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Abstract: We address the optimal operation of a large-scale multi-agent system where agents
have to set their own continuous and/or discrete decision variables so as to jointly minimize the
sum of local linear performance indices while satisfying local and global linear constraints. When
the number of discrete decision variables is large, solving the resulting Mixed Integer Linear
Program becomes computationally demanding, and often impossible in practice. Inspired by
some recent methods in the literature, we propose a decentralized iterative scheme that recovers
computational tractability by decomposing the dual of the MILP problem into lower-dimensional
MILPs, one per agent, and obtains feasibility of the recovered primal solution by introducing a
fictitious tightening of the global constraints. The tightening is updated in an adaptive fashion
according to an heuristic strategy which allows it to both increase and decrease throughout the
iterations, depending on the mismatch between the recovered mixed-integer primal solution and
the solution to the relaxed linear problem associated with the current tightening. The procedure
is shown to be effective and to outperform state-of-the-art alternative resolution schemes in a
benchmark example on optimal charging of a fleet of electric vehicles.
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1. INTRODUCTION

In this paper we address the resolution of large-scale
mixed-integer optimization programs where m agents co-
operate to jointly minimize the sum of their local cost
functions, while accounting for local constraints modeling
their operational limitations, and global constraints mod-
eling the usage of some shared resources, which couple
their decisions. We consider a framework where the cost
functions and the constraints are linear in the decision
variables and, thus, the resulting multi-agent constraint-
coupled mixed-integer linear program (MILP) takes the
following form

min
x1,...,xm

m∑
i=1

c⊤i xi (1a)

subject to:
m∑
i=1

Aixi ≤ b (1b)

xi ∈ Xi, i = 1, . . . ,m, (1c)

where xi ∈ Rni , represents the vector of decision variables
of agent i and has nc,i continuous components and nd,i

discrete ones, i = 1, . . . ,m. Each decision xi is associated
with a cost c⊤i xi and takes value in a non-empty local
feasibility set Xi = {xi ∈ Rnc,i × Znd,i : Dixi ≤ di},
defined by a matrix Di and a vector di of appropriate
dimensions. The p coupling constraints (1b) are defined by
the matrices Ai ∈ Rp × Rni , i = 1, . . . ,m, and the vector
of resources b ∈ Rp. All inequalities between vectors has
to be intended as component-wise.

⋆ This paper is supported by PNRR-PE-AI FAIR project funded by
the NextGeneration EU program.

Due to their mixed-integer nature, MILPs have an intrinsic
complexity that grows exponentially with the number of
discrete decision variables. Finding an optimal solution is
often computationally prohibitive and even retrieving a
feasible solution can be challenging, especially when the
size of the problem increases. The multi-agent structure of
(1), however, can be exploited to decompose the problem
and reduce the computational effort. Some works in the
literature such as Vujanic et al. (2016), Falsone et al. (2018,
2019), and Camisa et al. (2021) took this perspective to
develop heuristic procedures that are guaranteed to find
feasible (but possibly sub-optimal) solutions.

Despite their simplicity, problems in the form of (1)
can model the optimal operation of a wide range of
systems, including energy systems (La Bella et al. (2021)),
buildings (Ioli et al. (2015)), and plug-in electric vehicles
(Vujanic et al. (2016)). They can be found in finite-horizon
optimal control of aggregates of Mixed Logical Dynamical
(MLD) systems (see Bemporad and Morari (1999)) that
cooperate to jointly optimize a linear performance index
while sharing some resources. When the finite-horizon
control problem has to be solved repeatedly, within a
model predictive control scheme, then, it is important to
timely determine an applicable solution and optimality can
be sacrificed for feasibility.

1.1 Background and related literature

The presence of the p coupling constraints hampers the
decomposition of (1) into m separate MILPs. In order
to recover decomposability, one can introduce a vector
λ ∈ Rp of p non-negative Lagrange multipliers to dualize
the constraints (1b) and formulate the dual problem
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max
λ≥0

−λ⊤b+

m∑
i=1

min
xi∈Xi

(c⊤i + λ⊤Ai)xi, (2)

whose optimal solution λ⋆ can be used to construct a
primal solution x(λ⋆) = [x1(λ

⋆)⊤ · · · xm(λ⋆)⊤]⊤, where
each xi(λ

⋆) is computed solving the following minimiza-
tion problem with λ = λ⋆

xi(λ) ∈ argmin
xi∈Xi

(c⊤i + λ⊤Ai)xi i = 1, . . . ,m. (3)

Note that despite (1) is non-convex, (2) is convex and can
be solved to optimality through a decentralized version
of the sub-gradient iterative algorithm (see Section 2.1
in Shor (1985)), where at each iteration the central unit
updates the dual variable according to a gradient step

λ(k + 1) =

[
λ(k) + α(k)

( m∑
i=1

Aixi(λ(k))− b
)]

+

(4)

whereas agents compute in parallel xi(λ(k)), i = 1, . . . ,m,
by solving the local MILPs in (3) with λ = λ(k). The
operator [ · ]+ in (4) denotes the projection of its argument
onto the non-negative orthant, and is essential to account
for the non-negativity constraints on λ.

If the step-size α(k) is chosen so that
∑∞

k=0 α(k) = ∞
and

∑∞
k=0 α

2(k) = 0, the sequence λ(k) converges to the
optimal solution of (2). However, the primal solution x(λ⋆)
recovered resorting to this dual decomposition approach
may not satisfy (1b), because the violation of the coupling
constraints is penalized but not prevented and the stan-
dard recovery procedures for the convex case (see Shor
(1985)) do not apply in a mixed-integer setting (see, e.g.,
(Falsone et al., 2019, Appendix)).

In Vujanic et al. (2016), feasibility of the solution obtained
via dual decomposition is enforced by introducing a ficti-
tious tightening of the resource vector, as explained next.

Let ρ ∈ Rp, be a tightening vector ρ ≥ 0, and consider the
following tightened problem

min
x1,...,xm

m∑
i=1

c⊤i xi (5a)

subject to:
m∑
i=1

Aixi ≤ b− ρ (5b)

xi ∈ Xi, i = 1, . . . ,m (5c)

and its dual problem

max
λ≥0

−λ⊤(b− ρ) +

m∑
i=1

min
xi∈Xi

(
c⊤i + λ⊤Ai

)
xi, (6)

obtained again by dualizing the coupling constraints. De-
noting with λ⋆

ρ the optimal solution of (6), Vujanic et al.
(2016) explores the connection between the primal tenta-
tive solution x(λ⋆

ρ), obtained via (3) with λ = λ⋆
ρ, and the

solution xLP
ρ of the following convexified problem

min
x1,...,xm

m∑
i=1

c⊤i xi (7a)

subject to:
m∑
i=1

Aixi ≤ b− ρ (7b)

xi ∈ conv(Xi), i = 1, . . . ,m, (7c)

where each mixed-integer feasibility set Xi is replaced
with its convex hull conv(Xi), i = 1, . . . ,m. Under the
assumption that the sets Xi, i = 1, . . . ,m, are bounded
we have that the dual problem of (7) coincides with (6).
Building upon this observation, in Vujanic et al. (2016)
it is shown that the solutions xLP

ρ and x(λ⋆
ρ) are closely

related (cf. (Vujanic et al., 2016, Theorem 2.4)) and
that there exists a (worst-case) value ρ̃ of ρ that can
be computed a-priori and such that x(λ⋆

ρ̃) satisfies the

coupling constraint (1b), λ⋆
ρ̃ being the optimal solution

of (6) with ρ = ρ̃. Moreover, Vujanic et al. (2016)
shows that the performance degradation of such solution is
limited and worsens as the infinity norm of the tightening
vector increases (cf. Theorem 3.3 in Vujanic et al. (2016)).

Inspired by Vujanic et al. (2016), in Falsone et al. (2019)
a decentralized iterative resolution scheme is proposed,
where the tightening vector ρ is adaptively increased while
computing the corresponding λ⋆

ρ. The scheme is extended
to a distributed setting in Falsone et al. (2018). In both
cases, the approach is provably less-conservative than the
inspiring one in Vujanic et al. (2016) in that the tightening
ρ converges to a value ρ̄ for which x(λ⋆

ρ̄) is feasible and such
that ρ̄ ≤ ρ̃, meaning that also the performance bound is
no-worse than that of Vujanic et al. (2016).

A different method to compute a feasible solution for (1)
is proposed in the recent work by Camisa et al. (2021).
It resorts to primal decomposition to recast (1) into a
master-sub-problem architecture. In particular, the master
problem handles the coupling by assigning a portion of the
shared resources to each agent, whilst the m independent
sub-problems retrieve the best solutions compatible with
such resource allocation. To guarantee feasibility of the
retrieved solution for both local and coupling constraints,
the shared resource is fictitiously reduced by a quantity
that is smaller or equal than the worst-case tightening
in Vujanic et al. (2016). Although the method allows to
effectively decompose (1), it requires to solve sub-problems
involving conv(Xi), whose description in terms of linear
inequalities is, in general, hard to obtain.

1.2 Contribution

In this work, we propose a decentralized iterative scheme
to find a feasible solution to (1) that resorts to dual decom-
position and resource tightening. Similarly to Vujanic et al.
(2016), we employ a fictitious tightening and, similarly to
Falsone et al. (2019), the tightening vector is updated in an
iterative fashion, but, differently from Falsone et al. (2019),
we allow ρ both to increase and to decrease. Finally,
differently from Camisa et al. (2021), we do not require
a description of conv(Xi). While we admittedly do not
provide feasibility guarantees, the procedure is shown to
outperform those in Vujanic et al. (2016); Falsone et al.
(2019) on a benchmark example.

1.3 Paper organization

The paper is structured as follows. In Section 2 we in-
troduce a new decentralized scheme to recover a feasible
primal solution of (1) via dual decomposition and resource
tightening. We provide both a high-level description of the
procedure and a more detailed discussion on the algorithm
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max
λ≥0

−λ⊤b+

m∑
i=1

min
xi∈Xi

(c⊤i + λ⊤Ai)xi, (2)

whose optimal solution λ⋆ can be used to construct a
primal solution x(λ⋆) = [x1(λ

⋆)⊤ · · · xm(λ⋆)⊤]⊤, where
each xi(λ

⋆) is computed solving the following minimiza-
tion problem with λ = λ⋆

xi(λ) ∈ argmin
xi∈Xi

(c⊤i + λ⊤Ai)xi i = 1, . . . ,m. (3)

Note that despite (1) is non-convex, (2) is convex and can
be solved to optimality through a decentralized version
of the sub-gradient iterative algorithm (see Section 2.1
in Shor (1985)), where at each iteration the central unit
updates the dual variable according to a gradient step

λ(k + 1) =

[
λ(k) + α(k)

( m∑
i=1

Aixi(λ(k))− b
)]

+

(4)

whereas agents compute in parallel xi(λ(k)), i = 1, . . . ,m,
by solving the local MILPs in (3) with λ = λ(k). The
operator [ · ]+ in (4) denotes the projection of its argument
onto the non-negative orthant, and is essential to account
for the non-negativity constraints on λ.

If the step-size α(k) is chosen so that
∑∞

k=0 α(k) = ∞
and

∑∞
k=0 α

2(k) = 0, the sequence λ(k) converges to the
optimal solution of (2). However, the primal solution x(λ⋆)
recovered resorting to this dual decomposition approach
may not satisfy (1b), because the violation of the coupling
constraints is penalized but not prevented and the stan-
dard recovery procedures for the convex case (see Shor
(1985)) do not apply in a mixed-integer setting (see, e.g.,
(Falsone et al., 2019, Appendix)).

In Vujanic et al. (2016), feasibility of the solution obtained
via dual decomposition is enforced by introducing a ficti-
tious tightening of the resource vector, as explained next.

Let ρ ∈ Rp, be a tightening vector ρ ≥ 0, and consider the
following tightened problem

min
x1,...,xm

m∑
i=1

c⊤i xi (5a)

subject to:
m∑
i=1

Aixi ≤ b− ρ (5b)

xi ∈ Xi, i = 1, . . . ,m (5c)

and its dual problem

max
λ≥0

−λ⊤(b− ρ) +

m∑
i=1

min
xi∈Xi

(
c⊤i + λ⊤Ai

)
xi, (6)

obtained again by dualizing the coupling constraints. De-
noting with λ⋆

ρ the optimal solution of (6), Vujanic et al.
(2016) explores the connection between the primal tenta-
tive solution x(λ⋆

ρ), obtained via (3) with λ = λ⋆
ρ, and the

solution xLP
ρ of the following convexified problem

min
x1,...,xm

m∑
i=1

c⊤i xi (7a)

subject to:
m∑
i=1

Aixi ≤ b− ρ (7b)

xi ∈ conv(Xi), i = 1, . . . ,m, (7c)

where each mixed-integer feasibility set Xi is replaced
with its convex hull conv(Xi), i = 1, . . . ,m. Under the
assumption that the sets Xi, i = 1, . . . ,m, are bounded
we have that the dual problem of (7) coincides with (6).
Building upon this observation, in Vujanic et al. (2016)
it is shown that the solutions xLP

ρ and x(λ⋆
ρ) are closely

related (cf. (Vujanic et al., 2016, Theorem 2.4)) and
that there exists a (worst-case) value ρ̃ of ρ that can
be computed a-priori and such that x(λ⋆

ρ̃) satisfies the

coupling constraint (1b), λ⋆
ρ̃ being the optimal solution

of (6) with ρ = ρ̃. Moreover, Vujanic et al. (2016)
shows that the performance degradation of such solution is
limited and worsens as the infinity norm of the tightening
vector increases (cf. Theorem 3.3 in Vujanic et al. (2016)).

Inspired by Vujanic et al. (2016), in Falsone et al. (2019)
a decentralized iterative resolution scheme is proposed,
where the tightening vector ρ is adaptively increased while
computing the corresponding λ⋆

ρ. The scheme is extended
to a distributed setting in Falsone et al. (2018). In both
cases, the approach is provably less-conservative than the
inspiring one in Vujanic et al. (2016) in that the tightening
ρ converges to a value ρ̄ for which x(λ⋆

ρ̄) is feasible and such
that ρ̄ ≤ ρ̃, meaning that also the performance bound is
no-worse than that of Vujanic et al. (2016).

A different method to compute a feasible solution for (1)
is proposed in the recent work by Camisa et al. (2021).
It resorts to primal decomposition to recast (1) into a
master-sub-problem architecture. In particular, the master
problem handles the coupling by assigning a portion of the
shared resources to each agent, whilst the m independent
sub-problems retrieve the best solutions compatible with
such resource allocation. To guarantee feasibility of the
retrieved solution for both local and coupling constraints,
the shared resource is fictitiously reduced by a quantity
that is smaller or equal than the worst-case tightening
in Vujanic et al. (2016). Although the method allows to
effectively decompose (1), it requires to solve sub-problems
involving conv(Xi), whose description in terms of linear
inequalities is, in general, hard to obtain.

1.2 Contribution

In this work, we propose a decentralized iterative scheme
to find a feasible solution to (1) that resorts to dual decom-
position and resource tightening. Similarly to Vujanic et al.
(2016), we employ a fictitious tightening and, similarly to
Falsone et al. (2019), the tightening vector is updated in an
iterative fashion, but, differently from Falsone et al. (2019),
we allow ρ both to increase and to decrease. Finally,
differently from Camisa et al. (2021), we do not require
a description of conv(Xi). While we admittedly do not
provide feasibility guarantees, the procedure is shown to
outperform those in Vujanic et al. (2016); Falsone et al.
(2019) on a benchmark example.

1.3 Paper organization

The paper is structured as follows. In Section 2 we in-
troduce a new decentralized scheme to recover a feasible
primal solution of (1) via dual decomposition and resource
tightening. We provide both a high-level description of the
procedure and a more detailed discussion on the algorithm

to perform the involved steps. In Section 3 we assess the
performance of the proposed algorithm on a benchmark
electric vehicle charging problem. Finally, in Section 4 we
conclude the paper and discuss possible future research
directions.

2. PROPOSED PROCEDURE

We next recall some key elements of the work in Vujanic
et al. (2016) to describe the intuition behind the decen-
tralized resolution scheme proposed in this paper.

Fix ρ ≥ 0 and recall that λ⋆
ρ denotes the optimal solution

of the dual problem (6).

Let x(λ⋆
ρ) = [x1(λ

⋆
ρ)

⊤ · · · xm(λ⋆
ρ)

⊤]⊤ be a corresponding
primal solution with xi(λ

⋆
ρ), i = 1, . . . ,m, given by (3)

with λ = λ⋆
ρ. Recall also that xLP

ρ = [xLP
1,ρ

⊤ · · · xLP
m,ρ

⊤
]⊤

is the solution of the convexified tightened problem (7).

We can characterize the resource usage of x(λ⋆
ρ) as follows

m∑
i=1

Aixi(λ
⋆
ρ) =

m∑
i=1

Aixi(λ
⋆
ρ)±

m∑
i=1

Aix
LP
i,ρ

=

m∑
i=1

Aix
LP
i,ρ +

m∑
i=1

Ai

(
xi(λ

⋆
ρ)− xLP

i,ρ

)
, (8)

where we added and subtracted the resource usage of xLP
ρ

and re-arranged the terms in the expression. By optimality
of xLP

ρ for (7), we know that xLP
ρ satisfies (7b), i.e.,∑m

i=1 Aix
LP
i,ρ ≤ b − ρ, which can be used to upper-bound

the right hand side of (8) to obtain
m∑
i=1

Aixi(λ
⋆
ρ) ≤ b− ρ+

m∑
i=1

Ai

(
xi(λ

⋆
ρ)− xLP

i,ρ

)
. (9)

We can then enforce satisfaction of (1b) by imposing that

b− ρ+

m∑
i=1

Ai

(
xi(λ

⋆
ρ)− xLP

i,ρ

)
≤ b, (10)

ultimately deriving the following sufficient condition on ρ

ρ ≥
m∑
i=1

Ai

(
xi(λ

⋆
ρ)− xLP

i,ρ

)
. (11)

Computing a ρ satisfying (11) is, however, not trivial.
Vujanic et al. (2016) exploits the intimate relationship
between xi(λ

⋆
ρ) and xLP

i,ρ to show that only p component of
the sum in (11) are non-zero. This property together with
the fact that xi(λ

⋆
ρ) ∈ Xi and xLP

i,ρ ∈ conv(Xi) and that
the Xi’s are bounded, allows to derive an upper bound for
the right hand side of (11) which does not depend on ρ.
Specifically, setting the s-th component of ρ equal to

[ρ̃]s = p max
i∈{1,...,m}

{
max
xi∈Xi

[Ai]s xi − min
xi∈Xi

[Ai]s xi

}
, (12)

renders (11) trivially satisfied with ρ = ρ̃, provided that
(xLP

ρ̃ , λ⋆
ρ̃) exist and are unique, see (Vujanic et al., 2016,

Theorem 3.1).

Starting from (11), Falsone et al. (2019) proposes to adapt
the value of ρ in an iterative fashion, where the value of ρ
for the next iteration t+ 1 is determined by the tentative

primal solutions explored by the algorithm up to iteration
t as

[ρ(t+1)]s = p max
i∈{1,...,m}

{
max
τ≤t

[Ai]sxi(τ)−min
τ≤t

[Ai]sxi(τ)
}
,

(13)
for s = 1, . . . , p. In (13), xi(t) is computed from (3) using
a sequence λ(t) that is chasing the optimal solution of (6)
while ρ is being updated. Since xi(t) ∈ Xi for all iterations
t, then clearly [ρ(t+1)]s ≤ [ρ̃]s for all s = 1, . . . , p. Despite
the approach by Falsone et al. (2019) is less conservative,
it is clear from (13) that [ρ(t)]s may be oversized if, for
example, Aixi(t) varies considerably in early iterations and
then settles.

In this work, we start from (11) to derive a less conserva-
tive iterative update law for the tightening vector ρ. Let
k ≥ 0 denote the iteration index, and let ρ(k) be the value
of tightening vector at k. Then, in order to find a value of
ρ ≥ 0 satisfying (11), we propose to compute ρ(k + 1) as
follows

ρ(k + 1) =

[
m∑
i=1

Ai

(
xi(λ

⋆
ρ(k))− xLP

i,ρ(k)

)]

+

(14)

where a projection operator is introduced to prevent
components of ρ from becoming negative, thus avoiding
a fictitious increase of the shared resource.

Note that ρ(k), k ≥ 0, is bounded because of the bound-
edness of the local constraint sets Xi, i = 1, . . . ,m, and of
their convex hulls.

Moreover, since (14) considers exactly the quantities
xi(λ

⋆
ρ) and xLP

i,ρ appearing in (11) with ρ = ρ(k) (as
opposed to their conservative estimates in (12) and (13)),
the components of the tightening vector are likely to as-
sume smaller values, thus resulting in a less conservative
tightening and feasible primal solutions with a better cost.

From (14) and the definition of [ · ]+ = max{0, ·} we have

ρ(k + 1) ≥
m∑
i=1

Ai

(
xi(λ

⋆
ρ(k))− xLP

i,ρ(k)

)

≥ ρ(k) +
m∑
i=1

Aixi(λ
⋆
ρ(k))− b, (15)

where we used the fact that −
∑m

i=1 Aix
LP
i,ρ ≥ ρ(k) − b in

the second inequality.

Let v(h) =
∑m

i=1 Aixi(λ
⋆
ρ(h)) − b denote the violation

vector. Then, from (15) it follows that

ρ(k + 1) ≥ ρ(0) +

k∑
h=0

v(h),

and since ρ(k) is upper bounded, then, each component of
the violation vector must become negative throughout the
iterations for the series to be upper bounded. When p = 1,
this proves that a feasible solution will eventually be found.
As for p > 1, proving feasibility requires all components
to be jointly negative at the same iteration index k.

Since (3) with λ = λ⋆
ρ(k) typically admits multiple mixed-

integer solutions, xi(λ
⋆
ρ(k)) is likely to oscillate across

iterations and hence we do not expect ρ(k) to converge,
but rather to settle on a limit cycle. Unfortunately, this
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Algorithm 1 Proposed decentralized resolution scheme

1: λ(0) = 0
2: ρ(0) = 0

3: J̃⋆ = ∞
4: for k = 0, 1, 2, . . . compute

5: (xLP
ρ(k), λ

⋆
ρ(k)) primal-dual pair of solutions to (7)

6: for i = 1, . . . ,m compute

7: xi(k) ∈ argmin
xi∈Xi

(c⊤i + λ⋆
ρ(k)

⊤Ai)xi

8: end for

9: if

m∑
i=1

Aixi(k) ≤ b ∧
m∑
i=1

c⊤i xi(k) ≤ J⋆

10: x̃⋆ ← [x1(k)
⊤ · · · xm(k)⊤]⊤

11: J̃⋆ ←
∑m

i=1 c
⊤
i xi(k)

12: end if

13: ρ(k + 1) =

[
m∑
i=1

Ai

(
xi(k)− xLP

i,ρ(k)

)]

+

14: end for

feature of the update rule (14), makes its analysis much
more challenging, leaving it as a future research effort.

The overall proposed procedure is summarized in Algo-
rithm 1 and described next.

At each iteration, problem (7) and its dual (6) with ρ
equal to the current value of the tightening vector ρ(k)
are solved to optimality to obtain a primal-dual solution
pair (xLP

ρ(k), λ
⋆
ρ(k)) (cf. Step 5). The optimal dual solution is

then used to reconstruct a tentative primal solution x(k)
having components xi(k), i = 1, . . . ,m, computed setting
λ = λ⋆

ρ(k) in (3) (cf. Step 7). If the newly explored feasible

primal solution x(k) is better than any previous feasible
solution found in terms of cost, the new solution is stored
in x̃⋆ and its cost in J̃⋆ (cf. Steps 10 and 11). Finally, the
tightening vector is updated according to (14) in Step 13.

As already mentioned in Section 1.1, the optimal dual
solution λ⋆

ρ(k) in Step 5 and the associated primal solution

x(λ⋆
ρ(k)) can be computed via a decentralized sub-gradient

method. Specifically, for ρ = ρ(k) a solution λ⋆
ρ(k) to (6)

can be obtained as the limit of the following iterations

λ(κ) =

[
λ(κ) + α(κ)

( m∑
i=1

Aixi(λ(κ))− b+ ρ(k)
)]

+

,

(16)
as stated in (Shor, 1985, Theorem 2.2). Moreover, it can
be shown that since the dual variable λ(κ) converges
to λ⋆

ρ(k) as κ → ∞, then there exists a κ̄ such that

xi(λ(κ)) is a solution of (3) with λ = λ⋆
ρ(k) for all κ ≥ κ̄.

To see this, consider the tentative solution xi(κ), i =
1, . . . ,m obtained setting λ = λ(κ) in (3). By adding and

subtracting λ⋆
ρ(k)

⊤Ai to the cost vector, we have that

xi(κ) ∈ argmin
xi∈Xi

(c⊤i +λ⋆
ρ(k)

⊤Ai+(λ(κ)−λ⋆
ρ(k))

⊤Ai)xi. (17)

Thus, xi(κ) can be seen as the solution obtained adding a
perturbation δ(κ) = (λ(κ) − λ⋆

ρ(k))
⊤Ai to the cost vector

in (3) when λ = λ⋆
ρ(k). Since λ(κ) → λ⋆

ρ(k), the norm of the

perturbation δ(κ) tends to 0 as k → ∞. Then there exists
a κ̄ such that ∥δ(κ)∥ is sufficiently small for all κ ≥ κ̄ and
we can invoke the result of (Falsone et al., 2019, Lemma 1),
which states that the solutions of (17) are also solutions
of (3) with λ = λ⋆

ρ(k). This shows how Step 7 can be

performed in practice.

As for xLP
ρ(k), the tentative primal solutions explored by

the sub-gradient algorithm can be used also to estimate
xLP
ρ(k) without obtaining an explicit description of the sets

conv(Xi), i = 1, . . . ,m. Consider the sequence {x̂(κ)}κ
defined as

x̂(h) =

∑h
τ=1 α(κ)x(κ)∑h

κ=1 α(κ)
, (18)

where x(κ) = [x1(κ)
⊤ · · · xm(κ)⊤]⊤, κ = 1, 2, . . . , with

xi(κ)
⊤ satisfying (17), and α(κ) is the step-size in (16).

Then, it can be shown that each accumulation point of
the sequence x̂(h) is a solution to (7) (we refer the reader
to (Shor, 1985, p. 117-118) for a proof). Thus, the solution
xLP
ρ(k) in Step 5 can be computed from x̂(h), letting h → ∞.

Algorithm 2 translates the above discussion into pseu-
docode for the practical implementation of Steps 5-8 of
Algorithm 1. In particular, Steps 3-7 of Algorithm 2 apply
the sub-gradient method to (6) for the current value of
the tightening vector ρ(k), effectively implementing (16)
and (3) with λ = λ(κ). After the dual variable λ has
achieved convergence for w consecutive iteration, the pro-
cedure keeps performing the primal and dual update
(cf. Steps 4 and 7) and starts computing the sequence
x̂ = [x̂⊤

1 · · · x̂⊤
m]⊤ with x̂i defined in (18) (cf. Step 10).

When also x̂ has reached convergence for w consecutive
iterations, the procedure selects the most recent value of x̂
as the estimate of xLP

ρ (cf. Step 14). All the xi(κ), i =
1, . . . ,m, explored in Step 4 after λ(κ) has converged
satisfy (17). Since Algorithm 1 in Step 7 needs only a single
xi(λ

⋆
ρ(k)) for all i = 1, . . . ,m, we can select one among

those satisfying (17) by means of any tie-break rule. In
Algorithm 2, among those xi(κ) explored after convergence
of λ, we select the one that minimizes the cost (cf. Steps 16
and 18), for all i = 1, . . . ,m.

Both estimates x̂LP
ρ , and x(λ⋆

ρ) are returned in Step 19.

3. NUMERICAL EXAMPLE

In this section we assess the performance of the proposed
decentralized resolution scheme on the Plug-in Electric
Vehicles charging problem described in Vujanic et al.
(2016). The problem consists in computing the optimal
charging pattern of a fleet of m vehicles that must be
charged overnight to reach a user-defined state of charge
of the battery by the morning after. The schedule is
formulated over a time horizon of 8 hours, divided into
N = 24 time-slots.

We consider a Vehicle-to-Grid (V2G) setup, where each
vehicle i, i = 1, . . . ,m, can either draw or inject power
from/into the grid at a constant rate Pi, in order to,
respectively, charge or discharge its internal battery. We
assume that the power exchanged between the fleet and
the grid within each time-slot is limited by the network
capacity, that does not allow all vehicles to charge or
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Algorithm 1 Proposed decentralized resolution scheme

1: λ(0) = 0
2: ρ(0) = 0

3: J̃⋆ = ∞
4: for k = 0, 1, 2, . . . compute

5: (xLP
ρ(k), λ

⋆
ρ(k)) primal-dual pair of solutions to (7)

6: for i = 1, . . . ,m compute

7: xi(k) ∈ argmin
xi∈Xi

(c⊤i + λ⋆
ρ(k)

⊤Ai)xi

8: end for

9: if

m∑
i=1

Aixi(k) ≤ b ∧
m∑
i=1

c⊤i xi(k) ≤ J⋆

10: x̃⋆ ← [x1(k)
⊤ · · · xm(k)⊤]⊤

11: J̃⋆ ←
∑m

i=1 c
⊤
i xi(k)

12: end if

13: ρ(k + 1) =

[
m∑
i=1

Ai

(
xi(k)− xLP

i,ρ(k)

)]

+

14: end for

feature of the update rule (14), makes its analysis much
more challenging, leaving it as a future research effort.

The overall proposed procedure is summarized in Algo-
rithm 1 and described next.

At each iteration, problem (7) and its dual (6) with ρ
equal to the current value of the tightening vector ρ(k)
are solved to optimality to obtain a primal-dual solution
pair (xLP

ρ(k), λ
⋆
ρ(k)) (cf. Step 5). The optimal dual solution is

then used to reconstruct a tentative primal solution x(k)
having components xi(k), i = 1, . . . ,m, computed setting
λ = λ⋆

ρ(k) in (3) (cf. Step 7). If the newly explored feasible

primal solution x(k) is better than any previous feasible
solution found in terms of cost, the new solution is stored
in x̃⋆ and its cost in J̃⋆ (cf. Steps 10 and 11). Finally, the
tightening vector is updated according to (14) in Step 13.

As already mentioned in Section 1.1, the optimal dual
solution λ⋆

ρ(k) in Step 5 and the associated primal solution

x(λ⋆
ρ(k)) can be computed via a decentralized sub-gradient

method. Specifically, for ρ = ρ(k) a solution λ⋆
ρ(k) to (6)

can be obtained as the limit of the following iterations

λ(κ) =

[
λ(κ) + α(κ)

( m∑
i=1

Aixi(λ(κ))− b+ ρ(k)
)]

+

,

(16)
as stated in (Shor, 1985, Theorem 2.2). Moreover, it can
be shown that since the dual variable λ(κ) converges
to λ⋆

ρ(k) as κ → ∞, then there exists a κ̄ such that

xi(λ(κ)) is a solution of (3) with λ = λ⋆
ρ(k) for all κ ≥ κ̄.

To see this, consider the tentative solution xi(κ), i =
1, . . . ,m obtained setting λ = λ(κ) in (3). By adding and

subtracting λ⋆
ρ(k)

⊤Ai to the cost vector, we have that

xi(κ) ∈ argmin
xi∈Xi

(c⊤i +λ⋆
ρ(k)

⊤Ai+(λ(κ)−λ⋆
ρ(k))

⊤Ai)xi. (17)

Thus, xi(κ) can be seen as the solution obtained adding a
perturbation δ(κ) = (λ(κ) − λ⋆

ρ(k))
⊤Ai to the cost vector

in (3) when λ = λ⋆
ρ(k). Since λ(κ) → λ⋆

ρ(k), the norm of the

perturbation δ(κ) tends to 0 as k → ∞. Then there exists
a κ̄ such that ∥δ(κ)∥ is sufficiently small for all κ ≥ κ̄ and
we can invoke the result of (Falsone et al., 2019, Lemma 1),
which states that the solutions of (17) are also solutions
of (3) with λ = λ⋆

ρ(k). This shows how Step 7 can be

performed in practice.

As for xLP
ρ(k), the tentative primal solutions explored by

the sub-gradient algorithm can be used also to estimate
xLP
ρ(k) without obtaining an explicit description of the sets

conv(Xi), i = 1, . . . ,m. Consider the sequence {x̂(κ)}κ
defined as

x̂(h) =

∑h
τ=1 α(κ)x(κ)∑h

κ=1 α(κ)
, (18)

where x(κ) = [x1(κ)
⊤ · · · xm(κ)⊤]⊤, κ = 1, 2, . . . , with

xi(κ)
⊤ satisfying (17), and α(κ) is the step-size in (16).

Then, it can be shown that each accumulation point of
the sequence x̂(h) is a solution to (7) (we refer the reader
to (Shor, 1985, p. 117-118) for a proof). Thus, the solution
xLP
ρ(k) in Step 5 can be computed from x̂(h), letting h → ∞.

Algorithm 2 translates the above discussion into pseu-
docode for the practical implementation of Steps 5-8 of
Algorithm 1. In particular, Steps 3-7 of Algorithm 2 apply
the sub-gradient method to (6) for the current value of
the tightening vector ρ(k), effectively implementing (16)
and (3) with λ = λ(κ). After the dual variable λ has
achieved convergence for w consecutive iteration, the pro-
cedure keeps performing the primal and dual update
(cf. Steps 4 and 7) and starts computing the sequence
x̂ = [x̂⊤

1 · · · x̂⊤
m]⊤ with x̂i defined in (18) (cf. Step 10).

When also x̂ has reached convergence for w consecutive
iterations, the procedure selects the most recent value of x̂
as the estimate of xLP

ρ (cf. Step 14). All the xi(κ), i =
1, . . . ,m, explored in Step 4 after λ(κ) has converged
satisfy (17). Since Algorithm 1 in Step 7 needs only a single
xi(λ

⋆
ρ(k)) for all i = 1, . . . ,m, we can select one among

those satisfying (17) by means of any tie-break rule. In
Algorithm 2, among those xi(κ) explored after convergence
of λ, we select the one that minimizes the cost (cf. Steps 16
and 18), for all i = 1, . . . ,m.

Both estimates x̂LP
ρ , and x(λ⋆

ρ) are returned in Step 19.

3. NUMERICAL EXAMPLE

In this section we assess the performance of the proposed
decentralized resolution scheme on the Plug-in Electric
Vehicles charging problem described in Vujanic et al.
(2016). The problem consists in computing the optimal
charging pattern of a fleet of m vehicles that must be
charged overnight to reach a user-defined state of charge
of the battery by the morning after. The schedule is
formulated over a time horizon of 8 hours, divided into
N = 24 time-slots.

We consider a Vehicle-to-Grid (V2G) setup, where each
vehicle i, i = 1, . . . ,m, can either draw or inject power
from/into the grid at a constant rate Pi, in order to,
respectively, charge or discharge its internal battery. We
assume that the power exchanged between the fleet and
the grid within each time-slot is limited by the network
capacity, that does not allow all vehicles to charge or

Algorithm 2 Strategy to compute xLP
ρ and x(λ⋆

ρ)

Input: ρ

1: h = 1
2: for κ = 1, 2, . . . do
3: for i = 1 to m do
4: xi(κ) ← argmin

xi∈Xi

(c⊤i + λ(κ)⊤Ai)xi

5: end for

6: µ(κ) =
∑m

i=1 Aixi(κ)− b

7: λ(κ+ 1) = [λ(κ) + α(κ)(µ(κ) + ρ)]+

8: if λ at convergence for more than w iterations
9: for i = 1 to m do

10: x̂i(h) =

κ∑
τ=κ−h

α(τ)xi(τ)/

κ∑
τ=κ−h

α(τ)

11: end for

12: x̂(h) = [x̂⊤
1 (h) · · · x̂⊤

m(h)]⊤

13: if x̂ at convergence for w iterations

14: x̂LP
ρ = x̂(κ)

15: for i = 1, . . . ,m select
16: xi(λ

⋆
ρ) ∈ argmin

{xi(τ):τ≥κ−h}
c⊤i xi(τ)

17: end for

18: x(λ⋆
ρ) = [x1(λ

⋆
ρ)

⊤ · · · xm(λ⋆
ρ)

⊤]⊤

19: return x̂LP
ρ , x(λ⋆

ρ)
20: end if
21: h ← h+ 1
22: end if
23: κ ← κ+ 1
24: end for

discharge their batteries at the same time. The fleet
has, thus, to be coordinated by an aggregator that must
compute the optimal charging schedule of each vehicle
taking into account local requirements and operational
limitations (e.g. battery capacity, logical conditions, user-
defined state of charge) as well as global network capacity
constraints that create a coupling between the charging
patterns.

We compare Algorithm 1 to the decentralized procedures
proposed in Falsone et al. (2019) and Vujanic et al. (2016),
measuring the level of conservativeness and the perfor-
mance improvement based on, respectively, the infinity
norm of the tightening and the cost attained by the com-
puted primal solution. To make the assessment indepen-
dent from the parameters of the problem, we consider 100
different fleets of vehicles extracted independently from
the standard uniform distribution for a given m. We then
show how the approaches scale with the number of vehicles
on a given problem instance.

The decentralized algorithms are implemented in MAT-
LAB R2020b and local MILPs are solved using CPLEX
v12.10. Simulations are performed on a laptop equipped
with an Intel Core i7-9750HF CPU @2.60GHz and 16GB
of RAM.

Let ρA be the tightening vector associated to the solution
computed by Algorithm 1, and denote with ρ̄ and ρ̃ the
convergence values of the tightening vectors computed by
the procedure in Falsone et al. (2019) and Vujanic et al.

Fig. 1. Histogram of the level of conservativeness achieved
by Algorithm 1(blue), and the procedures in Falsone
et al. (2019) (orange) and Vujanic et al. (2016) over
100 runs with fixed number of vehicles m = 250.

(2016), respectively. Then, we can measure the level of
conservativeness of each method through the indices

∆ρA,% =
∥ρA∥∞
∥b∥∞

· 100 (19)

∆ρF,% =
∥ρ̄∥∞
∥b∥∞

· 100 (20)

∆ρV,% =
∥ρ̃∥∞
∥b∥∞

· 100, (21)

where the operator ∥·∥∞ denotes the infinity norm of its
argument and b is the right-hand side of the coupling
constraints (1b). Figure 1 shows the distribution of ∆ρA,%

(blue), ∆ρF,% (orange) and ∆ρV,% (green) over the 100
fleets with different realizations of the vehicles parameters
and m = 250 vehicles. The level of conservativeness
achieved by Algorithm 1 is concentrated between 0% and
1.85% and is significantly smaller than the ones of the
procedures in Falsone et al. (2019) and Vujanic et al.
(2016), suggesting that Algorithm 1 is less conservative
and, thus, more likely to compute solutions attaining
smaller costs.

Let JA, JF and JV the values of the objective function
achieved applying, respectively, Algorithm 1, the resolu-
tion scheme in Falsone et al. (2019) and the one in Vujanic
et al. (2016). Let also JD be the lower-bound on the
optimal cost J⋆ of (1) obtained solving the dual problem
(2). Then, the performance of the three resolution schemes
can be evaluated based on the sub-optimality level of
the retrieved primal solutions, quantified by the following
relative optimality gaps:

∆JV,% =
JV − JD
∥JD∥

· 100, (22a)

∆JF,% =
JF − JD
∥JD∥

· 100, (22b)

∆JA,% =
JA − JD
∥JD∥

· 100, (22c)

where the dual optimal cost JD is used in place of the
optimal cost of the centralized problem J⋆, which was not
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Fig. 2. Histograms of the relative performance gap attained
by the primal solutions computed by Algorithm 1 and
the procedure in Falsone et al. (2019) (orange) and
Vujanic et al. (2016) (green).
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Fig. 3. Rescaled performance gap obtained by Algorithm 1
(blue) and the procedures in Falsone et al. (2019)
(orange) and Vujanic et al. (2016) (green) for fleet
of vehicles of increasing size.

possible to compute for a fleet of m > 15 vehicles given
our computational resources.

Figure 2 shows the distribution of ∆JA,% (in blue), ∆JF,%

(in orange) and ∆JV,% (in green) over 100 instances with
a fixed number m = 250 of vehicles and different real-
izations of the parameters of the fleet. The plot shows
a net improvement in the performance obtained by Al-
gorithm 1, that exhibits significantly smaller gaps than
its competitors over all runs. In particular, Algorithm 1
obtains optimality gaps concentrated around 0.016%, thus
associated with near-optimal primal solutions, whereas the
procedures in Falsone et al. (2019) and Vujanic et al.
(2016) attain an average gap of 2.220% and 6.525%, re-
spectively.

Figure 3 reports the results obtained for fleets of increasing
dimensions, with a number of vehicles m varying from 250

to 5000. Since the values of ∆JA,%, ∆JF,% and ∆JV,% tend
to 0 as m tends to infinity (see the remark after (Vujanic
et al., 2016, Theorem 3.3)), the values reported in the plot
are rescaled by a factor m to have a more informative
comparison. The graph shows that Algorithm 1 achieves
better performance than its competitors irrespective of m.

4. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a decentralized resolution
scheme to compute a feasible solution of large-scale
constraint-coupled MILPs. The problem is decomposed
in m smaller instances via dual decomposition to recover
computational tractability. Feasibility of the obtained pri-
mal solution is enforced introducing a fictitious tighten-
ing of the shared resource. Extensive simulations on a
benchmark electric vehicle charging problem show that
the proposed approach outperforms existing state-of-the
art schemes in that the obtained primal solutions attain
a cost that is closer to the optimal cost of the centralized
problem, irrespective of the problem parameters and the
number of agents.

Although the adopted update rule on the tightening vector
enforces feasibility of each coupling constraint separately,
providing theoretical guarantees that the proposed algo-
rithm provides a feasible solution is still an open problem
and an interesting future research direction. Once feasibil-
ity of one of the explored solutions will be proven, perfor-
mance guarantees can be derived following the derivations
in Vujanic et al. (2016) based on the value of the tightening
vector associated with the feasible solution.
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