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Abstract: The present study is focused on identifying the most suitable sequence of machine learning-
based models and the most promising set of input variables aiming at the estimation of heat transfer in
evaporating R134a flows in microfin tubes. Utilizing the available experimental data, dimensionless
features representing the evaporation phenomena are first generated and are provided to a machine
learning-based model. Feature selection and algorithm optimization procedures are then performed.
It is shown that the implemented feature selection method determines only six dimensionless parame-
ters (Sul : liquid Suratman number, Bo: boiling number, Frg: gas Froude number, Rel : liquid Reynolds
number, Bd: Bond number, and e/D: fin height to tube’s inner diameter ratio) as the most effective
input features, which reduces the model’s complexity and facilitates the interpretation of governing
physical phenomena. Furthermore, the proposed optimized sequence of machine learning algorithms
(providing a mean absolute relative difference (MARD) of 8.84% on the test set) outperforms the
most accurate available empirical model (with an MARD of 19.7% on the test set) by a large margin,
demonstrating the efficacy of the proposed methodology.

Keywords: machine learning; heat transfer estimation; evaporating flows; R134a; feature selection;
relative feature importance

1. Introduction

Thermal management of components is a challenging task in many industries such
as high-precision manufacturing; miniaturized heating, ventilation, and air conditioning
(HVAC) systems; heat pumps; and heat dissipation in electric vehicles. The HVAC sector
has long transitioned from using smooth tubes to microfin tubes in condensers and evapo-
rators. In horizontal ducts, the swirled fins help the fluid reach the tube’s upper part, and
the dry-out phenomenon occurs at qualities greater than 0.9, which widely compensates
for the drawbacks of a larger pressure drop per unit length and higher costs. Evaporation
inside a horizontal smooth tube is characterized by a sequence of different flow regimes
which changes as the quality shifts from x = 0 to x = 1 and the mass flux changes and
is affected by the liquid’s and the vapor’s thermal properties. This complexity makes
employing the analytical approach extremely challenging. On the other hand, a numerical
approach is still not feasible due to the unsteady behavior of the interfaces and the small
size of the droplets, which require a mesh with very small elements. This results in long
calculation times, with no guarantee of the solution’s reliability. Therefore, up to now,
the only viable approach for investigating evaporation has been the experimental one,
yielding a set of empirical correlations. Moreover, from a manufacturing point of view, it is
feasible to produce microfins with various shapes, patterns, and details (Figure 1 represents
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geometries and examples of microfin tubes). That adds further complexity to the topic of
evaporation inside tubes.

One of the earliest studies on evaporation in microfin tubes was conducted by
Thome et al. [1]. In this research, the authors considered the combined effects of nu-
cleate and convective boiling of R134a and R123. Their heat transfer correlation was the
first general method that could be applied to any two-dimensional microfin geometry and
fluid of interest. Around the same time, Cavallini et al. [2] were working on an empirical
model, taking into account both the nucleate and the forced convection boiling for different
surface geometries. Additionally, they managed to extend Thome et al.’s correlation [1]
to zeotropic mixtures of R407C and R32/R134a. A promising agreement between the
experimental values and the models’ estimations was observed.

(a) Three-dimensional rendering of a microfin tube.

(b) J60 microfin tube.

Figure 1. Schematic representation of a microfin tube.
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Yun et al. [3] worked only on distinguishing the dimensionless parameters and
the physical phenomena suitable to represent the enhanced heat transfer performance
of microfin tubes compared to the smooth ones without employing the corresponding
flow patterns. The authors proposed that the enhancement in the case of nucleate boiling
depends on the surface tension and the turbulence effects, whereas in the case of convective
boiling, it is correlated with a modified Reynolds number. Moreover, they also proposed
the ratio of liquid film thickness over fin height as an influential factor. Accordingly, they
implemented their proposed parameters into the basic form of evaporation heat transfer
correlation for smooth tubes, thus obtaining a relatively good estimation performance over
the available database.

Chamra and Mago [4] collected an experimental database, which included pure
refrigerants and mixtures flowing within microfin tubes. The authors proposed a semi-
empirical formulation for the evaporation heat transfer prediction achieving MARD in the
range of 10–25%. More recently, Rollmann and Spindler [5] collected an extensive database
of 1600 points to formulate a correlation to predict the Nusselt number of the evaporating
flow. The latter, which included a wide range of saturation temperatures, heat fluxes, mass
fluxes, and vapor qualities, was demonstrated to predict 94.2% of data points within the
±30% MRD range. Moreover, in another recent study, Han et al. [6] analyzed the flow
boiling heat transfer characteristics of R161/oil mixtures. The authors based their model
on the local properties of the refrigerant/oil mixture and the geometry structure of the
microfin tube. The latter model was able to predict the experimental data points with an
accuracy between −15 and +20%. A little while later, Mehendale [7] used a database of
2622 points to develop a new correlation for the flow boiling Nusselt number in horizontal
microfin tubes. The author selected 38 relevant dimensionless parameters and then applied
a multivariable regression analysis in order to find the ones with the highest relevance to
flow boiling. The correlation obtained by this method was able to predict 71.5–80.5% of the
data points within ±30%, with a mean absolute deviation of 21.5 to 25.2%. Most recently, a
new correlation to predict the heat transfer coefficient for large temperature glide working
fluids was proposed in a work conducted by Dai et. al. [8], and a mean absolute deviation
of 16.9% was obtained. Besides the superposition methods discussed previously, there
are alternative ones, such as those relying on energy dissipation [9]. In a work performed
by Pysz et al. [10], flow boiling of R1233zd(E) in a 3 mm vertical stainless steel tube was
presented at moderate and high saturation temperatures. The in-house model, a modified
version of it, and some well-known correlations were compared, and it was shown that the
modified model outperforms the others with an MAPE of 23.17% for R1233zd(E).

1.1. Artificial Intelligence and Machine Learning Models

Artificial intelligence (AI) is a field of computer science that enables machines with
computing capabilities (intelligent systems) to make rational decisions based on specific
inputs. It has found applications in many industries, from automation processes to decision
making in critical areas. Machine learning (ML) is a subset of AI, which leverages statistical
learning techniques and extracts patterns from raw data to make a subjective decision
without being explicitly programmed [11]. Considering their higher accuracy, machine
learning models have been employed in several studies for simulating the multiphase flow
phenomena and analysis of thermal systems; control and modeling of evaporative con-
densers [12]; modeling, control, and performance assessment of heat exchangers [13–15];
pressure drop prediction of non-Newtonian flows [16]; performance assessment of fin-tube
evaporators [17]; and multiphase flows’ pressure drop prediction [18,19]. Among all the
available ML algorithms, the artificial neural network (ANN) has attracted the most interest
among scholars [20,21].

The two early studies by Thibault and Grandjean [22] and Jambunathan et al. [23]
took the initial step in applying ANN in heat transfer analysis. Chen et al. [24] proposed
an overlapped type of local neural network to improve the accuracy of the heat transfer
coefficient estimation of the super-critical carbon dioxide. The study conducted by Pacheco-
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Vega et al. [25] used a limited experimental dataset. The limited size of this dataset showed
the capability of ANN in heat rate estimation of a fin-tube refrigeration heat exchanger.
Scalbarian et al. [26] employed ANN-based methods for the prediction of flow boiling heat
transfer of pure refrigerants and compared the results with the empirical models in the
literature to show that ANN outperforms these models. The same authors in another study
extended the use of the ANN model to mixture boiling heat transfer estimation [27]. Zhao
and Zhang [28] modeled a fin-tube air-cooled condenser with an ANN. In the next step,
the authors compared the outcome with a validated first-principle model and reached an
impressive standard deviation of 1.9%.

In many studies, authors comprehensively modeled a heat exchanger with an ANN.
An example is the work carried out by Xie et al. [29] that applied an ANN-based model for
heat transfer analysis of two different types of shell-and-tube heat exchangers, one with
segmental baffles and the other with continuous helical baffles. The authors investigated
different network configurations to find the one with the most promising prediction per-
formance. The obtained result showed the superiority of the ANN over other correlations
which are used for the prediction. Only recently, ML models other than ANNs have also
been used for multiphase flow heat transfer estimation. Zhou et al. [30] developed machine
learning-based models for predicting condensation heat transfer coefficients in mini/micro-
channels. The authors carried out a parametric optimization procedure for a few ML
algorithms and demonstrated that utilizing ANN and XGBoost algorithms leads to the
highest performance. Following the study, Hughes et al. [31] employed three ML models
of artificial neural networks, support vector regression, and random forest in heat transfer
estimation in condensing flows. The study revealed that the random forest model exhibits
more remarkable performance in comparison with the other two algorithms, resulting in
an absolute average deviation value of close to 4%.

In an attempt to predict the boiling and condensation heat transfer performance of
R134a in mini-channels with serrated fins, Zhu et al. [32] utilized ANN and experimen-
tal data obtained from two mini-channels. Elements such as channel dimensions, fluid
properties, operational conditions, and derived dimensionless parameters were considered
as input for the ML pipelines (a set of preprocessing steps and a sequence of machine
learning algorithms (with specific hyperparameters )). The proposed ANN models es-
timated the heat transfer coefficient during boiling exhibiting a mean absolute relative
deviation (MARD) of 11.41%. Moradkhani et al. [33] employed a dataset of 1035 samples
from diverse studies to assess the performance of multilayer perceptron (MLP), Gaussian
process regression (GPR), and radial basis function (RBF) machine learning algorithms in
predicting the boiling heat transfer coefficient (HTC) in smooth, helically coiled tubes. The
evaluation of these algorithms revealed that the tested dataset yielded an average absolute
relative error (AARE) of 5.93%. Despite this, the study notably omitted the evaluation of
alternative machine learning algorithms and the optimization of hyperparameters, which
could potentially provide better insight and predictive accuracy. Furthermore, the research
sought to identify significant input features by examining their Pearson correlation with
the Nusselt number. It was found that input parameters with high correlations did not
necessarily enhance the predictive capability of the models. However, the investigation
would not systematically analyze the performance of individual input features and their
combinations in making accurate predictions. In their work on predicting heat transfer
coefficients during flow boiling in mini/micro-channels, Ari Bard et al. [34] utilized a
dataset of 16,653 points and a variety of different machine learning models including ran-
dom forests and support vector machines. It was shown that the support vector machine
model obtained a mean absolute percentage error (MAPE) of 11.3%. Regarding the feature
selection, some of the common libraries of feature reduction were deployed (e.g., principal
component analysis (PCA), Boruta, recursive partitioning, etc).

While there isexisting literature on the application of artificial neural networks (ANN)
and other machine learning (ML) models for heat transfer estimation in multiphase flows,
to the best of the authors’ knowledge, no prior study has specifically delved into optimizing
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ML pipelines (including algorithms and tuning parameters). Specifically, there is a scarcity
of studies that systematically address the refinement of algorithms and tuning parameters
to enhance performance. Additionally, more effort is required regarding an explainable
systematic feature selection approach to identify the most promising set of features by
including combinations of features in prediction systematically. This would not only reduce
model complexity but also facilitate a clearer physical interpretation of the results obtained.
Encouraged by the mentioned research gap, the present study develops an optimized
machine learning-based pipeline for heat transfer estimation of evaporating R134a flow in
microfin tubes with various geometrical configurations.

1.2. The Contributions of The Present Study

The current work employs a set of experiments on R314a flow undergoing the evapo-
ration process in microfin tubes under various operating conditions resulting in various
datasets of the heat transfer coefficients and the corresponding operating conditions. Next,
widely adopted empirical correlations for heat transfer estimation of two-phase flows are
collected from the literature and are applied to the available experimental dataset to obtain
the corresponding accuracy. Afterward, several ML-based pipelines are constructed, taking
the dimensionless parameters inspired by the thermo-fluid dynamics of the evaporation
process as the input features and the two-phase Nusselt number as the estimation target.
A feature selection step provides the most promising features among a pool of features
while improving/maintaining the accuracy, resulting in reduced computational costs and
better understanding of the governing physical phenomena. Next, the optimization step
provides the pipeline that yields the highest prediction accuracy, and the corresponding
performance on the test set is obtained. Ultimately, another in-house algorithm, referred
to as forward feature combination, is implemented, taking the optimal pipeline and the
selected features as inputs and demonstrating the contribution of each feature to the overall
achieved accuracy. Given that the number of implemented features denotes the complexity
of the model, the forward feature combination provides a trade-off between the complexity
of the model and the obtained accuracy.

Hence, the contributions of the current study can be outlined as follows:

• Utilizing the experimental dataset on R134a flow under diverse operating conditions
undergoing the evaporation process within microfin tubes.

• Gathering widely adopted empirical correlations for heat transfer estimation of two-
phase flows from the literature and applying them to the available experimental
dataset to obtain their performance.

• Developing various ML pipelines utilizing a range of ML algorithms including extra
trees regressor and assessing their performance.

• Providing a feature selection procedure to identify the most promising set of features
by employing various combinations of features systematically in the prediction of the
target and assessing their performance, leading to a notable reduction in the number
of features, reducing model complexity, and facilitating physical interpretation of
the results.

• Utilizing a genetic algorithm-based pipeline optimization tool, with a focus on identi-
fying the most suitable algorithm from a broad array of machine learning solutions,
refining the tuning parameters, and their sequence in the pipeline.

• Employing an in-house algorithm (forward feature combination), taking the optimal
pipeline and the selected features as inputs, and demonstrating the contribution
of each feature to the overall achieved accuracy, providing a trade-off between the
complexity of the model and the obtained accuracy.

2. Experimental Activity and the Employed Dataset

The experimental facility, from which the dataset was obtained, was designed to
run experiments in the most common operating conditions of HVAC devices that, for a
given fluid, are uniquely identified by the refrigerant’s mass flux, the refrigerant’s inlet
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quality in the test section, the mean quality in the test section, and the quality change in the
test section. In order to take into account the two heat transfer mechanisms (convective
evaporation and nucleate boiling), the experiments were designed in a way that a wide
range of operating conditions were possible. The tests were performed employing three
configurations of microfin tubes, presented in Table 1. The experimental apparatus is
depicted in Figure 2, while its schematic is in Figure 3, which illustrates the position and
the type of installed measurement devices and a detailed drawing of the test section, which
is provided to demonstrate its main features, as shown in Figure 4. The main geometrical
features of the microfin tubes used for the experiments are listed in Table 1, while Figure 1
provides the corresponding graphical representation, comparing them with the smooth
tube, which is the reference geometry for the performance comparison.

Table 1. Specification of tubes.

Parameters
Tubes

Units
Microfin 1 Microfin 2 Microfin 3

Name of the tube J-60 VA 1 HVA 1 [-]
External diameter 9.52 9.52 9.52 mm
Internal diameter 8.96 8.92 8.62 mm
Thickness 0.28 0.3 0.45 mm
Cross-section area 62.13 61.72 57.33 mm2

Wet perimeter 42.38 39.9 47.72 mm
Rx 1.68 1.6 1.88 [-]

Fin type AJ-60 AVA BVA AHVA BHVA

Fin height 0.2 0.23 0.16 0.2 0.17 mm
Apex angle 40 40 40 40 40 [◦]
No. of fins 60 27 27 41 41 [-]
Helix angle 18 18 18 18 18 [◦]

1 Microfin tubes VA and HVA have an alternation of two different sizes of fin which are placed sequentially after
one another.

2.1. The Laboratory Setup

As illustrated in Figure 4, the layout of the experiment consists of three circuits: the
refrigerant loop, the demineralized water loop, and the water/ethylene glycol (30% volume
concentration) mixture loop. These circuits interact with one another and transfer thermal
power to set the desired operating condition (in the test section).

Figure 2. The employed laboratory setup utilized for conducting the experiments.

The refrigerant circuit (red line) provides the R134a flow in the desired inlet quality,
mass flow rate, and flow regime to the test section. An electric heater supplies thermal
power to evaporate the refrigerant and set the required quality of the two-phase flow.
Passing through the calming section, the refrigerant then reaches a fully developed flow



Energies 2024, 17, 4074 7 of 24

regime. Finally, the thermal power exchange with the demineralized water circuit in the test
section completes the evaporation process and enables obtaining the desired outlet quality
of the two-phase flow. On the other hand, the glycol mixture circuit, by exchanging heat
with the refrigerant in the condenser and subcooler, sets the desired pressure (and hence
the corresponding saturation temperature) in the refrigerant loop. These three circuits are
equipped with measurement and control units to monitor and regulate the pressure, the
temperature, and the flow rate at different sections of the loop. The detailed description of
the utilized experimental setup, the employed measurement procedures, the performed
uncertainty analysis, and the selected operating conditions are provided in [35,36].

Figure 3. A schematic representation of the laboratory setup utilized for conducting the experiments.

2.2. The Test Section

A tube-in-tube heat exchanger forms the test section. The demineralized water runs in
the outer tube, and the refrigerant flows through the inner one, which is equipped with
three different configurations of microfins (Table 1). To make sure that there is no thermal
leakage to the surrounding environment, the outer tube is insulated with a 10 cm thick
layer of rubber foam shell. Specific measurement units are utilized for monitoring the
temperature in the test section.

Figure 4. A schematic representation of the test section in the experimental setup.

Temperature Measurement

The temperature of the refrigerant at the inlet and the outlet sections is measured by
two K-type thermocouples [37] in the wells provided at the center line of the refrigerant
passage. To obtain the wall temperature of the outer side of the microfin tube, three
thermocouples are inserted into the wall in three different positions: at the bottom, the
side, and the top. The resulting average is then computed as the representative of the
wall temperature.
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2.3. Experiments

The duration of each test is 3 min, and a data acquisition unit (DAU), which samples
the reading at 1 Hz frequency, builds up the dataset. The uncertainties associated with each
measurement unit are shown in Table 2.

Table 2. The specifications of the utilized measurement devices.

Measurement Parameters Device Range Unit Uncertainty

Demineralized water mass flow rate
Coriolis flow meter 0;400 kg

s 0.15% of the reading

Coriolis flow meter 0;6500 kg
s 0.3% of the reading

Refrigerant mass flow rate Coriolis flow meter 0;400 kg
s 0.15% of the reading

Water temperature Thermocouples type K −180;1350 [◦C] 0.1 K

Refrigerant temperature Thermocouples type K −180;1350 [◦C] 0.1 K

Refrigerant inlet pressure Relative pressure transducer 0;16 [bar − g] 0.2% of full scale

Pressure drop Differential pressure transducer −15;15 [psi] 0.1% of full scale

Test section tube length - 2000 mm 6 mm

Voltage of electric heater - - - 1% of the reading

Current of electric heater - - - 1% of the reading

Three variables, including the refrigerant mass flux, the mean quality in the test
section, and the quality change through the test section, were varied in the experiments.
The temperature fluctuations, after reaching steady state, require variables adjustment to
make sure that the temperature is kept at a constant level. Therefore, the measurements
were carried out (after every variable adjustment) 10–13 times, depending on the observed
fluctuations. The ranges in the variation of variables are provided in Table 3.

Table 3. The thermal and fluid conditions of the experiments.

Parameters Condition
Tubes

Units
J60 VA HVA

Number of data points

Evaporation

86 40 33 [-]

Mass fluxes range 66.3–380.3 90–315.6 96.7–339.6 [
kg

(m2 s)
]

Mass quality range 0.15–0.95 0.25–0.75 0.45–0.8 [-]

Heat transfer coefficient range 2023–9204 3701–8695 2271–7957 W
(m2 K)

3. Dimensionless Numbers of Phase-Changing Flow

Several physical phenomena coexist during the evaporation process. Consequently,
a combination of operating and geometrical parameters that govern these physical phe-
nomena affects the evaporation process. The dimensionless groups, according to the
Buckingham theorem, are the most general way to represent the influence of all of the
physical phenomena into a quantitative representation and hence are currently adopted in
the literature for the development of empirical correlations. In the present study, these di-
mensionless groups are used as features for constructing machine learning-based pipelines.
Table 4 summarizes the utilized dimensionless parameters along with the corresponding
mathematical formulations.

The characteristic quantities reported in the definitions of some dimensionless groups
may change from author to author; attention has to be paid to properly implement each
model. For that reason, in Table 4, the characteristic length is generically named Dh, while
in the correlations reported in Table 5, the quantity selected by the authors is reported.
In the proposed correlations, all the authors selected the inner diameter at the fin root as
the characteristic length. Furthermore, there are two different characteristic velocities, one
for the vapor phase and the other for the liquid phase, which refer to the mass flux of
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each phase such that the former is
Gx
ρv

and the latter is
G(1 − x)

ρl
. They represent the bulk

velocity of each phase as if it flows alone in the tube.
In addition to the mentioned ones, three other dimensionless groups that represent

the geometrical characteristics of the microfin tubes, including the number of fins (n), the
fin height to tube’s inner diameter ratio (e/D), and the geometry enhancement factor (Rx),
are also adopted as features.

Rx =

[
2en
(
1 − sin

( γ
2
))

πDcos
( γ

2
) + 1

]
1

cos(β)
(1)

Table 4. Dimensionless numbers [38].

Dimensionless Number Formulation No.

Nusselt number Nu = hDh
kl

(2)

Reynolds number Rel =
G(1 − x)Dh

µl
, Reg =

GxDh
µg

(3)

Weber number Wel =
[G(1 − x)]2Dh

ρlσ
, Weg =

(Gx)2Dh
ρgσ

(4)

Froude number Frl =
[G(1 − x)]2

gDhρ2
l

, Frg =
(Gx)2

gDhρ2
g

(5)

Prandtl number Prl =
µlcpl

kl
, Prg =

µgcpg

kg
(6)

Boiling number Bo =
q

G hlg
(7)

Jakob number Ja =
cp (Tsat − Twall)

hlg
(8)

Bond number Bd =
g(ρl − ρg)D2

h
σ

(9)

Convection number Co =

(
1

1 − x

)0.8( ρg

ρl

)0.5

(10)

Kapitza number Ka =
µ4g
ρlσ3 (11)

Galileo number Ga =
ρl g(ρl − ρg)D3

h
µ2

l
(12)

Suratman number Sul =
σρl Dh

µ2
l

=

(
Re2

l
Wel

)
, Sug =

σρgDh

µ2
g

=

(
Re2

g

Weg

)
(13)

Lockhart–Martinelli parameter [39] Xtt =
(

1−x
x

)0.9( ρg
ρl

)0.5( µl
µg

)0.1
(14)

Dimensionless vapor velocity [40] Jg =
Gx√

gDρg
(
ρl − ρg

) (15)

Reduced pressure pre =
psat

pc
(16)
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Table 5. The evaporation heat transfer correlations for microfin tubes.

Author(s) Equation No.

M
eh

en
da

le
1

[7
]

Π34 = qDint
µl hlg

, Π35 = q
hlg

1.5(ρl−ρg)

Π1 =
2en

πDint

(√
1

cos2(β)
+ tan2(

γ

2
)− tan(

γ

2
)

)
+ 1

Π26 =
DintGl

2

ρgσ
, Π7 =

1 − x
x

Π15 =


4.364 i f Rel ⩽ 2300

( fl/8)(Rel − 1000)Prl

1 + 12.7( fl/8)0.5(Prl
2
3 − 1)

i f Rel > 3000

Cubic interpolation i f 2300 < Rel < 3000

Π24 =
ρgσDint

µg2 , Π21 =
Gtp

2Dint

ρlσ
, Π6 =

ρl − ρg

ρl
, Π8 =

M
MH2

Π33 =
g(ρl − ρg)eDint

σn
Nu = 0.03771.Π34

1.459.Π35
−1.139.Π1

0.6214.Π26
0.2249.Π7

0.2253.Π15
−0.1209

.Π24
−0.6149.Π21

−0.04878.Π6
1.661.Π8

−0.04224.Π33
0.1121

(17)

H
an

et
al

.[
6]

Nu = hDint
k f

, h = Fhr,l + Shr,nb

F = 1 + 7196.741Bo1.16(+1.5135)
(

1
Xtt

)0.86
, S =

1
1 + 2.703F1.94Re f

1.17

Re f =
G(x−1)Dint

µ f

hr,nb = 55Pr
0.12(− log(Pr))

−0.55 M−0.5( q
1000

)0.67

hr,l = ERBhl

hl = 0.023Re f
0.8Pr f

0.4 k f
Dint

ERB =

(
1 +

(
2.64Re f

0.036
(

e
Dint

)0.212( p
Dint

)−0.21( β
90

)0.29
Pr f

−0.024
)7
) 1

7

(18)

R
ol

lm
an

n
an

d
Sp

in
dl

er
[5

]

Nu = hDint
k f

= 1.2
(

−3.7
Pr f

2 + 0.71
)

Re f o
2
3 (ln(Bo) + 12.17)x

−3.7
Pr f

2 +0.71

Re f o =
Gtp Dint

µ f

(19)

C
ha

m
ra

an
d

M
ag

o
[4

]

h = 1.516hpbXtt
1.161

(
0.01
Dint

)−1.764
+

+hlϕRx2.622(BdFrgo
)−0.2158

(
0.01
Dint

)0.5927(
100
Gtp

)0.0582

hpb = 55Pr
0.12(− log(Pr))

−0.55 M−0.5( q
1000

)0.67

Frgo =
Gtp

2

ρg2 gDint
, Bd =

gρ f πeDint
8σn

hl = 0.023Re f
0.8Pr f

0.4 k f
Dint

Re f =
Gtp(x−1)Dint

µ f

ϕ =

(
1 − x + 2.63x

(
ρ f
ρg

)0.5
)0.8

Nu = hDint
k f

(20)

Yu
n

et
al

.[
3]

h = hl

(
0.009622Bo0.1106

(
Psat Dint

σ

)0.3814
+ 7.685

(
1

Xtt

)0.51( Gtpe
µ f

)−0.736
)
×

×Re f
0.2045Pr f

0.7452
(

Dint(1−ϵ)
4e

)−0.1302

hl = 0.023Re f
0.8Pr f

0.4 k f
Dint

Re f =
Gtp(x−1)Dint

µ f

Nu = hDint
k f

(21)
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Table 5. Cont.

Author(s) Equation No.

C
av

al
lin

ie
ta

l.
[2

]

h = hnb + hcv

hnb = 55Pr
0.12(− log(Pr))

−0.55 M−0.5( q
1000

)0.67 × 1.36Xtt
0.36
(

0.01
Dint

)0.38

hcv =
k f

Dint
0.023Re f o

0.8Pr f
1
3 ϕRx2.14(BdFrgo

)−0.15
(

0.01
Dint

)0.59(
100
Gtp

)0.36

ϕ =

(
1 − x + 2.63x

(
ρ f
ρg

)0.5
)0.8

, Re f o =
Gtp Dint

µ f

Bd =
gρ f πeDint

8σn , Frgo =
Gtp

2

ρg2 gDint

Nu = hDint
k f

(22)

Th
om

e
et

al
.[

1]

h = Em f

(
hnb

3 + (ERBhcv)
3
) 1

3

hcv = 0.0133Re f
0.69Pr f

0.4 k f
δ

hnb = 55Pr
0.12(− log(Pr))

−0.55 M−0.5( q
1000

)0.67

δ = Dint(1−ϵ)
4 , Re f =

Gtp(x−1)Dint
µ f

Em f = 1.89
(

Gtp
500

)2
− 3.7

Gtp
500 + 3.02

ERB =

[
1 +

(
2.64Re f

0.036
(

e
Dint

)0.212( p
Dint

)−0.21( β
90

)0.29
Pr f

−0.024
)7
] 1

7

Nu = hDint
k f

(23)

1 fl is the Darcy liquid flow friction factor.

4. Empirical and Semi-Empirical Correlations

Many studies in the literature have been focused on heat transfer estimation of evap-
orating flows within horizontal tubes. Several attempts to provide a general represen-
tation of the heat transfer performance of microfin tubes have been made in spite of
the large variety of microfin geometries. The evaporation models proposed by Mehen-
dale [7], Han et al. [6], Rollmann and Spindler [5], Chamra and Mago [4], Yun et al. [3],
Cavallini et al. [2], and Thome et al. [1] are among the most widely used correlations that
have also demonstrated a relatively promising performance on the experimental dataset of
the present study. Table 5 reports the mathematical expression of these models.

5. Methodology and Implemented Pipelines

Machine learning (ML) refers to automated statistical learning algorithms, which
can predict the desired target employing a dataset. In an ML problem, an automated
algorithm goes through an input dataset, searching for a mathematical relationship, to
relate some features of the dataset to a specific target (supervised learning). The ML
algorithms (models) differ from one another in the mathematical function that describes
the relationship between the input features and the desired output. The advantages and
drawbacks of each ML model come from the properties of this underlying function. The
application of ML models is case-dependent, meaning that based on the characteristics
of the dataset, some models perform better than others. Moreover, it is also possible to
employ the advantages of several ML models by placing them after one another in a certain
sequence. These sequential ML models are named pipelines.

In this research work, the physics of evaporation is first studied to find the most diverse
set of dimensionless parameters, which describe different aspects of the evaporation process.
Then, these parameters are utilized as input features for training several ML models and
pipelines to estimate the Nu number, which is proportional, as expressed in Equation (2),
to the heat transfer coefficient (the characteristic length is constant while the temperature
oscillation recorded during the experiments was not larger than 2 K, which makes the
variations of the liquid thermal conductivity smaller than 1%) as the target parameter
representing the heat transfer behavior. There are two reasons behind this specific choice
of the target parameter. Firstly, since the geometry of the microfins dominantly controls
the evaporation process and the flow pattern formations, their geometry effect needs to be
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considered in the target. Secondly, as the liquid phase is in direct contact with the tube’s
surface to prevent dry-out, its thermal conductivity also remarkably affects the evaporation
process. Therefore, the Nusselt number, encompassing the hydraulic diameter and the
liquid thermal conductivity, well represents these two effects.

The aim is to find the pipeline, together with the most promising set of features, which
provides the most promising performance among all of the available pipelines. Therefore,
this study has two levels of investigation: firstly, defining the feature set, which has the
most effective relevance to the target of the estimation, and secondly, defining the pipeline,
which provides the highest accuracy.

The dataset requires special treatment before being utilized for training the pipelines. It
needs to be divided into two sets: the training set, which is used for training and validation
(through cross validation) of the models, and the test set, which is used for assessing the
performance of the trained model (for an unseen dataset). This division of the dataset into
the training and test sets guarantees an accurate (and fair) assessment of the performance
of the obtained pipelines.

In order to track the improvement in the achieved accuracy that is provided by each
pipeline (corresponding to each step), a simple base model, which is trained over all of the
features, needs to be defined as a reference. The random forest (RF) model does not require
any normalization of the value of the features. Additionally, it offers a set of advantages in
cases where there is a high number of mixed features with nonlinear relationships. The
mentioned advantages make the RF model a promising choice in the present work as the
reference model.

5.1. Feature Selection

In supervised machine learning, features are input variables used to train a model to
predict target values by understanding their relationship with these features [41]. In the
feature selection procedure, the combination of which features that result in the highest
accuracy is determined. For this purpose, an in-house algorithm, which employs the RF
model as the underlying ML model and consists of three steps, is implemented [18,42].
Firstly, the algorithm places the features (of the training set) in order according to their
correlation (Pearson’s correlation [43]) to the estimation target (Nu). Then, the features
are progressively introduced to the RF model to obtain the accuracy associated with each
one of them. The set of features resulting in the highest accuracy is chosen as the initial
combination. In the next step, among the remaining features, those that improve the
accuracy are sorted in descending order based on the obtained accuracy and are placed
before the initial combination of the features. Then, only the features that deteriorate
the accuracy are left, which are accordingly discarded. At this point, the first loop of the
selection algorithm is terminated.

In the second step, the algorithm receives the selected and sorted features. Starting
from the last one of them in the sequence, the algorithm again trains the RF model pro-
gressively with each feature. The set of the features which gives the highest accuracy
is presented as the selected features of the second step. The third step of the algorithm
also trains the RF model with each feature one by one. The RF model obtains values for
the accuracy associated with each feature. Then, the algorithm detects the one with the
highest accuracy, takes it out of the feature set, and places it as the initial feature. Next,
the algorithm starts over with training the RF model with the combination of the initial
feature and the remaining ones (thus providing only two features). The algorithm finds
the combination with the highest accuracy, removes it from the feature set and places it as
the initial combination. Then, it continues with the rest of the features in a similar manner.
Eventually, when the algorithm has placed all of the features in an optimal sequence, it
searches for the point with the highest achieved accuracy and proposes the features up to
that point as the most promising feature set.
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5.2. Pipeline Optimization

As the second step of the investigation, the selected features (which are chosen using
the training set) are introduced to a pipeline optimization tool [44,45], which uses the
genetic algorithm (GA) [46–48], to optimize the ML models, the tuning parameters, and
their sequence in the pipeline.

5.3. Performance Evaluation

Finally, the optimal pipeline is utilized for predicting the target value of the test set
while only using the selected futures. This step of this study assesses the generalizability
of the pipeline in predicting an unseen dataset. This study takes advantage of two per-
formance evaluation metrics, mean relative deviation (MRD) (Equation (24)), and mean
relative absolute deviation (MARD) (Equation (25)). However, MARD is the primary metric
that is utilized as the reference for the comparison of the pipelines and is also introduced as
the fitness function in the GA-based optimization procedure.

MRD =
1
N

N

∑
i=1

yi,pred − yi,exp

yi,exp
[%] (24)

MARD =
1
N

N

∑
i=1

| yi,pred − yi,exp |
yi,exp

[%] (25)

This study utilizes a k-fold cross-validation method for validation of the pipelines on
the training set. The number of folds (k value) is selected to be 10, which means that the
training set is divided into 10 subsets. The pipeline is trained 10 times, taking each fold
once as the performance evaluation subset and the rest of the features as the training subset.
Therefore, 10 different values of accuracy are obtained, and the overall performance of the
pipeline is determined through averaging these values.

5.4. Machine Learning Models

The GA pipeline optimization toolbox takes several ML models (regression) and tuning
parameters as inputs. Those that are selected as the optimal sequence in the optimized
pipeline together with the RF model, which is the benchmark model for the feature selection
algorithm, will thus be briefly explained hereafter.

5.4.1. Ridge Regression

This algorithm is constructed by adding a regularization term to the linear regression
model. In all of the linear regression models, the minimization of a cost function gives
the values of coefficients of the linear function. In the ridge model, the cost function
includes a regularization term, which controls the complexity of the model by shrinking
the excessively large coefficients. This additional term, which is proportional to the sum of
squared power of the coefficients of the linear function, helps to prevent the overfitting of
the model [49].

5.4.2. Elastic Net

The model is constructed on the ridge regression model. However, it differs from
the ridge regression by an additional regularization term, which is proportional to the
sum of the absolute value of the coefficients of the linear function. It means that upon
minimization of the cost function, the coefficients can also assume zero values. It translates
into the elimination of the features that have a zero coefficient value. Thus, this model can
potentially eliminate the features with minor effects on the target [50].

5.4.3. Random Forest

This algorithm is an ensemble model, which implements an averaging method on
the decision trees. In the decision tree, the model explores the feature domain to find a
sequence of the features together with a threshold of the values, which splits the data
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into two branches. The decision trees tend to overfit on different parts of the dataset.
Ensemble models solve this problem by building up several single estimators [51] (in this
case decision trees) and averaging the estimation of each one of them to cancel out the
overfitting and at the same time maintain strong estimation performance. In other words,
an ensemble of decision trees is trained on random data samples to enhance prediction
accuracy and mitigate overfitting [52].

The primary element in building up the single decision trees is to make sure that the
trees are different from one another. Two levels of random variation guarantee an adequate
difference among the trees. The first level consists of forming a sample of the original
training set for building each decision tree. This sample, referred to as a bootstrap, may
have multiple replicas of one data point and, instead, miss some other data points. The
second level includes the random selection of a subset of the features for building each
tree [53]. The mentioned randomness increases the bias. However, the ultimate averaging
cancels this increment out. Thus, the performance of the ensemble prevails over each single
decision tree [11,54–56].

5.4.4. Extra Trees Regressor

This ensemble model, similar to the RF model, is based on averaging the estimation
of several decision trees. However, it differentiates itself from the RF model by including
an additional level of random variation. It consists of a random approach in selecting the
threshold of values for splitting the dataset at each step/layer of the tree [57]. Among these
randomly obtained thresholds, the most informative one forms the splitting rule. This
method reduces the bias even more than the RF model [58].

5.4.5. Feature Processors

Feature processors modify the features in order to provide the ML models with a better
chance of finding an accurate relationship among the features. Each one the processors
modifies the feature in a different way: rising to a power, multiplication (PolynomialFea-
tures), scaling (MaxAbsScaler and RobustScaler), etc. [54]. These preprocessing tools are
provided by the scikit-learn library in Python [54], as follows:

• PolynomialFeatures: A feature matrix is constructed that encompasses all polyno-
mial terms of the input features up to a given degree. For example, with a two-
dimensional input [a, b], the polynomial features up to degree 2 would include
[1, a, b, a², ab, b²] [59].

• MaxAbsScaler: This tool scales each feature so that its maximum absolute value
is 1 while preserving the original data distribution by not shifting or centering the
values [54].

• RobustScaler: It operates by normalizing data according to the range between the
quantiles, excluding the median from the scaling process. Each feature is scaled and
centered independently by calculating relevant statistics from the training data. These
statistics (the median and interquartile range) are then stored and applied to transform
any new data accordingly.

5.5. Contribution of Each Feature to Optimal Accuracy

The optimal pipeline and the most promising feature set provide the highest accuracy.
However, the contribution of the features to the overall achieved accuracy is not known. In
order to determine the latter contribution, a procedure referred to as a “forward feature
combination” was implemented. In this procedure, the optimal pipeline is progressively
(adding one feature each time) trained with the selected features (utilizing the training
set) and used to estimate the target of values of the test set. At each step the feature
resulting in the highest accuracy is chosen and is placed before the set of the features.
The latter procedure is continued for all of the features, resulting in an optimal sequence.
At each step, the contribution of the added feature in improving the achieved accuracy
is monitored. Consequently, the resulting graph shows the trade-off between the model
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complexity (represented by the number of features) and the obtained accuracy. This graph
thus provides the user with the option of choosing a reduced set of features (thus decreasing
the model complexity) while achieving an acceptable accuracy (that could be sufficient
considering the project constraints). The Figure 5 provides a summary of the adopted
methodology in the current study.

Figure 5. The flowchart illustrating the adopted methodology of the current work.

6. Results and Discussion
6.1. Accuracy of Physical Models Available in the Literature

The physical models reported in Table 5 were implemented to predict the heat transfer
coefficients of the data points. The heat transfer coefficients were then translated into
Nusselt numbers to be able to compare them with each other and with the predictions
provided by the pipelines. Table 6 reports the MRD and MARD values of each physi-
cal model, taking the experimental Nusselt number (Nu(exp)) as the reference value in
the calculations. As can be observed, the model proposed by Rollmann and Spindler
(Equation (19)) provides the most accurate predictions, with MRD and MARD values of
18.51% and 22.42%, respectively. Figure 6 depicts the estimations provided by Rollmann
and Spindler’s model (Equation (19)) compared with the corresponding experimental val-
ues, which demonstrates that this model, within the range of the investigated data points,
overestimates the Nu values.

Table 6. Accuracy of the empirical models for the two-phase evaporating flow.

Empirical Model MRD [%] MARD [%]

Mehendale (2017) [7] 54.94 69.7
Han et al. (2017) [6] −56.38 56.63

Rollmann and Spindler (2016) [5] 18.51 22.42
Chamra and Magro (2006) [4] −20.98 28.24

Yun et al. (2002) [3] −83.06 83.06
Cavallini et al. (1999) [2] 22.52 34.39

Thome et al. (1997) [1] 80.29 80.29
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Figure 6. Evaporation Nu estimation based on the model proposed by Rollmann and Spindler [5]
compared to the experimental Nu.

6.2. Initial Pipeline and Feature Selection Results

In the first step, an initial pipeline is implemented, in which a benchmark algorithm
(random forest) is utilized and all available features are provided as inputs. As was
previously pointed out, these features include dimensionless parameters that can directly
or indirectly represent the impact of operating conditions and geometric configurations
on the thermo-fluid dynamics behavior of the investigated evaporating flow. As can be
observed in Table 7, employing this initial pipeline results in an MARD value of 12.54%,
which demonstrates a considerably superior performance compared to the one provided
by the previously identified most promising physical model (Equation (19)). Then, the
feature selection algorithm is applied in order to reduce the number of utilized features
and to facilitate the physical interpretation of the obtained results. In this procedure,
while utilizing the Nusselt number as the estimation target, three steps of feature selection
algorithm (described in Section 5) are performed in order to choose the most promising
feature set. Table 7 outlines the obtained features and the estimation accuracy that has been
achieved after performing the feature selection procedure.

Table 7. The prediction accuracies of the pipelines trained with different feature sets.

Pipeline Input Features
Validation Set (CV) Test Set

MRD [%] MARD [%] MRD [%] MARD [%]

All features—RF

Rel , Reg, Wel , Weg

2.05 10.42 4.64 12.54
Frl , Frg, Prl , Prg, Bo, Pre

Bd, Ka, Co, Ga, Su f , Sug

Jg, Xtt, n, e/D, Rx

Selected features—RF Sul , Bo, Frg, Rel , Bd, e/D 1.76 9.97 3.94 12.4

Selected features—optimized pipeline Sul , Bo, Frg, Rel , Bd, e/D 1.54 7.71 3.32 8.84
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Among the 21 provided features, the algorithm determines 6 features as the most
effective ones: Sul , Bo, Frg, Rel , Bd, e/D. A physical interpretation should be sought that
can explain the reason behind the fact that these dimensionless parameters can compre-
hensively represent the impact of operating conditions and geometrical configurations on
the behavior of the flow. The liquid phase, having a higher surface tension compared to
the gas phase, maintains direct contact with the microfin. In addition, the helical shape of
the microfin promotes a circular motion of the flow within the tube. The conservation of
the momentum pushes the liquid phase with a higher density to the circumference of the
tube. Therefore, the liquid phase keeps direct contact with microfin tubes and the heated
surface. This physical process suggests that the fluid dynamic behavior of the liquid phase,
which is represented by the liquid Suratman number Sul and liquid Reynolds number Rel ,
directly influences the heat transfer process.

Another influential factor, which can impact the overall behavior of the flow, is the
vapor shear stress and its corresponding trade-off with the gravitational forces. The vapor
shear stress at the liquid–gas interface determines the shape of the liquid surface (smooth or
wavy). Furthermore, its trade-off with gravitational forces defines whether the stratification
(which drastically inhibits the heat transfer process) occurs or not. The gas Froude number
Frg encompasses the effect of vapor shear stress.

Due to the surface tension, the liquid sticks to the surface of the tube within the grooves
of the fins. This action, due to the surface tension, needs to resist the gravitational forces to
keep the liquid within the grooves; the Bond number Bd takes this trade-off into account.

Moreover, microfin tubes promote the formation of an annular flow pattern due to
the helical shape of the fins. This flow pattern is the most favorable one among the other
flow patterns (bubbly, slug, plug, etc.) since it leads to the highest heat transfer rates. The
combination of the Sul , Rel , Frg, and Bd also takes into account this annular flow promotion.

Two primary heat transfer mechanisms are present in all evaporation systems, i.e., nu-
cleate boiling and convective boiling. The boiling number Bo takes into account the effect of
the heat flux, which is particularly important in the regimes dominated by nucleate boiling.

Ultimately, the algorithm also detects the ratio of the fin height to the tube’s inner
diameter as the most influential geometrical factor.

Physical interpretation of the selected features includes all of the dominant thermo-
fluid dynamics phenomena of the evaporation process. Accordingly, the agreement between
the selected features and the governing phenomena is considered a positive performance
assessment of the feature selection algorithm. Furthermore, the reduction of the number of
input features from 21 to 6 simplifies the machine learning-based pipeline and results in a
reduction in the computational cost. Moreover, due to the meaningful connection between
the selected features and the target, the predictions either maintain the same accuracy (test
set) or slightly improve it (validation set). Thus, the MARD value of the predictions in the
validation set is reduced to 9.97% (from 10.42%), while it remains more or less the same for
the test set. As the feature selection procedure has unraveled the prevailing relevance of the
selected features, only these features are provided in the next step (pipeline optimization).

6.3. Machine Learning Pipeline Optimization

In the final step, the ML-based pipeline’s configuration, including the utilized algo-
rithm and the corresponding tuning parameters along with the employed feature processing
steps, is optimized. This procedure makes use of a genetic algorithm optimization method,
in which the characteristics of the pipeline (including different sequences of feature proces-
sors and ML algorithms) are progressively improved, aiming at minimizing the considered
fitness function (estimation MARD). The final solution with the lowest achieved MARD is
then proposed as the optimal pipeline.
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Table 8 exhibits the optimal pipeline proposed by the optimization procedure. It
includes six steps: three estimators (ExtraTreesRegressor, ElasticNetCV, and RidgeCV) and
three feature processors (MaxAbsScaler, RobustScaler, and PolynomialFeatures). Table 7
also reports the prediction accuracies obtained by this pipeline. It demonstrates that it
manages to reduce the achieved MARD value for the validation set from 9.97% to 7.71%,
and the MARD value obtained for the test set from 12.4% to 8.84%.

Table 8. The optimal pipeline description (Scikit-learn: Machine Learning in Python, Pedregosa
et al. [54]).

Optimal Pipeline Arguments Definitions Values

Step one:
ExtraTreesRegressor

bootstrap Whether the bootstraps are used when building the trees False
max_features The number of considered features when building the trees 0.35

min_samples_leaf The minimum number of samples at each leaf node 3
min_samples_split The minimum number of samples to split an internal node 15

n_estimator The number of the trees in the forest 100

Step two:
MaxAbsScaler

- - 2

Step three:
ElasticNetCV

l1_ratio The value shows the inclination toward L1 or L2 penalty 0.1
tol The tolerance of the optimization 0.0001

Step four:
RobustScaler

- - -

Step five:
PolynomialFeatures

degree The degree of the polynomial 2
include_bias If True, adding an intercept term to the polynomial False

interaction_only If True, only interaction features are produced False

Step six:
RidgeCV

- - -

Figure 7 illustrates the estimations provided by the optimal pipeline (blue dots) and
those offered by Rollmann and Spindler’s model (red dots) as a function of the experimental
values for both validation and test sets. As this figure evidences, utilizing the achieved
optimal pipeline leads to a notable improvement in the prediction accuracy compared to
the most accurate physical model. The optimal pipeline’s prediction points fall more or less
within a ±15% margin for both validation and test sets. Additionally, the best empirical
model offers overall MARD values of 23.1% on the validation set and 19.7% on the test set.
The comparison of these values with those of the optimal pipeline noted in Table 7 also
shows the superior performance of the proposed optimal pipeline.

The authors of the present study did not find any other similar research that primarily
focuses on employing machine learning-based models for heat transfer predictions for
microfin tubes. However, the study conducted by Zhou et al. [30] shares a similar objective
as the present research for serrated fins. The artificial neural network model proposed by
that study managed to achieve an MARD of 11.41% employing the selected features.

Figures 8 and 9 compare the experimental Nu with the predictions of the optimal
pipeline as a function of the most promising features. These figures show that the optimal
pipeline achieves a relatively universal performance over a wide range of values of the
selected features. Each of these features represents different physical phenomena, and thus,
the optimal pipeline manages to take into account several aspects of the evaporation of the
refrigerants in the microfin tubes.
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(a) Train set (b) Test set

Figure 7. Comparison of Nu number, predicted by optimal pipeline and calculated by Rollmann and
Spindler empirical model [5], with experimental Nu.

(a) Nu as a function of Sul for validation set. (b) Nu as a function of Sul for test set.

(c) Nu as a function of Bo for validation set. (d) Nu as a function of Bo for test set.

Figure 8. Comparison of experimental Nusselt number with predictions of the optimal pipeline as a
function of Sul and Bo.
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(a) Nu as a function of Frg for validation set. (b) Nu as a function of Frg for test set.

(c) Nu as a function of Rel for validation set. (d) Nu as a function of Rel for test set.

Figure 9. Comparison of experimental Nusselt number with predictions of optimal pipeline as a
function of Frg and Rel .

6.4. Forward Feature Combination

In the final step, in order to demonstrate the contribution of each dimensionless feature
to the achieved accuracy, the forward feature combination procedure is implemented. The
resulting diagram, which demonstrates the accuracy that is obtained after adding each
feature, is depicted in Figure 10. As can be observed, by utilizing only the first three features
(Sul , Bo, and Frg), an MARD value close to 10.62% can be achieved. Adding the rest of the
features only reduces the error by nearly 2% (reaching an MARD of 8.84%). Following the
latter observation, the final user has the option of providing the proposed optimal pipeline
with only the first three features (which notably simplifies the model and enhances the
corresponding ease of use) while achieving an acceptable accuracy. It is noteworthy that

although the geometrical parameter (
e
d

) seems to have a negligible effect on the achieved
accuracy, the hydraulic diameter (utilized in the calculation of the Suratman number, Sul)
already takes into account the corresponding impact.

Figure 10. Forward feature combination for evaporation ML pipeline.
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7. Conclusions

The present study proposed a novel optimized machine learning pipeline to estimate
the heat transfer in evaporating R134a flow streaming in horizontal microfin tubes. A set
of experimental activities were carried out to build up the required heat transfer dataset.
Then, the dataset was divided into training (and validation) and test subsets. The first
subset was used to train the ML models, validate the corresponding performance, and
determine the optimal pipeline. The test set was instead used to assess the estimation
performance of the obtained optimal ML model for a dataset for which it was not optimized.
In the training process, the Nusselt number was the target of the predictions and a set of
dimensionless parameters were utilized as features. Firstly, an in-house feature selection
algorithm was applied to the training set and defined the most promising features. Next,
the pipeline optimization tool took the selected features of the training set and built up the
optimized machine learning pipeline, resulting in a boosted accuracy. Well-known and
widely adopted empirical models were selected from the literature and implemented to be
the basis of the comparison with the proposed model. Then, the proposed pipeline and
also the empirical models were applied to the test set, and their prediction performances
were compared. The findings are summarized as follows:

• The feature selection algorithm managed to select 6 features (Sul , Bo, Frg, Rel , Bd,
e/D) among the pool of 21 features. The physical interpretation of the selected features
confirmed their higher order of relevance to the target of the predictions.

• The optimized pipeline improved the prediction accuracy and obtained an MARD
value of 7.71% on the validation set and an MARD value of 8.84% on the test set, while
the most promising empirical model (Rollmann and Spindler’s model Equation (19))
achieved MARD values of 23.1% and 19.7%, respectively on the validation and the test
sets. Moreover, the proposed optimal pipeline accompanied by the employed dataset
will be made publicly available.

• In future works, the employed dataset should be extended, incorporating data ob-
tained from multiple experimental facilities, which will permit training the algorithms
using the data belonging to a test rig while utilizing datasets obtained from other
experimental facilities as the test set [30,60–62].

• Finally, it should be noted the main contribution of this study, beyond proposing
an algorithm resulting in an elevated performance (even if only over the consid-
ered dataset), is identifying the most promising set of dimensionless features, which
facilitates the corresponding physical interpretation.
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