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Abstract. Tiny Machine Learning (TinyML) is a novel research area
aiming at designing machine and deep learning models and algorithms
able to be executed on tiny devices such as Internet-of-Things units, edge
devices or embedded systems. Smart pervasive devices are rapidly be-
coming omnipresent in our every-day life, and TinyML and its paradigm
of executing everything on-device (and thus not moving the data from
where they are collected) has been crucial in designing algorithms and
applications that enhance the privacy of users.

From this perspective, radar sensors are currently emerging as a valid
alternative to common sensors (e.g. microphones, cameras...). Given the
impossibility to recognize precisely the identity of the user, they can be
used in cases where it is important to recognize the presence or the be-
haviour of human beings while guaranteeing at the same time to preserve
their privacy. UltrawideBand (UWB), in particular, is a radar technology
that is particularly promising for use in pervasive systems. Indeed, its
precision, low energy consumption and fastness are particularly suitable
for privacy-preserving embedded applications.

We introduce here, for the first time in the literature, a TinyML solu-
tion integrating pre-processing and tiny convolutional neural network for
subject recognition (i.e., recognizing the age-class of the target) through
the analysis of UWB-radar data.

The proposed solution has been successfully tested on a real-world ap-
plication of in-car subject recognition.
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1 Introduction

In recent years the diffusion of tiny devices, such as Internet-of-Things (IoT)
units, edge devices and embedded systems, representing the technological as-
set of the “computing everywhere” paradigm [1]]2], have been constantly rising.
From this perspective, the scientific trend is to move the processing (and in par-
ticular the intelligent processing) as close as possible to where data are generated
to increase the autonomy of tiny devices, reduce the latency and the required
transmission bandwidth they require, while increasing the energy efficiency [3][4].
The new Machine and Deep Learning solutions (MDL) able to be executed on
these tiny devices must take into account the severe constraints on memory (the
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available RAM is in the order of the MB), computation (the MCU frequency is
in the order of the MHz), and power consumption (typically < 0.1 W) of these
devices.

The role of Tiny Machine Learning (TinyML) is to design, develop and deploy
MDL models and algorithms for tiny devices. TinyML solutions present in the lit-
erature typically introduce tiny MDL architectures and approximate-computing
solutions (such as quantization [5], pruning[6], and early-exit mechanisms[7][8])
to fit the severe technical constraints characterizing these tiny devices.

The aim of this paper is to introduce a TinyML solution for subject recog-
nition (i.e., recognizing the age-class of a person) on UWB-radar data. The
proposed solution, which extends what introduced in [9] for person detection in
UWB-radar data, relies on a preprocessing phase to highlight relevant features
and on a suitably-defined tiny convolutional neural networks based on tiny di-
lated convolutional blocks and quantization of the CNN architecture to reduce
the computational and memory demands (of both weights and activations).

The proposed solution has been successfully tested on a real-world in-car
subject recognition application. In particular, the proposed UWB-based TinyML
solution for the in-car presence-detection has been successfully deployed and
tested in real-world conditions on an ESP32 microcontroller unit (4 MB of flash
memory, 512 KB of S-RAM memory), equipped with a UWB-radar module
comprising only one pair of antennas.

The paper is organized as follows. Section 2 describes the related literature,
while Section 3 introduces the proposed TinyML solution for UWB-based sub-
ject recognition. Section 5 details the problem definitions and the experimental
results for the in-car presence detection scenario. Finally, Section 6 draws the
conclusion and describes the future research directions in this field.

2 Related literature

This section describes the related literature in the field of TinyML (Section
2.1) and the available UWB-radar solutions for presence detection and activity
recognition (Section 2.2). Given the novelty of the proposed problem, no solution
is present in the literature for subject recognition. We emphasize that, the only
TinyML solution able to process UWB-radar data available in the literature is
our previous work on presence detection[9].

2.1 TinyML

The research in the field of machine learning for embedded systems and IoT units
is mainly addressed from two different point of view: the development of custom
hardware and the design of approximated MDL solutions. We here concentrate
on approximated MDL solutions.

The design of approximated machine/deep learning solutions capable of ad-
dressing the strict technological constraints of embedded and IoT units is a
relevant and continuously-growing research field. The techniques introduced in
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this area can generally fall within the field of TinyML [10][11]. Most of the re-
lated literature focuses on the approximation of Convolutional Neural Network
algorithms. For example, in [12] a methodology to explore sparse CNN architec-
tures that could be executed on Microcontroller units (MCUs) was introduced,
whereas [13] proposed Bonsai, a decision tree-based technique to perform CNN-
inference efficiently on Arduino boards. In addition, pruning of channels and
layers of CNNs has proven to be a successful [14][15] in reducing the memory
and computational demand.

A different approach to approximate CNNs is to reduce the memory required
by the solution through the use of quantization, which exploits limited-precision
data types [16][17] for the CNN weights and, possibly activations. In such a
direction, [18] combined both task dropping and precision scaling techniques to
design approximated CNNs able to be executed in IoT units.

Other solutions focus on reducing the mean inference time of deep neural net-
works. Adaptive Early Exit [8] and Gate-Classification CNNs [7] are an example
of such solutions.

2.2 UWB-radar usage

The literature about the usage of artificial intelligence with UWB-radar data
mainly concentrates on tasks similar to person detection and human activity
recognition (HAR). UWB-radar were used also for human sensing and vital
parameter estimation. In this related literature, we focus our attention on UWB-
radar solutions that rely on a single receiving antenna.

Presence detection Most of the solutions for presence detection based on
uwb-radar relies on thresholds or statistical approaches to distinguish between
empty records and records where a human is present [19]{20]. These solutions are
usually heavily dependant on the dataset, and thus fails to generalize. Finally,
anti-abandon systems for cars based on radar can be also found in the literature
[21][22] but they do not rely on uwb-radar and they are only meant to detect
the presence of a general subject in a car.

Human Sensing Of particular interest is the work of [23], who has used UWB
radar data for wireless human sensing and personal identification. In this field,
the possibility to recognize the breath and heartbeats of the targets is proven also
in [24] and [25]. Nevertheless, in each of these researches the target is standing
in front of the radar without the possibility of moving, making it very difficult
to generalize in a general use-case scenario.

3 Problem formulation and motivation

3.1 Acquiring and processing UWB-radar data

Let S € RV*M with M, N € N, be the output of the UWB-radar receiving-
antenna installed on the device, being N the collected number of radar scans and
M the number of “bins” characterizing the acquisitions of the antenna. In more
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detail, the value S[i,j] with ¢ = {1,...,N} and j = {1,..., M} represents the
energy acquired by the i-th scan at the j-th bin. We emphasize that N = W - f,.,
being f, the UWB-radar frame rate (i.e., the number of acquisitions per seconds)
and W the acquisition time horizon (in seconds), while M represents the number
of “quantized” distances in the acquisition range, i.e., from MIN_RANGE to
MAX_RANGE, of the UWB-radar antenna®. An example of the acquisition of
S is shown in Figure 1.
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Fig. 1. The acquisition of matrix S by the UWB-radar antenna.[9]

3.2 Dataset collection

For this work, the dataset presented in [9] was extended with new data. In all
the recordings the device was deployed above one of the back lateral windows of
the car (the radar can detect subjects in a £60° cone from where it’s directed).
The dataset contains records with 0, 1, 2 or all 3 seats occupied by a target. The
total amount of acquired samples is 429, divided into 163 records with a child
present in the first seat, 220 records with the first seat empty, and 46 records
with an adult in the first seat. Figure 2 describes the positioning and the cone
of view of the device during the data-collection phase.

3.3 Recognizing subjects through UWB-radar data

A high number of studies have enlighted the possibility to reliably estimate the
breathing frequencies of human targets with the use of UWB-radar data [25, 23].

The standard breathing frequencies of each age category at rest have been
estimated as illustrated in the table 1, where the data have been taken from [26].

3 Each value represents the amount of energy of the reflected radar wave.
MIN_RANGE, MAX_RANGE and M are parameters depending on the specific radar
device used and on its configuration.



Title Suppressed Due to Excessive Length 5

DEVICE
(.

Fig. 2. The acquisition campaign for this experimental analysis[9]

H Class Avg. respiratory rate at restH

birth to 6 weeks 30-40 breaths per minute

6 months 25-40 breaths per minute
3 years 20-30 breaths per minute
Adults 15-18 breaths per minute

Elderly > 65 years old 12-28 breaths per minute

Table 1. Average respiratory rates
From this perspective, the breath frequencies of the targets from UWB-radar
data could be used to to distinguish among different age-classes (to recognize
subjects). Since the radar module makes scans at a frequency of 5Hz, it is possible
to match each frequency bin of the Fast Fourier Transform (FFT) data with a
frequency range, calculated as:

dimension of each frequency bin = 51782 = 0.039 =~ 0.04

For example, the Hz range of the first bins will be 0 - 0.04 Hz, while the last
one will be 4.96- 5 Hz

From these estimations, the table 1 have been updated to include the bins
where it is possible to expect the breathing frequencies to be recognizable.

H Class Avg. respiratory rate at rest Hz Expected binsH

Children 20-40 breaths per minute 1/3 - 2/3 Hz 8,33 - 16, 66
Adults  15-18 breaths per minute 1/4-0.3 Hz 6,25 - 8
Table 2. Average respiratory rates and expected bins

In order to check these hypotheses, for each class the FFT data of some
scans belonging to the dataset used for the experiment in section 5 have been
visualized as a heatmap, searching for peaks in energy around the expected bins.

The following visualizations represent the euclidean norm of the real and
imaginary parts of the FFT data of specific scans, in which only one target is
present. The first bins have been artificially set to 0 in order to better display
the interesting portion of data.

Note that in order to better display the peaks, in the visualizations the scale
is not fixed.
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In Figure 3 the data of two scans containing only one Adult in the first seat
are reported. Around bins 6-8, in which the breathing frequency of the target
should reside, it is possible to observe some peaks in the data, but overall,
especially in the second record, they are not easily distinguishable.

The visualizations have been repeated also for children (Figure 4). In these
visualizations it is much more difficult to clearly distinguish peaks traceable to
the breathing frequencies of toddlers and babies (expected bins 8-17). It’s also
interesting to note that in that visualization the scale is almost an order of
magnitude smaller with respect to the adults’ records: this could mean that the
breathing is not absent, but that it is much more difficult to distinguish among
records of people with different age-class it from the noise of the recording.
Nevertheless, the magnitude of the signal could in principle be a relevant aspect
for the classification of the record. Anyway, even in the same class of records,
there are significant differences between one record and another. There is no clear
unique behaviour for the same type of data, or at least is hardly recognizable by
watching the graphs.

e NIeRANRRRANIAReVISYSNIRRBYIBERANTILRSYIBESHIR

Fig. 3. Euclidean norm of FFT of two adult-0-0 scans.

4 The proposed TinyML solution for UWB-radar based
subject recognition

The proposed TinyML solution for subject recognition based on UWB-radar
comprises two main modules: a pre-processing module and and tiny deep convo-
lutional neural network called TyCNN-C. These two modules, which are detailed
in the sequel, have been jointly designed and developed to maximize the recogni-
tion accuracy, while satisfying the strict technological constraints of tiny devices.
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Fig. 4. Euclidean norm of FFT of two toddler-0-0 scans.

4.1 Pre-processing

The pre-processing module comprises the following three steps: Fast-Fourier
Transform, low-pass frequency selection and data normalization. This module
has not been substantially modified from the TyCNN for presence detection
implementation, and thus we remand to [9] for the detailed description.

The first step of pre-processing aims at computing the FFT Sy of S. The
considered FFT algorithm is the Cooley-Tukey algorithm [27]. The FFT is com-
puted on all the M rows of S.

The second step aims at selecting only a sub-range of the frequencies in Sy to
reduce the memory and computational demands of the next tiny convolutional
neural network (see Section 4.2). Being f; < f,./2 the selected cut-off frequency,
the goal of this module is to remove from S; the rows corresponding to the
frequencies larger than f;. In this application setting, assuming the relevance of
the breathing frequencies discussed in section 3.3, f; can be scaled down (with
a negligible loss of accuracy) to roughly 2Hz.

Finally, the last pre-processing step comprise a log-scale transformation and
a Z-score normalization (where mean and standard deviation are computed on
the training set of the TyCNN-C).

4.2 TyCNN-C: deep convolutional neural network

We introduce here TyCNN-C, which is the TinyML CNNs for subject recognition
with UWB-radar data. The proposed solution, which extends the TyCNN design
proposed in [9] for person detection, has been carefully designed to satisfy the
technological constraints on the memory footprint m (in KB) and computation
¢ (number of operations) of the target tiny devices.

An overview of the TyCNN-C is shown in Figure 5, while the TyCNN-C
architecture and the quantization mechanism are summarized in what follows.

Being X; the input of the TyCNN-C, the processing layers can be summa-
rized as follows:
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Fig. 5. The general architecture of the tiny convolutional neural networks TyCNN-C.

A 2 x 2 Max Pooling layer this layer aims at reducing the size of the input
X7. In more detail, the goal of this layer is to reduce the memory demand of
intermediate activations as well as the number of operations required by the
TyCNN-Cs to compute the inference.

A sequence of K Tiny Convolutional Blocks the Tiny Convolutional
Blocks (TCBs) introduced for the TyCNN, were reused for the TyCNN-Cs ar-
chitecture. Each block comprises the four following steps:

— two convolutional layers comprising n square r X r dilated filters with dilation
rate equal to 2;

— the ReLu activation function;

— a 2 x 2 Max Pooling layer.

In the considered subject-recognition application described in Section 5, the

following configuration of the TBCs have been considered: K = 2, n = 14 and
r="1.
A fully-connected layer The aim of this last layer is to provide the final clas-
sification of the TyCNN-C. In more detail, this layer is composed of a flattening
layer, a dropout layer (with dropout rate equals to 0.3), and a single dense layer.
Differently from the previous TyCNN design, the dense layer is characterized by
softmax activation.

For the training we considered the Categorical Crossentropy as loss function,
while Adam was selected as optimizer. The learning rate was set to 0.3e-4, while
the number of training epochs was set to 400. Given the fact that the distribution
of the classes in the training set were really skewed, the errors on each record
were weighted, using weights inversely proportional to the representation of the
corresponding class in the dataset. Once the TyCNN-C has been trained, the
full-integer post-training weight quantization algorithm introduced in [28] has
been used to transform the 32-bit floating-point weights into 8-bit integers. The
same quantization scheme has been also applied to inputs and activations.
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Table 3. The detailed memory footprint (with an 8-bit data type) and the number
of operations of the TyCNN-C for the in-car scenario. To optimize the memory, two
arrays only are used to store the activations (an @ marks the activations re-using such
arrays).

Memory Footprint n operations c
St @53 - 86 - 1 = 4558 -
Pool0 (Weights) - -
S1—Pool0 (Activations) |@26-43-1=1118|2-2-53.86 = 18232
Conv1_00 (Weights) 364 -
Conv1_00 (Activations) 15652 391300
Conv1_01 (Weights) 4914 -
Conv1_01 (Activations) 15652 5.478.200
Pooll (Weights) - -
Pooll (activations) @3822 4472
Conv2_00 (Weights) 4914 -
Conv2_00 (Activations) @3822 1337700
Conv2_01 (Weights) 4914 -
Conv2_01 (Activations) @3822 1337700
Pool2 (Weights) - -
Pool2 (activations) @840 1092
FC Classifier (Weights) 2523 -
FC Classifier (activations) Q@3 2520
[ Total I 48933 I 8571216 ]

5 Experiments results

The target device The considered tiny device is based on an ESP32 Micro-
controller unit (MCU). Following the notation introduced in [9], we considered
a RAM memory limit of m = 100 KB, and set a limit on the execution time
of the algorithm of 1 s. The device was used for both collecting the data and
deploying the proposed solution.

Data description The input matrix S is characterized by M = 53, N = 200,
each acquisition is W = 20 s long, and the frame rate was fixed to f. = 10 Hz.
fi has been set to 1.66 Hz, such that the dimensions of S; are M = 53 and L. =
86.

Experimental results For the experimental results the dataset has been ran-
domly split into 75% for the training and 25% for the testing, four runs have
been considered (in a cross-testing fashion) and the average classification results
is reported. Furthermore, the standard deviation was computed and used to
estimate confidence interval (95% confidence).

Table 3 report the detailed memory footprint and the number of operations
of the network on a per-layer basis, while table 4 describes the classification
abilities of the proposed solution together with the memory footprint m and the
computational load ¢ for the subject-recognition scenario.

As a baseline we considered a simple algorithm that assigns the most repre-
sented class in the training dataset to every test data point.

Furthermore, since the imbalances in the dataset make the accuracy not the
best metrics to evaluate the performance of the algorithm, the confusion matrix
is here reported:
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Table 4. Comparison of the results of the TyCNN-C and the baseline algorithm.

Network H Accuracy ‘m (kB) c (106)‘

naive baseline 0.513 / /
TyCNN 0.783 £ 0.076| 47.79  8.57

’True \PredH absent (0) child (1) adult (2) ‘

absence (0)[[182 (82.72%) 34 (15.45%) 4 (1.83%)
child (1) || 31 (19.01%) 113 (69.32%) 19 (11.67%)
adult (2) | 0 (0%) 7 (15.22%) 39 (84.78%)

The proposed solution completely matches the technological constrains with
m = 47.8 and ¢ = 8.57e6. We measured experimentally the execution time of
the solution on the ESP32 board. The total execution time is 940 ms, divided
in 230 ms for preprocessing data and 710 ms to perform the inference with the
TyCNN-C. Preprocessing required 27136 B to be executed in memory, and thus
can be executed in the same memory space of dimension m, = 31304 B where
the activations of the networks will be stored, hence not influencing the memory
footprint.

6 Conclusions

The aim of this paper was to introduce, for the first time in the literature,
a TinyML solution for subject-recognition based on UWB-radar. To achieve
this goal we used TyCNN-C, an adapted version of the TyCNN network design
used for presence detection. The effectiveness and efficiency of the proposed
solution have been successfully evaluated on a real-world scenario for in-car
subject recognition.

Future works will encompass comparisons with other state-of-the-art archi-
tectures, always-on scenarios for the proposed solutions, incremental learning
mechanisms to support the on-device learning and the extension of the use of
UWB-radar to human activity recognition.
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