases in fairness and stability without a decrease in performance.

6 ROBUSTNESS ASSESSMENT & INSIGHTS

In parallel to developing novel methods to enhance model robustness, prior work devised evaluation procedures,
extensive benchmarks, and empirical studies to assess the robustness AI models. Given the diversity of the
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suggested methods, in this section, we cover such eforts and highlight the lessons learnt when Robustness
intersects other Trustworthy AI concepts: Fairness and Explainability.

6.1 Evaluation Strategies

6.1.1 Evaluation of Robustness. We found most methodologies around evaluating robustenss to either compute a
safe radius [116, 185] or region [83] within which the model performs robustly, or they compute complementary,
error region [280]. Abstract Interpretation, i.e., a theory which dictates how to obtain sound, computable, and precise

inite approximations of potentially ininite sets of behaviors [76], enables robustness evaluation when combined
with techniques like constraint solving [263] and importance sampling [136]. Other evaluation approaches
reformulate the robustness assessment problem from diferent perspectives. Tjeng et al. [227] formulate the
veriication of the robustness against adversarial attacks as amixed integer linear program by expressing properties
like adversarial accuracy as a conjunction, or disjunction, of linear properties over some set of polyhedra. Webb
et al. [247] statistically evaluate robustness by estimating the proportion of inputs for which a deined adversarial
property (i.e., an adversarial condition associated to a function that evaluates its violation) is unsatisied (i.e.,
there are no counterexamples violating such a property). This reframing is useful to widen the variety of solutions
that can be applied to assess robustness, consequently improving their scalability [227, 247], computational speed
[227, 265], and enabling the application of pre-existing tools [91].

Evaluation of Certiied Robustness. Much attention has also been devoted to evaluating certiied robustness
[65, 102, 121, 122, 203, 205, 281]. To this end, researchers focus on the eicient computation of robustness bounds
[65, 121, 281] while also improving the training procedure to achieve eiciently certiiable [281], or ready to certify
[102], models. Deterministic [122] and Random [67] Smoothing approaches have also proven to be efective in
evaluating �1 [122] and �2 robustness. Nevertheless, overapproximation [203], orthogonalization relaxation [205],
and regularization [102] have also been successfully applied to improve the computation of certiiable bounds in
adversarial settings. Moreover, Zhang et al. [274] strive to generalize certiication techniques to non-piecewise
linear activation functions. Finally, additional works have focused on certifying robustness against random input
noise from samples and geometric robustness [20].

6.1.2 Benchmarks. In addition to novel evaluationmethods, someworks also propose comprehensive benchmarks
ś encompassing approaches, datasets, and pipelines ś to evaluate model robustness against selected sets of attacks.
In Computer Vision, robustness against various types of adversarial attacks [63, 82, 169] and common corruptions
[90, 139], including noise [90, 283], has been evaluated through benchmarking on datasets [90, 139, 169], with
custom measures [63, 90], or using comprehensive frameworks [223]. In the irst case, pictures are altered through
adversarial or common perturbations (e.g., noise, blur, etc.) [90, 139, 223], and either generalizability [139] (i.e.,
whether the model can adequately classify newly perturbed pictures) or its behavior by means of custom metrics
[63, 90] are evaluated. A few benchmarks have also been applied in the context of graph networks. For instance,
Zheng et al. [283] develop scalable datasets to standardise the process of attack and defence, covering graph
modiication and graph injection attacks.
While some benchmarks focus on evaluating the efectiveness of defence methods [63, 283], others focus on

the intrinsic robustness of the architecture [54, 223]. Tang et al. [223] benchmark architecture design and training
techniques against adversarial and natural perturbations, and system noise through a comprehensive platform
including pre-trained models and materials dedicated designing robust DNNs. Instead, Croce et al. [54] focus
on resource availability and organize evaluation methods and robust models for researchers to use. Note that
most benchmarks use well-known datasets (e.g., MNIST or ImageNet). In this sense, some authors have argued
that implicitly assuming the data is correct should not be lightly accepted as it may inluence the benchmarking
process and results [159]. From the broader perspective of Trustworthy AI, evaluating model robustness can be
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seen as a part of a process to evaluate fairness. Driven by such an objective, Ding et al. [58] create a series of
datasets to benchmark their fairness with respect to noise and data distribution shifts.

6.1.3 Metrics. To evaluate model robustness, not only it is essential to choose the proper method, but it is also
fundamental to have metrics that properly represent model robustness, attack eicacy, and computational costs.
Most of the literature focuses on describing metrics to evaluate the robustness of networks against adversarial
attacks [249, 267]. These metrics are generated by either treating the robustness analysis as a local Lipschitz
constant estimation problem [249], or by qualitatively interpreting the adversarial attack and defence eicacies
through loss visualisation [267]. Particularly, the former [249] aims to disentangle the relationships between the
evaluation process and the model or attack employed, leading to model-agnostic and attack-agnostic metrics.
Besides, while most of the literature addresses robustness in Computer Vision, a small part of the literature
discusses robustness in other contexts. In NLP, extending robustness through a metric aligned with linguistic
idelity has proven efective in improving performance on complex linguistic phenomena [115]. Recent research
[35] has denoted the lack of proper robustness metrics for tree-based classiiers. Such scarce indings highlight the
need for creating sound and robust metrics in less covered contexts. Another relatively unexplored research area
revolves around practical, computational aspects like: enhancing methods’ precision in computing robustness
bounds [203, 263], reducing their computational complexity [219], or execution time [254].
Instead, other researchers focus on suggesting metrics for diferent aspects of adversarial attacks, devising

approaches for evaluating the convergence stability of adversarial examples generation [119] and comparing
adversarial attack algorithms [24]. Beyond the necessity for metrics to assess model robustness, other metrics have
proven useful in elucidating the relationships between robustness and adversarial examples [10] and accuracy
[162].

6.2 Studies around Proposed Robustness Methods & Insights

6.2.1 Insights on Adversarial Robustness. Studying the adversarial robustness of diferent machine learning
techniques has been a persistent research focus in recent years.

Based on Comparisons. Beyond formal methods and frameworks, there are several examples of papers em-
pirically evaluating robustness through comparison [103, 192]. For instance, Jere et al. [103] compared the
generalization capabilities of convolutional neural networks and their eigenvalues and further compared what
features are exploited by naturally trained and adversarially trained models. They found that for the same dataset,
naturally trained models exploit high-level human-imperceptible features and adversarially robust models exploit
low-level human-perceptible features. Another example in this line is the work by Sehwag et al. [192] who
inspected the transferability of the robustness of classiiers trained on proxy distributions from generative model
to real data distribution, discovering that the diference between the robustness of classiiers trained on such
datasets is upper bounded by the Wasserstein distance between them.

Based on the Investigation of Activation Function and Weights Perturbations. There have been several works
studying the robustness of models under perturbation of weights or due to changes in activation functions. For
example, Tsai et al. [228] studied the robustness of feed-forward neural networks in a pairwise class margin and
their generalization behavior under diferent types of weight perturbation. Furthermore, they designed a novel
loss function for training generalizable and robust neural networks against weight perturbation. Song et al. [210]
showed that adversarial training is not directly applicable to quantized networks. They proposed a solution to
minimize adversarial and quantization losses with better resistance to white- and black-box attacks. Another
work that focused on such attacks is Shao et al. [195], who studied the robustness of vision transformers against
adversarial perturbations under various black-box and white-box settings.
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Based on Language Perturbations. Diverse strategies have been applied in the context of the robustness of NLP
models. More commonly, these deal with synthetic character-level [150] or word-level [116, 150] perturbations of
text samples. Beyond lexical changes, Sanchez et al. [189] explored the robustness of Natural Language Inference
models on semantic perturbations. Regardless, these works found existing models to be fragile even for small
perturbations. Finally, Wang et al. [243] resorted to human-generated annotations to compile a dataset for robust
sentiment classiication.

6.2.2 Insights on Natural Robustness. Substantial research has been devoted to model robustness to noise and
out-of-distribution data, both prevalent in real-world settings.

Based on Robustness to Noise. A prominent line of work is evaluating robustness of AI systems against noise
[22, 288]. Some examples in this area include the study conducted by Ziyadinov and Tereshonok [288], who
evaluated whether training convolutional neural networks using noisy data increases their generalization
capabilities and resilience against adversarial attacks. They found that the amount of uncertainty in the training
dataset afects both the recognition accuracy and the dependence of the recognition accuracy on the uncertainty
in the testing dataset. Furthermore, they showed that a dataset with such uncertainty can improve recognition
accuracy, consequently enhancing its generalizability and resilience against adversarial attacks. Bar et al. [22]
also evaluated the robustness of deep neural networks to label noise by applying spectral analysis. The authors
demonstrated that regularizing the network Jacobian reduces the high frequency in the learned mapping and
show the efectiveness of Spectral Normalization in increasing the robustness of the network, independently
from the architecture and the dataset.

Based on Robustness to Diferences in Distributions. Another area of interest is studying diferences in data
distributions. On the problem of object-centric learning, Dittadi et al. [59] discovered that the overall segmentation
performance and downstream prediction of in-distribution objects is not afected by a single out-of-distribution
object. On the other hand, Burns and Steinhardt [33] studied adaptive batch normalization, which aligns mean
and variance of each channel in CNNs across two distributions . They found that for distribution shifts that do
not involve changes in local image statistics, accuracy can be degraded because of batch normalization.

6.3 Trade-Ofs Between Robustness and Other Trustworthy AI Concepts

6.3.1 Trade-Of with Accuracy. A key question to be asked when analyzing the robustness of a system is what the
impact of the changes is on the accuracy of the model. Multiple studies have found a signiicant trade-of between
robustness and accuracy, where an increase in one leads to a decrease in the other. Su et al. [216] evaluated the
robustness of 18 existing deep image classiication models, focusing on the trade-of between robustness and
performance. They found that model architecture is a more critical factor to robustness than model size and
that networks of the same family share similar robustness properties. Raghunathan et al. [175] further discussed
this and described in detail the efect of augmentation achieved through adversarial training on the standard
error in linear regression models when the predictor has zero standard and robust error. Tsipras et al. [229] also
studied how robustness and accuracy trade-of, as well as the features that were learned. While Miller et al. [144]
investigated the connection between accuracy in- and out-of-distribution and show that that out-of-distribution
performance is strongly correlated with in-distribution performance for a wide range of models and distribution
shifts.

6.3.2 Trade-Of with Fairness. Benz et al. [26] evaluated the impact of robustness on accuracy and fairness.
They found inter-class discrepancies in accuracy and robustness, speciically in adversarially trained models
and that adaptively adjusting class-wise loss weights negatively afects overall performance. Xu et al. [257]
hypothesized that adversarial training algorithms tend to introduce severe disparity in accuracy and robustness
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between diferent groups of data, and showed this phenomenon can happen under adversarial training algorithms
minimizing neural network models’ robustness errors. They also propose a Fair-Robust-Learning framework to
mitigate unfairness in adversarial defenses. On the other hand, Pruksachatkun et al. [171] studied if an increase in
robustness can improve fairness. They investigated the utility of certiied word substitution robustness methods
to improve the equality of odds and equality of opportunity in text classiication tasks. They found that certiied
robustness methods improve fairness, and using both robustness and bias mitigation methods in training results
in an improvement for both.

6.3.3 Trade-Of with Explainability. Few works investigate the extent to which methods for increasing model
robustness impact the features such models use to make predictions, and especially to what extent these features
remain meaningful to human judgement. Especially, Woods et al. [252] showed that the idelity of explanations
is negatively impacted by adversarial attacks, and propose a regularisation method for increasing robustness
lead to better model explanations (termed Adversarial Explanations). Nourelahi et al. [160] investigated how
methods dealing with out-of-distribution examples impact the alignment of the features the model has learned
with features a human would expect to use. While this is an initial empirical exploration, their results illustrate
the complexity of the relation between robustness and feature alignment, as there does not seem to be a model
that performs consistently better over these criteria. They suggest to extend their benchmark efort to more types
of models, and of robustness and explainability techniques.

7 DISCUSSION: DISPARATE RESEARCH ON THE VARIOUS FACETS OF ROBUSTNESS

The robustness of AI systems is a broad, open problem under the umbrella of Trustworthy AI and the copious
amount of literature that can be found is a testament to that. Researchers from diverse domains have studied the
impact of controlled data perturbations as well as naturally-occurring ones, how to strengthen neural architectures
through additional mechanisms, and how to eiciently and efectively train models underlying such systems. In
this section, we summarize the gaps and trends we evinced from our inspection of the existing literature.

7.1 Addressing Gaps from the Literature

7.1.1 Gaps within Robustness.

Natural Brittleness. We found that little attention is put on deining natural perturbations and attacks. Instead,
much work revolves around deining synthetic attacks and evaluating defense mechanisms against them. While
this may make sense from the perspective of a malicious attacker, it does not necessarily translate to robustness in
real-world operating conditions. Only a few works in Computer Vision focus on such a type of attacks. Another
interesting research direction is signaled by the lack of model-agnostic adversaries. While both automatic and
rule-based approaches to generating adversaries exist, these tend to be targeted toward certain types of AI systems.
Obtaining model-agnostic attacks would be the dual case to such a scenario and could provide for a common
baseline for evaluating the robustness of AI systems. Moreover, achieving model-agnostic and perturbation-
agnostic evaluations approaches would allow to disentangle the relationship between these scenario-speciic
aspects and the actual robustness of the model, inally leading to an unbiased analysis of the robustness of a
system [249].

The Computer Vision Hegemony. The immediate outcome of our survey is the extensive efort put into studying
Ð and enhancing Ð the robustness of models targeted toward Computer Vision, especially Convolutional Neural
Networks. Papers from this sub-ield of Artiicial Intelligence greatly outnumber the ones from other areas, like
Natural Language Processing. We found this to be the case regardless of the aspect (attack generation, defense,
etc.) scholars focus on. While important, such a focus being put on Computer Vision only begs the question
of why other domains have received little contributions compared to the former. Possible explanations for this
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can be traced back to diiculties in deining perturbations and attacks within certain data manifolds (e.g., word
embeddings), or to the lack of alignment between robustness in machine learning and robustness in speciic
application domains (e.g., signal processing). On the other hand, the intrinsic complexity of pictures compared
to other types of data, in particular with respect to the features that can be perturbed and the diversity in the
available approaches to evaluate distances between pictures, inluence the broadness of the research ield.

7.1.2 Gaps Stemming from the Intersection Between Robustness and Other Trustworthy AI Concepts.

Robustness and Explainability. Considering the brittleness of existing AI systems in conjunction with their
opaqueness, their explainability is of paramount importance. Explainable AI (XAI) methods have been, and
still are being, proposed [84, 85] to tackle such a challenge. However, on the one hand, few works discuss the
robustness of XAI methods and of the produced explanations, yet this is a crucial dimension that needs to be
addressed to obtain explanations that are both faithful (i.e., correctly describing model behavior) and trustworthy.
On the other hand, explainability can better inform the ideation and implementation of approaches geared

towards robustness. However, little work has been conducted in this direction. These works all rely on the idea
that when the model features extracted via an explainability method are aligned with human reasoning (i.e.,
the features are meaningful for a human to make a prediction for a data sample), then the model should be
more robust. In terms of evaluation, only Nanda et al. [153] have investigated how explainability can be used in
order to evaluate the robustness of a model, with the assumption mentioned above. In terms of improvement,
Kortylewski et al. [113] proposed Compositional Neural Networks, a uniication of convolutional neural networks
(CNN) with part-based models (inherently interpretable models), and show that these new networks increase
model robustness to various partial occlusions of objects. Chen et al. [42] also demonstrated that inherently
interpretable models such as rationale models in NLP are naturally more robust to certain adversarial attacks yet
are still brittle to certain scenarios. Similarly, Li et al. [123] proposed a model training framework that combines
adversarial training with constraints for ensuring the meaningfulness of the model features, reaching higher
model robustness. Finally, Freitas et al. [72] tackle adversarial robustness with model features, by making the
additional assumption that when the model features are not meaningful, the model might be under attack.

Tensions between Accuracy, Robustness, Fairness, and Explainability. Connected to the above points, it is worth
noting how existing research is focused on enhancing robustness at the expense of accuracy, much like optimizing
for accuracy led to a lack of explainability. Similarly, scholars have studied the interplay with fairness as well as
the possible issues stemming from it. These dimensions are not exclusive and need to be addressed holistically and
considered on equal terms when aiming to build trustworthy and fair AI systems. In this sense, sole data-driven
approaches have shown their limitations. Discussions around these topics have pointed toward the need for
integrating symbolic knowledge. However, few of them touched upon which kind of knowledge is needed and
how to collect it. In subsection 7.3 and section 8, we provide a commentary on human-centered approaches and
how these approaches can provide a path toward tackling the aforementioned challenges for robust AI.

7.2 Latest Breakthroughs: Generative Foundation Models

While writing this survey, considerable engineering advancements have been made in the space of generative
foundation models, such as DALL-E 3 and GPT-4. However, such advancements are often due to an increase in
model size and largely prioritise properties like textual luency. As a result, several robustness-related challenges,
e.g., hallucinations [104] and poor performance on out-of-distribution data [241], remain unanswered. Because
of their lacklustre understanding capabilities [25], these shortcomings emerge even when more sophisticated
prompting strategies are used, e.g., in-context learning [62] or chain-of-thought prompting [248]. Only retrieval-
augmented generation [201] appears to mitigate hallucinations. Despite the central role of humans in the creation
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of these models (e.g., with Reinforcement Learning through Human Feedback [213]) research is still centred
around benchmarking [87]. In the sections that will follow, we discuss opportunities around human involvement
and human knowledge to improve and evaluate robustness of AI models.

7.3 Deepening the Research on Human Involvement for Existing Robustness Methods

A number of papers we surveyed implicitly involve humans to instantiate the methods they propose, either to
assess or enhance a model’s robustness. Yet, they do not delve deeper into the challenges for a human agent to
perform their task, which constitutes an obstacle to the development of methods and frameworks for overcoming
these challenges. This merits further investigation as such human involvement is essential to the success of the
methods. Especially, we identify two main areas where human involvement is necessary but lacks research.

7.3.1 Increasing Robustness. Various methods that aim at increasing robustness implicitly employ humans,
without extensive focus. Jin et al. [105], for instance, collect potential adversarial examples by executing a
sequence of engineered steps, that could be reined by the practitioner who would leverage existing tools for, e.g.,
identifying synonyms and antonyms, ranking word importance, etc. Peterson et al. [167], Chang et al. [41], Nanda
et al. [153], and Ning et al. [157] respectively show that one can train more robust models by leveraging human
uncertainty on sample labels instead of using reconciled binary labels, by integrating human rationales for the
labeling process into the training process, or by actively querying the most relevant levels of perturbations from
an expert during training. While these are promising research directions, these works could further be improved
by exploiting existing works on human computation assessing the quality of crowdsourced outputs [100], or
designing crowdsourcing tasks that remove task ambiguity and lead to higher quality outputs [69], especially in
the context of subjective tasks. This could serve to understand the nature of uncertainties and deine rationales
that are relevant to robustness.

7.3.2 Evaluating Robustness. To design appropriate perturbations or attacks on which a model should be robust,
one often needs human knowledge. For instance, Jin et al. [105] and La Malfa and Kwiatkowska [115] generate
adversarial attacks on text samples, that have to verify a number of human-deined constraints for them to be
deemed realistic by humans. Yet, designing such constraints and empirically evaluating (through user studies)
to what extent the samples transformed by the corresponding constrained attack align with the human idea
of “realistic" sample, has not been investigated extensively, despite how crucial that is for engineering “good"
attacks.

Similarly, works on robustness to natural perturbations should ideally deine a comprehensive set of domain-
speciic perturbations relevant to the problem at hand and its context. However, to the best of our knowledge,
existing works that develop benchmarks or robustness-enhancing methods [90, 112] with regard to such pertur-
bations have not investigated ways to be more comprehensive. While we believe in the impossibility to reach
comprehensiveness (previously unheard-of perturbations can always arise), one could develop tools to support
the deinition of relevant perturbations. For instance, we envision the usefulness of ine-grained, actionable
taxonomies of perturbations (e.g., Koh et al. [112] talk about subpopulation shifts and domain generalization,
but this might vary in diferent domains and types of tasks); collaborative documentation of domain-speciic
perturbations; libraries to generate such perturbations semi-automatically; and frameworks and metrics to
uncover new types of perturbations in the wild, potentially involving humans at runtime.

8 A CONSPICUOUS ABSENT FROM THE LITERATURE: THE ML PRACTITIONER

Last but not least, our systematic survey also reveals another prominent research gap: the absence of human-
centered work in proposed approaches, and the lack of technologies and worklows to support ML practitioners
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in handling robustness. In this section, we discuss relevant research literature, and future research directions
regarding this topic.

8.1 Robustness By Human-Knowledge Diagnosis

One notable absentee from the retrieved papers is robustness by human-based diagnosis. Existing works focus on
generating out-of-distribution data to make a model fail, and later expose this model to this data during training
to make it more robust [27, 41, 74, 167]. Especially for robustness to natural perturbations, this means that one
should characterize the type of data the model might encounter before being able to generate such data [59, 64, 80].
This is not always possible in practice, due to the known challenges ML practitioners typically face when working
with data and models. For instance, due to contractual and privacy reasons [95, 235], ML practitioners might
not have access to deployment data, preventing them from reasoning about out-of-distribution data, or the goal
and context of application of the ML model they develop might change over time, rendering what might be at
present considered (or not) out-of-distribution (in-)valid [187]. ML practitioners might also face diiculties in
collaborating with domain experts [152, 272], e.g., to relect on what data should be considered within or out of
the distribution, or to evaluate the meaningfulness of a model features (used to estimate the robustness of the
model [72, 153]). Besides, it is well-known that ML practitioners might not receive enough support from their
organization, e.g., in terms of budget, time, training, to dive into questions of trustworthiness of their ML models
in general [176].

To circumvent this issue, amajor, promising research direction surfaces from comparing the surveyed robustness
methods to existing works in other computer science ields. This direction revolves around developing comple-
mentary, hybrid human-machine approaches, that would leverage research progress in human-centered ields,
essentially explainability, crowdsourcing and human-in-the-loop machine learning (ML), as well as knowledge-
based systems, to estimate model performance on more realistic data distributions without requiring such
distributions.

8.1.1 Existing Approaches. Only few related works leverage human capabilities to identify and mitigate potential
failures of a model. In particular, explanations for datasets [188] have been proposed, that could be leveraged by a
practitioner to identify data skews that might impact the model performance. In this vein, Liu et al. [131] introduce
a hybrid approach to identify unknown unknowns, where humans irst identify and describe patterns in a small
set of unknown unknowns, and then classiiers are learned to recognize these patterns automatically in new
samples. Departing from datasets, Stacey et al. [211], and Arous et al. [11] have trained models whose features
are better aligned with human reasoning (with the assumption that alignment leads to stronger robustness), by
leveraging human explanations of the right answer to the inference task and controlling the features learned by
the model during training to align with these human explanations.

8.1.2 Envisioned Research Opportunities. The above approaches reveal that instead of looking solely at the
outputs of a model and its conidence in its predictions, one can leverage additional information such as the
model features or training dataset, to estimate the model’s robustness. Especially, even when a model prediction is
correct, the model features might not be meaningful. Hence, assessing model features and their human-alignment
can allow to shift from solely evaluating the correctness of the predictions on the available test, to indirectly
assessing the robustness of the model to OOD data points. Moreover, understanding characteristics of the datasets
that led to such learned features could later on serve to mitigate unaligned features.

Surfacing Model Features using Research on Explainability and Human Computation. To surface a model’s
features, one can rely on a plethora of explainability methods [188]. Certain models are built with the idea of
being explainable by design [220, 279], while others are applied post-hoc interpretability methods [19, 179, 214],
with diferent properties (e.g., diferent nature of explanations being correlation- or causation-based, diferent
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scopes be it local or global, diferent mediums be it visual or textual, etc.) [130, 204, 209]. It is now important to
adapt such feature explanations to allow for checking their alignment with human-expected features.

In that regard, the push towards human-centered explanations for ML practitioners is highly relevant. Existing
explanations often leave space for many diferent human interpretations, for which the practitioners do not
always have domain expertise to disambiguate the highest-idelity features. For instance, methods that output
saliency maps [202] or image patches [78, 110] do not pinpoint the actual human-interpretable features the model
has learned. Yet, one might need clear human concepts to reason over the alignment of the features [17]. Hence,
further research on semantic, concept-based explanations acquired via human computation is needed [19, 93].

Leveraging Literature on Knowledge Acquisition for Identifying Expected Features. To reason over feature
alignment, one also needs to develop an understanding of the model expected features. While very few works
have looked into this problem [196], existing works on commonsense-knowledge acquisition [270] could be
leveraged to that end. These works propose to harvest knowledge automatically from existing resources such
as text libraries, or through the involvement of human agents (e.g., through eicient and low-cost interactions
within Games with a Purpose [16, 182, 238]), or other types of carefully designed crowdsourcing tasks [99, 191].
One would need to investigate how to adapt such approaches to collect relevant knowledge, and how to represent
this knowledge into relevant feature-based information.

Comparing Features via Reasoning Frameworks and Interactive Tools. Finally, practitioners need tools to check
the alignment between the model and expected features. Interactive frameworks and user interfaces [17], e.g.,
Shared Interest [28], take a step in that direction as they enable manual exploration of model features, with various
degrees of automation for comparing to expected features. Inspired by the literature on AI diagnosis, such as
abductive reasoning [53, 181], automated feature-reasoning methods could also fasten the process while making
it more reliable.

8.2 Involving Humans in Other Phases of the ML Lifecycle

Broader ML literature has also proposed other approaches to involve humans and make "better" models. Yet,
none of these approaches has considered making the models more robust. Instead, they focus on increasing the
performance of the model on the test set. Hence, we suggest to investigate how to adapt such approaches to
increase model robustness.

8.2.1 MLwith a Reject Option. WhileMLmodels typicallymake predictions for all input samples, thismight not be
reasonable and turn dangerous in high-stake domains, when the predictions are likely to be incorrect. Accordingly,
a number of research works have developed methods to learn when to appropriately reject a prediction, and
defer the decision about the sample to a human agent [89]. Proposed rejectors can either be separate rejectors
placed before the predictor, that select the input samples to input to this predictor; dependent rejectors placed after
the predictor and re-using its information (e.g., conidence metrics) to decide which predictions not to account
for; and integrated rejectors that are combined to the predictor, by treating the rejection option as an additional
label to the ones to predict. Each type of rejector bears advantages and disadvantages based on the context of
the decision, and would merit being adapted to robustness, as we only found few works towards that direction
[163, 215].

8.2.2 Human-in-the-Loop ML Pipelines. Human-in-the-Loop (HIL) ML [234] is traditionally concerned with
developing learning frameworks that account for the noisy crowd labels [177], or “learning from crowdsž, through
models of the annotation process (e.g., task diiculty, task subjectivity, annotator expertise, etc.). Such frameworks
often rely on active learning to reduce annotation cost [259, 261]. More recent works around HIL ML also devise
new approaches to build better model pipelines by involving the crowd, such as to identify weak components
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of a system [161], to identify noise and biases in the training data [98, 262], or to propose potential data-based
explanations to wrong predictions [34]. While we could ind a few works that investigate the intersection
between active learning and adversarial training [141, 143, 200, 206], we could not ind any work that looks more
broadly at the diferent types of robustness, and the diferent ways of bringing humans in the ML pipeline. These
intersections are yet promising as they constitute more realistic scenarios of the development of ML systems and
they succeeded in making models more accurate in the past.

8.3 Supporting ML Practitioners in Handling Robustness

Beyond research, ML practitioners build ML systems in practice. Hence, it is not suicient to develop methods
that work in theory: research should understand the obstacles practitioners encounter in making their systems
robust. While studying the gap between research and practice has revealed highly insightful for various ML
contexts [94, 96, 109, 114, 130, 170, 217], to the best of our knowledge, it has not been studied for ML robustness.
Possibly the closest work is that of Shankar et al. [193] that investigated MLOps practices towards monitoring of
data shifts or attacks.

8.3.1 Understanding Practices Around Robustness. The human-computer interaction community has performed
qualitative, empirical, studies, based on semi-structured interviews with ML practitioners, about e.g., stakeholder
collaboration [114, 170], debugging practices [18], and the use of tools such as explainability methods [94, 96, 130]
or fairness toolkits [120, 180]. These studies have resulted in frameworks modeling the practitioner’s process and
challenges, and discussions around the it of existing research works to answer these challenges. We argue that
adopting similar research questions would reveal useful to better direct robustness research. For instance, Liao et
al. [130] have constituted a question bank that highlights the questions practitioners ask when building a model
by exploiting explainability. A robustness question bank would similarly provide a structured understanding
of research gaps. Moreover, Deng et al. [55] have shown a major gap in terms of guidance for practitioners to
choose appropriate fairness metrics and mitigation methods. Acknowledging the plethora of robustness metrics
and methods, user studies around robustness would reveal a similar gap, that could be illed by taking inspiration
from the fairness literature.

8.3.2 Integrating Robustness into Existing Workflows. To support practitioners in model building, researchers
have developed worklows [208] and tools, e.g., user interfaces to investigate models, training datasets, and
related failures [17, 154], documentation or checklists [7, 75, 146] to support making and documenting relevant
choices, etc. Similarly, we argue that robustness research should not only focus on algorithmic evaluation and
improvement, but also aim at developing new supportive tools and integrating them into existing solutions. Closest
to supporting practitioners in handling robustness, Shen [198] propose the idea of establishing trust contracts,
i.e., contract data distributions and tasks that deine the type of task and data that is in- and out-of-distribution.
Yet, this remains challenging as there is no appropriate way to formalize such contracts.

9 CONCLUSION

In this survey, we collected, structured, and discussed literature related to robustness in AI systems. To this
end, we performed a rigorous data collection process where we collected, iltered, summarized and organized
literature related to AI robustness generated in the last 10 years. As part of our review, and as opposed to prior
surveys, we searched for robustness solutions to both adversarial and natural perturbations in a task-agnostic way.
Furthermore, we sought to cover both algorithmic-centric and human-lead approaches. Based on this literature,
we irst discussed the main concepts, deinitions, and domains associated with robustness, disambiguating the
terminology used in this ield. We then generated a taxonomy to structure the reviewed papers and to spot
recurring themes. We identiied three main themes and thoroughly discussed them. In particular, we focused on

ACM Comput. Surv.



A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities • 25

(1) fundamental approaches to improve model robustness against adversarial and non-adversarial perturbations,
(2) applied approaches to enhance robustness in diferent application areas, and (3) evaluation approaches and
insights. We inalized our paper by describing the research gaps identiied in the literature and by highlighting
the scarcity of solutions that include humans as central actors for improved robustness. We argue that humans
could play a fundamental role in improving, evaluating, and validating AI robustness. Consequently, we suggest
future research directions that could beneit from including humans in the loop and point to the challenges (and
concomitant research opportunities) that arise when advocating for human-led practices for AI robustness. In
conclusion, we contributed to the existing literature with an informative review that summarizes and organizes
recent work in the ield of AI robustness while also suggesting novel human-centered approaches for the research
community to explore, discuss, and further develop.
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