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Abstract
In the literature on slice analysis in the hypercomplex setting, there are two main
approaches to define slice regular functions in one variable: one consists in requiring
that the restriction to any complex plane is holomorphic (with the same complex
structure of the complex plane), the second one makes use of stem and slice functions.
So far, in the setting of several hypercomplex variables, only the second approach has
been considered, i.e. the one based on stem functions. In this paper, we use instead
the first definition on the so-called n-dimensional quadratic cone of octonions. These
two approaches yield the same class of slice regular functions on axially symmetric
slice-domains, however, they are different on other types of domains. We call this
new class of functions weak slice regular. We show that there exist weak slice regular
functions which are not slice regular in the second approach. Moreover, we study
various properties of these functions, including a Taylor expansion.
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1 Introduction

The theory of slice regular functions, also called slicemonogenic or hyperholomorphic
has considerably evolved, see [11,13,19], since these functions were first introduced
by Gentili and Struppa in [20,21]. The function theory had in fact older roots, see e.g.
the work of Cullen [14], but it became a full function theory only recently. The study
started for quaternionic functions and treating converging power series centered at the
origin, but it was soon realized that the definition in [20,21] allowed to treat a general
theory of these functions. The study was then generalized to the case of functions
with values in a Clifford algebra see [9,10], and to octonions [22]. Roughly speaking,
according to [20], a function is slice regular if it is holomorphic on each slice complex
plane CI for any imaginary unit I of quaternions. It turns out that many properties of
holomorphic functions in complex analysis can be generalized to this framework.

The function theory had a great impulse since it was soon realized that it allowed to
define a functional calculus for quaternionic linear operators and for m-tuples of not
necessarily commuting operators, see [11] and references therein, and it leads to the
definition of the S-spectrum. It has also applications in Schur analysis [1,2], twistor
transforms [18], and operator theory [2–4,26].

A crucial tool in this type of analysis is the so-called representation formula, see
[7,8], and then [5] (for a version of the formula on semi-slices). This formula implies
that all slice regular functions on open sets satisfying additional conditions.

The approach using slice functions and stems functions (notions which go back
to Fueter [17]) was considered by Ghiloni and Perotti in [23] in the very general
framework of real alternative algebras, which includes all the previous cases, i.e.
quaternions, Clifford algebras, octonions. The function theory so defined coincides
with the previous one on some special open sets, as we shall see in Sect. 3.

We note that there is a third approach to slice hyperholomorphic functions using a
global operator, see [6], but we will not use this point of view in the present paper.

Soon after the introduction of the function theory of slice regular functions in one
variable, started the study in several variables, and it was immediately clear that the sit-
uation was considerably more difficult. In the papers [12,24], the problem is addressed
following two different methods, but both based on stem functions. The first paper
considers the quaternionic case, whereas the second one treats the Clifford variable
case. In this stream of ideas, Ren and Yang [28] define slice regular functions on the
n-dimensional quadratic cone of octonions O

n
s , whereas the case of two quaternionic

variables is treated in [16].
In [25], Ghiloni and Perotti define yet another kind of slice regular functions on

(QA)n , where A is a real alternative ∗-algebra; if A = O, then (QA)n = O
n , but this

class of functions is different from the one introduced by Ren and Yang [28].
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In this paper, we generalize some ideas in [15], where we introduce the slice-
topology in the space of quaternions, and we generalize it to the n-dimensional
quadratic cone O

n
s of octonions. This topology allows us to introduce a notion, that

we call weak slice regularity on O
n
s . Functions weak slice regular turn out to be a

generalization of the slice regular functions defined in [28], which are called strong
slice regular in this paper. Note that in one variable, weak slice regular functions coin-
cide with the functions introduced by Gentili and Struppa, while strong slice regular
functions coincide with those introduced by Ghiloni and Perotti. Strong slice regular
functions can be generalized to both O

n and O
n
s , while weak slice functions can be

easily generalized to O
n
s , but how to define them on O

n is an open question.
The theory of weak slice regular functions is heavily based on the validity of the

representation formula, which is also the main tool for the extension of complex
analysis to what is nowadays called slice analysis.

As we pointed out, we will work on the n-dimensional quadratic cone of octonions
O

n
s which is defined by

O
n
s =

⋃

I∈S
C
n
I ,

where C
n
I = (CI )

n , I ∈ O such that I 2 = −1. Note that since

O
n =

⋃

(I1,...,In)∈Sn
CI1 × CI2 × · · · × CIn ,

and the involved complex structures I1, . . . , In are non commutative, it is a problem
to provide a suitable definition of holomorphy on the slice CI1 × CI2 × · · · × CIn .

Moreover, strong slice regular functions in one variable are slice functions, and this
fact makes it easier to generalize the notion to higher dimensions, see [12,16,24,28].

Ren and Yang [28] defined the strong slice regular functions on the n-dimensional
quadratic cone of octonions O

n
s . Since the slice-structure on O

n
s reflects the one of O,

many properties in complex analysis of several variables can be generalized to slice
analysis on O

n
s using the property of being a slice function. As we already noted,

unfortunately the slice analysis on O
n cannot be treated in this way. In contrast, weak

slice regular functions in one variable are not necessarily of slice type, and they may
be defined on not necessarily axially symmetric slice-domains, see [16].

In [25], Ghiloni and Perotti define another kind of strong slice regular functions
on the quadratic cone (QA)n , where A is a real alternative ∗-algebra (if choose A =
O, then (QA)n = O

n). The restrictions of their functions on O
n
s are different from

the functions introduced by Ren and Yang. Furthermore, the definition domain � of
Ghiloni and Perotti’s functions require stronger symmetric conditions.

In this paper we will consider weak slice regular functions on the n-dimensional
quadratic cone of octonionsO

n
s . This class of functions allows to considermore general

situations. For example, we will show in the last section that the function f (x) = √
x1

can be extended to a weak slice regular on the slice-domain � defined by (9.1). How-
ever, according to Proposition 9.1, f cannot be extended to � as a strong slice regular
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function. We shall show, see Remark 5.3, that each strong slice regular extension is
weak slice regular, but the converse does not hold, in general. We prove that these two
classes of functions coincide on axially symmetric domains in the slice-topology.

The structure of this paper is as follows. In Sect. 2, we recall some basic concepts,
also following [28]. In Sect. 3, we generalize slice functions on axially symmetric open
sets to any subset inO

n
s . We give the definition of slice function, including a version of

the representation formula; see Proposition 3.3. In Sect. 4, we introduce strong slice
regular functions. In Sect. 5, we define the slice-topology on O

n
s and the notion of

weak slice regular functions on open sets in the slice-topology τs . Moreover, we prove
a splitting lemma for these functions. We also show that strong slice regular functions
are weak slice regular on axially symmetric open sets in τs . In Sect. 6, we study in
detail the properties of the slice-topology on O

n
s and we prove an identity principle for

weak slice regular functions and for strong slice regular functions on axially symmetric
domains in τs . In Sect. 7, we prove that the notion of weak slice regular and strong
slice regular functions are equivalent on axially symmetric domains in τs . We also
give two representation formulas for weak slice regular functions. Section 8 discusses
the Taylor expansion in our framework. Finally, Sect. 9 contains an example of a weak
slice regular function which is not (and cannot be extended to) a strong slice regular
function.

2 Preliminaries

In this section, we recall some well known material on octonions, see [29], and some
basic definitions in octonionic slice analysis [28].

The algebra of octonions O is a real, alternative, division algebra which is non-
commutative and non-associative. It can be generated from the algebra of quaternions
H by the Cayley-Dickson process.

As a real vector space, it is isomorphic to R
8, and can be equipped with a basis

e0 = 1, e1, . . . , e7.
The multiplication rules between elements in the basis {e0, e1, . . . , e7} are defined

by the relations

ei e j = −δi j + εi jkek, ∀ i, j, k ∈ {1, 2, . . . , 7}.

Here δi j is the Kronecker symbol and

εi jk =
{

(−1)σ(π) if (i, j, k) ∈ π(�),

0 otherwise.

where π is a permutation, σ(π) its sign, and

� = {(1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 4, 7), (5, 3, 6), (6, 1, 7), (7, 2, 5)}.
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11316 X. Dou et al.

The sphere S of imaginary units of octonions O is defined by

S := {I ∈ O : I 2 = −1}.

An element I ∈ S belongs to the set of purely imaginary octonions namely octonions
of the form

∑7
	=1 x	e	, x	 ∈ R.

For each I ∈ S we denote by CI the complex plane whose imaginary unit is I and
setting x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R

n , we write

x + y I := (x1 + y1 I , x2 + y2 I , . . . , xn + yn I ), x	 + I y	 ∈ CI , 	 = 1, . . . , n.

Definition 2.1 The n-dimensional quadratic cone in O
n is defined by

O
n
s :=

⋃

I∈S
C
n
I

where

C
n
I := {x + y I : x, y ∈ R

n}

is called a slice (cartesian product of n complex planes) of O
n
s .

The topology τ of O
n
s will be the subspace topology induced by the Euclidean

topology of O
n . For each � ⊂ O

n
s and I ∈ S, we set

�I := � ∩ C
n
I

and we call it the I -slice (or a slice) of �.
It is immediate to check that

C
n
I ∩ C

n
J = R

n, ∀ I , J ∈ S with I �= ±J .

Definition 2.2 A set � ⊂ O
n
s is called axially symmetric if for each x, y ∈ R

n and
I ∈ S with x + y I ∈ �,

x + yS ⊂ �,

where x + yS := {x + y J ∈ O
n
s : x, y ∈ R

n and J ∈ S}.

3 Slice Functions

In [28], a class of slice regular functions is defined on the n-dimensional quadratic cone
of octonions by slice functions and corresponding stem functions, following the slice
analysis on real alternative ∗-algebras, see [23]. This technique plays a fundamental
role in slice analysis in one variable and was used recently in the octonionic case in a
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newway, connecting slice analysis with quaternionic analysis, see [27]. In this section,
we will generalize the slice functions defined in [28].

Wewill use stem functions definedon the upper half complex planeC
+ := {x+yi ∈

C : y ≥ 0} identified with R × R+, where R+ := [0,∞). With this choice, we avoid
to impose additional hypothesis on the domain and on the functions, in order to have
well posedness. Morever, we need to extend the notion of upper half plane to C

n . To
this end, we introduce the next definition.

Definition 3.1 Given x, y ∈ R
n , we say that (x, y) ∈ R

2n is positive if y1 > 0 or there
is m ∈ {2, . . . , n} such that ym > 0 and y	 = 0 for all 1 ≤ 	 < m. We say that the set

R
2n+ := {(x, y) ∈ R

2n : (x, y) is positive or y = 0 ∈ R
n}

is the upper half-plane in R
2n .

Let us set

R
2n− := {(x, y) ∈ R

2n : (x,−y) ∈ R
2n+ }.

Then it is immediate that

R
2n+ ∪ R

2n− = R
2n and R

2n+ ∩ R
2n− = R

n × {0}.

In the sequel we will make use of the following useful notations: for any � ⊂ O
n
s ,

define

�s1 := {(x, y) ∈ R
2n : ∃ I ∈ S s.t . x + y I ∈ �},

�s2 := {(x, y) ∈ R
2n : ∃ J , K ∈ S s.t . x + y J , x + yK ∈ �},

�+
s1 := �s1 ∩ R

2n+ and �+
s2 := �s2 ∩ R

2n+ .

We now define the slice functions in our setting:

Definition 3.2 Let � ⊂ O
n
s . A function f : � → O is called slice function if there is

F : �+
s2 → O

2×1 such that

f (x + y I ) = (1, I )F(x, y) (3.1)

for any (x, y) ∈ �+
s2 and any I ∈ S with x + y I ∈ �.

In the paper [15] the equality (J − K )−1K = −K (J − K )−1, where J , K are
quaternions, is used in the proof of a general representation formula. We now replace
the imaginary units J , K by the left multiplication operators L J , LK acting on O and
we get the following equality:

(L J − LK )−1L J = −LK (L J − LK )−1, ∀ J , K ∈ S with J �= K , (3.2)
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where

L I : O → O, o �→ I o, ∀ o ∈ O.

The validity of (3.2) follows from

L I ◦ L I = −1, ∀ I ∈ S,

where 1 denotes here, and in the sequel, the identity map of O.
It is easy to check that the following equality holds by (3.2)

(
1 L J

1 LK

)−1

=
(

(L J − LK )−1L J (LK − L J )
−1LK

(L J − LK )−1 (LK − L J )
−1

)
, (3.3)

for each J , K ∈ S with J �= K .
In the next resultwe prove some equivalent statements characterizing slice functions

following the ideas in quaternionic slice analysis, see [15].

Proposition 3.3 Let � ⊂ O
n
s and f : � → O. Then the following statements are

equivalent:

(i) f is a slice function.
(ii) (Stem function form) There is F : �s1 → O

2×1 such that

f (x + y I ) = (1, I )F(x, y) (3.4)

for each (x, y) ∈ �s1 and I ∈ S with x + y I ∈ �.
(iii) (Matrix form) For each (x, y) ∈ R

2n and I , J , K ∈ S with J �= K and x +
y I , x + y J , x + yK ∈ �,

f (x + y I ) = (1, L I )

(
1 L J

1 LK

)−1 ( f (x + y J )

f (x + yK )

)
. (3.5)

(iv) (Linear form for I ) For each (x, y) ∈ R
2n and I , J , K ∈ S with J �= K and

x + y I , x + y J , x + yK ∈ �,

f (x + y I ) = (J − K )−1[J f (x + y J ) − K f (x + yK )]
+ I {(J − K )−1[ f (x + y J ) − f (x + yK )]}. (3.6)

(v) (Linear from for f ) For each (x, y) ∈ R
2n and I , J , K ∈ S with J �= K and

x + y I , x + y J , x + yK ∈ �,

f (x + y I ) = (I − K )[(J − K )−1 f (x + y J )]
+(I − J )[(K − J )−1 f (x + yK )]. (3.7)
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Proof This proof exploits ideas in [15]. The fact that statements (3.5), (3.6) and (3.7)
are equivalent follows by (3.2) and (3.3). Then (iii), (iv) and (v) are also equivalent
since they are basically a rewriting one of the others. We prove the equivalence of the
remaining assertions.

(i)⇒(ii). Suppose that f is a slice function. Then, there is a function G =
(G1,G2)

T : �+
s2 → O

2×1 such that

f (x + y I ) = (1, I )G(x, y)

for any (x, y) ∈ R
2n+ and I ∈ S with x + y I ∈ �.

We define the function F : �s1 → O
2×1 by

F(x, y) :=
⎧
⎨

⎩

(G1,G2)
T (x, y), (x, y) ∈ �+

s2 ,

(G1,−G2)
T (x,−y), (x, y) ∈ �−

s2 with y �= 0,
( f (x + y Ix,y), 0)T , (x, y) ∈ �s1\�s2 ,

Direct computations show that F satisfies (3.4), where Ix,y is the unique imaginary
unit I ∈ S such that x + y I ∈ �. It follows that (ii) holds.

(ii)⇒(iii). Suppose that f satisfies (ii) and consider any (x, y) ∈ R
2n and I , J , K ∈

S with J �= K and x + y J , x + y J , x + yK ∈ �. Then (3.4) gives

(
f (x + y J )

f (x + yK )

)
=

(
1 L J

1 LK

)
F(x, y),

from which we have

F(x, y) =
(
1 L J

1 LK

)−1 ( f (x + y J )

f (x + yK )

)
. (3.8)

Then (3.5) follows directly from (3.4) and (3.8), so that (iii) holds.
(iii)⇒(i). Suppose that f satisfies (iii). For any (x, y) ∈ �s2 , by the axiomof choice,

there is (Jx,y, Kx,y) ∈ S with Jx,y �= Kx,y such that x + y Jx,y, x + yKx,y ∈ �. The
function F : �s2 → O

2×1 defined by

F(x, y) :=
(
1 L Jx,y
1 LKx,y

)−1 (
f (x + y Jx,y)
f (x + yKx,y)

)
, ∀ (x, y) ∈ �s2 ,

satisfies (3.1). Therefore f is a slice function. ��
Definition 3.4 Let � ⊂ O

n
s and f : � → O. The function F : �s1 → O

2×1

satisfying (3.4) is called stem function.

Remark 3.5 The linear forms for I and for f as in (iv), (v) appeared in [5] and [28].

In [28] the authors used a different notion of slice functions starting from functions
defined on open subsets on C

n which are intrinsic and then defining a slice function
as a function induced by an intrinsic one.
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Proposition 3.6 The class of slice functions in Definition 3.2 and the class of slice
functions in [28] are equivalent on axially symmetric domains.

Proof Let � be an axially symmetric domain in O
n
s . In the proof we will make use of

the map

PR : C
n −−−−−→ R

2n,

x + yi �−−−−−→ (x, y).

(i) Suppose f : � → O is a slice function according to the definition in [28]. Then
there is a stem function F : P−1

R
(�s2) → OC such that

f (x + y I ) = F1(x + yi) + IF2(x + yi) (3.9)

for each x, y ∈ R
n and I ∈ S with x + y I ∈ �, whereF1,F2 : P−1

R
(�s2) → O with

F = 1 ⊗ F1 + i ⊗ F2. (3.10)

Then the function F : �+
s2 → O

2×1 defined by

F(x, y) := (F1(x + yi),F2(x + yi))T , ∀ (x, y) ∈ �+
s2 ,

satisfies (3.2), hence f is slice in the sense of Definition 3.2.
(ii) Suppose that f : � → O is slice function according to Definition 3.2. Then

there is a function F = (F1, F2)T : �+
s2 → O

2×1 satisfying (3.1), moreover F :
P−1
R

(�s2) → O
2×1 defined by

F(x + yi) :=
{
1 ⊗ F1(x, y) + i ⊗ F2(x, y), (x, y) ∈ �+

s1 ,

1 ⊗ F1(x,−y) − i ⊗ F2(x,−y), otherwise,
(3.11)

satisfies (3.9), as it can be verified by direct calculations. By (3.11), it is immediate to
check that F is intrinsic, i.e.

F(x − yi) = 1 ⊗ F1(x + yi) − i ⊗ F2(x + yi),

where F1 and F2 are defined by (3.10). Therefore, f is a slice function in the sense
of [28]. ��
Remark 3.7 Note that the slice functions in [28] are defined on axially symmetric
domains in O

n
s , whereas Definition 3.2 allows to consider any subset of O

n
s . Thus

the class of slice functions defined in Definition 3.2 is a generalization of the one
considered in [28].

By [28, Proposition 2.5 and Corollary 2.6] and Proposition 3.6, slice functions
satisfies two representation formulas. These formulas are extended to our case, as
consequences of Proposition 3.3.
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Corollary 3.8 (General Representation Formula, linear form for the functions) Let
� ⊂ O

n
s and f : � → O a slice function. Then

f (x + y I ) = (I − K )[(J − K )−1 f (x + y J )] + (I − J )[(K − J )−1 f (x + yK )].

for each (x, y) ∈ R
2n and I , J , K ∈ Swith J �= K and x + y I , x + y J , x + yK ∈ �.

Proof It follows from Proposition 3.3 (i) and (v). ��
Corollary 3.9 (Representation Formula, linear form for imaginary units) Let � ⊂ O

n
s

and f : � → O a slice function. Then

f (x + y I ) = 1

2
[ f (x + y J ) + f (x − y J )] − I

2
{J [ f (x + y J ) − f (x − y J )]}.

(3.12)

for each (x, y) ∈ R
2n and I , J ∈ S with x + y I , x ± y J ∈ �.

Proof It follows from Corollary 3.8, by setting J = K . ��

4 Strong Slice Regular Functions

We recall that we refer to the notion given in [28] of slice regular functions on axially
symmetric open sets of O

n
s as strong slice regularity. In this section we generalize

strong slice regular functions from axially symmetric open sets of O
n
s to any subsets

of O
n
s .

Definition 4.1 Let V ⊂ R
2n . We say that a function F : V → O

2×1 is holomorphic
if there is an open setU in R

2n and a function G : U → O
2×1 with continuous partial

derivatives such that V ⊂ U , F |V = G|V and

1

2

(
∂

∂xm
+ σ

∂

∂ ym

)
G(x, y) = 0,

for all m ∈ {1, 2, . . . , n} and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n with (x, y) ∈

U , where

σ :=
(
0 −1
1 0

)

is a complex structure on O
2×1 (resp. R

2×1).

Definition 4.2 Let � ⊂ O
n
s . A function f : � → O is called strong slice regular if

there is a holomorphic stem function F : �s1 → O
2×1 of f i.e., there is a holomorphic

F : �s1 → O
2×1 such that

f (x + y I ) = (1, I )F(x, y)
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for any (x, y) ∈ �s1 and any I ∈ S with x + y I ∈ �.

We define holomorphic functions on each slice CI following the definition in com-
plex analysis in the case of vector-valued functions in several variables.

Definition 4.3 Let I ∈ S and � be an open set in C
n
I . A function f : � → O is said

to be holomorphic, if f has continuous partial derivatives and satisfies

1

2

(
∂

∂xm
+ I

∂

∂ ym

)
f (x + y I ) = 0

for all m = 1, 2, . . . , n, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R
n with

x + y I ∈ �.

Proposition 4.4 Let � ⊂ O
n
s , �I = �∩C

n
I and f : � → O be a strong slice regular

function. Then fI := f |�I is holomorphic for any I ∈ S with �I ∈ τ(Cn
I ).

Proof Let F : �s1 → O
2×1 be a holomorphic stem function of f . Since F has

continuous partial derivatives, so is f by (3.4). From the equality

I (1, I ) = (1, I )σ.

and (3.4) it follows that

1

2

(
∂

∂xm
+ I

∂

∂ ym

)
f (x + y I ) = (1, I )

[
1

2

(
∂

∂xm
+ σ

∂

∂ ym

)]
F(x + y I ) = 0

for all m ∈ {1, 2, . . . , n}, (x, y) ∈ �s1 and I ∈ S with x + y I ∈ �. It is clear that f I
is holomorphic. ��

5 Weak Slice Regular Functions

In this section, we generalize the slice-topology on H (see [15]) to O
n
s . Moreover,

we will define another class of slice regular functions that we call weak slice regular,
following the terminology in [15]. This class of functions is defined by imposing the
condition of being holomorphic on each slice CI , I ∈ C, instead of requiring that the
stem functions are holomorphic. As it is well known, these two approaches give, in
general, different classes of functions, unless one imposes additional conditions. The
two classes are same on some axially symmetric sets. We now set

τs(O
n
s ) := {U ⊂ O

n
s : UI ∈ τ(Cn

I ), ∀ I ∈ S}.

It is easy to check that τs is a topology on O
n
s , thus leading to the following:

Definition 5.1 We call τs the slice-topology on O
n
s , where τ(Cn

I ) is the Euclidean
topology on C

n
I .
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In the sequel, open sets, connectedness and paths in the slice-topology are called
slice-open sets, slice-connectedness and slice-paths, respectively, and similarly for
other notions.

Definition 5.2 Let � be a slice-open set in O
n
s . A function f : � → O is called weak

slice regular, if for any I ∈ S, the restriction f I := f |�I is holomorphic.

Remark 5.3 By Proposition 4.4, any strong slice regular functions defined on a slice-
open set is weak slice regular.

Definition 5.4 The set {I , J , K } is called a s-basis of O, if I , J , K ∈ S and

{1, I , J , I J , K , J K , I K , I J K }

is a basis of O as a real algebra.

By decomposing the values of a function using a fixed s-basis, we can prove the
following:

Lemma 5.5 (Splitting Lemma) Let f be a function defined on a slice-open subset �

of O
n
s . Then f is weak slice regular if and only if for any s-basis {I , J , K }, there are

four complex-valued holomorphic functions F1, F2, F3, F4 : �I → CI such that

f I = F1 + F2 J + F3K + F4(J K ).

Proof (i) Suppose that f is weak slice regular. Then for each s-basis {I , J , K }, there
are four complex-valued functions F1, F2, F3, F4 : �I → CI such that

f I = F1 + F2 J + F3K + F4(J K ).

If f is weak slice regular, then

∂I F1 + [
∂I F2

]
J + [

∂I F3
]
K + [

∂I F4
]
(J K )

= ∂I F1 + ∂I [F2 J ] + ∂I [F3K ] + ∂I [F4(J K )] = ∂I f I = 0,

where

∂I :=

⎛

⎜⎜⎜⎝

1
2

(
∂

∂x1
+ I ∂

∂ y1

)

...
1
2

(
∂

∂xn
+ I ∂

∂ yn

)
.

⎞

⎟⎟⎟⎠

Since O = CI ⊕ CI J ⊕ CI K ⊕ CI (J K ), we have

∂I F1 = ∂I F2 = ∂I F3 = ∂I F4 = 0.

It follows that F1, F2, F3, F4 are holomorphic.
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(ii) Suppose that for any s-basis {I , J , K }, there are four complex-valued holo-
morphic functions F1, F2, F3, F4 : �I → CI such that f I := f |�I can be written
as

f I = F1 + F2 J + F3K + F4(J K ).

Then

∂I f I = ∂I F1 + ∂I F2 J + ∂I F3K + ∂I F4(J K ) = 0.

Hence f I is holomorphic for all I ∈ S. It implies that f is weak slice regular. ��

6 Identity Principle

In this section we prove an identity principle for both the weak and strong slice regular
functions. Moreover, we generalize some properties of the slice-topology of H (see
[15]) to O

n
s .

Definition 6.1 Asubset� ofOn
s is called real-connected, if�R := �∩R

n is connected
in R

n .

We note that the subspace topology on R
n induced by τs coincides with the

Euclidean topology on R
n , and so the notions of slice-connectedness and of con-

nectedness coincide on R
n .

Proposition 6.2 Let � be a slice-open set in O
n
s . Then for any q ∈ �, there is a

real-connected slice-domain V ⊂ � containing q.

Proof Let us consider q ∈ � and a set A defined as follows: if q ∈ R
n then A is the

connected component of �R containing q in R
n , otherwise A = ∅. Then the slice-

connected component (�\�R) ∪ A containing q is a real-connected slice-domain in
� containing q. ��
Definition 6.3 A path γ in O

n
s is called on a slice, if γ ⊂ O

n
s ∩ C

n
I for some I ∈ S.

Proposition 6.4 Any path on a slice is a slice-path.

Proof It follows directly from the fact that τs(Cn
I ) = τ(Cn

I ) for any I ∈ S. ��
Proposition 6.5 Let � be a real-connected slice-domain in O

n
s . Then

(i) If �R = ∅, then � ⊂ C
n
I for some I ∈ S.

(ii) If �R �= ∅, then for each q ∈ � and x ∈ �R, there is a slice-path γ on a slice
from q to x.

(iii) For all I ∈ S, �I is a domain in C
n
I .

(iv) For all p, q ∈ �, there exist two slice paths γ1, γ2, each of which on a slice in
�, such that γ1γ2 is a path from p to q.
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Proof (i) Let us assume that �R = ∅. Then for any I ∈ S, Cn
I \R

n is slice-open in O
n
s

and

� ⊂
⊔

I∈S+
(Cn

I \R
n),

where S
+ is a subset of S such that S = S

+ ⊔
(−S

+). By the slice-connectedness of
�, � ⊂ C

n
I \R

n for some I ∈ S.
(ii) For any q ∈ � there is I ∈ S such that q ∈ C

n
I . Set V the connected component

of �I containing q. If VR = ∅, then V and �\V are slice-open, and since � is slice-
connected, it follows that V = � and �R = ∅, which is a contradiction. Therefore,
VR �= ∅. Let now x ∈ �R. Then for any x0 ∈ VR, there is a path α in V from q to x0,
and a path β in�R from x0 to x . It follows that the path composition αβ is a slice-path
on a slice from q to x .

Assertions (iii), (iv) follow directly from (i) and (ii). ��
Proposition 6.6 The topological space (On

s , τs) is connected, locally path-connected
and path-connected.

Proof Propositions 6.2 and 6.5 (iv) imply that (On
s , τs) is locally path-connected. Since

O
n
s ∩ C

n
I = C

n
I ⊃ R

n, ∀ I ∈ S,

it is clear that (On
s , τs) is path-connected and connected. ��

Lemma 6.7 Let � be a real-connected slice-domain in O
n
s and f , g be two weak slice

regular functions on �. If f and g coincide on a nonempty open subset of �I (or �R)
for some I ∈ S, then f = g on �.

Proof We begin by observing that Proposition 6.5 (iii) and the fact that�I �= ∅ imply
that �I is a nonempty domain in C

n
I .

(i) Suppose f and g coincide on an open subset V of �R. Then for any x ∈ V , f
and g have the same Taylor series at x ∈ �R. According to Splitting Lemma 5.5, f
and g have the same Taylor series at x in �I , for any fixed I ∈ S since this is true for
each complex valued components of f and g. Let r ∈ R+ such that BI (x, r) ⊂ �I ,
where BI (x, r) is the ball with center x and radius r in C

n
I . Then

f (I ,α)(x) =
[
1

2

(
∂

∂x1
− I

∂

∂ y1

)]α1

· · ·
[
1

2

(
∂

∂xn
− I

∂

∂ yn

)]αn

f (x)

=
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

f (x) =
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

g(x) = g(I ,α)(x),

where f (I ,α) := ( f |�I )
(I ,α) (the meaning of the symbols ( f |�I )

(I ,α) is clear, but see
Definition 8.1). Hence for any z ∈ BI (x, r),

f (z) =
∑

α∈Nn

1

α! (z − x)α f (I ,α)(x) =
∑

α∈Nn

1

α! (z − x)αg(I ,α)(x) = g(z).
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Therefore f = g on an open set BI (x, r) in �I .
Therefore f and g coincide in �I . Consequently, f = g on � = ⋃

J∈S �J .
(ii) Suppose there is I ∈ S such that f and g coincide on an open subset of �I .

Then f and g coincide on �I . If �R = ∅, then � = �I by Proposition 6.5 (i), hence
this lemma holds in this case. Otherwise �R �= ∅, then the lemma holds by (i). ��

Theorem 6.8 (Identity Principle) Let � be a slice-domain in O
n
s and f , g be weak or

strong slice regular functions on �. If f and g coincide on a nonempty open subset
V of �I (or �R) for some I ∈ S then f = g in �.

Proof (i) Suppose f , g are weak slice regular. Set

A := {x ∈ � : ∃ U ∈ τs(�), s.t. x ∈ U and f = g on U }.

Obviously, A is slice-open in � by definition.
Choose q ∈ V . According to Proposition 6.2, there is a real-connected slice-domain

U containing q with V ⊂ �. By Lemma 6.7, f = g on V . Hence q ∈ A and A is
nonempty.

Choose q ∈ �\A. LetU be a real-connected slice-domain in O
n
s containing q with

U ⊂ �. It is clear that A ∩ U is slice-open in �. If A ∩ U �= ∅, then f = g on
A ∩ U . By Lemma 6.7, f = g on V and q ∈ A, which is a contradiction. Therefore
A ∩ V = ∅ and q is a slice-interior of �\A. It implies that �\A is slice-open, and
since � is slice-connected, A = �. Hence f = g on �.

(ii) Suppose f , g are strong slice regular. ByRemark 5.3, f , g areweak slice regular
and so the assertion holds by (i). ��

7 Representation Formulas for Weak Slice Regular Functions

In this section, we prove that weak slice regular functions defined on axially symmetric
slice-domains are slice functions. Hence they satisfy the representation formulas in
Corollaries 3.8 and 3.9. Moreover, we show that a function defined on an axially
symmetric slice-domain is weak slice regular if and only if it is strong slice regular.

The following result is very simple but crucial in the sequel:

Proposition 7.1 Let� be a nonempty axially symmetric slice-domain. Then�R �= ∅.

Proof It follows from the definition. ��

In the sequel, we shall always assume that � ⊂ O
n
s is nonempty.

Theorem 7.2 Weak slice regular functions defined on axially symmetric slice-domains
are slice functions.

Proof Let � be an axially symmetric slice-domain in O
n
s and let f : � → O be weak

slice regular. Then �R �= ∅, by Proposition 7.1.
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Fix I ∈ S. We can define the functions g[J ] : �J → O, J ∈ S, by

g[J ](x + y J ) = 1

2
[ f (x + y I ) + f (x − y I )] − J

2
{I [ f (x + y I ) − f (x − y I )]},

(7.1)

for any x + y J ∈ �J . Note that for any x ∈ �R we have

g[J ](x) = 1

2
[ f (x) + f (x)] − J

2
{I [ f (x) − f (x)]} = f (x),

and for any x + y J ∈ �

g[−J ](x + y J ) = g[−J ](x + (−y)(−J ))

= 1

2
[ f (x − y I ) + f (x + y I )] − −J

2
{I [ f (x − y I ) − f (x + y I )]}

= 1

2
[ f (x + y I ) + f (x − y I )] − J

2
{I [ f (x + y I ) − f (x − y I )]} = g[J ](x + y J ).

It is clear that there is a function h : � → O such that

h(x + y J ) = g[J ](x + y J ), ∀ x + y J ∈ �. (7.2)

Moreover, (7.1), (7.2) show that the function F : �s1 → O
2×1 defined by

F(u, v) =
⎛

⎝
1
2 [ f (u + v I ) + f (u − v I )]

− 1
2 I [ f (u + v I ) − f (u − v I )]

⎞

⎠ , ∀ (u, v) ∈ �s1 , (7.3)

is a stem function of h so that h is slice.
By direct calculation, for each 	 ∈ {1, 2, . . . , n} and x + y J ∈ �

1

2

(
∂

∂x	

+ J
∂

∂ y	

)
g[J ](x + y J )

= 1

2

(
∂

∂x	

+ J
∂

∂ y	

)(
1

2
[ f (x + y I ) + f (x − y I )] − J

2
{I [ f (x + y I ) − f (x − y I )]}

)

= 1 − J I

4

((
∂

∂x	

+ I
∂

∂ y	

)
f (x + y I )

)
+ 1 + J I

4

((
∂

∂x	

+ (−I )
∂

∂ y	

)
f (x + y(−I ))

)

= 0.

It implies that g[J ] is holomorphic, and so is hJ . Hence h is weak slice regular. Since
h = g[I ] = f on �R, it follows from the Identity Principle 6.8 that f = g on �.
Then f is slice, since g is slice. ��
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Corollary 7.3 (General Representation Formula) Let � be an axially symmetric slice-
domain in O

n
s and f : � → O be a weak slice regular function. Then

f (x + y I ) = (I − K )[(J − K )−1 f (x + y J )] + (I − J )[(K − J )−1 f (x + yK )],
for each (x, y) ∈ R

2n and I , J , K ∈ Swith J �= K and x + y I , x + y J , x + yK ∈ �.

Proof It is an immediate consequence of Corollary 3.8 and Theorem 7.2. ��
Corollary 7.4 (Representation Formula) Let � be an axially symmetric slice-domain
in O

n
s and f : � → O a weak slice regular function. Then

f (x + y I ) = 1

2
[ f (x + y J ) + f (x − y J )] − I

2
{J [ f (x + y J ) − f (x − y J )]},

for each (x, y) ∈ R
2n and I , J ∈ S with x + y I , x ± y J ∈ �.

Proof It is an immediate consequence of Corollary 3.9 and Theorem 7.2 and also a
particular case of Corollary 7.4 when K = −J . ��
Lemma 7.5 Weak slice regular functions defined on axially symmetric slice-domains
are strong slice regular.

Proof Let � be an axially symmetric slice-domain in O
n
s and let f : � → O be a

weak slice-regular with stem function F : �s1 → O
2×1 defined by (7.3). It is clear

by (7.3) that F has continuous partial derivatives.
Let us fix I ∈ S. Using (3.3) we can rewrite (7.3) as

F(x, y) =
(
1 I
1 −I

)−1 ( f (x + y I )
f (x − y I )

)
, ∀ (x, y) ∈ �s1 . (7.4)

Since
(
1 I
1 −I

)
σ =

(
I 0
0 −I

)(
1 I
1 −I

)
, (7.5)

by (7.4) and (7.5), it follows that

1

2

(
∂

∂x	

+ σ
∂

∂ y	

)
F(x, y) =

(
1 I
1 −I

)−1

⎛

⎜⎜⎝

1
2

(
∂

∂x	
+ I ∂

∂ y	

)
f (x + I y)

1
2

(
∂

∂x	
+ (−I ) ∂

∂ y	

)
f (x + (−I )y)

⎞

⎟⎟⎠

(7.6)

for 	 ∈ {1, 2, . . . , n} and x, y ∈ �s1 . Since f is holomorphic on �I (resp. �−I ), F is
holomorphic by (7.6) and we conclude that f is strong slice regular. ��
Theorem 7.6 The class of weak slice regular and strong slice regular functions coin-
cide on axially symmetric slice-domains.

Proof The result follows by Proposition 4.4 and Lemma 7.5. ��
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8 Taylor Series

An important feature of holomorphic functions in several complex variables is the fact
that they can be expanded as Taylor series. A function theory generalizing the one of
holomorphic functions is expected to have this property and in fact, in this section, we
prove that weak slice regular functions admit a Taylor series expansion.

8.1 Slice Derivatives

To start with, we generalize the notion of slice derivative to the case of functions in
several octonionic variables.

Definition 8.1 Let I ∈ S, � be an open set in C
n
I , 	 ∈ {1, . . . , n} and f : � → O be

real differentiable. The (I , 	)-derivative ∂I ,	 f : � → R
2n of f is defined by

∂I ,	 f (x + y I ) := 1

2

(
∂

∂x	

− I
∂

∂ y	

)
f I (x + y I ).

Let α = (α1, . . . , αn) ∈ N
n . We set

f (I ,α) := (∂I ,1)
α1 · · · (∂I ,n)αn f ,

when the right-hand side is defined.

Proposition 8.2 Let I ∈ S, � be an open set in C
n
I , and f : � → O be real differen-

tiable. Then

∂I ,	 f = ∂−I ,	 f , ∀ 	 ∈ {1, . . . , n}.

Moreover, if f is holomorphic, then

∂I ,	 f = ∂

∂x	

f , ∀ 	 ∈ {1, . . . , n}. (8.1)

Proof (i) By direct calculation, for each 	 ∈ {1, . . . , n} and x + y I ∈ �,

∂I ,	 f (x + y I ) = 1

2

(
∂

∂x	

− I
∂

∂ y	

)
f (x + y I )

= 1

2

(
∂

∂x	

− (−I )
∂

∂(−y	)

)
f (x + (−y)(−I ))

= ∂−I ,	 f (x + y I ).

(ii) Suppose that f is holomorphic. Then for each 	 ∈ {1, . . . , n} and x + y I ∈ �,

1

2

(
∂

∂x	

+ I
∂

∂ y	

)
f (x + y I ) = 0.
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It implies that

∂I ,	 f (x + y I ) = ∂

∂x	

f (x + y I ) − 1

2

(
∂

∂x	

+ I
∂

∂ y	

)
f (x + y I ) = ∂

∂x	

f (x + y I ).

��
The set of purely imaginary octonions is denoted by Im(O) and we observe that

Im(O) = {t I ∈ O : t ∈ R, I ∈ S}.

It is easy to check that Im(O) is a 7-dimensional real vector space and that

O
n = R

n ⊕ Im(O)n .

Definition 8.3 (Slice derivatives) Let � be a slice-open set in O
n
s , and f : � → O be

weak slice regular. The 	-slice derivative ∂	 f : � → O of f , where 	 ∈ {1, . . . , d},
is defined by

∂	 f (x + w) = ∂

∂x	

f (x + w),

where x = (x1, . . . , xn) ∈ R
n and w ∈ Im(O)n .

Let α = (α1, . . . , αn) ∈ N
n , we set

f (α) := (∂1)
α1 · · · (∂n)αn f .

Proposition 8.4 Let� be a slice-open set inO
n
s and f : � → O be weak slice regular.

Then for each α ∈ N
n, f (α) is weak slice regular and

(
f (α)

)

I
= ( f I )

(I ,α) , ∀ I ∈ S. (8.2)

Proof The proof is by induction on the length |α| = ∑n
i=1 αi of α. For |α| = 0, it

is clear that f (0) is weak slice regular and (8.2) holds. Suppose that f (β) is weak
slice regular, |β| = m and (8.2) holds when α = β. We shall prove the statement for
multi-indices of lenght m + 1, i.e. we shall prove that for all 	 ∈ {1, . . . , n}, f (β+θ	)

is weak slice regular and (8.2) holds when α = β + θ	, where

θ	 = (
01×(	−1), 1, 01×(n−	)

)
.

Let 	 ∈ {1, . . . , n} and I ∈ S. Since f (β) is weak slice regular,
(
f (β)

)
I is holomor-

phic. By induction hypothesis and (8.1) we deduce that

(
f (β+θ	)

)

I
=

(
∂

∂x	

f (β)

)
=

(
∂

∂x	

( f I )
(I ,β)

)
= ( f I )

(I ,β+θ	)
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is holomorphic. Since the choice of I is arbitrary, it follows that f (β+θ	) is weak slice
regular and (8.2) holds when α = β + θ	.

Thus we proved that for each α ∈ N
n , f (α) is weak slice regular and (8.2) holds. ��

8.2 Further Properties of Octonions

Before to state our main results, we prove some useful properties of octonions.
Below, the symbol 〈·, ·〉 denotes the scalar product in O.

Proposition 8.5 Let r , s, p ∈ O. Then

〈rp, s〉 = 〈r , s p〉. (8.3)

Proof If p = 0, it is clear that (8.3) holds. Otherwise,

〈rp, s〉 = 1

4

(
|rp + s|2 − |rp − s|2

)

= 1

4

(∣∣∣r + s|p|−2 p
∣∣∣
2 |p|2 −

∣∣∣r − s|p|−2 p
∣∣∣
2 |p|2

)

= 1

4

(∣∣∣r + |p|−2s p
∣∣∣
2 −

∣∣∣r − |p|−2s p
∣∣∣
2
)

|p|2

= 〈r , |p|−2s p〉|p|2 = 〈r , s p〉.
��

Let q ∈ O. There are unique r ∈ R and s ∈ Im(O) such that

q = r + s,

and this fact justifies the notation

Re(q) := r and Im(q) := s.

Proposition 8.6 Let r , s ∈ O. Suppose that rs ∈ CI for some I ∈ C. Then for any
J ∈ S,

min
K=±I

(|r + Ks|) ≤ |r + Js| ≤ max
K=±I

(|r + Ks|). (8.4)

Proof If r = 0 or s = 0, then

|r + Js| = |r + Ks|

for each J , K ∈ S. Then (8.4) holds in this case.
Otherwise, let J ∈ S. It is clear by (8.3) that

tJ := Re
(
(Js)r−1

)
=

〈
Js, r−1

〉
=

〈
J , |r |−2rs

〉
. (8.5)
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Then

|r + Js| =
∣∣∣1 + (Js)r−1

∣∣∣ |r | =
[
(1 + tJ )

2 + (C2 − t2J )
]
|r |

= [1 + C2 + 2tJ ]|r |,
(8.6)

where C := |(Js)r−1| = |s|/|r | is a constant and C2 − t2J = ∣∣Im
(
(Js)r−1

)∣∣2.
Suppose that rs ∈ CI for some I ∈ C. It is easy to check by (8.5) that

min
K=±I

(tK ) ≤ tJ ≤ max
K=±I

tK ,

and this implies, from (8.6), that (8.4) holds. ��

8.3 Taylor Series

In this subsection, we shall prove that weak slice regular functions can be expanded
in Taylor series on slice-polydiscs.

Let I ∈ S and r = (r1, . . . , rn) ∈ R
n+ = (0,+∞]n . For each z = (z1, . . . , zn) ∈

C
n
I , denote the polydisc with center z and radius r by

PI (z, r) := {
w = (w1, . . . , wn) ∈ C

n
I : |z	 − w	| ≤ r	, 	 = 1, . . . , n

}
,

and we set

P̃I (z, r) := {x + y J ∈ O
n
s : J ∈ S, x ± y I ∈ PI (z, r)}.

It is easy to check that if z ∈ CI ∩ CJ , for some I , J ∈ S, then

P̃I (z, r) = P̃J (z, r).

Hence, we can write P̃(z, r) short for P̃I (z, r), without ambiguity. We call P̃(z, r) the
slice-polydisc with center z and radius r .

Proposition 8.7 Let I ∈ S,� be an open set inC
n
I and f : � → R

2n be holomorphic.
Then for each z0 ∈ � and r ∈ R

n+ with PI (z0, r) ⊂ �, we have

f (z) =
∑

α∈Nd

1

α! (z − z0)
α f (I ,α)(z0), ∀ z ∈ PI (z0, r).

Proof This proposition follows directly from the Splitting Lemma 5.5 and the Taylor
expansion for holomorphic functions in several complex analysis. ��

Let α = (α1, . . . , αn) ∈ N
n and β = (β1, . . . , βn) ∈ N

n . We say that α < β if

α	 < β	, ∀ 	 = 1, . . . , n.
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Let p ∈ O
n
s . We define the map

(id − p)∗α : O
n
s −−−−−→ End(O),

q �−−−−−→
∑

0≤β≤α

[(
α

β

)
Lβ
q L

α−β
p

]
,

where id(q) = q,

(
α

β

)
:=

(
α1
β1

)
· · ·

(
αn

βn

)

is the binomial coefficient and

Lβ
q :=

n∏

	=1

(
Lq	

)β	 = (
Lq1

)β1 · · · (Lqn

)βn .

Below, we write (q − q0)∗α instead of (id − p)∗α(q) and (q − p)∗αa instead of
[(q − p)∗α](a).

Proposition 8.8 Let p ∈ O
n
s and a ∈ O. The function defined by

f : O
n
s −−−−−→ O,

q �−−−−−→ (q − p)∗αa,

is a weak slice regular function.
Moreover, if p ∈ C

n
I and q = x + y J for some I , J ∈ S and x, y ∈ R

n, then

min
r=x±y I

∣∣(r − p)∗αa
∣∣ ≤ ∣∣(q − p)∗αa

∣∣ ≤ max
r=x±y I

∣∣(r − p)∗αa
∣∣ . (8.7)

Proof (i) Let K ∈ S and z = x + yK ∈ C
n
K . For any β ∈ N

n , b ∈ O and 	 =
{1, . . . , n}, we have

1

2

(
∂

∂x	

+ K
∂

∂ y	

)
(Lβ

z b)

=
[
1

2

(
∂

∂x	

+ LK
∂

∂ y	

)
(x	 + y	LK )β	

]⎛

⎝
∏

j �=	

(Lzj )
βj b

⎞

⎠ = 0.
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We deduce that for any 	 ∈ {1, . . . , n},

1

2

(
∂

∂x	

+ K
∂

∂ y	

)
fK (z)

= 1

2

(
∂

∂x	

+ K
∂

∂ y	

)
(z − p)∗αa

=
∑

0≤β≤α

[
1

2

(
∂

∂x	

+ K
∂

∂ y	

)(
α

β

)
Lβ
z

(
Lα−β
p a

)]
= 0.

So fK is holomorphic and since the choice of z and K is arbitrary, f is weak slice
regular.

(ii) Since f is weak slice regular and O
n
s is axially symmetric, it follows from

Lemma 7.5 that f is strong slice regular and so f is also slice. By Proposition 3.3 (iv),

(q − p)∗αa = f (q) = f (x + y J ) = s + Jr ,

where

{
r = 1

2 [ f (x + y I ) + f (x − y I )] ,

s = 1
2 [I f (x + y I ) − I f (x − y I )].

It is easy to check that

r = w1a and s = w2a,

for some w1, w2 ∈ CI . It is clear that

rs = |a|2w1w2 ∈ CI .

Hence (8.7) holds directly by Proposition 8.6. ��
Theorem 8.9 (Taylor series) Let � be a slice-open set in O

n
s and f : � → O be weak

slice regular. Then for any q0 ∈ � and r ∈ R
n+ with P̃(q0, r) ⊂ �, we have

f (q) =
∑

α∈Nd

1

α! (q − q0)
∗α f (α)(q0), q ∈ P̃(q0, r). (8.8)

Proof Let q = x + y J ∈ P̃(z0, r). By (8.7), for each α ∈ N
n ,

∣∣∣(q − q0)
∗α f (α)(q0)

∣∣∣ ≤
∣∣∣(qI − q0)

∗α f (α)(q0)
∣∣∣ +

∣∣∣(q−I − q0)
∗α f (α)(q0)

∣∣∣

=
∣∣∣(qI − q0)

α f (I ,α)(q0)
∣∣∣ +

∣∣∣(q−I − q0)
α f (I ,α)(q0)

∣∣∣ ,
(8.9)
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where qI = x + y I and q−I = x − y I . Since

∑

α∈Nn

∣∣∣∣
1

α! (qI − q0)
α f (I ,α)(q0)

∣∣∣∣ and
∑

α∈Nn

∣∣∣∣
1

α! (q−I − q0)
α f (I ,α)(q0)

∣∣∣∣

are convergent at qI and q−I , respectively, it follows from (8.9) that

∑

α∈Nn

∣∣∣∣
1

α! (q − q0)
∗α f (α)(q0)

∣∣∣∣ and
∑

α∈Nn

1

α! (q − q0)
∗α f (α)(q0)

are also convergent at q.
By Proposition 8.8, the function g : P̃(q0, r) → O defined by

g(q) :=
∑

α∈Nn

1

α! (q − q0)
∗α f (α)(q0)

is a weak slice regular function. Note that

f = g, on PI (q0, r),

and f (q) and g(q) are weak slice regular. It follows from the Identity Principle 6.8
that f = g, i.e. (8.8) holds. ��

9 Example

In this section we give an example of a weak slice regular function which is not strong
slice regular. In fact that there are weak slice regular functions which are not strong
slice regular, not even on non-axially symmetric slice-domains, see [15, Sect. 8]. To
construct examples is more complicated, but basically they can be obtained bymoving
the singularities of the function f̃ constructed below away from R

n .
Define two paths α, β : [0, 1] → C

n by

α(t) = (e
iπ t
2 , 0, . . . , 0) and β(t) = (e

iπ(t+1)
2 , 0, . . . , 0), ∀ t ∈ [0, 1].

Let θ1 := (1, 0, . . . , 0). It is easy to check that α is a path from form θ1 to iθ1 and β

is a path form −θ1 to −iθ1. Set

U :=
{
z ∈ C

n : dist(z, α) <
1

2

}
, V :=

{
z ∈ C

n : dist(z, β) <
1

2

}
,

U ′ := {x + yi ∈ C
n : x − yi ∈ U } and V ′ := {x + yi ∈ C

n : x − yi ∈ V }.

Choose I , J ∈ S with J �= ±I . Then

� := B(θ1,
1

2
) ∪ B(−θ1,

1

2
) ∪ PJ (U

′ ∪ V ′ ∪ V ) ∪ PI (U ), (9.1)
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is a slice-domain, where B(θ1,
1
2 ) := {o ∈ O

n
s : |o− θ1| ≤ 1/2}. One may check that

the function

f : B
(

θ1,
1

2

)⋂
R
n −−−−−→ R,

x = (x1, . . . , xn) �−−−−−→ √
x1

(9.2)

has a weak slice regular extension f̃ on � with

f̃ (θ1 J ) = −1 − J√
2

, f̃ (−θ1 J ) = 1 − J√
2

and f̃ (−θ1 I ) = 1 + I√
2

. (9.3)

Simple computations using (9.3) show that f̃ does not satisfy (3.12). Hence f̃ is not
a slice function and it is not strong slice regular, although f̃ is weak slice regular.

Proposition 9.1 There is no strong slice regular extension of f , where f is defined in
(9.2).

Proof We prove this proposition by contradiction. Suppose that there is a strong slice
regular extension f ′ : � → O of f . By Remark 5.3, f ′ is weak slice regular.
According to Theorem 6.8, f ′ = f̃ . However, f ′ = f̃ is not strong slice regular,
which is a contradiction. ��
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