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ELAPSE: A FLATSAT SOFTWARE AND PROCESSING UNIT
FOR DEEP-SPACE AUTONOMOUS GNC SYSTEMS TESTING

Davide Perico*, Gianfranco Di Domenico†, Gianmario Merisio‡, and Francesco
Topputo§

EXTREMA is a European Research Council-funded project challenging the current
paradigm in spacecraft guidance, navigation, and control, by enabling CubeSats to
autonomously reach their target in interplanetary space. The core of the project is
the EXTREMA Simulation Hub, an integrated facility in which to perform closed-
loop simulations of the spacecraft-environment interaction, allowing high-fidelity
testing of deep-space autonomous guidance, navigation, and control technologies.
This work presents EXTREMA’s FlatSat Processing System (ELAPSE), developed
on the side of the testing hub and aiming to provide a central processing core for
hardware-in-the-loop simulations and an execution platform for guidance, naviga-
tion, and control algorithms. The system comprises two main interfaced elements,
a multi-core central on-board computer and a unit for attitude determination and
control. These are populated by highly modular and layered software easing the
integration and accelerating the algorithms development. ELAPSE enforces a re-
active event-based autonomy paradigm and paths the way for developing deliberate
procedures to reach goal-oriented autonomy on system-on-a-chip hardware.

INTRODUCTION

Nowadays, the growth of the space sector sees CubeSats as one of the major actors, thanks to their

concept inferencing cost-effective and relatively fast access to space.1 Moreover, the combination of

these features with the recent advancements in onboard technology has pushed their adoption also

for deep-space missions.2 However, the increase in the number of such missions and the high data

rates required for operating them from ground will shortly lead to saturation of ground stations.3

Moreover, the current approach to operations strongly affects the total mission cost, threatening

the benefits derived from the adoption of CubeSats. The EXTREMA (Engineering Extremely Rare

Events in Astrodynamics for Deep-Space Missions in Autonomy) project, awarded a European Re-

search Council (ERC) Consolidator Grant in 2019, challenges the current paradigm by enabling

self-driving interplanetary spacecrafts.4 Deep-space Guidance, Navigation, and Control (GNC) ac-

tivities applied in a complex scenario are the core subject of EXTREMA which finds its foundations

on three pillars. Pillar I regards autonomous navigation.5 Pillar II concerns autonomous guidance

and control. Pillar III deals with autonomous ballistic capture.6 The outcome of each Pillar targets

the integration in the EXTREMA Simulation Hub (ESH), a Hardware-In-the-Loop (HIL) facility
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enabling verification and validation of autonomous GNC technologies,7 a fundamental step towards

the adoption of them on flying spacecraft.

A FlatSat-based architecture enables high flexibility and modularity in the algorithms and systems

to be tested and interconnects the other subsystems implementing different purposes. The concept

has a long heritage as a tool to assess the functionality of medium-sized and large satellites.8 Among

the spacecraft’s different elements, the On-Board Computer (OBC) is a pivotal component, provid-

ing the processing capability and hosting the flight software. The latter handles data, executes the

onboard routines, and commands and interfaces with the other subsystems. The integration of a

FlatSat OBC in the EXTREMA ESH is paramount to frame the Pillars algorithmic output into the

GNC flight software, implementing higher-level functionalities and providing the connecting core

of the HIL units. Consequently, this leverages the execution of high-fidelity integrated simulations.

In the context of EXTREMA, while the Pillars supply algorithms that autonomously provide the

spacecraft with the knowledge of its actual state, compute the path to follow to reach its target,

and the thrust commands to follow that trajectory, the GNC software supports and enforces these

functionalities at the system level. To this degree, different definitions and levels of autonomy can

be recognized. The European Space Agency (ESA), through the European Cooperation for Space

Standardization (ECSS) initiative, identifies four levels of autonomy, from E1 to E4, briefly reported

in Table 1.9

Table 1 System autonomy levels.

Level Description

E1 Strong ground control, time-tagged commands limited to contingencies.

E2 Pre-planned time-tagged commands managed by a scheduler.

E3 Event-based autonomous operations, onboard adaptation.

E4 Goal-oriented autonomous operations and re-planning.

Considering the highest levels, while E3 is achieved by event-based transitions and state-dependent

adaptability, E4 addresses the so-called goal-oriented autonomy, implemented through objective-

based re-planning. In recent decades, novel approaches to designing flight software for spacecraft

autonomy have been published to provide effective frameworks for robust architectures. Among

others, the Multi-mission EXECutive (MEXEC) architecture, developed by the Jet Propulsion Lab-

oratory (JPL), focuses on the planning and execution of flight-related tasks.10 The idea is to imple-

ment an adaptive control to the scheduling of the tasks and modify the plan under the constraints

and execution status. Furthermore, as decision-making is a crucial aspect in enabling autonomous

selection of actions to take, the Framework for Robust Execution and Scheduling of Commands On-

Board (FRESCO) issues the paradigm behind this ability, by proposing high-level fundamentals of

software design for on-board autonomy, incorporating also the MEXEC structure.11 An additional

aspect, when the testing capability of the FlatSat is considered, is the simulation environment at the

edge. As an example, the Basilisk astrodynamics framework moves in that direction by providing

modular integration of models to simulate the space environment and the spacecraft subsystems

by exploiting components wrappers in Python.12 Moreover, the development of autonomous GNC

software, facilitated by the FlatSat system, is concomitant with the meticulous selection and proto-

typing of the underlying hardware. As a matter of fact, the introduction of an autonomous algorithm

furnishes the spacecraft with heightened operational autonomy, thereby leading to improved perfor-

mance. However, the increase in complexity caused by this augmentation necessitates adherence



to more stringent reliability requirements. Consequently, the imperative role of testing the soft-

ware on representative embedded hardware emerges as a pivotal step in certifying the technological

maturity of these advancements. In this setting, the literature presents two pertinent testing tech-

niques, namely, Processor-In-the-Loop (PIL) and Hardware-In-the-Loop (HIL). The former entails

deploying the software module onto an embedded platform representative of the target processing

unit. This deployment is undertaken to verify and validate the software’s performance and resource

requirements, thereby certifying its maturity for on-board implementation. The latter technique

subjects the software to testing within a simulated operational environment and against authentic

hardware components or models.13 Considering the autonomous GNC software development as-

pect and the HIL testing necessity, this paper aims to present the EXTREMA fLAtSat Processing

SystEm (ELAPSE), an apparatus that combines a highly-modular GNC flight software residing on

flight-representative embedded hardware. Its objective is to provide the EXTREMA ESH with a

core unit that models the processing subsystem of an autonomous interplanetary spacecraft. Its

functionalities interconnect the facility units to enable an integrated HIL simulation environment

and provide a key platform and software to advance the development of autonomous GNC tech-

nologies via validation and verification of the algorithms and the processes to control them at a

higher level.

This manuscript is organized as follows. The current stage of the HIL facility of EXTREMA

is presented in Section II. In Section III, the ELAPSE software architecture is described. Specifi-

cally, the two main units constituting the system, the On-Board Computer Emulator, and the ADCU,

are delineated, together with the main design principles applied. Section IV presents the embed-

ded processing system hosting the FlatSat software and provides a first representative model of the

computing hardware. Finally, the PIL and HIL simulation capabilities of the ELAPSE system are

described in Section V. Specifically, three application examples in which the system was success-

fully employed to perform validation and verification tests are shown.

THE EXTREMA SIMULATION HUB

The EXTREMA HIL facility targets the integrated simulation of a deep-space autonomous space-

craft by following a closed-loop guidance paradigm. Among the others, three main experiment

test benches establish the simulation infrastructure. Concretely, the Realistic Experimental facil-

iTy for vision-based NAvigation (RETINA)14 renderers deep-sky images with sub-pixel resolution

and projects them on a high-resolution screen. A system of lenses and a camera completes the ap-

paratus, acquiring the image of the screen and producing a high-fidelity optical measurement that

shall be fed into the optical navigation algorithm. The thrust control is implemented by the EX-

TREMA THruster In the Loop Experiment (ETHILE)15 test bench, implementing a compressed-air

valve that simulates the pressure exerted by a low-thrust engine. It is composed of a sensing sys-

tem that senses the force produced by the nozzle firings and transmits the acquired data to the orbit

propagator. The latter, called EXTREMA’s SPace Environment SImulator (SPESI) oversees the

running process by simulating the space dynamics and environment with high fidelity.16 Finally,

the SpacecrafT Attitude SImulation System (STASIS)17 is an air-bearing platform with 3 degrees-

of-freedom that represents the spacecraft rotational dynamics and grants the orientation control via

a set of reaction-wheels. The facility’s testbeds, modeling the GNC peripherals, are engineered and

interfaced following a FLatSat architecture, whose processing core is shaped through ELAPSE. Its

sub-units dwell on the STASIS platform and interface with the rest of the test benches via wireless

communication. The described framework is schematically reported in Figure 1, where the arrows



indicate the functionality implemented by each interface. Furthermore, the entire framework relies

on a dynamics accelerating framework to simulate deep-space missions with hardware in a reduced

time by exploiting a dynamics similarity approach .4, 18

Figure 1 ESH functional breakdown structure including ELAPSE.

ELAPSE SOFTWARE ARCHITECTURE

The FlatSat hardware-software system comprises two actors, the On-Board Computer Emulator

(OBCE) and the Attitude Determination and Control Unit (ADCU). They contribute to supervising

and commanding the autonomous GNC algorithms in terms of orbit and attitude and interfacing

with the different ESH hardware units previously described.

On-Board Computer Emulator

The first element of ELAPSE hosts the main software and integrates the algorithmic products of

the EXTREMA Pillars. As agile development and testing of autonomous GNC technologies is in-

trinsic in ESH exploitation, the OBCE software has been designed accordingly. Moreover, it partic-

ipates in the effort of archetype shift professed by EXTREMA and enables Hardware–In–the–Loop

testing. A highly modular architecture is implemented following the Object-Oriented Programming

(OOP) paradigm, orbiting around objects as fundamental elements. Additionally, as the final ob-

jective is the on-board implementation, the methodology relies on embedded programming. The

main structure, which retraces other flight software framework characteristics, is composed of dif-

ferent levels of abstraction here described. Among the different frameworks, the NASA core Flight

System (cFS)* has a long space missions flight heritage and pursues reusability through a layered

and plug&play architecture. Its main element is the core Flight Executive, contained in a so-called

Core Layer. The Abstraction Library Layer provides support and interfaces with different Operative

Systems (OS). Additionally, an Application Layer hosts mission-agnostic components and services.

Finally, the hardware is integrated through a hardware layer.

*https://cfs.gsfc.nasa.gov/ [last visited January 25, 2024]



A similar philosophy, with a different outcome, was followed by ESA with the Space AVionics

Open Interface aRchitecture (SAVOIR) initiative that resulted in an On-board Software Reference

Architecture (OSRA), based on the principles of reusability and model-based development.19 The

core principle is the presence of components implementing the different functionalities that are

executed through an execution platform via mapping through an interaction layer.19 The same con-

cept of software genericity is retained by the GEneRIC Onboard Software (GERICOS) framework,

which focuses on the rapid development of flight software specific to the payload.20 A three-layer

structure includes a core that links a real-time kernel to the active objects. It follows a Blocks layer

that provides generic reusable components that can be adapted to the required functionalities for a

specific mission. Finally, its Drivers layer is specifically designed for targeting LEON processor’s

IP cores.20 Ultimately, other frameworks have been specifically developed for small satellites. One

example is the NanoSat MO Framework (NMF), written in Java. It conceives an end-to-end so-

lution to execute custom applications within a modular and flexible approach.21 A comprehensive

comparison of the main characteristics of these frameworks has been performed in the past.22 Ad-

ditionally, the Jet Propulsion Laboratory published F Prime, a C++ component-based framework

specifically tailored for CubeSats, SmallSats, instruments, and in general entities with sparse pro-

cessor resources.23 F Prime is strongly centered on the concept of components and it also includes

edge tools for unit and system-level testing. Both NMF and F Prime have been demonstrated in

space.23, 24 Being flexible, generic, and enforcing the reusability principle, those examples paved

the foundations for the design of the OBCE software, sharing their philosophies but specifically tai-

lored for the EXTREMA ESH environment and agile GNC algorithms integration. Figure 2 unveils

the OBCE software’s three-layer architecture.

Figure 2 FlatSat OBC software architecture.



Each layer serves as a container for Modules, classes that interface with each other by following

the OOP four principles of encapsulation, data abstraction, polymorphism, and inheritance. Two

types of Modules can be identified, Task Modules, which contain a running task, and Core Modules,

which instead implement atomic functionalities. The input/output interfaces between elements are

implemented via two main modalities, as shown in Figure 3.

Module_A Module_B

Data I/FModule_A Module_B

Figure 3 OBCE software modules interfaces.

The first one is end-to-end, with direct passage of data, while the second one relies on additional
classes, namely Data Interfaces, that provide more complete structures specific to GNC states.
The top layer, called Middleware, governs the execution of the Task Modules and provides high-
level operational functionalities and interfaces with the application-specific modules. This layer is
the only one that potentially undergoes localized modifications to adapt the software to different
OS.
At the current development stage, an event-based execution policy is targeted. Referencing the
aforementioned scheme, in red there are the units proposed to manage it, forming the ELAPSE Pol-
icy Manager.
The logic is based on the generation and processing of events. Specifically, a Task Module method
returns an execution status merged with a unique module identifier, constituting the event. Sub-
sequently, this is watched by the Event Handler via a watchdog mechanism and dispatched into
one or a sequence of actions to take. The link between events and actions finds its realization in a
completely customizable and easily expandable Look-Up Table (LUT), reported in Listing 1, that
provides reactive execution paths without affecting transition latency.

Listing 1 Example of Look-Up-Table Event-Handler.

TasksEnum i LUT EVENT DISPATCHER [ 8 ] [ 7 ]

= {{ABORT, EXADCU, EXNPU, EXNPU, EXDIRGCU, EXINDGCU, EXADCU} ,

{ABORT, IDLE , EXNPU, EXNPU, EXNPU, EXADCU, EXDIRGCU} ,

{ABORT, EXDIRGCU, EXNPU, EXADCU, IDLE , STOP , NONE} ,

{ABORT, EXTCU, EXADCU, EXNPU, IDLE , STOP , NONE} ,

{ABORT, EXADCU, EXADCU, EXDIRGCU, IDLE , INIT , NONE} ,

{ABORT, EXNPU, IDLE , RECOVER, STOP , NONE, NONE} ,

With a view to the implementation of a goal-oriented policy, the Planner is implemented as a

class that deliberately modifies the policy, that is adapting the execution of tasks by reasoning on a

goal.25 At the current development stage, only the baseline structure of this element is included in

the architecture. The second group of units dwelling the Middleware is the Scheduler-Executor tan-

dem, inspired by the aforementioned MEXEC architecture10 and implementing the Multi-threading

paradigm. The first actor exploits the real-time utilities proper of a real-time OS to schedule the ac-

tions provided by the Event-Handler. This is achieved by the use of action priorities and queues built

accordingly. Subsequently, the executor is preempted to process the actions on a First-In-First-Out

basis related to the queue just updated. The Executor calls the methods mapped from the actions

specifying the type of thread to be created. This principle enables high flexibility in multi-threaded

and multi-core systems that can potentially run some tasks in parallel or non-synchronized mode.



The last element of the Layer is the Time Supervisor, belonging to the task modules category. Its

role is crucial not only in maintaining the synchronization between the ELAPSE and the rest of

the hardware and the SPESI propagator but also in obeying the simulation accelerating framework

proper of EXTREMA.4, 18 The GNC algorithms and all the other FlatSat algorithmic functionalities

are hosted inside the Application Layer as Task Modules. Specifically, the Navigation Processing

Unit (NPU) wraps the optical navigation algorithm that takes a deep-space image as input and es-

timates the spacecraft state thanks to the identification of stars and planets.5 The Guidance and

Control Unit (GCU) follows, which computes the trajectory for the spacecraft to follow to reach

the final target and the corresponding thrust commands.26 The Thurst Control Unit (TCU), post-

processes the thrust commands and organizes the queue to be sent to the thruster test bench. Finally,

the Attitude Determination and Control Unit manages the attitude guidance and supervises the state

of the ADCU hardware. The NPU and GCU are designed by following the automatic code genera-

tion framework, consisting of the creation of C/C++ source code from the original code developed in

MATLAB, via the MATLAB Embedded Coder *. This ensures agile development and integration of

the EXTREMA Pillars at an acknowledged cost of slightly less efficient implementations. Figure 4

provides an illustrative example of the Continuous Integration (CI) workflow of the algorithms.

Application Layer

PillarUnit

+Run()

PillarWrapper()

ELAPSE Deployment

Unit Testing
Compilation

MATLAB Coder

Source Code

Source Code

ode

Figure 4 Continuous integration scheme for the automatically coded GNC algorithms.

Finally, the Hardware Driver Layer hosts the rules and interfaces to communicate with the ESH

hardware units to receive and send data, commands, and telemetry via wireless or cable connections.

The requirement of a data exchange format suitable for resource-constrained embedded systems and

with the least latency is paramount to minimize communication delays and to target a uniform real-

time infrastructure. To this purpose, Protocol Buffers (ProtoBuf)† are employed as proved to be

more efficient than other formats.27 Source ProtoBuf code directly flows from the message inter-

*https://mathworks.com/products/embedded-coder.html [last visited January 25, 2024]
†https://github.com/protocolbuffers/protobuf [last visited January 25, 2024]



face requirements defined, and the C code to include in the main software is obtained by exploiting

the generator from Nanopb * library, an embedded systems-oriented C implementation of the proto-

col. During the simulations, the exchange of messages between devices is performed by exploiting

the low-latency User Datagram Protocol (UDP) and message compression. Furthermore, the Mid-

dleware Layer has been conceived as the connector to the OS which provides functionalities and

interfaces with the processor. This approach differs from a so-called bare-metal deployment where

the software includes the lowest-level functionalities.

Normally, embedded systems like the FlatSat OBC, are required to run applications with dead-

lines to respect, therefore, Real-Time Operative Systems (RTOS) are mainly considered. One of the

most popular open-source RTOS is FreeRTOS, originally design for Internet-of-Things applications

and therefore communication-oriented.28 An alternative is RTEMS†, that for instance is used on the

LEON3 processor, which is the core element of various space on-board computers.29 It is not rare to

find the use of a more general OS, such as Linux, because of the customization and support that they

offer. This benefit is normally paid with more resources the system requires to run. IN ELAPSE,

the OBCE core software is a C/C++ Linux application. Moreover, the base kernel is aided with a

PREEMPT-RT Linux patch to include pthread library for real-time routines.

It is finally important to mention that the whole architecture targets a static memory allocation

philosophy. Where this is not purely achievable, the elements are anyway stored in a bounded

scheme. Consequently, the upper bound of memory required by the system is known at compilation

time, a fundamental prerequisite for embedded software.30

Attitude Determination and Control Unit

The ADCU software is a C++ FreeRTOS application that runs the attitude determination and

control tasks. A dual loop scheme with frequencies in fixed ratios, schematized in Figure 5, is em-

ployed. The first loop runs the attitude estimation algorithm, while the second loop executes the

attitude control action. Both cycles are designed such that the inclusion of sub-modules designed

with the same principles of the OBCE can be included. The unit directly interfaces with the STASIS

platform to send attitude control commands and to process the angular rate data sensed by an on-

board gyroscope. Moreover, the entire unit connects with the OBCE such that the latter can read the

ADCU status and manage the attitude data exchange. Nonetheless, the unit can be used atomically

to integrate and compare different control and determination algorithms and hardware drivers.
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Figure 5 ADCU software architecture.

*https://github.com/nanopb/nanopb [last visited January 25, 2024]
†https://www.rtems.org/ [last visited January 25, 2024]



The cooperation between the two subsystems results in the modes scheme reported in Figure 6.

As can be seen, the ADCU modes are hierarchical to the general OBCE GNC modes. Addition-

ally, transitions are also reported, among their types. However, as introduced before, the current

implementation inside the OBCE limits all autonomy levels to an event-based one, that is E3.

Figure 6 FlatSat OBCE and ADCU modes.

EMBEDDED COMPUTING HARDWARE

The achievement of spacecraft autonomy mandates the development of complex software and

consequently requires its deployment on sufficiently high-performance hardware. Nevertheless,

deep-space missions, particularly CubeSats, are marked by constrained on-board power, leading to

limitations in computing resources. Therefore, a pivotal aspect in the advancement of autonomous

GNC algorithms and technology involves ground testing on hardware that accurately emulates on-

board characteristics. Hence, the integration of processing systems that faithfully replicate the em-

bedded flight hardware of autonomous systems assumes paramount importance. In this context, the

ELAPSE software is augmented by two hosting processing boards designed to fulfill two primary

objectives. Firstly, to provide a cost-effective embedded system with restricted computing resources

for certifying algorithm maturity. Secondly, to furnish a potent and modular testing platform suitable

for diverse validation and verification procedures, capable of executing extensive simulations. Ta-

ble 2 collects some technical data of processing units currently available for space applications. The

products are all based on System-On-Chip (SoC) technology, embodying an integrated electronic

device encapsulating diverse components onto a single package. An emerging and well-received

configuration entails the integration of a multi-core processing system with Field Programmable

Gate Array (FPGA) logic, resulting in a power-efficient and reconfigurable system.31

*https://kplabs.space/leopard/[last accessed January 25, 2024]
†https://xiphos.com/product-details/q7 [last accessed January 25, 2024]
‡https://www.satcatalog.com/component/cfc-300/ [last accessed January 25, 2024]



Table 2 Components-Off-the-Shelf spacecraft Data Processing Units.

Board Vendor Processor

Leopard DPU* KPLabs Quad-Core ARM Cortex-A53 1.5GHz

Q7† Xiphos Technologies Dual-Core ARM Cortex-A9 766MHz

CFC-300‡ Innoflight Dual-Core ARM Cortex-A9 767MHz

Sirius§ AAC Clyde Space Quad-Core LEON4 250MHz

CHP-OBC¶ C3S Quad-Core ARM Cortex-A9 850MHz

NanoMind MK3|| GOMSpace Dual-Core ARM Cortex-A9 850MHz

However, the utilization of evaluation boards often incurs significant costs, and the associated

learning curve is steep. Therefore, as the primary option, the OBCE operates on a Raspberry Pi

4B board**. This board, featuring a quad-core ARM processor operating at 1.5GHz and 4GB of

Random Access Memory (RAM), is characterized by substantial community support and a straight-

forward setup. Despite generally exhibiting higher performance than the boards commonly available

for deep-space CubeSats and the ones presented, the Raspberry Pi effectively serves as an initial rep-

resentation of embedded hardware, enhancing the agility of software development and expediting

integration within the simulation set-up, as proven by other studies.32 Additionally, as the baseboard

does not include one, it is aided with an external Real-Time Clock (RTC) to precisely keep track of

the time.

The ADCU is characterized by a lower computational cost, yet it necessitates meeting stricter

real-time deadline constraints to effectively command the attitude hardware. Moreover, the adoption

of a second separate board aligns with a modular design philosophy, providing the flexibility to

independently update the hardware of the two boards and conduct separate tests. Hence, low-

power microcontrollers with modest performance that guarantee adherence to real-time deadlines

are preferred. The initial ADCU prototype was implemented on a cost-effective, low-power ESP32

microcontroller††, interfaced with the OBCE board through the Serial Peripheral Interface (SPI)

protocol to minimize data transfer latency. This configuration was employed for testing the interface

and subsequently connecting to the gyroscope measuring the angular rate of STASIS platform. A

more representative processor was later introduced, specifically a 32-bit Cortex-M4 MPU from

the STM32MP157D-DK1‡‡ board. This 209MHz processor is equipped with a single-precision

Floating Point Unit (FPU) and features hard real-time interrupts.

§https://www.aac-clyde.space/what-we-do/space-products-components/command-data-handling/sirius-quadcore [last

accessed January 25, 2024]
¶https://c3s.hu/wp-content/uploads/2022/01/C3S OBC datasheet.pdf [last accessed January 25, 2024]
||https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-hp-mk3-(1).aspx [last accessed Jan-

uary 25, 2024]
**https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ [last visited January 25, 2024]
††https://www.espressif.com/en/products/socs/esp32 [last accessed January 25, 2024]
‡‡https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html [last accessed January 25, 2024]



TESTING CAPABILITIES

As previously introduced, a pivotal functionality of the FlatSat OBC lies in evaluating GNC al-

gorithms to certify their maturity for onboard deployment through a comprehensive verification and

validation process. In this trajectory, an incremental approach envisions the utilization of PIL and

HIL testing. Typically, this process demands an external set of tools for setup. However, ELAPSE

facilitates rapid and continuous testing by incorporating this capability into its implementation. In

the following sections, two illustrative examples related to the EXTREMA Pillars I and II testing

demonstrate this capability. Figure 7 delineates a comprehensive scheme to set up and perform a

PIL simulation employing ELAPSE, emphasizing that, aside from simulation or profiling directives

provided as configuration files, the effort is constrained to implementing test runners external to the

OBCE and compilation-dependent modules directly within the main software as methods of classes.

Output logs

Code
Instrumentation

Profiling 
directives

Instrumented
executable

Profiling

Pillars CI
Pipeline

ELAPSE Deployment

Compilation for profiling

Output logsOutput logs

Figure 7 GNC Pillars algorithms profiling general workflow.

Furthermore, the Raspberry Pi 4B multi-core architecture allows for one or multiple cores re-

served to run the algorithm under testing and limiting the disturbance of the OS at the minimum.

The rationale supporting this approach is rooted in the ability to test the algorithms independently,

either in isolation from the OBCE Middleware Layer or by incorporating its functionalities. This

is achieved by introducing testing execution modes and compilation preprocessor directives. The

latter’s role is to provide alternative Run methods to the Task Modules that substitute the base ones

to provide optimized and contained testing software.

Furthermore, conducting in-depth profiling necessitates code instrumentation, potentially impact-

ing runtime performance. Consequently, the testing software can be additionally built with different

compilation options depending on the type of computational resources measurements required to be

tested. All these settings are governed at a high level by a set of scripts, contributing to enabling a

systematic and automated approach.

Processor–In–the–Loop simulations

The first pillar of EXTREMA results in a navigation filter that estimates the spacecraft state by

processing the deep-space images and detecting the presence of planets, in a way that remembers

object triangulation.5



Monte Carlo simulations are exploited to validate the optical navigation filter against different

images and mission scenarios. Specifically, the trajectory of deep-space scenes is combined with

the time series of the NPU operative modes, simulating the optical measurement availability and the

duty cycles of an interplanetary cruise.

The PIL workflow adopted is schematically depicted in Figure 8. In detail, two packages are pro-

vided to the board. One contains the code generated by the MATLAB Coder, while the other the

simulation settings and data to be stored. Mock functions and testing execution paths are created

by the developer and the compilation of the software is performed. Once the simulations are started

by the aforementioned scripts, every time the camera acquisition is expected, the image is loaded

into the Random Access Memory (RAM) to be processed. At the end of the analysis, reports are

generated on the board, compressed, and sent back to the host computer to be post-processed.

Monte Carlo
Execution Policy

Monte Carlo
Settings

Simulation artifacts

Deep-Space Images

Pillars CI
Pipeline

ELAPSE Deployment

Compilation for PIL

Post processing
Middleware Layer

i_LUT_EVENT_DISPATCHER

Figure 8 Navigation Processing Unit Monte Carlo simulations workflow.

Processor–In–the–Loop profiling

As previously mentioned, measuring the computational resources of an algorithm in the scenarios

it is supposed to be employed is paramount. Thanks to the straightforward exploitation of external

operations and memory profiling tools, fully compatible with the OS of the Raspberry Pi 4B board

of ELAPSE, such as Valgrind* and GNU gprof†, the aforementioned objective can be achieved.

Specifically, Valgrind is used to profile the static, or Stack, and dynamic, or Heap, memory usage,

while gprof provides CPU cycles and Instructions estimates.

An in-depth analysis of the time and memory resources consumed by the convex optimization-

based guidance algorithm from the EXTREMA Pillar II33 was performed. Being a direct method,

the algorithm resources strongly depend on the number of discretization nodes and the number of

*https://valgrind.org/ [last visited January 25, 2024]
†https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html mono/gprof.html [last visited January 25, 2024]



iterations performed. Therefore, characterizing it by profiling it given different scenarios in input

is paramount to validate its embedded implementation feasibility and possibly identify areas for

improvement.

The workflow previously presented in Figure 7 is followed. A short C++ analysis runner program

atomically calls the algorithm such that the overhead of external functions is minimized. Moreover,

once the C-sources are generated from the MATLAB code, different compilation options are used

to automatically tailor the build to the different profiling analyses. Furthermore, the same policy

of processor core reservation used for the first Pillar is employed. Here reported are the results

obtained using a batch of 165 scenarios selected from the Zenodo EXTREMA trajectory dataset.34

The automatic analysis of reports identifies a predominant use of the Heap over the Stack memory.

More in detail, the Heap memory allocation, registered in terms of peaks, is reported in Figure 9 as

a function of the number of nodes employed.

Figure 9 Heap memory peak allocations profiling results.

Furthermore, Figure 10 depicts the CPU time in terms of the number of discretization nodes,

showing a quasi-linear dependence. These results are significant as they allow agile and continuous

testing of the algorithms that therefore are already deployed on embedded hardware.

Figure 10 CPU time profiling results.



Hardware–In–the–Loop simulations

The HIL simulation framework represents the last testing stage. The OBCE Hardware Layer

contains the Drivers to interface with the different test benches of the ESH. Open-loop simulations

are possible by augmenting the baseline ELAPSE system with a monitoring infrastructure and a

communication network that synchronizes the events between the different entities involved in the

simulation.

Figure 11 schematizes a demonstration of the event-based paradigm of ELAPSE during an open-

loop simulation. Specifically, it focuses on the nominal sequence of interactions and actions during a

navigation-guidance duty cycle, considering the interplanetary cruise of an autonomous spacecraft.

OBCE

SPESI

RETINA

...

GCU

ETHILE

NPU
Thrust

EL
AP
SE

ADCU

NPU
Image

NPU
Image

NPU
Slew

Figure 11 Open-loop HIL events timeline.

The environment numerical propagator SPESI triggers the start point such that the spacecraft pro-

cessing core and the simulated world are initially synchronized. The transitions between operational

phases rely on the reactive policy previously described. In this case, a navigation window with the

subsequent observation of two planets is followed by the recomputation of the reference trajectory

to reach the final target. The FlatSat OBCE makes a periodic real-time request of the deep-space

image to RETINA, the optical facility, and subsequently receives the image taken by the camera.

Moreover, upon that request, the ADCU informs the OBCE of the pointing status. Therefore, the

latter can pause the optical measurements acquisition and change the NPU operative mode when the

attitude falls outside the required pointing requirements. When made available, thrust commands

are dispatched to the thruster test bench ETHILE for commissioning, and the pointing trajectory is

transferred to ADCU.

Finally, Figure 12 shows a snapshot of the low-level monitoring panel belonging to the control and

supervision of ELAPSE. Current software modes and status of operations, and Pillars algorithms

results, are printed such that the GNC software procedures can be validated and analyzed in more

depth.

CONCLUSION

This work presented the software-hardware architecture of the EXTREMA FlatSat processing

system ELAPSE. The computing unit, providing highly modular embedded software, is paramount

in integrating, validating, and verifying autonomous GNC algorithms and leveraging closed-loop

guidance HIL simulations. Specifically, the system combines flight software that enables the agile



Figure 12 ELAPSE monitoring panel during an open-loop HIL simulation.

integration of autonomous algorithms with a framework fostering their testing on embedded proces-

sors. The peculiarity of the system elements is highlighted as playing a major role in improving the

development and testing of the algorithms. To best represent the typical limited CubeSats onboard

computational conditions, the software is deployed on embedded processors serving as prototypes

for the future adoption of SoC reconfigurable computing technology. Finally, the work demon-

strates, via two examples regarding optical navigation and onboard guidance, that the system can

methodically perform both PIL and HIL simulations. Furthermore, reactive sequencing of oper-

ations achieved by ELAPSE during open-loop simulation is reported as illustrative of its testing

capabilities and event-based autonomy, the first step to target goal-oriented autonomy.
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