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Abstract
The environment around a minor body is highly uncertain, depending on the body composition and shape, which

are difficult to estimate from ground-based measurements. This paper addresses the challenges of operating in low-
gravity, deep-space environments, focusing on gravitational modeling of minor bodies. The study reviews three primary
modeling methods: spherical harmonics, the mascon model, and the polyhedral model, each with unique strengths and
computational demands. These methods are tested on four well-known bodies: (101955) Bennu, (25143) Itokawa, (433)
Eros, and 67P/Churyumov–Gerasimenko. The study evaluates the efficacy of each method in modeling gravitational
forces, considering factors such as morphological uncertainties, shape knowledge, and computational complexity. The
goal is to assist mission designers in selecting the most suitable model based on target properties and operational needs,
thereby ensuring effective mission planning and execution in minor body exploration.

1. Introduction
Exploration of minor celestial bodies is increasingly

attracting interest, prompting various space missions to
target these objects due to the potential for significant
scientific and engineering breakthroughs they offer [1–
3]. Within this context, it becomes imperative to tackle
the challenges inherent in operating in low-gravity, deep-
space environments. A comprehensive understanding of
the dynamics in the close proximity of these celestial ob-
jects becomes crucial for optimizing the scientific and
technological yield of such missions. This is particu-
larly relevant when employing cost-effective platforms
like CubeSats, which operate with limited onboard re-
sources and maneuvering capabilities. Therefore, thor-
ough design and careful mission planning play a key role
in maximizing the effectiveness of these missions. Partic-
ularly, accurate modeling and understanding of the gravi-
tational field of minor bodies is crucial for space missions.

The environment in the vicinity of minor celestial bod-
ies is characterized by significant uncertainties, arising
from their irregular shapes, diverse morphologies, non-
uniform mass distributions, and inaccurate estimations
from ground-based observations [4, 5].

The shapes of small bodies can range from nearly
spherical to ellipsoidal, elongated, or highly irregular. Fur-
thermore, asteroids can span a variety of sizes and sur-

face morphologies. Rubble-pile asteroids [6] are typically
diamond-shaped and formed by the mutual gravity forces
between various fragments, resulting in a substantial num-
ber of voids within the body volume. These asteroids
are characterized by a high number of boulders scattered
across their surface. Contact binary asteroids result from
the collision of two bodies and may exhibit a notable den-
sity difference between the two components. Another cat-
egory is the monolithic one, which consist of single rock
fragments spinning rapidly. These are generally denser
than rubble-piles and have fewer boulders on their sur-
faces. Comets, on the other hand, are usually character-
ized by a bilobed shape due to the presence of a melting
ice nucleus. Their typical morphology consists of alternat-
ing smooth and rocky regions.
Moreover, there are significant uncertainties regarding the
physical properties, overall shape, and morphology of
small bodies because these are estimated from ground-
based measurements, such as light-curve analysis and
radar observations, when possible [7]. However, these
measurements are often not accurate and provide only a
preliminary idea of the body’s shape, morphology, and
composition [8]. As a result of the combination of these
factors, the gravity model in the vicinity of these bodies is
highly uncertain.

This paper explores three main modeling methods:
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spherical harmonics [9], mascon model [10–13], and poly-
hedral model [14]. The spherical harmonics method em-
ploys mathematical functions to represent the gravity of a
body. The mascon model approximates the body mass dis-
tribution using discrete regions, simplifying computations.
The polyhedral model, on the other hand, represent the
body as a collection of polygons. Although each method
offers unique advantages, researchers aim at simplifying
the computational requirements for on-board implementa-
tion by conceptualizing different variants of these baseline
methods.

This study conducts a comprehensive survey of var-
ious modeling techniques in the vicinity of four well-
known minor bodies with diverse shapes, sizes, and
masses, specifically (101955) Bennu, (25143) Itokawa,
(433) Eros, and 67P/Churyumov–Gerasimenko. The re-
search aims to support mission designers in selecting the
most suitable approach based on the specific target prop-
erties and operative scenarios. Through extensive analy-
sis, the study assesses the efficacy of each method in ac-
curately modeling gravitational forces both inside and out-
side the Brillouin sphere of these minor bodies, defined as
the sphere inscribing the object. It examines factors such
as morphological uncertainties, shape knowledge, and the
effects of body shape. Additionally, the study carefully
considers computational complexity, accuracy, and suit-
ability for on-board implementation. Understanding the
strengths and limitations of each method is essential for
successful planning of minor body exploration missions,
whether prioritizing computational efficiency or accuracy.

The paper is structured as follows: Section 2 describes
the general formulation of the gravity field with different
estimation models. Section 3 outlines the methodology
employed to compute the accuracy of each model. In Sec-
tion 4, the accuracy and computational complexity of each
model are assessed. Finally, Section 5 presents a discus-
sion of some final considerations.

2. Gravity field models
In this section, the mathematical formulation of each

of the analyzed models and some sub-models is discussed.
The polyhedral model with 20,000 faces of the small bod-
ies is considered as the true model for gravity field esti-
mation. Specifically, the model is partitioned into a col-
lection of simple tetrahedra, each with one vertex at the
geometric center of the body and the opposite face repre-
sented by a triangular facet.

2.1 Polyhedral model
Regarding the polyhedral model, first introduced in

[14], it uses the faces and edges of the polyhedral shape
to compute the gravity field generated by the small body.

The gravitational acceleration of this model can be com-
puted as
aPM = −Gρ

∑
e∈edges

Ee · rPM,eLe+Gρ
∑

f∈faces

Ff · rPM,fωf

(1)
where G is the universal gravitational constant, ρ is the
density of the body, rPM,e is a vector from the field point
FP to a fixed point on edge e, rPM,f is a vector that extends
from the field point to any point in the face plane f , and the
dimensionless factor ωf , for triangular faces, is defined as

ωf = 2arctan
(

ri · rj × rk
rirjrk + ri(rj · rk) + rk(rj · ri)

)
(2)

where given a triangular face of the mesh of vertices Pi,
Pj , and Pk, the vectors from the mesh geometric center
and the vertices of the f face are ri, rj , and rk.
The dyads Ee and Ff , and the scalar Le are solely func-
tions of the polyhedral model considered. Ff can be com-
puted for each face of the polyhedron as

Ff = n̂f ◦ n̂f (3)

where n̂f is the normal versor of the generic face f and
◦ represent the dyadic product, while Ee is computed for
each edge and is defined as

Ee = n̂f1 ◦ n̂f1
e + n̂f2 ◦ n̂f2

e (4)

where n̂f1
e and n̂f2

e are the normals of the faces sharing
the edge e, while n̂f1 and n̂f2 are the edge-normal vectors
associated with the generic edge e. Finally, the dimension-
less per-edge factor Le is computed as

Le = ln
ri + rj + eij
ri + rj − eij

(5)

where eij is the constant length of the edge connecting
the points Pi and Pj .

An alternative version of the classic polyhedral model is
presented in [15], where the mesh of the body is refined
based on the position of the FP reducing the compu-
tational complexity of the model without a significant
reduction in accuracy.

2.2 Mascon model
The mascon model is by far the most intuitive gravity

computation as it considers the body gravity generated by
multiple point mass. The position of the point masses is
defined as the geometric center of each tetrahedron com-
posing the shape model. The mass of each point is defined
starting from the volume of each of them. By analytical
calculation, the volume of the tetrahedron is given by the
sixth part of the scalar triple product of the vectors repre-
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sented by three concurrent edges of this solid

V =
1

6
(ri × rj · rk) (6)

Consequently, the mass and the associated gravitational
constant µ for each tetrahedron can be computed through
the knowledge of the density, usually assumed constant
across the body volume. The gravitational acceleration
suffered by the external point FP in relation to the model
is

aMM =

n∑
i=1

− µi

r3MM,i

rMM,i (7)

where rMM,i is the distance between the centre of mass of
the tetrahedron and the external point FP . The mascon
model, differently from the other models can consider a
variable density across the volume of the model.

Alternative versions divide the single tetrahedrons
into M parts in order to obtain M layers with equal
volume within each tetrahedron. The centroid of each
figure is determined, and the mass is proportional to
the volume of each figure. This approach increases the
computational burden of the algorithm but increases its
accuracy.

2.3 Spherical harmonics model
To compute the acceleration using the spherical har-

monics model in the asteroid fixed frame, the gradient of
the gravitational potential U (x) must be determined.

aSH = ∇U (8)

Consequently, the potential U must be computed.
Specifically, it can be represented as an infinite series of
spherical harmonics, represented in a function space de-
fined by the associated Legendre polynomials [16].

U =
µ

rSH

∞∑
n=0

n∑
m=0

(
R0

rSH

)n

Pn,m (u)
(
Cn,m cos (mλ)+

+ Sn,m sin (mλ)
)
(9)

with r, λ, and ϕ denote the radial distance from the mi-
nor body, the longitude, and the latitude of the spacecraft,
respectively. The function Pn,m (u), where u = sin (ϕ),
represents the normalized associated Legendre polynomi-
als [16]. R0 serves as a scaling factor for computing the
normalized coefficients Cn,m and Sn,m.
The gradient of the potential can be expressed as [16]

aSH = ∇U =

[
∂U

∂rSH

]T
=

=
∂U

∂rSH

[
∂rSH

∂rSH

]T
+

∂U

∂λ

[
∂λ

∂rSH

]T
+

∂U

∂ϕ

[
∂ϕ

∂rSH

]T
=

=

[(
1

rSH

∂U

∂rSH
− z

r2SHη

∂U

∂ϕ

)
x−

(
1

η2
∂U

∂λ

)
y

]
i+

+

[(
1

rSH

∂U

∂rSH
− z

r2η

∂U

∂ϕ

)
y +

(
1

η2
∂U

∂λ

)
x

]
j+

+

[
1

rSH

∂U

∂rSH
z +

η

r2SH

∂U

∂ϕ

]
k

(10)
where rSH = xi + yj + zk represents the field point loca-
tion in minor body fixed frame, and η =

√
x2 + y2. The

analytical expressions for
∂U

∂rSH
,
∂U

∂λ
and

∂U

∂ϕ
can be com-

puted as [16, 17]:
∂U

∂rSH
= − µ

r2SH

∞∑
n=0

n∑
m=0

(
R0

rSH

)n

(n+ 1)Pn,m (u)(
Cn,m cos (mλ) + Sn,m sin (mλ)

)
(11)

∂U

∂λ
=

µ

rSH

∞∑
n=0

n∑
m=0

(
R0

rSH

)n

(n+ 1)Pn,m (u)m(
−Cn,m sin (mλ) + Sn,m cos (mλ)

) (12)

∂U

∂ϕ
=

µ

rSH

∞∑
n=0

n∑
m=0

(
R0

rSH

)n
∂Pn,m (sin (ϕ))

∂ϕ(
Cn,m cos (mλ) + Sn,m sin (mλ)

) (13)

∂Pn,m (sin(ϕ))
∂ϕ

=

[
∂Pn,m (u)

∂u

]
cosϕ =

= −m tanϕPn,m (u) +K (n,m)Pn,m+1 (u)

(14)

and

Kn,m =


√
(n−m) (n+m+ 1) m > 0√

n (n+ 1)

2
m = 0

(15)

The coefficients Cn,m and Sn,m depend on the body
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shape and internal density distribution. In this study, they
are assumed to be known for a given shape model and and
are computed using the algorithm presented in [18]. The
degree of expansion considered in this work is set to 16,
implying a high level of knowledge about the body shape.

3. Methodology
The bodies selected for analysis span a variety of

shapes, sizes, and morphologies: the nearly regular and
rubble-pile asteroid (101955) Bennu, the bilobed and
elongated (25143) Itokawa, the massive and irregular
(433) Eros, and the highly irregular 67P/Churyumov–
Gerasimenko, whose properties are reported in Table 1.
For each body, a polyhedral model with 20,000 faces is

Table 1. Relevant properties of the minor bodies consid-
ered in this work.

Name Req [km] µ [km3/s2] ρ [g/cm3]
Itokawa 0.330 2.10× 10−9 1.900

67P 2.591 6.65× 10−7 0.533
Eros 17.62 4.46× 10−4 2.670

Bennu 0.282 4.67× 10−9 1.194

considered, and the polyhedral gravity model of this high-
resolution model is assumed to be the true gravity of the
body. This means that all errors and accuracies of the
other models are computed relative to this baseline sce-
nario. As previously discussed, high-resolution models
are not always available, particularly from ground-based
measurements. To account for uncertainties in the avail-
able shapes, models with 2,000 faces are used in this work.

To assess the performance of each model, a zero-
finding problem is solved to determine 16 iso-gravity sur-
faces surrounding the minor body. These surfaces are
regions in space where the gravity field induced by the
body is constant. Specifically, for each analyzed body, 10
iso-gravity surfaces were computed inside the Brillouin
sphere, while 6 were computed outside of it. To find these
surfaces, each normal of the mesh vertices is multiplied
by a value ξi, which ranges from 0 to an arbitrarily high
value, to determine the displacement needed to achieve a
gravity equal to a prescribed value a0.

f(ξi) = ab(ξi)− a0 (16)

where ab is the gravity induced by the 20,000-face mesh
model. The locus of the obtained points forms an iso-
surface that is likely to have an irregular shape. The fur-
thest iso-gravity surface is defined as the one where the
gravity is computed at 10 equivalent radii from the body
center of mass, assuming that at this distance the gravity
induced by the body shape is negligible and the point mass

gravity approximation is valid. Four iso-gravity surfaces
inside the Brillouin sphere of asteroid (25143) Itokawa are
shown in Figure 1.

Fig. 1. Example of four iso-gravity surfaces inside the
Brillouin sphere of asteroid (25143) Itokawa.

Different scenarios are considered, to take into account
morphology uncertainties and the influence of the shape
on the gravity estimation
Firstly, morphology uncertainties are taken into account
by perturbing the mesh of 2,000-face available shape
model randomly displaying the vertices of the original
model v0 along their normals n0

v̂i = v0,i + σun0,i (17)

where v̂i represents the final vertex position of the ith ver-
tex and σu is a zero-mean white Gaussian noise with vari-
ance Q.

σu = N (0, Q) (18)

where the variance Q is a value depending on the minor
body equivalent radius Req:

Q = 0.05Req (19)

Secondly, all three baseline models are tested on shape
models with different resolutions: specifically, 2,000,
1,000, 500, and 100 faces. This helps assess the robust-
ness of the models in the face of increasingly poor knowl-
edge of the body shape model. The figure of merit for
gravity estimation error considered in this analysis is the
Root Mean Square Error (RMSE) with respect to the con-
stant gravity a0 for each iso-gravity surface. The error is
defined as:
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RMSE =

√√√√ 1

N

N∑
i=1

(aM,i − a0)2

with M ∈ {PM,MM, SH}

(20)

where N represent the number of points belonging to
an iso-gravity surface and aM,i is the estimated gravity at
the ith point, with model M.

It is worth noting that the mass of the models is kept
constant, and the density is iteratively computed based on
the volume of the given mesh.

4. Results
In this section, the results will be presented for the four

minor bodies considered in this work.
The three gravity estimation models will be applied to

the 2,000-face shape models, using Monte Carlo analysis
to account for morphological uncertainties by perturbing
their vertices.

Additionally, different resolutions of the minor body
mesh will be analyzed to assess the performance of each
method under progressively poorer shape knowledge.

The point mass gravity model will also be reported for
each examined case. All models should converge to this
point mass model as the distance from the small body in-
creases, serving as an upper bound for gravity estimation
error. This means that the error for all considered mod-
els must be below the corresponding point mass value to
demonstrate an improvement in gravity estimation.

4.1 Morphology uncertainty
In this section, the polyhedral, mascon, and spherical

harmonics models are tested on the four small bodies, with
perturbations applied to their vertices to account for vari-
ations in surface morphology. The results of this analysis
are presented in Figure 2.

When in close proximity to a minor body, within the
Brillouin sphere, the spherical harmonics model struggles
to accurately estimate gravity because the expansion fails
to converge, resulting in larger estimation errors than those
of the point mass model. (101955) Bennu is the only body
for which it is possible to compute the gravity within the
Brillouin sphere using spherical harmonics, due to its reg-
ular shape.

The polyhedral model provides the most accurate grav-
ity estimation for most bodies, followed by the mascon
model. However, (101955) Bennu is an exception, where
the mascon model slightly outperforms the polyhedral
model.

As expected, the spherical harmonics model performs
poorly inside the Brillouin sphere but significantly im-

proves at its boundary, surpassing the other models as the
distance from the small body increases.

The analysis suggests that morphology uncertainties
play a key role, particularly for (101955) Bennu and
67P/Churyumov–Gerasimenko, where covariance bounds
appear more dispersed compared to (433) Eros and
(25143) Itokawa, especially at lower gravity values farther
from the minor body.

From a computational perspective, the spherical har-
monics model is the most efficient, outperforming the
polyhedral and mascon models by an order of magnitude,
as shown in Table 2.

4.2 Shape uncertainty
In this section, different resolutions of the minor

body meshes are considered to assess the performance
of the models based on shape estimation. As ex-
pected, and shown in Figure 3, the performance of each
model decreases as the number of faces in the model
mesh is reduced. Notably, for (101955) Bennu and
67P/Churyumov–Gerasimenko, the estimation error with
100 faces exceeds that of the point mass model, indicat-
ing that accurate knowledge of the minor body’s prelim-
inary shape is crucial. This suggests the need for a pre-
liminary shape model estimation phase before proximity
operations.

From 500 faces onward, the model’s performance im-
proves, providing good estimations with only slightly
higher error compared to the most refined model with
2,000 faces.

From a computational perspective, the spherical har-
monics model is unaffected by the mesh resolution, con-
sistently maintaining a lower computational burden. In
contrast, the polyhedral and mascon models reduce com-
putational effort as mesh resolution decreases. However,
they only reach the computational speed of the spherical
harmonics model when using low-resolution meshes, and
never surpass it. The computational times∗ for each of the
considered mesh resolutions are reported in Table 2.

Table 2. Computational time depending on the model res-
olution in terms of number of faces Nf and gravity
model.

Times Models
in seconds PM MM SH

Re
s[
N

f
] 2,000 7.3× 10−4 5.2× 10−4 2.7× 10−5

1,000 3.6× 10−4 2.7× 10−4 2.3× 10−5

500 1.8× 10−4 1.6× 10−4 2.4× 10−5

100 3.3× 10−5 5.7× 10−5 2.1× 10−5

∗Six-core Intel i7@2.20GHz

IAC–24–A3,IP,12,x85630 Page 5 of 8



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 2. Gravity models error with bodies of different morphologies.

2,000 faces
1,000 faces
500 faces
100 faces

Polyhedral Model 
Mascon Model
Spherical Harmonics
Point Mass Model

Fig. 3. Gravity models error with bodies of different resolutions.

5. Conclusions

This study highlights the importance of selecting ap-
propriate gravitational models when exploring minor ce-
lestial bodies, which are gaining attention for their scien-

tific and engineering potential. By comparing the spheri-
cal harmonics, mascon, and polyhedral models on bodies
such as (101955) Bennu, (25143) Itokawa, (433) Eros, and
67P/Churyumov–Gerasimenko, the research underscores
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the strengths and limitations of each method. The polyhe-
dral model excels in close proximity within the Brillouin
sphere, while the spherical harmonics model offers com-
parable accuracy at a lower computational cost outside the
sphere. The analysis also reveals that shape uncertain-
ties significantly affect gravity field estimations. Accurate
shape knowledge is essential, as poor models can lead to
worse performance than the point mass model. Ultimately,
the spherical harmonics model stands out for its computa-
tional efficiency, providing valuable insights for mission
planners in low-gravity environments.
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