NeRTA: Enabling Dynamic Software Updates
in Mobile Robotics

Ahmed El Yaacoub*, Luca Mottola*T, Thiemo Voigt*, Philipp RUmmer*
*Uppsala University; TPolitecnico di Milano

{ahmed.el.yaacoub; luca.mottola; thiemo.voigt; philipp.ruemmer} @it.uu.se

Abstract

We present NeRTA (Next Release Time Analysis), a tech-
nique to schedule dynamic software updates of the low-level
control loops of mobile robots. Dynamic software updates
enable software correction and evolution during system op-
eration. In mobile robotics, they are crucial to resolve soft-
ware defects without interrupting system operation or to en-
able on-the-fly extensions. Low-level control loops of mo-
bile robots, however, are time sensitive and run on resource-
constrained hardware with no operating system support. To
minimize the impact of the update process, NeRTA safely
schedules updates during times when the computing unit
would otherwise be idle. It does so by utilizing information
from the existing scheduling algorithm without impacting its
operation. As such, NeRTA works orthogonal to the existing
scheduler, retaining the existing platform-specific optimiza-
tions and fine-tuning, and may simply operate as a plug-in
component. Our experimental evaluation shows that NeRTA
estimates are within 15% of the actual idle times in more than
three-quarters of the cases. We also show that the processing
overhead of NeRTA is essentially negligible.

Categories and Subject Descriptors

Embedded and cyber-physical systems [Embedded sys-
tems]: Embedded software

General Terms

Minimal effect, updates, bug-fixes, software evolution
Keywords

Dynamic software updates, mobile robotics, safety-
critical systems, aerial drones
1 Introduction

Dynamic software updates are performed without inter-

rupting the software execution [7]]. They are useful for ap-
plications that require frequent updates but must operate con-

tinuously, with no perceivable downtime. In mobile robotics,
dynamic software updates are useful for resolving software
defects that may endanger the robot or its surroundings [[16]
and to extend the robot’s capabilities by adding new features.

Mobile robotics. Consider for example aerial drones. Fixed-
wing drones [[1] may fly for hours performing search-and-
rescue missions. During this time, the need to patch the
running software or to deploy a new functionality may
arise in response to unforeseen situations requiring adjust-
ments to the flight software or bugs discovered during the
flight [[18}, (19} 20], each of which can endanger the drone and
the environment if left unresolved. The regular update pro-
cedure would require landing, updating the software, reboot-
ing, and taking off again, disrupting the mission and wasting
energy due to the necessary detour and the additional landing
and take-off [17]. Dynamic software updates allow the sys-
tem to continue a mission uninterrupted, saving energy and
prolonging the system lifetime.

Mobile robots commonly feature a two-level control sys-

tem [8]]. The low-level control loop is responsible for direct
control of the robot and primarily relies on two inputs, the
desired trajectory in the form of inertial and angular veloci-
ties, and sensor data that determine robot attitude. The high-
level control loop is responsible for advanced functionality
such as localization and mapping [[11]]. Unlike the high-level
control loop, the operation of the low-level one is extremely
time sensitive. Existing systems employ custom implemen-
tations running on resource-constrained hardware with no
operating system [10, [13]].
Problem and fundamental idea. We tackle the problem of
when to perform a dynamic update of the low-level control
loop without being detrimental to the dependable robot op-
eration. Unlike the high-level control loop, if the low-level
control loop is unresponsive for some time or delays the exe-
cution of crucial tasks, the robot loses control because its ac-
tuators receive incorrect or late values compared to the robot
state [16]. Therefore, updating the low-level control loop
dynamically, which is the focus of our work, is significantly
more challenging than updating the high-level one.

Our fundamental idea is that a safe time to schedule dy-
namic updates with minimal effect is when the computing
unit running the low-level control loop would otherwise be
idle, that is, when no tasks are running. Minimal effect
means that tasks running on the mobile robot maintain the
same exact scheduling as if the update did not take place.

Time 1 2 3 4]
{ T1 T1 execution
T2
‘ T2 execution
‘Updates u1 |
u2]

Figure 1: An example of an update Ul with minimal effect
and an update U2 that violates the minimal effect condition.

We consider an update to be a non-preemptive and time-
bound task, whose worst-case execution time is known. We
show an update that meets the minimal effect condition and
one that does not in Fig.[I] Update U1 starts and completes
when no tasks are running. Update U2 extends into the por-
tion of time when T1 is to execute. As a result, update U2
necessarily delays the start of T1. The availability of idle
time is due to the scheduler leaving the interval between
times one and two empty, which we utilize to perform an
update U1 that meets the minimal effect condition.

NeRTA. To perform dynamic software updates with minimal
effect we develop NeRTA (Next Release Time Analysis), a
technique that dynamically estimates the available idle times.
We use the estimated idle time to check for the schedulability
of the update according to the minimal effect requirement.
We schedule an update using NeRTA only if the time taken
for the update is less than or equal to the NeRTA estimate.
These estimates are conservative, that is, we guarantee they
represent a lower-bound compared to the actual idle times.
This feature is essential to ensure that the time required for
the update does not exceed the actual idle time available, thus
retaining the minimal effect condition.

This feature represents a fundamental and intentional de-

sign choice. The alternative would be, indeed, to embed
software updates as an additional task in the original sched-
uler design. However, such a task would be aperiodic, un-
like most other tasks in low-level control of mobile robots,
and rare compared to regular operation. These factors would
greatly complicate the scheduler design, implementation,
and testing. Instead, we schedule the update with NeRTA.
NeRTA operates orthogonal to the existing scheduler, re-
taining the extensive testing, verification, platform-specific
optimization, and fine-tuning of the existing scheduler. As
long as the necessary information is available from the ex-
isting scheduler, as explained in Sec.[3] NeRTA operates as a
plug-in component in existing systems, while satisfying the
condition of minimal effect.
Performance. While the design of NeRTA is orthogonal to
the existing task scheduler, its implementation must be prop-
erly customized to the specific flight controller. We create a
real-world prototype by integrating NeRTA in the task sched-
uler of Hackflight, an open-source aerial drone flight con-
troller [[13]]. We build a custom drone running Hackflight on
embedded hardware and use that to evaluate our work. Our
prototype is described in Sec.[d]

Our experiments, reported in Sec.[3] reveal that NeRTA
estimates, while being conservative, are close to the actual

idle times. In more than three-quarters of the cases we mea-
sure, NeRTA estimates are less than 15% from the actual idle
times. We also demonstrate that the price to pay, represented
in terms of processing overhead, is negligible.

Before moving on to the technical matter, Sec.[2 provides
a brief survey of related work.

2 Related Work

Six fundamental aspects are to be considered in dynamic
software updates [15]:

1) What fraction of the software is replaced, from the entire
program to individual instructions;

2) Dependency analysis, that is, determining whether two
components are dependent, and what to do if so;

3) State transfer, that is, how to transfer and/or modify state
from the older to the newer version, if necessary;

4) Cleaning, that is, how the leftover state of the older ver-
sion should be disposed of, if necessary;

5) Rollback, that is, the ability to dynamically undo an up-
date should there be a need for that;

6) Time of the update, that is, when to perform the update
while the system keeps running.

We focus on 6) which is crucial in time-sensitive software
implementations, such as low-level robot controllers [§].
Here, an additional consideration is also possible, which is
the physical effect of the update process on the robot and its
surroundings [12]]. We seek to minimize this by fulfilling the
minimal effect condition.

To decide when to schedule an update, quiescent points
should be classified and identified. Quiescent points are de-
fined as intervals in time when an update can be safely per-
formed. Quiescent points can either be inserted into the pro-
gram by the programmer or compiler, or identified automat-
ically during runtime [21, 23|]. NeRTA combines both ap-
proaches by inserting potential update points at the end of
each job, then automatically computing whether the update
point is valid, that is, there is sufficient time to perform the
update before the next job runs. Further, unlike the work of
Wabhler et al. [21], NeRTA provides estimates of how much
idle time is actually available.

Dynamic update solutions based on selecting safe update
points are explored in several studies [9} [14} 23]. Cazzola
and Jalili [9] claim that the safety of an update point can be
determined if i) the state of the running application is avail-
able, ii) the type of changes is known, and iii) it is possible to
predict the impact of the change during the dynamic update.
Their work focuses on the safety of the update point from a
source code perspective, rather than on the physical effects
of the update on the device: a robot in our case.

Lounas et al. [14] focus on verifying that update points
satisfy three objectives, being deadlock-free, activeness
safety, and liveness. They use model checking to verify those
properties for different update points. Their work is com-
plementary to ours. While those properties are important,
they do not ensure that the update is performed safely from
a physical standpoint.

3 NeRTA: Next Release Time Analysis

We describe the design of NeRTA (Next Release Time
Analysis), a technique to estimate the duration of idle times
in an existing schedule.

3.1 Target Systems

We target systems implemented with a fixed number of
tasks, each of which is responsible for executing an un-
bounded number of computation jobs. The time between the
end of one job and the start of a next job, when no task is
running, is defined as idle time.

To compute the length of the idle time, we must forecast
when the next job of any task starts. NeRTA is therefore ap-
plicable to systems where the release time can be computed
for each job. A job is guaranteed not to execute before its re-
lease time. The release time is computed by the task schedul-
ing algorithm. Once a job executes, a new release time is
computed for the same task. How the computation of the re-
lease time is achieved depends on the task scheduling algo-
rithm. NeRTA is in principle orthogonal to such scheduling
algorithm, as long as the release times are available. NeRTA
is a runtime technique in the sense that it computes idle times
as the controller executes. Therefore, it is applicable to both
dynamic and static (time-triggered) scheduling algorithms.

Task scheduling algorithms where release time informa-
tion is available are commonly found in mobile robots and
other embedded systems, due to the reliance on sensors that
have fixed refresh rates and control loops that run at fixed
frequencies [3, [13]]. Therefore, NeRTA enjoys wide applica-
bility, especially in mobile robotics.

In contrast, NeRTA is not applicable to task scheduling
algorithms without guaranteed inter-arrival delays. Without
guaranteed inter-arrival delays, a release time that is larger
than the current time cannot be provided. NeRTA is also
not applicable when interrupts are enabled and tasks may be
preempted. The release time for an interrupt is generally to
be considered as the current time, because interrupts may fire
at any point. In both cases, a guaranteed idle time cannot be
computed and therefore NeRTA cannot be used.

3.2 Update Model

We consider an update to be an aperiodic task composed
of at least one job. Each job in the update must have a known
worst case execution time. All jobs in the update are non-
preemptive. Only jobs that use up execution time on the
low-level controller need to be scheduled with NeRTA before
they are performed, so that the minimal effect requirement is
met. Each job in the update task can be considered a stage in
the update process. The number, choice, and order of stages
is a decision we leave to the update developer, with the only
requirement that the system must be considered correct both
before and after each individual stage is applied.

In the rest of the paper, without loss of generality, we
consider a specific (valid) update model, shown in Fig.]2]
and representative of a vast class of mobile robotics plat-
forms [4, 5, 16]. The downloading job is performed on a
companion computer, for example, through a cellular con-
nection to download a diff file. The loading job loads the
diff file onto the low-level controller using DMA. Once load-
ing is complete, NeRTA is invoked to ensure that the last

Update database Companion Low-level controller

Computer

DMA
E===== -){ Downloading 4){ Loading
| Applying | NeRTA
update scheduling

Figure 2: Update stages with NeRTA used to schedule the
stage requring execution time from low-level controller.

stage in the process, which updates machine code and pro-
gram state, meets the minimal effect requirement. We up-
date the entire machine code and program state in one go
to simplify safety checks, since updating parts of the soft-
ware means each intermediate version must be verified to be
safe. Both the downloading job and the loading job, since it
uses a DMA, are performed in parallel with the regular ex-
ecution, and therefore they do not require scheduling with
NeRTA. Only the final stage uses execution time on the low-
level controller device and therefore can impact the control
tasks. This is therefore the only job scheduled with NeRTA.

Security considerations. The update model we consider
presents key security considerations that must be taken into
account to securely update the software. One is protection
against man-in-the-middle attacks where an attacker would
modify the diff file sent to the companion computer, or im-
personates the machine sending the diff file to send an invalid
one. To protect against man-in-the-middle-attacks, we can
load a private key during initial offline programming of the
companion computer, which is only known to the computer
sending the diff file. The key is used to encrypt the binary
before transmission, and decrypt it upon reception. A check-
sum encrypted with the same key can be packaged with the
binary to verify its integrity.

3.3 NeRTA

We start with an example to provide the basic intuition be-
hind how NeRTA estimates idle times, and describe its gen-
eralization next.

Example. Fig.[3 helps understand NeRTA’s design. We con-
sider three tasks, T1, T2, and T3. In a low-level control loop
for drones, for example, T1 may be the flight control task,
T2 the receiver task processing commands from a remote
controller, and T3 the sensor task that gathers data from the
IMU. As in existing low-level robot controllers [2, [10} [13],
tasks are not preemptable. Each job has a release time that is
computed by adding a fixed number of time units to the time
the prior job of the same task starts its execution.

For simplicity, we assume that whichever job reached its
release time executes immediately, unless either another job
is running already or two or more jobs reached their release
times simultaneously, in which case one is randomly chosen
to execute. To compute the release time of the T1 jobs, we
add three time units to the time the previous job of T1 com-
pletes, we add five time units for T2’s jobs, and seven time
units for T3’s jobs. Those values are a property of the task
scheduling algorithm and are chosen to satisfy real-time re-
quirements. In this example, we are currently at time four in
Fig.[3| therefore one job from each task executed.

1 2 3 4 5 6 7 8 9
T1's first
Tl job Interval when T1's second job can execute
execution
—
T2's
T2 first job Interval when T2's second job can execute
execution|
Interval
T3 . T‘3 Sb T1's second jab release time when Tz's
irst jol e o) H . secon
execution T2's second jgb release time e
execute
<—7Previous executions—p A <—»
Idle time

Current time T3's second job release time

Figure 3: Example demonstrating release times of jobs in a
system. The current time is four.

1 2 3 4 5 6 7 8 9
I] Interval
T1's first Tl's ‘second when T1's
T1 job job third
execution execution job can
& execute
T2s 25
T2 first job second
execution (3
execution
T3's e
T3 first job SEEE
execution [
execution
-—
Idle time Current time

T1's third job release time

Previous executions

Figure 4: The system of Fig. after the execution of the sec-
ond job of all tasks. Current time is nine.

Fig.[] shows the actual execution of the system as ob-
served until time nine. At time five, the task scheduler ran-
domly chooses T1’s second job over T2’s second job due to
the overlap in release times. When T1’s second job com-
pletes its execution, the task scheduler computes the release
time of T1’s third job by adding one time unit to when its sec-
ond job completes, resulting in a new release time of eight.
At time seven, T2’s second job then executes because neither
T1’s third job nor T3’s second job reach their release times.
The scheduler computes a release time for T2’s third job af-
ter its second job executes. At time eight, the release times
of T1’s third job and T3’s second job align. The scheduler
randomly executes T3’s second job over T1’s third job.

Fig.[] shows an idle time worth one time unit between
time four and five. This happens as the earliest release time
of any task in Fig.[3]is at time five. Between the current time
and the earliest release time, no jobs can possibly execute,
thus the computing unit is guaranteed to be idle. This is a
perfect time to perform an update job that does not take more
than one time unit to complete, as none of the preexisting
jobs would be affected. As a result, updates performed dur-
ing this interval meet the condition of minimal effect by con-
struction. NeRTA generalizes this reasoning, as explained
next.

General case. NeRTA requires two inputs, an update job
with a specified worst case execution time, and the release
times of jobs that belong to various tasks in the system. The
task scheduling algorithm computes the release time of each
job at the appropriate time and sends it to NeRTA.

Once NeRTA has up-to-date release times for all jobs, it
can estimate the available idle time. If an update job is wait-
ing to be scheduled, the task scheduler calls NeRTA after
any job completes its execution. Calling NeRTA after the
execution of a job simplifies the computation of idle times
because only the release time of upcoming jobs is needed
to determine the idle time. NeRTA computes the estimated
idle time by subtracting the current time from the smallest
release time of any job. For an update job to be scheduled
successfully, the estimated idle time must be greater than the
time needed to perform the update. If the update cannot be
scheduled right now, the task scheduler waits until the next
job completes and calls NeRTA again with updated release
time information.

The idle time NeRTA computes is a conservative estimate
of the actual idle time of the concrete execution. Conserva-
tive means that NeRTA estimates cannot be larger than the
actual idle time. This is because release times indicate the
earliest time a task can start executing a job, which cannot
be larger than the time the execution actually starts. There-
fore, if the release times provided are correct, then by con-
struction the idle time computed from those release times is
conservative. The conservative nature of NeRTA estimates is
extremely important because if the estimated idle time was
larger than the actual idle time, then performing the update
in this time span would necessarily postpone the execution
of jobs, and therefore violate the minimal effect condition.

4 Prototype

We demonstrate the operation of NeRTA in a system used
for low-level control of aerial drones. We describe next the
existing autopilot platform and the corresponding NeRTA
implementation.

Autopilots. A drone autopilot is an embedded software li-
brary that includes the functionality needed for low-level
control of an aerial drone. To control a drone while airborne,
drone autopilots implement a control loop that uses as input
data from on-board sensors, and produces as output specific
motor settings. The control loop must run at high enough
frequencies, otherwise, the drone would react to changes too
slowly and may destabilize or even crash.

Flight control is typically implemented through the use of
Proportional-Integral-Derivative (PID) controllers that con-
trol the drone’s motors depending on data from the sensors
and the pilot’s setpoints, which are sent through a radio con-
trol (RC) transmitter.

Hackflight. We use Hackflight [13] as a concrete instance
of low-level robot controller. Hackflight is a C++ based au-
topilot developed by Levy [13] that is designed to be well-
structured, powerful, and extensible.

Hackflight is composed of at least three tasks: receiver,
PID, and sensors. The receiver task processes data received
through RC transmission and updates the drone’s setpoints
based on this. The PID task performs three different steps:
it obtains the receiver setpoints; it runs the setpoints through
all the PID controllers; then it sends the setpoints generated
by the final PID controller to the mixer, which converts the
setpoints to individual motor speeds and sends them to the
motors. Each sensor in Hackflight has its own task. A sensor

Figure 5: Custom drone with Ladybug flight controller.

to measure orientation is mandatory.

Scheduling in Hackflight is performed on a per-task ba-
sis; each task must meet certain requirements before it can
run. Tasks in Hackflight have timing requirements that are
dependant on whether the release time of the task is met or
not. Task release times are computed in the exact same way
as the example from Sec.[3.3] by adding a fixed value to the
previous time the task started execution. Once the current
time exceeds the release time, the task can execute.
Hardware. Autopilots run on resource-constrained flight
controllers, and therefore prioritize efficiency to meet real-
time deadlines to safely control the drone. An example is the
Ladybug flight controller, featuring a 32-bit STM321L.432KC
microcontroller with an 80MHz single-core ARM MA4F pro-
cessor, 64 KB of SRAM, and 256 KB of non-volatile Flash
memory [22]]. The ARM MA4F processor comes with an on-
board floating-point unit (FPU), which is particularly impor-
tant for autopilots due to the prevalence of floating-point op-
erations. We use the Ladybug aboard a custom drone we
build, shown in Fig.[5]

5 Evaluation

Our evaluation is three-pronged. In Sec.[5.1} we measure
idle times observed in Hackflight and later use it for compar-
ison with the other parts of the evaluation. Sec.[5.2]reports on
how close NeRTA'’s (conservative) estimates of idle time are
to actual executions. We conclude by measuring the run-time
overhead of NeRTA in Sec.5.3

The results we obtain lead to two key conclusions:

1. NeRTA estimates are within 15% of the actual idle
times in more than 75% of the cases;

2. the run-time overhead of NeRTA is essentially negligi-
ble compared to the timing dynamics at stake.

5.1 Idle Time Analysis

NeRTA conservatively estimates the available idle times
in an existing task schedule. To reason about the accuracy
of the idle times predicted, and the run-time overhead of
NeRTA, we measure the idle times observed in Hackflight.
Using an existing autopilot implementation and real hard-
ware, we can measure the idle times that are present in a
real-world mobile robot platform, and provide a reference
for our results in other parts of the evaluation.

By instrumenting the code, we record every time a task
begins its execution and every time a task ends its execu-
tion. By aligning the traces obtained this way over time, we

5000 471

4000

Occurrences
w
o
o
o

N
o
=3
s

1000

0
00.1 0.6 11 1.6 21 26 3.1

Idle times (milliseconds)

Figure 6: Idle times in our experiments with Hackflight; note
the prevalence of idle times between 0.6 ms and 1.6 ms.

1800

1633 1607

III BN 0

<5% (5%-15%] (15%-55%] (55%-65%] (65%-85%] >90%
% Difference in predicted idle time from actual idle time

Figure 7: Histogram of differences between actual idle times
and NeRTA predicted idle times; note that a significant num-
ber of samples have a difference less than 15%.

1600 [-
1400
1200 [-
1000 -

800

Occurrences

600 -

400 -

200

0

can derive the available idle times post-facto. Fig.[6] shows
an aggregate view on the results we obtained across 17,345
samples of idle time. The largest idle time we observe is
just under 3.0 ms, yet only about 1.8% of the samples show
idle times larger than 2.7 ms. On the other hand, 10.9% of
the samples are larger than 2.0 ms, and 46.1% are larger than
1.0ms. Overall, we find median and average idle times of
0.8 ms and 0.9 ms respectively.

Note that in Fig.[6]the size of the bins is not homogeneous.
In the 0-0.1 ms interval, we obtain numerous small samples
because two or more jobs have overlapping release times,
and therefore execute one right after the other.

5.2 NeRTA Estimates

We quantitatively determine how conservative are NeRTA
estimations of the available idle times. We do so by compar-
ing the idle time NeRTA computes with the idle time that we
measure during actual execution.
Setup. We use the prototype of Sec.l] without the motors
attached and in stable conditions. We instrument our imple-
mentation to gain information on the actual task scheduling
in the absence of non-deterministic environment influence,
using Hackflight’s default parameters for task scheduling.

We capture 4,881 samples of NeRTA estimates and of the
actual idle times. We compute the difference between cor-
responding samples as a measure of error. We exclude 571
samples from the analysis because they represent cases when
one of the next release times is lower than the current time,
and hence idle time is zero. At run-time, these situations
are readily detected and only affect how many iterations of

Table 1: Time required for different stages of the update
scheduling process

Stage of update . .
scheduling process Average time (us) | Max time (us)
Release time update 1.86 9
NeRTA scheduling 1.44 6

NeRTA we need before an update is scheduled successfully.
Results. Fig.[7]shows the results of the experiment. We vary
the widths of the bins to highlight key results, namely the
sample with the largest error has an error of 98.75%; 1,633
of the 4,310 samples that are left have an error of less than
5%.; 75% of the samples have an error of less than 15%. We
also compute the largest difference in idle times to be 86 ps.
The experiment demonstrates that, despite the conserva-
tive nature of NeRTA estimates, its measures of available idle
times are close to the actual idle times. Despite some large
percentage-wise differences, those large differences were ob-
served only for small idle times, since the largest absolute
difference was only 86 us between the predicted and actual
idle times, which is within 15% of the median idle time of
0.8 ms. This shows that for idle times larger than the me-
dian, the percentage-wise differences are small, i.e., less than
15%. It is more important to be accurate for larger idle times
to be able to schedule updates that need more time, than to
be accurate for small idle times that are not that useful for
scheduling larger updates even if predicted accurately. This
justifies our design choices and makes NeRTA an accurate
estimator of the idle times. Its conservative nature allows
NeRTA to meet the minimal effect condition by design.

5.3 Overhead

NeRTA’s implementation has two components, each of
which consumes valuable CPU time at regular intervals. We
measure the average and maximum CPU time used for each
component. The first component computes release times and
runs at the start of each task regardless of whether an update
is pending. By running regardless of whether an update is
pending, NeRTA attempts to schedule the update in the first
iteration after we issue it. The second component is the up-
date scheduling portion that runs at the end of each task only
when there is an update pending.
Setup. We use the same setup as Sec.[5.2] We schedule an
update that takes 2ms to complete. We choose 2 ms be-
cause such an update is possible in the idle times available
from Sec.[5.1} We separately measure the average process-
ing times of each component. We take 13,348 samples of the
first component, and 847 samples of the second component.
Results. Tab.[T] reports the average and max processing
times observed for each component. The median idle time is
0.8 ms as indicated in Sec.[5.1l The table demonstrates that
the max times for either stage are over two orders of mag-
nitude smaller than the median idle time. Based on these
results, we conclude that the processing overhead of NeRTA
is arguably negligible.
6 Conclusions

NeRTA estimates the available idle times in existing task
schedules of low-level robot controllers to accommodate dy-
namic software updates with minimal effect on the robot op-

eration. Its operation is orthogonal to the existing sched-
uler, retaining the existing platform-specific optimizations
and fine-tuning, while its estimates are cautiously conserva-
tive. Our evaluation shows that NeRTA estimates are within
15% of the actual idle times in more than three-quarters of
the cases we measure. We also show that the processing
overhead of NeRTA is essentially negligible.
Acknowledgements. Work partially funded by the Knut and
Alice Wallenberg Foundation through project UPDATE.

References

[1] Albatross uav Long range drone.
appliedaeronautics.com/albatross-uav.

[2] Ardupilot homepage, Jul 2021. URL https://ardupilot.org/}

[3] 2022. URL https://ardupilot.org/dev/docs/
learning-ardupilot-threading.html.

[4] Px4, May 2022. URL https://px4.1i0/.

[5] Pixhawk, May 2022. URL https://pixhawk.org/|

[6] Turtlebot3, May 2022. URL https://www.turtlebot.com/
turtlebot3/l

[7] B. H. Ahmed, S. P. Lee, M. T. Su, and A. Zakari. Dynamic software
updating: a systematic mapping study. 2020. doi: 10.1049/iet-sen.
2019.0201.

[8] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. White-
house. Reactive Control of Autonomous Drones. 2016. URL
https://doi.org/10.1145/2906388.2906410,

[9] W. Cazzola and M. Jalili. Dodging Unsafe Update Points in Java Dy-
namic Software Updating Systems. 2016. doi: 10.1109/ISSRE.2016.
17.

[10] D. Clifton. Cleanflight, Apr 2017. URL http://cleanflight.com/.

[11] Davison. Real-time simultaneous localisation and mapping with a sin-
gle camera. 2003. doi: 10.1109/ICCV.2003.1238654.

[12] V. Kangunde, R. S. Jamisola, and E. K. Theophilus. A review on
drones controlled in real-time. 2021. URL https://doi.org/10.
1007/s40435-020-00737-5|

[13] S.D. Levy. Hackflight homepage, Jun 2021. URL |https://github.
com/simondlevy/Hackflightl

[14] R. Lounas, N. Jafri, A. Legay, M. Mezghiche, and J.-L. Lanet.
A Formal Verification of Safe Update Point Detection in Dynamic
Software Updating. pages 31-45, Cham, 2017. doi: 10.1007/
978-3-319-54876-0_3.

[15] D. Mlinari¢. Challenges in Dynamic Software Updating. TEM Jour-
nal, 9(1):13, 2021.

[16] A. Patelli and L. Mottola. Model-based Real-time Testing of Drone
Autopilots. pages 11-16, June 2016. URL https://doi.org/10.
1145/2935620.29356301

[17] A. Seewald et al. Mechanical and Computational Energy Estimation
of a Fixed-Wing Drone. In 2020 IRC, pages 135-142, 2020. doi:
10.1109/IRC.2020.00028.

[18] A. Tridgell. Ardupilot adding a check for pitch
considering current airspeed, Mar 2022. URL
https://github.com/ArduPilot/ardupilot/commit/
6ebefbdbl1680b6lefc30d74ebcd95861£8adf02al

[19] A. Tridgell. Ardupilot rudder control fix, Apr 2022. URL
https://github.com/ArduPilot/ardupilot/commit/
8e37c93e7d7716885£97addd941£a0df3b47040d.

[20] A. Tridgell. Ardupilot yaw fix when disarming rudder,
Mar 2022. URL https://github.com/ArduPilot/ardupilot/
commit/48881eeb5517d2804£929aa3d56b68£958£73772.

[21] M. Wahler, S. Richter, and M. Oriol. Dynamic software updates for
real-time systems. HotSWUp, 2009. URL https://doi.org/10.
1145/1656437.1656440}

[22] K. Winer. Ladybug flight controller, Jun 2021. URL
https://www.tindie.com/products/TleraCorp/
ladybug-flight-controller/|

[23] Z. Zhao, X. Ma, C. Xu, and W. Yang. Automated recommendation
of dynamic software update points: an exploratory study. INTER-
NETWARE, 2014. URL https://doi.org/10.1145/2677832.
2677853.

URL |https://www.

https://www.appliedaeronautics.com/albatross-uav
https://www.appliedaeronautics.com/albatross-uav
https://ardupilot.org/
https://ardupilot.org/dev/docs/learning-ardupilot-threading.html
https://ardupilot.org/dev/docs/learning-ardupilot-threading.html
https://px4.io/
https://pixhawk.org/
https://www.turtlebot.com/turtlebot3/
https://www.turtlebot.com/turtlebot3/
https://doi.org/10.1145/2906388.2906410
http://cleanflight.com/
https://doi.org/10.1007/s40435-020-00737-5
https://doi.org/10.1007/s40435-020-00737-5
https://github.com/simondlevy/Hackflight
https://github.com/simondlevy/Hackflight
https://doi.org/10.1145/2935620.2935630
https://doi.org/10.1145/2935620.2935630
https://github.com/ArduPilot/ardupilot/commit/6ebefbdb1680b61efc30d74ebcd95861f8adf02a
https://github.com/ArduPilot/ardupilot/commit/6ebefbdb1680b61efc30d74ebcd95861f8adf02a
https://github.com/ArduPilot/ardupilot/commit/8e37c93e7d7716885f97addd941fa0df3b47040d
https://github.com/ArduPilot/ardupilot/commit/8e37c93e7d7716885f97addd941fa0df3b47040d
https://github.com/ArduPilot/ardupilot/commit/48881eeb5517d2804f929aa3d56b68f958f73772
https://github.com/ArduPilot/ardupilot/commit/48881eeb5517d2804f929aa3d56b68f958f73772
https://doi.org/10.1145/1656437.1656440
https://doi.org/10.1145/1656437.1656440
https://www.tindie.com/products/TleraCorp/ladybug-flight-controller/
https://www.tindie.com/products/TleraCorp/ladybug-flight-controller/
https://doi.org/10.1145/2677832.2677853
https://doi.org/10.1145/2677832.2677853

	Introduction
	Related Work
	NeRTA: Next Release Time Analysis
	Target Systems
	Update Model
	NeRTA

	Prototype
	Evaluation
	Idle Time Analysis
	NeRTA Estimates
	Overhead

	Conclusions

