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ABSTRACT
Address Space Layout Randomization (ASLR) is a crucial defense
mechanism employed by modern operating systems to mitigate
exploitation by randomizing processes’ memory layouts. However,
the stark reality is that real-world implementations of ASLR are
imperfect and subject to weaknesses that attackers can exploit.
This work evaluates the effectiveness of ASLR on major desktop
platforms, including Linux, MacOS, and Windows, by examining
the variability in the placement of memory objects across various
processes, threads, and system restarts. In particular, we collect
samples of memory object locations, conduct statistical analyses
to measure the randomness of these placements and examine the
memory layout to find any patterns among objects that could de-
crease this randomness. The results show that while some systems,
like Linux distributions, provide robust randomization, others, like
Windows and MacOS, often fail to adequately randomize key areas
like executable code and libraries. Moreover, we find a significant
entropy reduction in the entropy of libraries after the Linux 5.18 ver-
sion and identify correlation paths that an attacker could leverage
to reduce exploitation complexity significantly. Ultimately, we rank
the identified weaknesses based on severity and validate our en-
tropy estimates with a proof-of-concept attack. In brief, this paper
provides the first comprehensive evaluation of ASLR effectiveness
across different operating systems and highlights opportunities for
Operating System (OS) vendors to strengthen ASLR implementa-
tions.
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1 INTRODUCTION
In the context of software exploitation, the more information an
attacker can gather about the targeted system, the easier it is to
exploit it. In particular, one crucial piece of information for the
success of memory errors attacks (e.g., buffer overflows) is the exact
address of objects inside the memory space of the running program;
this information allows an attacker to successfully exploit the soft-
ware vulnerabilities hijacking the execution flow of the program or
leaking sensitive data. Even if these vulnerabilities are well known,
they still account for more than 20% of the CVE reported [? ].

Address Space Layout Randomization (ASLR) is a security measure
developed to improve resilience against exploitation techniques
that depend on precise memory locations. The base mechanism of
ASLR is the randomization of the memory layout of processes to
make exploitation a game of chance. Thus, its effectiveness increases
as the number of attempts needed to hit a precise object in memory
increases. Ideally, the entropy of the memory layout should be high
enough to make the chances of a successful attack negligible; we
see that this is not always the case in real-world implementations.
Moreover, we would like ASLR to randomize every object that
is allocated inside the memory of a program at the moment of
allocation and with high entropy (so, low predictability on the
object position); unfortunately, there is a gap between theoretical
capabilities and real-world implementation: as shown in this work,
on many systems, ASLR lacks at least one of the mentioned aspects.
In particular, the memory is often grouped in sections or groups of
sections and then randomized all together at the program launch; as
a consequence, even if the entropy of single memory objects is high,
it can be reduced by collecting information about other memory
objects, as their memory sections of origin may be correlated [? ].
Even though the correlation is an already known vulnerability [? ],
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current research still lacks a comprehensive evaluation regarding
the severity of this vulnerability in terms of entropy reduction.
Moreover, the scope of these studies is often limited, focusing on
specific sections and predominantly considering operating systems
tailored towards Linux enterprise solutions [? ]. Additionally, the
recent shift to ARM architecture in Apple devices has not been
sufficiently addressed, leaving the effectiveness of ASLR on such
systems unknown. In this work, we directly address these gaps.

In summary, our contributions are the following:

• We conduct an empirical evaluation of the ASLR mecha-
nism’s effectiveness across various operating systems, in-
cluding Linux, MacOS, and Windows, focusing on allocation
probability and the impact of this probability on the correla-
tion between memory objects.

• We identify instances where the absolute entropy of relevant
memory objects is considerably low, which makes bruteforce
attacks feasible. Moreover, even when the absolute entropy
is high, we identified high correlation paths that can be
exploited to reduce guessing space and speed up bruteforce
exploits.

• We identify memory objects with non-uniform distributions,
meaning that certain addresses are more likely to be chosen
for allocating a memory object, consequently reducing its
overall entropy.

• We identify a sudden reduction in randomization entropy
of shared libraries in Linux systems since the 5.18 kernel
release due to the introduction of Linux Folios performance
optimization.

• We demonstrate through empirical proofs that current ran-
domness in ASLR implementations can be easily bypassed
in a short amount of time, even on the latest versions of
the analyzed operating systems. Consequently, we discuss
possible mitigation strategies to improve the effectiveness
of ASLR.

• We release the code used to sample all memory objects in
the OSes under study, as well as the code for our ASLR
analysis. Additionally, we provide the dataset employed in
our analysis, which can be used to replicate our results or
conduct further research. All the materials can be found at:
https://zenodo.org/doi/10.5281/zenodo.12786166.

2 BACKGROUND AND MOTIVATION
Analyzing ASLR performance is crucial, as ASLR represents one
of the final security defenses that need to be overcome for exploit-
ing a system. It is worth noting that ASLR is not the sole defense
mechanism against attacks; indeed, additional protections such as
the NX bit and Stack Smashing Protection (SSP) are also in place to
enhance security in case a new vulnerability emerges. However, the
fact that we can rely on other security mitigations does not excuse
vendors from implementing a robust ASLR mechanism. Moreover,
being aware of the specific OSes’ limitations is particularly use-
ful when choosing which best fits a particular scenario’s security
requirements and threat model.

In the subsequent sections, we examine the most common ASLR
weaknesses, justify the selection of the specific operating system

under analysis in this work, and provide a threat model where
ASLR should mitigate possible attacks.

2.1 Evaluate ASLR Performances
To understand the limitations of ASLR implementation, we start
by defining its goals and expected performance: to increase the
average number of attempts an attacker must make to correctly
guess a memory address through the obfuscation of the memory
layout. In other words, it is a mechanism that frequently randomizes
memory objects with low predictability and high granularity. More
formally, we utilize the taxonomy proposed by Marco-Gisbert and
Ripoll [? ], which classifies the capabilities of ASLR implementations
into three categories: when, what, and how. By examining the
performance in these categories, we assess the effectiveness of an
ASLR implementation and identify areas for improvement.

When. The differentiation in ASLR mechanisms across various
OSes lies when they perform randomization, i.e., in the frequency
with which they refresh the randomization of their memory sec-
tions. Ideally, a system would randomize every memory object at
the moment of allocation; however, this is challenging due to perfor-
mance degradation and implementation complexity. Consequently,
no commercial OS currently adopts such an advanced technique.
The most practical goal is to have the memory randomized every
time a new process is allocated in memory (as in the case of Linux).
In contrast, some OSes like MacOS [? ] and Windows [? ? ] only
randomize parts of memory and only at boot. However, this ap-
proach is considered a flawed implementation of ASLR, as a local
attacker could use information gathered from other processes to
locate the library position precisely; moreover, a remote attacker
could bruteforce the address starting from the lowest possible value,
to the highest one, or perform a byte-per-byte attack [? ].

What. Another critical aspect concerns the granularity of what is
randomized and the number of sections randomized: even a single
non-randomized object can be leveraged to take over a system.
For instance, certain implementations fail to randomize all exe-
cutable objects or do so only at boot-time, significantly reducing the
system’s overall security and increasing the likelihood of success-
ful Return-to-Library (Ret2Lib) or Return-Oriented Programming
(ROP) attacks.

How. The last category concerns how objects are randomized,
specifically in terms of the number of bits randomized and the
relative positioning of the objects. Current implementations of
ASLR primarily adopt the Partial-VM randomization strategy. This
method partitions virtual memory into segments where objects
are placed. For instance, on a 64-bit Windows 11 OS, libraries and
the executable are allocated in a specific region ranging from the
address 0x7ff800000000 to 0x800000000000; no other object can
be allocated in such a region. Although this approach significantly
simplifies the ASLR implementation, it also increases the likelihood
of generating strong correlation paths.

2.2 ASLR Implementation Weaknesses
All aspects mentioned in Section 2.1 impact the unpredictability
of memory layout, which can be quantified using entropy. In par-
ticular, we refer to Absolute Entropy as the number of bits that
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represent the randomization of a memory object. If the probabil-
ity of allocating an object follows a uniform distribution, then the
Absolute Entropy would be the base-2 logarithm of the total num-
ber of distinct positions a memory object can occupy within the
virtual address space. Nonetheless, given that real-world imple-
mentations might not follow a uniform distribution, we consider
the more general case following the Shannon Entropy formula:
𝐻 = −∑𝑛

𝑖=1 𝑝 (𝑥𝑖 ) log2 𝑝 (𝑥𝑖 ), where n is the total number of possi-
ble distinct positions the memory object can occupy, and 𝑝 (𝑥𝑖 ) is
the probability of the memory object occupying the i-th position.
We consider bits as our reference measure since, under a uniform
distribution, the entropy value is the number of bits altered in an
address by ASLR. Instead, we refer to Correlation Entropy as the
number of bits representing the randomization between two mem-
ory objects, for which we also utilize the Shannon Entropy formula.
Here, n denotes the total number of potential differences between
two memory objects in terms of memory addresses.

The lack of Absolute Entropy and Correlation Entropy is the
primary weakness of ASRL implementations.

2.2.1 Low Absolute Entropy. The major problem affecting ASLR
implementations is low Absolute Entropy. In this context, low Ab-
solute Entropy is directly associated with the amount of bruteforce
effort an attacker needs to perform to correctly guess the position of
a memory object without using any particular technique to predict
the position.

In modern OSes, the MSb divides the user space virtual memory
(MSb = 0) from the kernel space virtual memory (MSb = 1), and
thus, only 47 bits are available for addressing memory in user
space. Therefore, due to the page offset, the maximum entropy
achievable in a 64-bit system is 47𝑏𝑖𝑡𝑠 − 12𝑏𝑖𝑡𝑠 = 35𝑏𝑖𝑡𝑠 for an Intel
x86_64 system and 47𝑏𝑖𝑡𝑠 − 14𝑏𝑖𝑡𝑠 = 33𝑏𝑖𝑡𝑠 for an ARM M1 system.
Unfortunately, as empirically shown in this paper, no 64-bit OS
reaches these entropy measures, as additional factors influence its
estimation. Firstly, certain sections, such as the heap and stack,
require room to expand, limiting the potential for placing such
objects in memory since they necessitate space to grow upwards
or downwards. Secondly, non-contiguous sections like the heap
and libraries must have large memory ranges available for random
placement. Thirdly, flawed RNG mechanisms can also contribute
to reduced entropy.

2.2.2 Low Correlation Entropy. The correlation between various
memory objects can significantly impact the complexity of an at-
tack, as the leak of one memory address may significantly reduce
the effort needed to compromise another. This reduction in com-
plexity can be quantified by assessing Correlation Entropy, which
measures the entropy of the offset between two memory objects.
We distinguish two scenarios:

Correlated Objects. When the addresses of allocated memory
objects are correlated, their Correlation Entropy is lower than the
Absolute Entropy of either object individually. Consequently, a
vulnerability that leaks the address of one object can be exploited
to de-randomize other objects. In other words, the knowledge of
the address of one object reduces the search space for the address
of the other one.

Independent Objects. Two randomly allocated memory objects
are independent when the Correlation Entropy between these ob-
jects is higher or equal than the maximum Absolute Entropy of the
two objects. Hence, it is easier to guess the absolute position of an
object directly.

Not all correlation scenarios are easily exploitable. In fact, if the
Correlation Entropy is sufficiently high, we can consider the object
to be secure, even if it exhibits a low correlation with other objects.
The problem arises when the correlation is so high that an address
leak could enable bruteforcing the position of other objects within
a reasonable timeframe, which, in our analysis, was considered to
have 20 bits of entropy, as we explain in Section 5. When this occurs,
we can identify aCorrelation Path that could potentially be exploited.
The most severe case of correlation presents 0 Correlation Entropy
because the offset is fixed. This issue was exploited in the famous
off2libc attack [? ] and led to the introduction of the Effective
Entropy concept into ASLR-related discussion [? ].

2.3 ASLR Hardware Limitations
The underlying hardware plays an important role in the random-
ization of memory objects. Theoretically, the maximum entropy for
an object is determined by the address size, which is 64 bits or 32
bits according to the hardware architecture. However, the practical
limit is lower because of Multilevel Paging and memory pages.

Multilevel Paging is a technique that translates virtual memory
addresses into physical ones. The idea is to split the address into
several parts, each serving as an index into a different level of
the page table hierarchy. For instance, in Intel’s 4-level paging,
an address is divided into four segments of 9 bits each, plus a
12-bit page offset (12 Least Significant Bits (LSb)), for a total of
48 bits. Consequently, the 16 Most Significant Bits (MSb) are not
supported at the hardware level – they are represented as the sign
extension of the address – which leaves only 48 bits available for
addressing memory. Moreover, even with the latest 5-level paging
implementation, the practical limit for ASLR remains at 56 bits.

On the other hand, memory pages are the smallest unit of mem-
ory that a kernel can allocate, and they are always allocated aligned
with the page’s size. Therefore, the LSb of an address represent the
offset within the page, and they cannot be used in the randomiza-
tion process. For instance, in Intel x86_64 systems we have 4KB
pages, and thus the 12 LSb are used for the page offset, while in
ARM M1 systems (64 bits) we have 16KB pages [? ], and thus the 14
LSb are used for the page offset. Hence, the bits that can be used for
randomization are 48𝑏𝑖𝑡𝑠 − 12𝑏𝑖𝑡𝑠 = 36𝑏𝑖𝑡𝑠 for Intel x86_64 systems
and 48𝑏𝑖𝑡𝑠 − 14𝑏𝑖𝑡𝑠 = 34𝑏𝑖𝑡𝑠 for ARM M1 systems.

In 32-bit systems, Multilevel Paging covers all of the bits of
an address, but we still have 4KB pages. Therefore, the maximum
entropy for an object is 32𝑏𝑖𝑡𝑠 − 12𝑏𝑖𝑡𝑠 = 20𝑏𝑖𝑡𝑠 , which is relatively
low, making ASLR less effective in 32-bit systems. For this reason,
we exclude 32-bit systems from our analysis.

2.4 ASLR Base Addresses
Other factors that can weaken ASLR effectiveness are ASLR base
addresses. An ASLR base address is an address, chosen either at
runtime or boot-time, used to allocate a sequence ofmemory objects,
either after or before the base address. These objects are allocated
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by applying an offset to the previously allocated object, and the
offset can be one of the following: zero, fixed, alignment, or random.

When the offset is zero, objects are allocated contiguously. This
is common in most OSes when allocating executables, where all
sections (e.g., .text and .bss) are placed contiguously to maintain
cross-references and improve performance. A fixed offset, typically
of at least one page, is often used for guard pages, like those in
the Scudo [? ] Android allocator, to prevent buffer overflows. An
alignment offset is used to align pages of different sizes, such as
aligning a huge page to its size. Finally, a random offset, typically
multiple of a page’s size, is used to allocate an object at a random
position from the previous one and is the only offset that can in-
crease the Correlation Entropy between objects. However, if the
random offset is too small, the Correlation Entropy remains low,
allowing attackers to reduce the search space for correlated objects.

For instance, in the latest Linux distributions, we have three
main ASLR base addresses: the executable base address, the shared
libraries base address, and the stack base address. The executable
base address is used for both the executable and the heap. After the
executable is allocated, the kernel applies a random offset to its end
address to compute the heap address, which is retrieved by the appli-
cation via the brk(NULL) system call. The shared libraries base ad-
dress handles shared libraries and dynamic memory pages allocated
through malloc() (when the size exceeds M_MMAP_THRESHOLD) or
mmap(). Here, memory pages are usually allocated contiguously, or
with small random offsets, towards lower addresses, resulting in
low Correlation Entropy that can potentially lead to Ret2Libc or
Ret2LD attacks [? ]. Finally, the stack base address is used to allo-
cate the stack, arguments, and environment variables. At program
startup, the kernel allocates environment variables and arguments
at the stack’s top, and afterward, the userspace application allocates
functions’ frames. Similar to the shared libraries base address, allo-
cations are contiguous with a random offset between environment
variables and arguments, once again resulting in low Correlation
Entropy.

Although identifying ASLR base addresses may be challenging
due to missing documentation or code availability (e.g., in Win-
dows), similar situations occur in other OSes. Generally, the stack
base address is present across all OSes, while others could be differ-
ent as they may allocate different objects. Despite potentially weak-
ening ASLR effectiveness, base addresses are a common practice
across OSes to improve performance and simplify ASLR implemen-
tations. In Section 5, we will see that most correlated objects are
due to the ASLR base addresses.

2.5 OSes Choice Motivation
Looking at research related to ASLR analysis, we can see a stable
trend toward Linux systems. This is justified by the predominance
of Unix servers active in 2023, counting for around 80% of the
market share, of which around 50% uses Linux kernels [? ]. En-
terprise servers require higher security standards than consumer
systems, so, understandably, those have received more attention,
sometimes evaluating even hardened versions of the Linux kernel
available on the market. On the other hand, we have the consumer
market, where Linux-based systems count for 3% of the market
share when compared with 70% of Windows and 20% of MacOS

systems [? ]. Moreover, the recent adoption of ARM architectures
by Apple made all the research regarding MacOS outdated since
they focus only on x86_64 architectures and, as discussed in Sec-
tion 2.3, the virtual address translation is handled differently [? ?
]. Therefore, we decided to focus our research on the following
operating systems: Windows (version 11), macOS (Ventura 13.4.1),
and Linux (Ubuntu 22.04). We excluded Android from our research,
despite its Linux kernel base, as we focused solely on desktop sys-
tems. Moreover, Android presents inherent challenges that require
more in-depth analysis, such as variability in memory page sizes,
differences across devices due to vendor-specific customizations,
the non-deterministic Scudo heap allocator, and the difficulty in
accessing memory objects managed by the Android Runtime (ART)
environment. For a more detailed explanation, we refer the reader
to Appendix A of the extended version of this paper [? ].

Finally, as discussed in Section 2.3, hardware architecture plays
a crucial role in the randomization of memory objects. Thus, we
consider the x86_64 architecture for Windows and Linux, and the
ARMM1 architecture for macOS. For Linux, we consider two kernel
versions (5.17.15 and 6.4.9) to study the impact of Memory Folios
on Linux ASLR implementation. For macOS, we consider both
the native ARM M1 architecture and the Rosetta dynamic binary
translator, which allows applications compiled for x86_64 to run
on Apple ARM processors like the M1 chip.

2.6 Threat Model
We consider two exploitation scenarios: ➀ Local Exploitation and
➁ Remote Exploitation. In the first scenario, the attacker has access
to the target system, either remotely or physically, and can run
arbitrary code. The attacker thus knows the OS, and the goal is
to leak sensitive data or to perform a privilege escalation, i.e., to
obtain superuser privileges. In the second scenario, the attacker
does not have access to the target system but can interact with it
through an exposed service. In this scenario, the attacker aims to
achieve one or more of the following goals: Remote Code Execution
(RCE), Privilege Escalation, or Data Leakage. In addition, the attacker
does not know the OS nor its version and must gather information
about the system to exploit it or try exploits for different OSes and
versions.

In both scenarios, the attacker aims to exploit a memory corrup-
tion vulnerability, such as a buffer overflow or a use-after-free, on a
userspace application to achieve the aforementioned goals. Hence,
depending on the application and the vulnerability, the attacker
may corrupt data structures, function pointers, and flow-related
variables in the virtual memory of the target process. In general,
the attacker needs to know the position of relevant memory objects
in order to perform the exploitation. For instance, whenever the
attacker can change the return address of a function, performing
a Return-Oriented Programming (ROP) attack, the attacker needs
to know the position of the gadgets in the memory. These gadgets
can be found in the executable and in shared libraries. Therefore,
the attacker either has a memory leak vulnerability that reveals the
positions of these objects or needs to guess their positions. As we
will see in Section 5 and Section 6, the attacker may reduce the
guessing space with a memory leak of another correlated object. It
is important to note that the relevance of a memory object depends
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on the specific vulnerability and the target application. Most of the
time, the attacker is interested in the executable and the libraries,
as they contain code to perform control flow hijacking. However,
in some cases, the attacker may be interested in other objects, like
the heap, to perform a Heap Spraying attack, or the stack, to target
flow-related variables and hijack the flow of the application.

When the exploit fails because the object is not in the guessed
position, we usually have a Segmentation Fault (SEGFAULT) signal,
and the process is terminated. In the local scenario, the userspace
application can be restarted, and the attacker can try the exploit
again. In the remote scenario, the exposed services usually have a
parent process that waits for incoming connections and delegates
the connection to a child process. Therefore, in case of a segmen-
tation fault, only the child process is terminated, and the attacker
can try the exploit again by opening another connection.

Finally, we assume an attacker capable of performing 300 tries
per second (tps), i.e., the number of exploit attempts an attacker can
perform in a second [? ? ]. We consider 300 tps as a reference value
as, at this rate, an attacker can guess the position of a memory ob-
ject with an entropy of 20 bits in approximately 1 hour. This value
can be more or less realistic depending on the target application
logic, the hardware on which the application runs, and the exploit’s
size. On consumer-grade hardware, we observed tps ranging from
30 to 500 with one core. In Section 6, we will provide an instance
of a real-world application where we achieve approximately 300
tps with an exploit running on a single core and more than 1,000
tps with the same exploit running on multiple cores. Remotely,
estimating tps is more challenging due to additional factors like
the proximity to the victim machine and the network speed [? ].
However, 300 tps remains a realistic estimate even in remote scenar-
ios, as attackers can parallelize the exploit across multiple threads,
cores, and machines. Additionally, in a remote scenario, the attacker
can perform the exploitation using machine(s) geographically close
to the target one, reducing the network latency. As references, with
300 tps, an attacker can guess a memory object with 30 bits of
entropy in around 41 days, a memory object with 25 bits of entropy
in around 1 day, a memory object with 20 bits of entropy in around
1 hour, and a memory object with 15 bits of entropy in around 2
minutes.

3 RELATEDWORKS
The most advanced tool used in research is ASLR-A by Marco-
Gisbert and Ripoll [? ? ]. It was used to perform analysis on Linux
4.15, PaX (a hardened version of Linux kernel), and MacOS (origi-
nally referred to as OS X). As mentioned before, we will consider
only the consumer OSes, so PaX implementation is out of the scope
of this research. The tool was developed to overcome the limitation
found in paxtest, a tool developed by the PaX team to evaluate
the performance of their newly developed ASLR implementation.
paxtest had several issues. It considered only Absolute Entropy,
using a custom heuristic not always accurate when dealing with
non-uniform distributions. Moreover, the limited number of tests
does not provide statistical significance to the results. Finally, the
analysis was incorrect in some cases; the sampling of text area was,
in reality, the library section.

They improved those aspects by developing ASLR-A, a tool capa-
ble of taking thousands of samples at a second and able to analyze
numerous statistics. However, in this document, we focused mainly
on two aspects that are the ones easily exploitable in bruteforce at-
tacks: Absolute Entropy and Correlation Entropy. The tool can
provide Absolute Entropy estimation using three different methods:
Shannon, Shannon at byte level, Shannon with variable bins width,
and bit-flipping. Based on [? ], it seems to be capable of estimating
also Correlation Entropy. However, the last known version of the
tools available on the researcher’s website [? ] provided only a
correlation matrix without the estimation of Correlation Entropy.
In the end, the tool provides a good insight into the Probability
Distribution of sections.

The only true limitation we can identify in this research is the
limited scope of objects and OSes considered. In fact, as mentioned
in the previous section, ASLR performance is related to many run-
time conditions, such as memory fragmentation, thread execution,
and allocation patterns, so the allocation of multiple objects per
section and multiple threads can lead to a change in randomization
performance. The same considerations are valid for their MacOS
analysis. However, it is not clear how the samples for this system
were collected as the randomization is performed only at boot-time.
No other research is available on the MacOS platform.

To the best of our knowledge, there are only three published
studies on Windows. The first, regarding Windows Vista [? ], is
outdated, so we will focus only on the ones analyzing Windows
10 [? ] and Windows 7 [? ]. The sampling of Windows 10 was per-
formed through 5000 reboots using a custom-written tool, which
took a total of 500,000 samples, while for the sections that were
randomized at runtime 5 mln samples were considered [? ]. The
results are not publicly available but, based on the researcher’s
claims, they were able to estimate the Absolute Entropy of memory
objects, probability distribution, and their correlation; however, no
mention of Correlation Entropy was made, and they just consid-
ered the main execution flow, without launching multiple threads;
moreover, as in the case of ASLR-A, no attention to doing multiple
allocations of different sizes where taken [? ].

The analysis of Windows 7 [? ], even if it is outdated and con-
sidered only four memory sections, concluded that the problems
highlighted in Windows Vista [? ] were still present: heap-allocated
objects with non-uniform distribution and shared libraries random-
ized at boot-time.

Over the years, many pointed out that PRNG on Android has
low entropy [? ? ]. Moreover, because every process is forked from
Zygote, we can expect poor runtime performance of ASLR [? ].
Another problem of Android security is the customization made by
vendors [? ]. This aspect is hard to analyze due to the fragmentation
of the Android hardware and vendors. Thus, we decided to focus
the analysis on desktop OSes only.

3.1 Limitations and Improvements
All mentioned researches have at least one of the following limita-
tions: ➀ Lack of a broad OSes analysis, ➁ missing thread execution,
➂ inadequate sampling size, ➃ limited considered sections, ➄ lim-
ited allocations, ➅ missing Correlation Entropy estimation, or ➆

unclear entropy estimator choice.
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This last point is strictly related to the inadequate sampling size.
For example, to obtain an accurate estimation using direct Shan-
non entropy, we need O

(
k

log(k)

)
samples where k is the number

of symbols considered [? ]. As mentioned before, the maximum
entropy obtainable on the considered system is 35 bits, therefore a
k size of 235. To Estimate the entropy using the Shannon formula,
we will need 235

log10 (235 )
= 3.261.159.434 samples which are way too

much to be collected in a reasonable time. Even if we consider the
best in class, Linux, which in some sections comes close to 30 bits
of entropy, we are still considering hundreds of millions of samples
to be collected. This problem is even more relevant when we take
into consideration reboot times, so we need a less greedy estimator.

The use of Shannon at the byte level or other sorts of plug-in
methods is a good approach, significantly reducing the number of
samples needed to obtain a good estimation. However, they tend
to overestimate the value of entropy due to outliers or due to non-
uniform distribution. The bit-flipping and other bit mask estimators
are indicators of the changing bits of the address and only give a
rough upper bound to the entropy value.

4 HOW TO EVALUATE ASLR
IMPLEMENTATIONS

Assessing the effectiveness of ASLR implementations is a challeng-
ing task due to the dynamic nature of virtual memory allocations
in a program. These allocations can occur at various stages, such as
boot-time, program startup, or runtime. Therefore, to understand
how these memory allocations are related, it is necessary to con-
duct an empirical analysis. This is done by collecting the memory
addresses of different objects and sections of the program, over
multiple runs, and then analyzing the randomness of the memory
layout and the correlation between different objects. In this way,
through the statistical analysis of millions of samples, we evaluate
the strengths and weaknesses of ASLR implementations.

4.1 Sampling
For the sampling phase, the main focus is efficiency and granularity
of information. We wanted to emulate the behavior of real-world
software to provide information about the effort needed to hit a
specific object in memory and not only the page it belongs to. On
the one hand, we need as much data as possible to better analyze the
ASLR performance across the different operating systems. On the
other hand, the resources at our disposal are limited. Fortunately,
we can define a unique subset of objects and allocation sizes, shared
across all considered platforms, able to provide a solid picture of
the ASLR details in an efficient and homogeneous way.

Memory Objects. Facing the problem of choosing which memory
object and section to sample in our research, we decided to focus on
the interactions and correlations between objects; as a consequence,
our sampling program makes multiple allocations of different sizes
from 3 different flows: two independent threads (ThA, ThB) and
the main thread (M). Because of this, the total number of addresses
collected with each sample is around 60 (accounting for some plat-
form limitations). Additionally, for Executable and Linkable Format
(ELF) and Portable Executable (PE), we have different sections such

Table 1: Selected Sizes for malloc() allocations.

16B 512B 4KB 256KB 4MB 128MB
Linux 6.4 [heap] brk() pages folio pages

Linux 5.17 [heap] brk() pages

MacOS M1 13.4.1 M_NANO M_TINY M_SMALL M_MEDIUM M_LARGE

Windows 11 [heap] pages

as .text, .bss, and .data. In these cases, we do not need to sam-
ple all the sections, as they are placed contiguously in the virtual
memory of the process. As a result, we only need to sample one
section to know exactly the position of all the other sections. Finally,
for simplicity, we group all these sections under a single memory
object called executable.

To represent our memory objects, we use the syntax <object>_-
<thread>, where object is the name of the object, and thread is the
thread to which the object belongs. For instance, stack_M is the
stack of the main thread. For dinamically allocated object instead,
we use the syntax <function_name>_<size>_<thread>_<sequence_-
number>, where <function_name> is the function that allocates the
object, <size> is the requested size, and <sequence_number> is the
i-th operation of that type. For instance, malloc_4KB_ThB_2 is the
second 4-kilobytes malloc function call performed by thread B.
Allocation Size Choice. Operating systems often employ various
allocation methods for different memory sizes to enhance perfor-
mance. For instance, Linux uses a default threshold of 128KB(M-
_MMAP_THRESHOLD) to decide whether to use the legacy system
brk() or the mmap() function as an allocation method; moreover,
this threshold is variable and is optimized at runtime based on
the allocation pattern [? ] of the program so we cannot take that
for granted. Since the introduction of Folios in Linux 5.18 [? ], we
have one more variation of allocation method for mmap() of sizes
>2MB, with a significant impact on randomization entropy, as we
will see in Section 5.1 As a consequence, we consider two possible
allocation methods: the malloc() and the mmap() functions. We
believe they represent the most common allocation methods for
our operating systems. In particular, Windows has an equivalent
mmap() function called VirtualAlloc().

For malloc() allocations, we consider different sample sizes
ranging from 16B to 128MB, as reported in Table 1. In particular, in
Windows and Linux, allocations of several kilobytes through the
malloc() internally result in mmap()/VirtualAlloc() function
calls. As a result, the kernels label these memory areas as general
pages instead of heap pages. However, we consider them as heap
pages since they are the result of their standard memory allocators.

Instead, for mmap()/VirtualAlloc() allocations, we consider
specific sizes, which are characteristic of the OSes. Specifically, the
term Single page refers to 4KB pages for both Linux and Windows
and for 16KB pages for MacOS. This difference is due to the design
implementations; Apple M1 chips are designed to allocate 16KB to
enhance runtime performance. Instead, the terms Huge pages and
Large pages refer to 2MB pages for Linux andWindows, respectively.

4.2 Entropy Estimator
The most important quantitative parameter we want to analyze is
Information Entropy, which is a concept introduced by Shannon [?
] in 1948 that measures the information contained in a data source.
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From another point of view, it is a way to measure the randomness.
In the context of ASLR, which is a system that incorporates the
approach of "security through obscurity", entropy is directly linked
to the effort needed to guess the current position of a memory
object in terms of trials. Because of that, having a reliable way to
estimate the entropy is a crucial part of ASLR analysis.

As mentioned in Section 2.2.1, we are dealing with addresses the
size of 47bit (127TB of addressed space), so exhaustively sampling
all values of our source is practically impossible. Moreover, to use
the Shannon Entropy estimator, we need more than one sample
for each bin, so the number is even bigger. We are dealing with an
under-sampled discrete source analysis, sowemust use an estimator
suited for this task. The most common method to estimate Shannon
entropy is to consider each byte (or a subset of bytes of the address)
as an independent random variable and then combine the resulting
entropy to estimate the one of the complete addresses (a.k.a. Plugin
Entropy). Even if, in theory, it is a good method, we considered the
assumption about the independence of bytes with regard to each
other too strong to be stated generally true. To completely avoid
this assumption, we decided to use a not-binned estimator.

The best option we identified is the Nemenman, Shafee, Bialek
(NSB) estimator [? ? ], which is a coincidence-based estimator that
also provides us with posterior standard deviation to quantify the
uncertainty in the estimation result. Thanks to this, it is still one of
the best estimators for under-sampled sources, outperforming both
Shannon Entropy and Plugin Entropy [? ]. It has a bias of 2𝑆/2

𝑁
[? ]

where 𝑆 is the unknown entropy and 𝑁 is the number of samples.
Thus, we can calculate the number of samples we will need in the
worst-case scenario to have a bias of less than 5%.

This method is also suitable for the Correlation Entropy esti-
mation. For correlated objects, we observe that the resultant en-
tropy typically falls below the minimum entropy observed in either
object, thereby incurring a bias comparable to or less than that
encountered in absolute entropy measurements. Conversely, when
evaluating two independent objects, the Correlation Entropy may
exceed the individual maximum entropies, necessitating a larger
sample size due to the increased bias. Nonetheless, this bias is ac-
ceptable since our primary interest is to correctly quantify high
Correlation Entropies. Consequently, precise Correlation Entropy
values for independent objects are not a priority.

4.3 Sample Collection
Following the rule presented in Section 4.2, we consider the max-
imum theoretical entropy (i.e., 35 bits) to identify the minimum
number of samples. In this case, we want to collect enough samples
to have a bias lower than 5%. Hence, 235/2

𝑁
< 0.05. Solving for 𝑁 ,

we find that we need at least 3,800,000 samples.
To collect the required samples, we employ one x86_64 machine

and one ARM M1 machine. Additionally, to collect Windows 11
samples, we employ a Virtual Machine (VM) running on Ubuntu
22.04. Such a VM is virtualized to directly access the hardware
and avoid any possible bias of the guest OS. However, we have
memory objects that are randomized at boot-time, and thus, we
need to reboot the system to collect the samples of these memory
objects. Due to the significant amount of reboots required and the
slow boot-time of the VM, it is not possible to collect the required

Table 2: Thresholds for runtime randomized sections.

OS Entropy (bits) Min Samples
Ubuntu 35 (T) 3,800,000
Windows 35 (T) 3,800,000
MacOS 19 (CB) 15,000

Table 3: Thresholds for boot-time randomized sections.

OS Entropy (bits) Min Samples
Windows 19 (CB) 15,000

MacOS (M1 Native) 16 (CB) 5,000
MacOS (M1 Rosetta) 15 (CB) 3,600

amount of samples in a reasonable time. Hence, we first identify
the Changing Bitmasks – i.e., how many bits change in the address
of objects in memory over different runs or reboots – to estimate
the minimum number of samples to have a bias lower than 5%. It is
important to recall that the NSB estimator provides the posterior
standard deviation to quantify the uncertainty in the estimation
result. Hence, after performing the analysis on the required samples,
we evaluate the uncertainty of the estimation to confirm that the
bias remains below 5%. In other words, we verify that the estimated
Changing Bitmasks is therefore correct.

The thresholds for runtime and boot-time randomized objects
are reported in Table 2 and Table 3 respectively, where T stands for
Theoretical and CB for Changing Bitmask.

5 RANDOMNESS ANALYSIS
In this section, we present the results of the analysis as well as the
findings on the different OSes with the different configurations.
As discussed in Section 2.6, we consider 20 bits of entropy as the
reference threshold. This threshold is artificial as, in reality, there is
no real value of "safeness", and it strongly depends on howmany tps
an attacker can perform. We consider good results to be everything
above this value and bad results to be everything under. Moreover,
we briefly discuss the strengths and weaknesses of each system
considering: ➀ Allocation Layout, ➁ Probability Distribution, ➂

Absolute Entropy, and ➃ Correlation Entropy.
To present ➀ Allocations Layouts, we represent the different

groups, sections, or objects as horizontal colored bars to qualita-
tively highlight in which range of addresses each object can be
allocated. It is important to note that these layouts just represent
possible allocation addresses and not howmuch they expand during
the execution. To present ➁ Probability Distributions, we rely on the
Binned Histogram, a discrete visualization method that represents
the random nature of our memory objects. To present ➂ Absolute
Entropies results, we group objects and sections that are contigu-
ous or with zero entropy to one another. These groups cannot be
defined overall as they depend on the OS. For instance, the glibc
heap manager allocates all the chunks smaller than a few kilobytes
on the same heap page. As a result, we consider all the small al-
locations to be a single group under Linux. Finally, to present ➃

Correlation Entropies results, we report the Distance Entropy Matri-
ces. These matrices highlight the entropy of the distance between
two objects or groups. The reader can find complete Correlation



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Lorenzo Binosi, Gregorio Barzasi, Michele Carminati, Stefano Zanero, & Mario Polino

0x557e149be000 0x55b849c52400 0x55f27eee6800 0x562cb417ac00 0x7f1a151b7c00 0x7f544a44c000 0x7f8e7f6e0400 0x7fc8b4974800 0x8002e9c08c00

heap_M
executable
heap_ThB
heap_ThA

malloc_256KB_ThB
malloc_256KB_ThA
malloc_256KB_M
malloc_4MB_ThB

malloc_4MB_ThA
malloc_4MB_M
malloc_128MB_ThB

malloc_128MB_ThA
malloc_128MB_M
mmap_single_ThB

mmap_single_ThA
mmap_single_M
mmap_huge_ThB

mmap_huge_ThA
mmap_huge_M
shared_memory

tls_ThB
tls_ThA
tls_M

stack_ThB
stack_ThA
stack_M

argv
env
libraries

Figure 1: Linux (Ubuntu 22.04) Allocation Layout.
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Figure 2: Probability Distribution in Linux (Ubuntu 22.04).
All the distributions are available at: https://zenodo.org/re
cords/12968870/files/linux_distribution.pdf

Entropy matrixes in the Appendix B of the extended version of
this paper [? ]. The complete list of figures is also available at:
https://zenodo.org/records/12968870

5.1 Linux
We perform our analysis on Ubuntu 22.04 running on an x86_64
machine, employing the latest glibc library in Ubuntu 22.04, namely
glibc 2.35. With the introduction of Folios in Linux kernel 5.18, we
analyze two kernel versions: 5.17.15 and 6.4.9. We believe Linux
Folios, as well as Huge pages (2MB), can drastically decrease the
entropy of memory pages. As a result, we collected more than 4
million samples for each kernel version and evaluated their ran-
domness.

All the samples have been collected without performing any
reboot since the Linux kernel randomizes every memory object

at runtime. Moreover, the sampling program is compiled with
GCC as Position Independent (flag -fPIE) and relies on external
libraries, i.e., not compiled with the flag static. Finally, the ker-
nels are configured to fully randomize the objects in user space
(/proc/sys/kernel/randomize_va_space = 2).
Allocation Layout.As we can see in Figure 1, the allocation layout
is the same for both kernel versions and is mainly divided into two
regions with a large empty region in the middle. On the left, start-
ing with lower addresses, we have the sections of the executable
and the heap. This latter contains all the allocations of the main
thread with sizes lower than a dynamic threshold. On the right
of the figure, positioned among high memory addresses, we have
the stack, the libraries, and all the allocations that are usually
greater than 256KB, allocated through the mmap() or the malloc()
functions. Additionally, we can find other threads’ stack, heap and
Thread Local Storage (TLS). As you can notice, most of the
object and group allocations almost completely overlap. This is due
to the fact that some objects are allocated considering the alloca-
tion of other objects. For instance, the heap is allocated after the
exectuable, considering a random offset starting from the end of
the exectuable. This behavior is the leading cause of Correlation
Entropy since the position of an object depends on another, espe-
cially when the random offset is limited. Similarly, the libraries
are allocated considering a random offset starting from the end of
the stack. In this case, the offset guarantees the stack to grow
sufficiently, and this can be seen in the figure since the black bars
are separated from the others.
Probability Distribution. Regardless of the kernel version, Linux
randomizes every object uniformly. This is evident from the proba-
bility distribution in Figure 2. Figure 2 shows a histogram of 100
bins of the same size. The probability of a memory object being
allocated in a specific range of addresses is the same for all the
objects and is around 1%, as expected for a uniform distribution.
Moreover, the allocation range is also reported on the x-axis.
Absolute Entropy. From Table 4 we can see the Absolute Entropy
of both kernel versions. The most common and used sections of the
main thread, such as the stack, the executable, the heap, and the
libraries, achieve a relatively secure entropy of 28.8 bits, with the
stack reaching up to 31.8 bits. However, in the kernel version 6.4.9,
we have a drop in the entropy to 19 bits when the library is larger

https://zenodo.org/records/12968870/files/linux_distribution.pdf
https://zenodo.org/records/12968870/files/linux_distribution.pdf
https://zenodo.org/records/12968870
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Table 4: Linux (Ubuntu 22.04) Absolute Entropy. lib_small is a library whose size is lower than 2MB. lib_big is a library whose
size is bigger than 2MB. In our case, lib_big is the glibc. This distinction is important since Linux Folios are used only for the
lib_big allocation. In fact, lib_big for Linux 6.4.9 has a lower entropy than lib_small.

Object Entropy Object Entropy Object Entropy Object Entropy
5.17.15 6.4.9 5.17.15 6.4.9 5.17.15 6.4.9 5.17.15 6.4.9

env 22.472 22.472 heap_M 28.846 28.850 heap_ThA 14.926 14.978 heap_ThB 14.744 14.931
stack&argv_M 30.832 30.836 malloc_256KB_M__1 28.845 25.832 malloc_256KB_ThA__1 24.247 23.998 malloc_256KB_ThB__1 24.773 24.006
shared_memory 28.845 28.851 malloc_4MB_M__1 28.845 19.611 malloc_4MB_ThA__1 19.752 20.007 malloc_4MB_ThB__1 19.912 20.197
tls_M 28.845 28.836 malloc_128MB_M__1 28.845 19.611 malloc_128MB_ThA__1 16.236 16.071 malloc_128MB_ThB__1 15.660 16.134
lib_big 28.845 19.023 mmap_single_M__1 28.845 28.851 mmap_single_ThA__1 28.838 28.838 mmap_single_ThB__1 28.836 28.838
lib_small 28.845 28.851 mmap_huge_M__1 19.024 19.023 mmap_huge_ThA__1 18.814 18.875 mmap_huge_ThB__1 18.869 18.883
executable 28.862 28.840 malloc_256KB_M__2 25.911 24.902 malloc_256KB_ThA__2 23.722 23.501 malloc_256KB_ThB__2 24.154 23.522
stack_ThA 19.026 19.023 malloc_4MB_M__2 19.588 19.023 malloc_4MB_ThA__2 18.929 19.117 malloc_4MB_ThB__2 18.977 19.125
tls_ThA 19.026 19.023 malloc_128MB_M__2 19.588 19.023 malloc_128MB_ThA__2 16.840 16.786 malloc_128MB_ThB__2 16.227 16.636
stack_ThB 19.026 19.029 mmap_single_M__2 28.845 28.851 mmap_single_ThA__2 28.836 28.843 mmap_single_ThB__2 28.835 28.836
tls_ThB 19.026 19.029 mmap_huge_M__2 19.024 19.023 mmap_huge_ThA__2 18.711 18.804 mmap_huge_ThB__2 18.787 18.808
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Figure 3: MacOS M1 Native Allocation Layout.
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Figure 4: MacOS M1 Rosetta Allocation Layout.

than a huge page (2MB). This is due to the Linux Folio optimiza-
tion [? ? ]. Linux Folio is a memory structure introduced to increase
performance and reduce memory fragmentation, as it groups mul-
tiple consecutive memory pages of 4KB, as a single bigger memory
chunk. This uses neither huge pages nor transparent huge pages
and is a flexible structure, so in theory, the size is not fixed. Its size
is a power of two, and it is aligned with its size [? ], so for a Large
Folio of 2MB, we should see a page offset of 21 bits versus the 12
bits of a 4KB page. As a consequence, all memory objects allocated
using this new structure should expect around a 9-bit reduction in
entropy. In fact, the sampled lib experiencing the reduction is the

glibc that is indeed bigger than 2MB. This is a huge reduction for
an executable memory section and gives an attacker almost four
hundred times more chances of success compared to Linux version
5.17.15. Moreover, you can notice an entropy reduction after the
mmap_huge_M__1 in 5.17.15. This allocation indeed reduces the
entropy of the next page allocations since they are relative to it;
pages are allocated contiguously or almost contiguously and thus,
a huge page determines the allocation of the next pages. In 6.4.9,
a similar pattern is observed where the first huge page allocated
is for lib_big, which in this case is glibc. We argue that having
glibc easily guessable poses a serious security issue. Since glibc
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Figure 5: Probability Distribution in MacOS M1 Native. All
the distributions are available at: https://zenodo.org/record
s/12968870/files/macos_native_distribution.pdf

contains a lot of useful gadgets and functions, it is a common target
for attackers to build exploits.

Further inspection of complete data in Table 4 highlights the low
entropy of threads. We know from the documentation of pthread-
_create() [? ] that the default size of the thread stack is 2MB ; being
the thread stack allocated with mmap() function we see that the
entropy of the 2MB thread stack and the 4MB malloc() are very
similar, so this is the regular behavior.
Correlation Entropy. As expected from the allocation layout,
many objects exhibit a high correlation with other objects. In par-
ticular, for both kernel versions, the Correlation Entropy between
the executable and the heap is 13 bits, lowering their entropy by 15
bits; in other words, a leak can reduce the attack effort by 32,000
times. Moreover, all mapped areas suffer from consecutive allo-
cation. Finally, libraries allocated with Linux Folios (lib_big) and
libraries allocated with standard pages (lib_small) are no longer
contiguous. Instead, they have 9 bits of Correlation Entropy. This
is a positive side effect since the position of other libraries changes
with every execution, but the Correlation Entropy is extremely low
and can be easily bruteforced.

5.2 MacOS
We analyze Mac OS M1 Ventura 13.4.1 on the Native Apple M1
(ARM) processor and on x86_x64 using the Rosetta framework.
MacOS is a system that randomizes libraries only at boot, so we
reboot the machine several times to collect the samples. For each
reboot, we collect 500 samples, and we restart the machine 5,500
times, thus obtaining 2,750,000 runtime samples and 5,000 boot-
time samples. Additionally, the sampling program is compiled with
Clang as Position Independent (flag -fPIE) and relies on external
libraries, i.e., not compiled with the flag -static. Unlike Linux,
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Figure 6: Probability Distribution in MacOS M1 Rosetta. All
the distributions are available at: https://zenodo.org/record
s/12968870/files/macos_rosetta_distribution.pdf

macOS does not offer an option to adjust the level of randomization;
therefore, we rely on the OS’s default randomization settings.
Allocation Layout. The allocation on MacOS using Native ARM
architecture, visible in Figure 3, are mainly grouped among low
addresses with only very small allocations that belong to the so-
called MALLOC_NANO area on the higher end of the memory. This
suggests a high correlation between objects located at low addresses.
In Figure 4 instead, we can see that the allocation layout on MacOS
using Rosetta is divided into four regions. The lower one locates
explicitly mapped pages, the executable, and the shared memories.
The second one locates the stack ofmain and threads, while the third
one corresponds to the higher of the Native system, accommodating
MALLOC_NANO and TLS variables. The higher one is dedicated to
malloc() objects and libraries that, this time, present more visual
distribution. Although we should expect a higher entropy, given
the allocation ranges, the allocation of these objects is fragmented,
which means that the alignment of these objects is much higher
than a single page(16KB). This can result in a lower entropy.
Probability Distribution. On MacOS using Native ARM architec-
ture, there are some uniform allocations regarding the TLS objects
and MALLOC_NANO objects. Other sections have distributions char-
acterized by high spikes or large groups, indicating a very low
entropy. Figure 5 shows the probability distribution of the memory
objects. The histogram plot is divided into 100 bins; in the uniform
distribution, the probability of each bin is 1%. We can see in Figure 5
spikes up to 14% for malloc of 4MB. Other objects (executable and
stack) have a spotted uniform distribution. We can clearly see some
gaps in the distribution; these are the probability of some addresses
being higher than others.

In some sections, the randomization is probably linked to the
intrinsic, not deterministic positioning of allocation and not to

https://zenodo.org/records/12968870/files/macos_native_distribution.pdf
https://zenodo.org/records/12968870/files/macos_native_distribution.pdf
https://zenodo.org/records/12968870/files/macos_rosetta_distribution.pdf
https://zenodo.org/records/12968870/files/macos_rosetta_distribution.pdf
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Table 5: MacOS (Ventura 13.4.1) Absolute Entropy.

Object Entropy Object Entropy Object Entropy Object Entropy
Native Rosetta Native Rosetta Native Rosetta Native Rosetta

env 12.903 15.972 malloc_16B_M__1 12.581 12.609 malloc_16B_ThA__1 13.725 13.372 malloc_16B_ThB__1 14.050 13.514
stack&argv_M 12.028 15.121 malloc_512B_M__1 7.551 16.548 malloc_512B_ThA__1 9.237 17.710 malloc_512B_ThB__1 9.394 18.169
shared_memory 11.583 13.584 malloc_4KB_M__1 7.465 16.502 malloc_4KB_ThA__1 8.484 17.412 malloc_4KB_ThB__1 8.710 17.628
tls_M 12.549 14.668 malloc_256KB_M__1 3.189 12.000 malloc_256KB_ThA__1 4.550 13.196 malloc_256KB_ThB__1 4.755 13.398
libraries* 15.625 14.894 malloc_4MB_M__1 3.231 12.059 malloc_4MB_ThA__1 5.038 13.600 malloc_4MB_ThB__1 5.159 13.942
executable 11.583 13.583 malloc_128MB_M__1 7.106 16.070 malloc_128MB_ThA__1 7.240 16.093 malloc_128MB_ThB__1 7.485 16.095
stack_ThA 11.583 14.672 mmap_single_M__1 11.587 13.583 mmap_single_ThA__1 12.478 13.585 mmap_single_ThB__1 12.454 13.585
tls_ThA 13.159 14.333 malloc_16B_M__2 12.636 12.692 malloc_16B_ThA__2 14.516 14.188 malloc_16B_ThB__2 14.551 14.573
stack_ThB 11.583 14.672 malloc_512B_M__2 7.619 16.615 malloc_512B_ThA__2 9.984 18.438 malloc_512B_ThB__2 9.939 19.102
tls_ThB 13.519 14.721 malloc_4KB_M__2 7.533 16.579 malloc_4KB_ThA__2 9.137 18.032 malloc_4KB_ThB__2 9.180 18.489

malloc_256KB_M__2 3.274 12.128 malloc_256KB_ThA__2 5.282 13.844 malloc_256KB_ThB__2 5.349 14.256
malloc_4MB_M__2 3.278 12.132 malloc_4MB_ThA__2 5.295 13.858 malloc_4MB_ThB__2 5.360 14.277
malloc_128MB_M__2 7.857 16.041 malloc_128MB_ThA__2 6.650 16.327 malloc_128MB_ThB__2 7.162 16.402
mmap_single_M__2 12.046 13.583 mmap_single_ThA__2 12.611 13.585 mmap_single_ThB__2 12.582 13.585

explicit ASLR action. Rosetta does a good job distributing the allo-
cations, with all malloc() objects having a uniform distribution.
The remaining objects have a uniform distribution that is not con-
tiguous. The reader can see the mentioned in Figure 6. Finally, on
both systems, libraries have a uniform distribution even if it is not
visible due to the smaller amount of reboot samples.

Absolute Entropy. As we can see from Table 5, the overall entropy
is low, with poor randomization on executable objects. Libraries
have an insufficient boot-time randomization entropy (12.2 bit),
while the executable has a worse runtime randomization entropy
(11.5 bit) in Native ARM and slightly better entropy (13.5) using
Rosetta. Moreover, with the Native system, the objects allocated
with malloc() are very poorly randomized, ranging from a maxi-
mum entropy of 12 bits to a minimum entropy of 3 bits for the main
thread. Other objects and mmap() allocated objects achieve a lower
entropy around 12 bit as well, which is still relatively low. Finally,
thread allocation entropies are slightly better than the main thread
ones. Instead, Rosetta entropies are overall higher but still insuffi-
cient and again particularly low in objects allocated with malloc()
and mmap(). One reason for such a low entropy is the size of Apple
M1 single pages. In fact, 16KB pages require an alignment of 14
bits, i.e., only 33 bits instead of 35 can be used to randomize an
address. Moreover, the allocations slots for these allocations are
surprisingly at 1 to 4MB (20 to 22 bits) of distance from one another,
which confirms our hypothesis in Figure 4.

Correlation Entropy. In the Native MacOS, we have low Corre-
lation Entropies due to the several objects allocated very close to
each other. Although they are low, there is no need to have any
prior knowledge since absolute entropies are as low as correlated
ones, thus making bruteforce directly on the target object the pre-
ferred strategy. Instead, for Rosetta, we have four different memory
regions, and we have higher Correlation Entropies. In particular,
we have high Correlation Entropies between the objects of different
regions. However, as in the Native MacOS system, the absolute
entropies are so low that a direct bruteforce on the desired object
is preferred.

5.3 Windows 11
Windows 11, like MacOS, has objects that are randomized at boot-
time. These objects are the libraries and the executable. Hence, we

collect 4,000,000 runtime samples and 20,000 boot-time samples. We
compile our sample script with the MSVC compiler, employing the
flags /DINAMICBASE and /HIGHENTROPYVA. At the kernel level, we
rely on the default ASLR configurations, which are High-entropy
ASLR and Bottom-up ASLR. These settings are intended to provide
the highest level of ASLR effectiveness in Windows.

Allocation Layout. Looking at the allocation layout in Figure 7 we
clearly identify two regions. The first one is located at low addresses
and contains all the malloc() and VirtualAlloc() objects, as well
as threads’ stacks. At the other end of the memory, we can see the
executable and the libraries, which are the objects whose position
is determined at boot-time.

Probability Distribution. Figure 8 shows probability distributions
for Windows. Here, we can observe three different shapes for the
distribution. We have threads and stacks that are randomized al-
most uniformly; the lowest addresses are more likely to be used.
The executable and libraries are also randomized uniformly, but
given the lower amount of sample (they are randomized at boot-
time), this is not clear from Figure 8. Finally, we have malloc() and
VirtualAlloc() objects that are randomized following a triangu-
lar distribution. This last aspect usually means that the position
is obtained by combining two independent sources of entropy, ob-
taining an Irwin-Hall distribution. This choice, even if it provides a
larger entropy than the single random variable, potentially exposes
the system to attacks regarding the most common value, reducing
the absolute effort needed to de-randomize the section.

Absolute Entropy. From Table 6, we see an Absolute Entropy
greater than 23 bits overall, with some objects reaching 31 bits. As
expected, Large pages have less entropy compared to other sections
due to a higher page alignment. However, we have low absolute
entropies for boot-time randomized objects, i.e., the executable and
the libraries. This poses a major risk to the security of the system
since these objects are the most used for control-flow hijacking.
Hence, bruteforce attacks are feasible in a short period of time.

Correlation Entropy. Simirarly to the other OSes, we have what
expected from the allocation layout: A high correlation inside the
identified regions and a low correlation between regions. However,
no relevant correlations emerge as the absolute entropies of relevant
objects are lower than correlated ones.
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Figure 7: Windows 11 Allocation Layout.

Table 6: Windows 11 Absolute Entropy.

Object Entropy Object Entropy Object Entropy Object Entropy
env 25.914 malloc_16B_M__1 30.818 malloc_16B_ThA__1 30.921 malloc_16B_ThB__1 30.822
argv 25.416 malloc_512B_M__1 25.914 malloc_512B_ThA__1 31.558 malloc_512B_ThB__1 30.837
stack_M 28.151 malloc_4KB_M__1 25.914 malloc_4KB_ThA__1 28.961 malloc_4KB_ThB__1 30.368
shared_memory 25.345 malloc_256KB_M__1 25.359 malloc_256KB_ThA__1 25.881 malloc_256KB_ThB__1 26.879
tls_M 25.359 malloc_4MB_M__1 29.250 malloc_4MB_ThA__1 24.755 malloc_4MB_ThB__1 24.656
libraries* 18.966 malloc_128MB_M__1 25.528 malloc_128MB_ThA__1 23.057 malloc_128MB_ThB__1 23.153
executable* 16.985 VirtualAlloc_single_M__1 25.243 VirtualAlloc_single_ThA__1 25.158 VirtualAlloc_single_ThB__1 25.185
stack_ThA 27.407 VirtualAlloc_large_M__1 19.654 VirtualAlloc_large_ThA__1 19.002 VirtualAlloc_large_ThB__1 19.102
tls_ThA 30.808 malloc_16B_M__2 30.796 malloc_16B_ThA__2 31.852 malloc_16B_ThB__2 31.845
stack_ThB 27.407 malloc_512B_M__2 28.872 malloc_512B_ThA__2 31.311 malloc_512B_ThB__2 31.487
tls_ThB 30.780 malloc_4KB_M__2 28.931 malloc_4KB_ThA__2 28.937 malloc_4KB_ThB__2 30.751

malloc_256KB_M__2 28.931 malloc_256KB_ThA__2 27.407 malloc_256KB_ThB__2 26.749
malloc_4MB_M__2 24.122 malloc_4MB_ThA__2 23.838 malloc_4MB_ThB__2 24.014
malloc_128MB_M__2 23.340 malloc_128MB_ThA__2 22.394 malloc_128MB_ThB__2 22.538
VirtualAlloc_single_M__2 25.209 VirtualAlloc_single_ThA__2 25.079 VirtualAlloc_single_ThB__2 25.098
VirtualAlloc_large_M__2 19.466 VirtualAlloc_large_ThA__2 18.634 VirtualAlloc_large_ThB__2 18.749
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Figure 8: Probability Distribution in Windows 11. All the
distributions are available at: https://zenodo.org/records/12
968870/files/windows_distribution.pdf

6 PRACTICAL ATTACKS TO ASLR
While it is straightforward to defeat ASLR when there are memory
leaks, the practicality of attacks without direct memory leaks must
be discussed. We consider the following attacks: ➀ bruteforce, ➁

spraying attacks, ➂ crossections, and ➃ partial overwrite attacks.
For these attacks, we mainly consider CVEs and security articles

related to Linux for several reasons. Among all the OSes considered,
Linux is the only completely open-source, which facilitates the
development of open-source software. This aids the discovery and
analysis of vulnerabilities, as security analysts and researchers can
perform analyses starting from the source code and can rely on
state-of-the-art security tools developed by the community. Addi-
tionally, most commonly used applications and libraries on Linux
are well-documented, which favors the development of PoCs and
the creation of security articles, making them easier to follow and
understand. Finally, Linux is the OS with the most disclosed vul-
nerabilities [? ]. Hence, we can find more examples of attacks and
vulnerabilities to analyze.

As memory corruptions happen in all the OSes, the attacks we
discuss in this section are not exclusive to Linux, but they can be
applied to other OSes as well. However, the feasibility of the ex-
ploitation must also consider all the other mitigations in place in the
OS. Nonetheless, if they are not sufficient to prevent exploitation,
our findings in ASLR implementations highlight weaknesses that
must be addressed.

https://zenodo.org/records/12968870/files/windows_distribution.pdf
https://zenodo.org/records/12968870/files/windows_distribution.pdf
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In the following attacks, we consider an attacker capable of
performing 300 tps as discussed in Section 2.6. We remind the
reader that this value is realistic for both local and remote scenarios
since an attacker can parallelize over several threads/processes and
connections, respectively.
Bruteforce Attacks. This is the most naive attack to ASLR. The
attacker guesses the position of a memory object and executes
the exploit with hardcoded positions. This is the primary threat
that ASLR is designed to protect. Depending on the entropy of
the memory object, the number of attempts to guess the position
of the object varies. We argue that the entropy of the memory
object in modern systems is not high enough, making this type of
attack feasible in practice. To prove our point, we demonstrate how
the lower entropy generated by Linux Folios can be exploited in
recent vulnerabilities (CVE-2021-3156) [? ]1 to perform an attack in
a reasonable amount of time (i.e., minutes). In particular, this CVE
reports a heap overflow vulnerability on sudo, from version 1.8.2
(included) to 1.9.5p2 (excluded). Therefore, we set up an Ubuntu
22.04 environment, with kernel version 6.4.9 and sudo 1.9.4. In
this setup, the glibc is allocated through Linux Folios. Hence, its
memory page has a randomization entropy of only 19 bits.

We develop a Proof of Concept (PoC)2 such that the overflow
modifies a function pointer being called later in the execution. The
new function pointer is a hardcoded glibc address that contains a
gadget which performs a stack pivoting attack, moving the stack
pointer close to the environment variables, where we place a ROP
chain to achieve privilege escalation. The success rate of the exploit
is directly influenced by the effectiveness of ASLR in randomizing
glibc position. A robust ASLR implementation would render our
exploit ineffective. However, the reality is that ASLR randomization
does not entirely prevent the exploit’s success.

To measure the average time taken and to verify the entropy
value, we run the exploit 500 times. Moreover, given that an attacker
can also parallelize the exploits, we run 8, 4, and 2 exploits in parallel.
Theoretically, with an entropy of 19 bits, the average number of
attempts to guess the position of the glibc is 219 = 524, 288 attempts.
As shown in Table 7, we achieve an average tps of 283 and an
average number of attempts of 555, 765, which is very close to the
expected value. Moreover, we can see that even with one exploit, the
time to achieve privilege escalation is 32 minutes and 44 seconds,
which is very low. It is even lower when 8 exploits are run in parallel.
In this case, the first exploit achieving privilege escalation takes
only 4 minutes with an average of 58, 776 attempts. In addition, all
the exploits running in parallel generate an average tps of 1,904,
underlining the possibility of achieving a higher number of tps w.r.t.
the reference value of 300 tps considered in Section 2.6.

This PoC highlights the problems arising from low Absolute En-
tropy: relevant memory objects like the libraries and the executable
should have a high Absolute Entropy since these regions are very
often needed by attackers to obtain command execution. Therefore,
the low Absolute Entropy of the glibc in Linux Folios is a significant
security risk. We believe that the entropy of relevant objects should
be increased to a minimum of 24 bits (i.e., 224 = 16, 777, 216) which

1The same vulnerability also affects MacOS Big Sur 11.2, MacOS Catalina 10.15.7, and
MacOS Mojave 10.14.6 [? ]
2https://zenodo.org/doi/10.5281/zenodo.12784286

Table 7: Average attempts and time for privilege escalation.

# Parallel Exploits Avg Attempts Avg Time Avg TPS
8 58,776 00:04:06::904 1,904
4 128,884 00:08:23::539 1,023
2 275,585 00:16:51::781 544
1 555,765 00:32:44::597 283

can be bruteforeced in more than a day with 300 tps on average.
Instead, we consider a good entropy value to be 30+ bits, which
would require more than a month to be bruteforced.
Spraying Attacks. Even when the absolute entropy is high (>27
bits), Spraying Attacks can drastically reduce it by repeating the
same data for several memory pages. This attack aims to repeat
the same payload across several memory pages to increase the
likelihood of successfully referencing the pointer.

Recently, a vulnerability on the glibc (CVE-2023-4911, a.k.a.
Looney Tunables) has been exploited using a stack spraying tech-
nique to achieve local privilege escalation [? ]. The attack exploits
a buffer overflow vulnerability on the Linux dynamic loader ld.so
to change the string pointer of l_info[DT_RPATH], a string that
specifies the libraries search path. In particular, the attack modifies
the string pointer to point to the environment variables, where a
string representing an attacker-controlled directory resides. Under
Linux, the environment variables have 24.5 bits of entropy. This
value does not guarantee strong randomization since it requires
an average of 224.5 = 23, 726, 566 attempts to locate the precise
address of the environment variables. However, repeating the same
string across several memory pages increases the likelihood of suc-
cessfully referencing the pointer. Given that the maximum size for
environment variables in Linux is 6MB, and if the same string spans
multiple pages, the likelihood of successful exploitation improves
to 1 over 4,096 (i.e., 24𝐺𝐵

6𝑀𝐵
). This means that, at a rate of 300 tps,

local privilege escalation is achieved in about 14 seconds.
Spraying attacks are feasible in any memory region an attacker

can control exhaustively. For instance, other objects that can be used
for spraying attacks are all the dynamically allocated pages, such as
the heap. In Linux, the heap has an entropy of 28.8 bits, which is the
maximum entropy in the system. Nonetheless, this may not deter an
attacker capable of allocating gigabytes of memory pages without
a limit on heap growth. To make these attacks less relibale, user-
controlled memory pages should have a higher absolute entropy
(>30 bits).
Crossections Attacks.When the entropy is high enough, brute-
forcing a precise memory location may become unrealistic. How-
ever, if there are memory leak vulnerabilities, the attacker may rely
on this information to exploit the correlation between memory
objects [? ? ]. As we pointed out in Section 5, strong correlation
paths exist between objects that are closely allocated in memory.
For instance, the executable and heap entropy in Linux are 28.8
bits. Hence, the average number of attempts to bruteforce a precise
address of one of the two objects is 228.8 = 467, 373, 275 attempts,
or 1, 557, 911 seconds (18 days) if we consider 300 tps. However,
with a memory leak on the heap, an attacker can bruteforce a pre-
cise address of the executable in 213 = 8, 192 attempts, on average,
which is approximately 27 seconds.
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Although this example highlights the risks of having a strong
Correlation Entropy between two memory objects, this is less rel-
evant than having a low absolute entropy; a weak Correlation
Entropy between two memory objects is useless if the two objects
have weak Absolute Entropies as well. This happens, for instance,
on MacOS.

Partial Overwrite Attacks. In some situations, an attacker can
partially overwrite a function pointer to hijack the control flow,
potentially compromising the security of a system. For instance,
by changing the lower bits of a function pointer it is possible to
call a different function within the same library, or a function that
belongs to relatively close, or contiguous, libraries. For this reason,
a good ASLR implementation should allocate libraries with a very
high Correlation Entropy one another. This is not the case for Linux,
where, during program startup, all the libraries are allocated con-
tiguously or with low entropy to one another. Therefore, whenever
a vulnerability allows a partial overwrite of a function pointer, the
difference between the original and the targeted one is always the
same. However, ASLR changes most of the bits of the addresses
and thus, the chances of correctly modifying the lower bits of the
address depend on the distance between the two pointers and the
page alignment. For instance, with a page alignment of 4KB and a
pointers difference of less than 256 bytes, the attack is completely
deterministic. Instead, with a pointers difference lower than a stan-
dard page (4KB), the attack requires an average of 16 attempts (4
bits of randomness). Finally, with a pointers difference higher than
a standard page, the attack requires an average of 4,096 attempts
(12 bits of randomness). However, with Linux folios, libraries with
a size larger than 2MB, such as the glibc, have a page alignment
of 2MB. Therefore, whenever the pointer difference is lower than
64KB, the attack may be completely deterministic; if the targeted
pointer belongs to the same library as the original one, the attack is
completely deterministic. Otherwise, there might be at least 9 bits
of entropy due to the strong correlation between libraries allocated
with Folio and standard pages.

This attack should highlight two major problems in ASLR im-
plementations: ➀ libraries should never be contiguous with one
another, but instead, they should be independent (high Correla-
tion Entropy), and ➁ higher page alignments drastically reduce the
chance of exploitation.

7 LONG LIFE TO ASLR
As we mentioned in Section 5, modern ASLR implementations have
several flaws. MacOS is characterized by a low absolute entropy
overall, with entropy for relevant sections such as the executable
and the libraries ranging from 11.5 to 15.5 bits. Windows 11 has
better peaks, reaching up to 31 bits of entropy, but it also has a poor
randomization where it matters the most: the executable and the
libraries, reaching at most 19 bits of entropy. Instead, Linux achieves
high entropies in all the relevant objects, including the stack and
the heap, resulting in the best OS in randomization. However, the
newest kernel versions and memory leaks can considerably reduce
the effort of bruteforce attacks. Ideally, any memory object in the
system should reach an absolute entropy of 31 bits, such as one of
the small allocated objects in Windows 11, to consider the system
resilient against bruteforce attacks. If we consider 300 tps and an

average of 2 billion attempts (231), it would require an average of
approximately 83 days to guess the position of an object in memory,
which is not practical, especially if Intrusion Detection Systems
(IDSs) are in place.

Therefore, our first proposal consists of a virtual memory frag-
mentation where each relevant object has its own region. For in-
stance, in Linux, the addresses below the executable and the heap
are not used. Hence, there is a place for objects, like the executable
or the heap, also to resolve the correlation between these two ob-
jects. Similarly, libraries can be moved to lower addresses to remove
the correlation between this latter and allocated pages.

Secondly, we propose the utilization of 5-level page tables so
that the available bits in an address extend from 48 to 57. We al-
ready have processors that support 5-level page tables, but modern
systems seem not to adopt them. The reason is probably related
to performance once more; one memory access to virtual memory
results in six accesses to physical memory instead of five, thus
slightly increasing the memory access time.

8 CONCLUSIONS
In this paper, we conduct the first comprehensive evaluation of
ASLR effectiveness across major platforms through the statistical
analysis of memory object positions. Adopting a low-bias estimator,
the NSB estimator, allows us to reduce the necessary sample size,
thereby facilitating the analysis of reboot randomization, a notably
time-intensive operation.

We highlight significant weaknesses of current implementations
of ASLR, like the lack of entropy of libraries and executable ob-
jects in Windows and MacOS or the entropy reduction found in
recent Linux distributions (introduced with Folios). Overall, Linux
distributions provide the best randomization- still insufficient to
stand against modern exploitation techniques - while Windows and
MacOS fail to randomize key memory areas like executable code
and libraries adequately. Our findings highlight opportunities for
OS vendors to strengthen implementations and better protect users
from malicious attacks. Addressing reduced entropy from correla-
tions, optimizing allocation patterns, and increasing object granular-
ity could all fortify defenses. Moreover, this research suggests that
the evolution of operating systems is often not security-focused,
and the introduction of Linux Folios confirms this claim. We expect
major changes with the broad adoption of a 5-level paging system,
providing by construction more bits to the randomization process
[? ]. Another aspect highlighted in this work is the role of alloca-
tion patterns and the difficulty of correctly modeling such behavior.
Real-world software is a complex ecosystem of interacting objects,
and their performance may vary significantly from expectations
and often be lower.
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