On-off pumping for drag reduction in a turbulent channel flow

G. Foggi Rota^{1,2}, A. Monti¹, M. E. Rosti¹ and M. Quadrio²

¹Complex Fluids and Flows Unit, OIST, Japan ²Dipartimento di Scienze e Tecnologie Aerospaziali, PoliMi, Italy

Question

Can we exploit an unsteady injection of pumping

energy for drag reduction?

Flow control: where are we?

Active Control energy

On-off pumping for drag reduction in a turbulent channel flow

Making an existing idea practical

J. Fluid Mech. (2012), vol. 700, pp. 246–282. © Cambridge University Press 2012 doi:10.1017/jfm.2012.129

Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis

M. Manna¹, A. Vacca² and R. Verzicco^{3,4}†

Prediction of the drag reduction effect of pulsating pipe flow based on machine learning

Wataru Kobayashi, Takaaki Shimura, Akihiko Mitsuishi, Kaoru Iwamoto^{*}, Akira Murata

On-off pumping

Our model problem

• DNS of a plane turbulent channel flow

 $3\pi h \ge 1.5\pi h \ge 2h => 6\pi h \ge 3\pi h \ge 2h$ $\Delta x^+ = 6.6, \Delta y^+ = 3.3, \Delta z^+ = 0.5 - 3.2$

Higher resolutions employed for verification purposes, up to: $\Delta x^+ = 2.2$, $\Delta y^+ = 1.1$, $\Delta z^+ = 0.15 - 1.0$

• Two very diverse codes used to check robustness

Time integration: Fractional step method (AB) Spatial discretization: II order FD

Time integration:

Partially implicit method (RK3 – CN) **Spatial discretization:**

Fourier – IV order compact FD

Money VS Convenience (Frohnapfel, Hasegawa & Quadrio JFM 2012)

Convenience (Re_b)

Money $(C_f Re_b^2)$

It works!

 $C_f Re_b^2$

 Re_b

A demanding investigation

Figure: Convergence of the energy saving for our best-performing simulation

OD statistics

The quasi-laminar flow state

Figure: Positive (red) and negative (blue) contours of the streamwise velocity fluctuations

Streamwise velocity structures

- Remains of the low-*Re* flow phase at the beginning of every cycle
- Their instability is responsible for the breakdown to turbulence (knee)

Conclusions

- Unsteady pumping yields significant energy savings (up to 22%, for the parameters considered)
- Large room for improvement, both in terms of searching for the optimal parameters and understanding of the complex flow physics
- Practical applications?

The End

Questions?

On-off pumping for drag reduction in a turbulent channel flow

G. Foggi Rota, A. Monti, M. E. Rosti and M. Quadrio

Spanwise correlations of the streamwise velocity ($z^+ = 40$)

Two competing transition mechanisms

Oblique waves

- Distort a low speed streak
- May induce an asymmetric transition
- Typically cause an "early" breakdown to turbulence

Hairpins

- Last stage of a complex mechanism
- Induce a symmetric transition
- Typically cause a "late" breakdown to turbulence

The Optimal Time Dependent Modes (*Kern et al., 2021*) are a promising approach for further investigations

The longer the period, the better

Parameter study

ξ T^+	3600	10800	14400	18000
0.50%	18	18	18	
1.25%	18	18	35	\square
2.50%	18	18	35	35
3.75%	18	18	35	
5.00%	18	18	35	
10.0%	18	18	35	35

Table: Number of simulated periods. Smaller domain in light gray, bigger domain in dark gray.

Grids

Name	L_x/h , L_y/h , L_z/h	n_x , n_y , n_z
LowRes	3π , 1. 5π , 2	128, 128, 128
db-LowRes	6π, 3π, 2	256, 256, 128
StdRes	3π , 1. 5π , 2	256, 256, 160
db-StdRes	6π, 3π, 2	512, 512, 160
HighRes	3π , 1. 5π , 2	512, 512, 256
db-HighRes	6π , 3π, 2	1024, 1024, 256
vHighRes	3π , 1. 5π , 2	768, 768, 512

Robustness of the velocity streaks

Two codes, one result: streaks!

- Equally observed employing a finite difference or a spectral code
- Visible for all the forcing waveforms considered
- Similar smaller structures are documented (He & Seddighi, 2013)
- Their lifetime τ is grid and code independent

$T^+ = 10800, \ \xi = 5.0\%$		$T^+ = 14400, \ \xi = 5.0\%$		
Setup	$ au^+$	Setup	$ au^+$	
StdRes	965	db-LowRes spectral	2851	
HighRes	864	db-StdRes	2882	
vHighRes	1127	db-HighRes	2911	

1D-statistics

On-off pumping for drag reduction in a turbulent channel flow

G. Foggi Rota, A. Monti, M. E. Rosti and M. Quadrio

Spectra

Figure: Pre-multiplied energy spectra in instantaneous wall units corresponding to the 5th correlation plot. The first (second) line refers, respectively, to the stream-wise (span-wise) direction. The stream-wise, span-wise and wall-normal velocity components are varied from left to right.

TKE balance

References

Frohnapfel, B., Hasegawa, Y. & Quadrio, M. (2012)

Money versus Time: Evaluation of Flow Control in Terms of Energy Consumption and Convenience J. Fluid Mech. 700, 406–418.

He, S. & Seddighi, M. (2013)

Turbulence in Transient Channel Flow J. Fluid Mech. 715, 60–102.

lwamoto, K., Sasou, N. & Kawamura, H. (2007)

Direct numerical simulation of pulsating turbulent channel flow for drag reduction Advances in Turbulence XI, 709–711

Kern, J. S., Beneitez, M., Hanifi, A. & Henningson, D. S. (2021)

Transient Linear Stability of Pulsating Poiseuille Flow Using Optimally Time-Dependent Modes J. Fluid Mech. 927.

Kobayashi, W., Shimura, T., Mitsuishi, A., Iwamoto, K. & Murata, A. (2021)

Prediction of the Drag Reduction Effect of Pulsating Pipe Flow Based on Machine Learning Int. J. Heat Fluid Flow *88*, 108783.

Monti, A. (2015)

Skin Friction Drag Reduction in a Turbulent Channel Flow via Pulsating Forcing Master's Thesis at *Politecnico di Milano*.