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Abstract— This paper addresses a state dependent switching
law for the stabilization of continuous-time, switched affine
linear systems satisfying dwell time constraints. Such a law
is based on the solution of Lyapunov-Metzler inequalities from
which stability conditions are derived. The key point of this law
is that the switching rule calculation depends on the evolution
forward by the dwell time of quadratic Lyapunov functions
assigned to each subsystem. As such, the proposed law is readily
applicable to power converters showing that it is an interesting
alternative to other switching control techniques.

Index Terms— Switched systems, Lyapunov-Metzler inequal-
ities, dwell time, power converters.

I. INTRODUCTION

Switched systems are a family of hybrid systems charac-
terized by continuous time dynamics alternatively selected by
a switching rule point-wise in time [1]. Moreover, the theory
of such switched systems offers an elegant implementation
of capturing dynamics which intrinsically incorporate many
subsystems defined via the use of a switching signal. How-
ever, designing a stabilizing switching rule is not trivial. In
fact, in most cases the switched system does not directly
inherit the stability properties of the individual subsystems
(see [1, Ch. 2]).

Still, as solution of the stabilizing switching problem,
two different choices of the switching rule can be found
in the literature. On the one hand, arbitrary switching is
characterized by the absence of any temporal constraint on
the switching rule, that is commutations among subsystems
can occur arbitrarily fast. On the other hand, a dwell time,
that is a minimum amount of time between two consecutive
switching instants, can be introduced. Although an arbitrary
switching approach allows an easier theoretical analysis,
in practical cases, because of actuators delays or limited
bandwidth, it is necessary to dwell a minimum amount of
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time in the currently active subsystem before being able to
switch to a different one.

Such type of approach has been successfully used in
several works starting from nineties, see e.g., [2]–[5]. These
results, among many others, cover a subclass of dynamical
models whose subsystems share a common equilibrium
point. For instance, in [5], the problem of stabilizing a
linear switched system with dwell time is solved through
Lyapunov-Metzler inequalities.

Nevertheless, it could be more realistic to aim at stabi-
lizing affine switched systems whose subsystems may not
share a common equilibrium point. Among many others,
examples of these systems are provided in [6] and [7],
where the state boundedness is proved by virtue of switching
signals fulfilling an average dwell time and a dwell time
bound, respectively. In [8], robustness to external distur-
bances of switched discrete and continuous-time dynam-
ics with multiple equilibria was discussed by resorting to
the notion of Input-to-State Stability (ISS), provided that
sufficient dwell time conditions are satisfied. Recently, in
[9] the case with hybrid affine systems characterized by
periodic time-triggered switching is addressed. Analogously,
in [10], a control law for switched converters with Pulse-
Width Modulation (PWM) is proposed based on a Lyapunov
function candidate and on hybrid dynamical systems theory.
In [11], a switching rule is generated through the solution of
differential Linear Matrix Inequalities (LMIs), by taking into
account a convex combination of the switching subsystems
and imposing fixed dwell time to make the state reach a
pre-specified limit cycle. In [12], instead, the switching law
is a priori selected without taking into account any dwell
time, which is a posteriori estimated. Such a law is based on
a Lyapunov function, suitably regularized in terms of time
and space in order to reduce the switches number and avoid
infinitely fast switching.

Summarizing the above, since switched affine systems
can exhibit the undesired phenomenon of high frequency
switching, suitable control actions capable of guaranteeing
a dwell time must be implemented to solve this problem.
Most switching laws make the subsystems switch using fixed
intervals or estimating a posteriori the dwell time. However,
adding a dwell time constraint in the design of the switching
law may ensure better results [5] in terms of actuators effort.
Motivated by this fact and inspired by [5], this note aims
at putting forward an alternative method to the design of a
switching rule enabling the following features:

1) a dwell time which can be suitably adjusted in the
switching rule by the designer to guarantee satisfactory



performance in whatever appropriate sense;
2) a practical stabilization of the state trajectory around

the so-called switching equilibrium, i.e., the prescribed
reference point;

3) a guaranteed bound on the average H2 cost function,
depending on the dwell time.

Furthermore, it is worth to mention that our interest in
affine linear systems stems from their application to the
control of power converters. Indeed, control of these devices
has attracted large attention in the past decades due to its
applicability to different fields, such as smart grids and trans-
portation systems (see, e.g., [13]–[15], among many others).
Despite their intrinsic discontinuous nature, large part of the
literature on power converters focuses on the control of their
averaged model. In fact, continuous time techniques can be
designed to control the duty cycle which drives the PWM
associated to the switches position. Such techniques focus
on capturing the low-frequency behaviour of power elec-
tronic converters while neglecting high-frequency variations
due to circuit switching (see e.g., [16, Ch. 4]). Moreover,
typical continuous-time control laws do not take into account
requirements on the boundedness of the control variable,
which should instead be a null or positive signal bounded by
unitary magnitude. Therefore, addressing input boundedness
for continuous time control would require an additional layer
of complexity. Finally, since most of power converters (for
instance, buck, boost, buck-boost, Cùk and Sepic to name
a few) can be modeled as affine linear switched systems
[17], this attractive feature suggests the definition of a general
switched control framework applicable to all these devices
sharing such a common structure.

The organization of the paper is as follows. The consid-
ered problem is formulated in Section II. Our proposal is
presented and theoretically analysed in Section III, while
Section IV describes the application to power converters and
an illustrative example based on a boost converter. Moreover,
a comparison is presented with the algorithm introduced in
[11], which also addresses switched affine linear systems.
Finally, concluding remarks are drawn is Section V.

Notation: The transpose of a matrix A is denoted by A′.
The sets of reals is notated as R, while the sets of non-
negative real and natural numbers are R+ and N+, respec-
tively. Signals in the time domains are denoted by lower-
case letters, like x(t), or just x. For Hermitian matrices,
X > 0 (resp. X ≥ 0) indicates that X is positive (resp.
semi-positive) definite, and λmin(X) and λmax(X) denote its
minimum and maximum eigenvalue, respectively. L∞ norm
of a signal f : R+ → R is ∥f∥∞ := supt∈R+

|f(t)|.

II. PROBLEM STATEMENT

Consider a switched affine linear system captured by

ẋ(t) = Aσ(t)x(t) + bσ(t), x(0) = x0, σ(0) = i0, (1)

where the state x ∈ Rn is available for feedback for all
t ≥ 0, Aσ ∈ {A1, . . . , AM}, and bσ ∈ {b1, . . . , bM} are
constant matrices of appropriate dimension modelling the M

subsystems, for M ∈ N+. Let Ω := {1, . . . ,M}, and i0 ∈ Ω.
Then, denoting as {tk}, k = 1, . . . ,∞, the monotonically
increasing sequence of switching time instants, the goal is
to determine the switching rule u(x(t)) : Rn → Ω, such that
σ(t) := u(x(t), t) is stabilizing for system (1). Moreover, let
Ωi denote the set of integers {1, . . . , i − 1, i + 1, . . . ,M},
and introduce y ∈ Rp as the system output determined by
y(t) = C0x(t) with C0 ∈ Rp×n.

Motivated by [5], the idea underlying the proposed state
dependent switching control is to obey a dwell time con-
straint by generating a switching rule which takes into
account the forward evolution of a T -length interval of
the Lyapunov Function (LF) V (x, t) : Rn × R+ → R+

with V (x, t) = x′Pσ(t)x, Pσ being positive definite. In the
following, for the sake of simplicity, the dependence on the
state of V (x, t) will be omitted when it is clear from the
context. In this way, we want to guarantee that, given the
dwell time T > 0, if t0 = 0 is the initial time instant,
then tk+1 − tk > T for any k ≥ 1. The present work is
therefore focused on practically stabilizing this system via a
state-feedback control, according to the following definition

Definition 1 ( [18]): System (1) is practically stable with
respect to (C1, C2, t0, T ), C1 ⊂ C2, if x(t0) ∈ C1 implies
x(t) ∈ C2 for all t ∈ [t0, t0 + T ).
Moreover, we prove the existence of a bound on

lim
T →∞

1

T

∫ T

0

x′(τ)C ′
0C0x(τ)dτ,

and we would like to provide a characterization of the
region of attraction depending on the magnitude of bσ and
T . Note that, the selection of the dwell time T depends
on the specific application, constrained to the fulfilment of
Lyapunov-Metzler inequalities hereafter introduced.

III. THE PROPOSED STATE-FEEDBACK SWITCHING RULE

Differently from [5], where linear unforced systems where
considered, in this work the switching rule depends also on
a term mi, which is the forced motion of the state due to
the term bi, that is mi :=

∫ t+T

t
eAi(t+T−τ)bidτ.

Theorem 1: Assume that for some T > 0, ε > 0, and
scalars λi,j ≥ 0, i ∈ Ω and j ∈ Ωi, there exists a collection
of positive definite matrices Pi of compatible dimension,
such that

A′
iPi+PiAi+

∑
j∈Ωi

λi,j(e
A′

jTPje
AjT−Pi)+εPi+C

′
0C0<0 (2)

for all i ∈ Ω. Assume also that system (1) switched at t = tk
so that u(x(t), t) = i. Then, the following switching law

u(x(t), t) = i ∀t ∈ [tk, tk + T ] (3a)

u(x(t), t) = i ∀t > tk + T, ifx(t)′(eA
′
jTPje

AjT − Pi)x(t)

+ 2m′
jPje

AjTx(t) +m′
jPjmj ≥ 0 ∀ j ∈ Ωi (3b)

u(x(tk+1), tk+1) = argmin
j∈Ωi

x(tk+1)
′(eA

′
jTPje

AjT )x(tk+1)

+ 2m′
jPje

AjTx(tk+1) +m′
jPjmj , otherwise, (3c)



where the next switching instant is

tk+1 := inf
t>tk+T

{
t | ∃ j : x(t)′(eA

′
jTPje

AjT − Pi)x(t)

+ 2m′
jPje

AjTx(t) +m′
jPjmj < 0

}
,

makes system (1) practically stable with dwell time T .
Moreover, the associated cost is bounded as

lim
k̄→∞

1

k̄

∫ τk̄

0

x(τ)′C′
0C0x(τ)dτ <λmax(C

′
0C0)T∥x∥2∞+δ(T ) (4)

with τk = tk + T ,

δ(T ) =
2

ε
max

i

(
ηi+

2γ′
iP

−1
i γi
ε

)
, ηi(bi, T ):=

∑
j∈Ωi

λi,jm
′
jPjmj

and
γi(bi, T ):=Pibi +

∑
j∈Ωi

λi,je
A′

jTPjmj .

Proof: In line with arguments in [5], the proof is di-
vided into two steps. Given the state switching control σ(t) =
u(x(t), t), choose the LF V (x(t), t) = x(t)′Pσ(t)x(t), such
that, given T , Pσ(t) satisfies (2) for the ith subsystem. If
t ≥ tk + T the switching is allowed. Since σ(t) = i in the
interval t ∈ [tk +T, tk+1) is constant, we have that the total
time derivative of V along the trajectory of the system is
upper-bounded as

V̇ (x(t), t)<2x(t)′Pibi − εV (x(t), t)− x(t)′C′
0C0x(t)

+
∑
j∈Ωi

λi,j

(
2m′

jPje
AjTx(t)+m′

jPjmj

)
−

∑
j∈Ωi

λi,j

(
x(t)′(eA

′
jTPje

AjT −Pi)x(t)

+ 2m′
jPje

AjTx(t) +m′
jPjmj

)
, (5)

with mj being independent of the switching instant tk since∫ t+T

t

eAj(t+T−τ)bjdτ =

∫ T

0

eAj(T−τ)bjdτ.

Introducing γi(bi, T ) and ηi(bi, T ), we notice that in inequal-
ity (5) the last term is negative definite by virtue of (3), so
that V̇ is upper-bounded by

V̇ (x(t), t) < 2x(t)′γi(bi, T ) + ηi(bi, T )

− εV (x(t), t)− x(t)′C ′
0C0x(t). (6)

Letting β := ε
2 and δ1(T ) := maxi

(
ηi +

γ′
iP

−1
i γi

β

)
, complet-

ing the square, for t ∈ [tk + T, tk+1), inequality (6) in turn
implies

V̇ (x(t), t) < −βV (x(t), t) + δ1(T )− x(t)′C ′
0C0x(t). (7)

Analogously to [19], inequality (7) straightforwardly implies
practical stability of the continuous dynamics. Indeed, for
any t ∈ [tk + T, tk+1) and any ν1 ∈ (0, 1) it holds that

V̇ (x(t), t) < −ν1β
¯
θ∥x(t)∥2, ∀∥x(t)∥ ≥

√
δ1(T )

(1−ν1)β
¯
θ , (8)

which proves that the continuous dynamics is ulti-
mately bounded as ∥x(t)∥ ≤ θ̄

¯
θ

√
δ1(T )

(1−ν1)β
¯
θ , with θ̄ :=

maxi λmax(Pi) and
¯
θ := mini λmin(Pi).

Denote now as V (x(tk+1), t
−
k+1) the limit of the LF at the

next switching instant tk+1 for t approaching tk+1 from the

left, that is at t−k+1. Indicating δ(T ) := δ1(T )
β and integrating

(7) in the interval [tk+T, tk+1), V (x(tk+1), t
−
k+1) is bounded

as

V (x(tk+1), t
−
k+1) < e−β(tk+1−tk−T )V (x(tk + T ), tk + T )

+
1

β

(
1− e−β(tk+1−tk−T ))δ1(T )

−
∫ tk+1

tk+T

x(τ)′C′
0C0x(τ)dτ

= −ρk(V (x(tk + T ), tk + T )− δ(T ))

−
∫ tk+1

tk+T

x(τ)′C′
0C0x(τ)dτ

+ V (x(tk + T ), tk + T ) (9)

with ρk = 1 − e−β(tk+1−tk−T ), ρk ∈ (0, 1) for all k ≥ 0
due to the property tk+1 − tk − T > 0.

Now, consider the case t ∈ [tk+1, tk+1 + T ), so that
switching is not allowed, and the generic jth subsystem is
active. By definition, we can write that V (x(tk+1), t

−
k+1) =

x(tk+1)
′Pix(tk+1) and V (x(tk+1 + T ), tk+1 + T ) =

x(tk+1 + T )′Pjx(tk+1 + T ), so that, computing their dif-
ference and exploiting (3), one has

V (x(tk+1 + T ), tk+1 + T )− V (x(tk+1), t
−
k+1)

= x(tk+1)
′(eA′

jTPje
AjT − Pi

)
x(tk+1)

+ 2m′
jPje

AjTx(tk+1) +m′
jPjmj < 0, (10)

that is V (x(tk+1 + T ), tk+1 + T ) < V (x(tk+1), t
−
k+1).

Hence, combining the latter with (9), it holds that

V (x(tk+1 + T ), tk+1 + T )− V (x(tk + T ), tk + T )

< −ρk(V (x(tk + T ), tk + T )− δ(T ))

−
∫ tk+1

tk+T

x(τ)′C′
0C0x(τ)dτ

< −ρk(
¯
θ∥x(tk + T )∥2 − δ(T )). (11)

Thus, for any ν2 ∈ (0, 1) it holds that

V (x(tk+1 + T ),tk+1 + T )− V (x(tk + T ), tk + T )

< −
¯
θν2ρk∥x(tk + T )∥2,

∀∥x(tk + T )∥ ≥
√

δ(T )
(1−ν2)

¯
θ (12)

which proves that in the interval [tk + T, tk+1 + T ] the
dynamics is ultimately bounded as ∥x(t)∥ ≤ θ̄

¯
θ

√
δ(T )

(1−ν2)
¯
θ .

Consider now ν1 = ν2 = ν ∈ (0, 1). Condition (12), together
with (8), straightforwardly implies that the switching system
(1) is practically stable with dwell time T and stability region

C2:=
{
x ∈ Rn | ∥x∥ ≤ θ̄

¯
θ

√
δ(T )

(1−ν)
¯
θ

}
.

Now, for the sake of simplicity, pose τk = tk+T, k ≥ 1, in
(11), τ0 = T and σ(0) ∈ Ω, and complete the interval of the
integral term in [τk, τk+1] by summing and subtracting the



same quantity. Therefore, for k ≥ 0, inequality (11) becomes

V (x(τk+1), τk+1)− V (x(τk), τk)

< −ρk(
¯
θ∥x(tk + T )∥2 − δ(T ))

−
∫ τk+1

τk

x(τ)′C ′
0C0x(τ)dτ

+

∫ τk+1

τk+1−T

x(τ)′C ′
0C0x(τ)dτ. (13)

Starting from k = 0 and iteratively summing k̄ − 1 times
condition (13), one obtains

V (x(τk̄), τk̄)− V (x(τ0), τ0)

< −
¯
θ

k̄−1∑
k=0

ρk∥x(τk)∥2

+ k̄δ(T )−
k̄−1∑
k=0

∫ τk+1

τk

x(τ)′C ′
0C0x(τ)dτ

+

k̄−1∑
k=0

∫ τk+1

τk+1−T

x(τ)′C ′
0C0x(τ)dτ. (14)

By virtue of the practical stability property of the switched
system (1), ∥x∥2∞ is guaranteed to be limited, and one has∫ τk+1

τk+1−T

x(τ)′C ′
0C0x(τ)dτ ≤ λmax(C

′
0C0)T∥x∥2∞. (15)

Substituting the term in (15) into (14), and rearranging the
inequality, one obtains∫ τk̄

τ0

x(τ)′C ′
0C0x(τ)dτ < −V (x(τk̄), τk̄) + V (x(τ0), τ0)

+ k̄λmax(C
′
0C0)T∥x∥2∞ + k̄δ(T ).

Adding and subtracting the integral of the cost in [0, T ],
dividing left and right sides by k̄, and computing the limit for
k̄ to infinity, one finally gets (4), which proves the proposed
theorem.

Remark 3.1 (cost upper-bound): The upper-bound on the
average cost (4) depends on the infinity norm of the state.
Being the controlled system practically stable in the region
C2, it is clear that if x0 ∈ C1, with C1 ⊂ C2, then ∥x∥∞ is
bounded in C2. ▽

Remark 3.2 (logic of the switching rule): The switching
rule presented in Theorem 1 relies on the comparison of
the LF of the active subsystem at the current time with
the forecast of the LFs of the remaining subsystems at T
instants forward in time. In fact, the switching rule (3) can
be rewritten as

u(x(t), t) = i ∀t ∈ [tk, tk + T ] (16a)
u(x(t), t) = i ∀t > tk + T,

if Vj(x(t+ T ), t+ T ) ≥ Vi(x(t), t), ∀ j ∈ Ωi (16b)
u(x(tk+1), tk+1) = argmin

j∈Ωi

Vj(x(tk+1 + T )), otherwise, (16c)

where Vj(x(t), t) := x′Pjx, tk+1 is defined as in Theorem 1.
However, the only way to verify conditions (16b) and (16c) is
through the explicit computation of the LFs as in conditions
(3b) and (3c), respectively.

Moreover, note that we restrict the switching signal to take
value only in the discrete set Ω = {1, . . . ,M}. If the argmin
function assumes more than one value in the discrete set,
we can choose it arbitrarily (for instance, a possible choice
would be selecting the smallest index). As for the initial
condition σ(0) one can select it according to (16c) as σ(0) =
argminj∈Ω Vj(x(T ), T ). ▽

It is now interesting to note that Theorem 1 contains as
a particular case the quadratic stability condition and the
state switching stabilization for the associated sampled time
system case. The next proposition summarizes this result. To
streamline the exposition, we consider the case with M = 2.

Proposition 2: Consider system (1), with i = 1, 2, and let
λi,j := αλ̄i,j , with λ̄i,j fixed entries of a Metzler matrix. As
α goes to infinity, the following statements hold.

(i) Let T = 0 and assume that there exists a set of
bounded positive definite matrices Pi satisfying for any
α > 0 the Lyapunov-Metzler equalities

A′
iPi+PiAi+α

∑
j∈Ωi

λ̄i,j(Pj−Pi)+εPi+C′
0C0 = 0. (17)

Assume also that λ̄i,j are such that bave = λ̄2,1b1 +
λ̄1,2b2 = 0 and Aave = λ̄2,1A1 + λ̄1,2A2 is Hurwitz
stable. Then, as α goes to infinity, the switching rule
(3) makes the origin of system (1) a quadratically
stabilizable switched equilibrium.

(ii) Let T > 0 such that Fi,j := eAiT eAjT is Schur
stable (all eigenvalues in the open unit circle). Assume
that there exists a set of bounded positive definite
matrices Pi satisfying for all α > 0 (namely, Pi(α))
the Lyapunov-Metzler equalities

A′
iPi+PiAi+α

∑
j∈Ωi

λ̄i,j(e
A′

jTPje
AjT−Pi)+εPi+C′

0C0=0.

(18)
Then, as α goes to infinity, it follows that{

limα→∞ Pi(α) = 0,

limα→∞ P̄i(α) = P̂i,
i = 1, 2, (19)

with P̄i(α) = αPi(α), P̂i being the unique solution of
the discrete-time Lyapunov equation

P̂i = F ′
i,jP̂iFi,j + eA

′
jT

C ′
0C0

λ̄j,i
eAjT +

C ′
0C0

λ̄i,j
,

for i, j = 1, 2, i ̸= j. Moreover, matrices P̂i satisfy
the discrete Lyapunov-Metzler equations

P̂1 = eA
′
2T P̂2e

A2T +
C ′

0C0

λ̄1,2
, (20a)

P̂2 = eA
′
1T P̂1e

A1T +
C ′

0C0

λ̄2,1
, (20b)

for the discrete time switched system

x((k + 1)T ) = eAσ(kT )Tx(kT ) +mσ(kT ). (21)
Proof: As for statement (i), its proof

directly follows from [20], [21] by observing that
Pave = limα→∞ Pi satisfies the Lyapunov equality
A′

avePave + PaveAave + εPave + C ′
0C0 = 0.



Moreover, the derivative of the LF
V (x(t), t) = x′(t)Pavex(t) is

V̇ (t) = x′(t)(A′
σPave + PaveAσ)x(t) + 2x′(t)Pavebσ.

Taking the switching rule σ(t) = argmini x
′(t)(A′

iPave +
PaveAi)x(t) (which can be proved to be equivalent to (3b)
for T = 0), we have that

V̇ (t) ≤ −x′(t)C ′
0C0x(t)− εV (x(t), t).

As for statement (ii), equality (18) can be obtained from (2)
by letting λi,j = αλ̄i,j . Considering the case i, j = 1, 2,
dividing all the terms in (18) by α, as α tends to infinity one
obtains

eA
′
2TP2e

A2T − P1 = 0, (22a)

eA
′
1TP1e

A1T − P2 = 0 . (22b)

Hence, combining the previous equations and exploiting
the definition of Fi,j , one has

Pi = F ′
i,jPiFi,j , i, j = 1, 2, i ̸= j, (23)

with Fi,j being Schur stable. Therefore, by inspection, one
can conclude that Pi tends to zero as α goes to infinity.

Consider now matrices P̄i = αPi such that the following
Lyapunov-Metzler condition holds

A′
iP̄i+P̄iAi+α

∑
j∈Ωi

λ̄i,j(e
A′

jT P̄je
AjT −P̄i)+εP̄i+αC′

0C0 = 0,

(24)
i = 1, 2. Dividing (24) by α, as α goes to infinity, one has

λ̄1,2(e
A′

2T P̄2e
A2T − P̄1) + C ′

0C0 = 0,

λ̄2,1(e
A′

1T P̄1e
A1T − P̄2) + C ′

0C0 = 0.

Letting P̂i be the solution of the above set of equations,
one has (20). Finally, combining equations (20), one ob-
tains the expression of P̂i. Therefore, the switching law
σ(kT ) = argmini ̸=j(e

AiTx(kT ) + mi)
′P̂i(e

AiTx(kT ) +

mi) − x′(kT )P̂jx(kT ) is consistent with the one in [22,
Th. 3], where only linear discrete time autonomous switched
systems were considered, i.e., mi = 0. In our case, this
switching law is applied to the discrete time affine switched
system (21), making it practically stable.

Remark 3.3 (limit case with T = 0): Note that if T = 0
and bave = 0, as α goes to infinity, then the region C
in Theorem 1 reduces to the singleton x = 0, thus re-
sorting to the results presented in [20]. Moreover, the cost∫∞
0

x(τ)′C ′
0C0x(τ)dτ < x′

0Pavex0. ▽

IV. APPLICATION TO POWER CONVERTERS CONTROL

An interesting application of the proposed theory is the
control of DC-DC switched power converters. Indeed, their
intrinsic switched structure and the limited commutation
frequency of the switching devices recall for the design of a
discontinuous control law embedding dwell time. Moreover,
many converters can be mathematically modeled as affine
linear switched systems. Hereafter, the case of the boost
converter (see [17, Sec. 2.3]), characterized by two possible
switching modes, is described.

A. Illustrative Example

Consider the converter shown in Fig. 1. It presents two
switches Q1 and Q2 operating in counter-phase (that is Q1 =
1 when Q2 = 0 and vice versa), and such couple of switches
can be operated only with finite frequency, which imposes a
minimum required dwell time for the switching signal.

−
+E

z1
L

Q1

Q2

C

+

−
z2 R

Fig. 1. Boost converter topology.

Thus, considering the two possible configurations of the
switches, it is not difficult to retrieve the mathematical model
of the converter as

ż(t) = Aσ(t)z(t) + b, y(t) = C0z(t)

with σ ∈ {1, 2}, while

A1=

[
0 − 1

L
1
C − 1

RC

]
, A2=

[
0 0
0 − 1

RC

]
, b=

[
E
L
0

]
, C0=

[
0 1

]
,

and z1 representing the current flowing through the inductor
L, z2 being the voltage across the capacitor C or over the
load resistance R, and σ(t) being the position of the switch
Q1, with Q1 = 0 when σ = 1, and Q1 = 1 when σ = 2. The
boost converter presents a rather interesting property, that
is one of the two configurations is unstable. In fact, when
Q1 = 1, it holds that ż1 = E

L , which in turn implies that the
current z1 exponentially increases to infinity. Furthermore,
the boost converter is commonly adopted to regulate the load
voltage to a desired value larger than the input voltage E.
Indicating with z⋆2 the desired load voltage, it is possible to
define the error state x = z − z⋆ where z⋆ =

[
z⋆22
RE , z⋆

2

]′
,

thus implying

ẋ(t) = Aσ(t)x(t) + bσ(t),

where bσ(t) = Aσ(t)z
⋆+b. Therefore, the task of controlling

the state z to a desired value is reformulated as the problem
of regulating to zero the state x, consistently to (1). The
MATLAB SimPowerSystem toolbox has been adopted to
perform more realistic simulations.

As proved in §III, the adoption of the switching law
(3) guarantees that the switched system is practically stable
under dwell time switching, and, more importantly, the size
of the estimated region of attraction is a monotonic function
of the selected dwell time. Specifically, it is expected that
the norm of x increases as the dwell time is higher. In
the proposed simulation scenario, the switching law has
been implemented with several values of dwell time, that
is T = 10−4 sec, T = 5×10−5 sec and T = 10−5 sec, while
λ̄1,2 = E

z⋆
2

and λ̄2,1 = 1 − λ̄1,2 (according to Proposition
2). These values are such that F1,2 and hence F2,1 (see



Fig. 2. Boost converter voltage for T = 10−4 sec (blue line), T =
5× 10−5 sec (red line), and T = 10−5 sec (yellow line).

Proposition 2) are Schur stable. The converter parameters
have been chosen instead as E = 24V, C = 100mF, L =
300mH, and R = 37.5Ω. As shown in Fig. 2, the reference
value for z⋆2 has been selected as a step wise constant signal
taking value 35V in the interval [0, 0.1] sec, 50V in the
interval [0.1, 0.2] sec, 70V in the interval [0.2, 0.3] sec, and
finally 40V in the interval [0.3, 0.4] sec. As expected, Fig. 2
shows that the oscillations of the output voltage z2 around
the reference signal decreases with the dwell time value, thus
confirming the theoretical results in Theorem 1.

B. Comparison

To conclude this section, we show a brief comparison of
the proposed switching algorithm with some other available
options. Since our main motivation for the design of our
switching approach is the presence of the affine term, it is
interesting to compare it with alternative strategies given
by the state dependent law proposed in [11], and an ad
hoc method based on quadratic stabilization through an
arbitrary switching rule. More precisely, as for the algorithm
in [11], it aims at guaranteeing global stability of a limit
cycle, chosen by the designer, through a switching rule
characterized by fixed switching intervals. Since our proposal
generates periodic state trajectories, the limit cycle required
in [11] has been selected so that its period matches with the
one of the trajectory achieved using our switching rule.

Our comparison criteria are:
• the root mean square value of the output variable in

steady-state, termed oRMS;
• the settling time of the output variable, termed oST.

The results are reported in Table I.

TABLE I
PERFORMANCE OF THE SWITCHING LAWS.

strategy oRMS oST
proposed strategy 0.899 0.021
Egidio et al. [11] 1.336 0.002

Quadratic stabilization 0.025 0.027

Fig. 3 shows a comparison of the load voltage for these
three approaches. It is worth noting that the proposed algo-

Fig. 3. Boost converter voltage when the proposed switching rule (blue
line), that in [11] (red line), and an ad hoc quadratic stability based switching
law (yellow line) are applied.

rithm and the one in [11] show different dynamics during
the transient time, while achieving similar performance in
steady state. Indeed, the algorithm in [11] provides shorter
oST at the price of higher oscillations during the transient
interval, thus implying higher oRMS. However, as evident
from the closed-up in Fig. 3, the oscillations in steady state
of the two algorithms are of comparable magnitude. Finally,
as for the comparison between our proposal and the ad hoc
alternative method based on quadratic stabilization through
an arbitrary switching rule, the latter allows a reduction of
oRMS with respect to the proposal due to the lack of dwell
time constraint. The settling times are instead comparable. It
is worth to mention that it is not possible to apply in practice
an arbitrary switching method because of the ideal infinite
switching frequency. Our approach instead takes into account
a dwell time equal to T = 1× 10−4 sec, which is consistent
with possible field implementations.

V. CONCLUSIONS

The note has introduced a novel state dependent switching
rule, which incorporates the input term of the considered
affine linear system and the forward evolution of Lyapunov
functions, in quadratic form, constrained to a pre-specified
dwell time. The switching rule is enabled by the solutions
of Lyapunov-Metzler inequalities, which provide sufficient
conditions for the practical stability of the switched system,
and for the boundedness of the cost associated to the control
strategy.

Although the presented ideas look to be extendable to
many application domains, in this work we study the appli-
cation to power converters, keeping their natural switching
nature instead of the commonly adopted averaged model. In
fact, we have shown the potentiality of the proposal as a
ready-to-implementable solution even in practice.
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