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Abstract We introduce a new parser generator, called Berry-Sethi Parser (BSP), for am-
biguous regular expressions (RE). The generator constructs a deterministic finite-state
trans-ducer that recognizes an input string, as the classical Berry-Sethi algorithm does, and
ad-ditionally outputs a linear representation of all the syntax trees of the string; for
infinitely ambiguous strings, a policy for selecting representative sets of trees is chosen. To
construct the transducer, the RE symbols, including letters, parentheses and other
metasymbols, are distinctly numbered, so that the corresponding language becomes locally
testable. In this way a deterministic position automaton can be constructed, which
recognizes and translates the input into a compact DAG representation of the syntax trees.
The correctness of the construction is proved. The transducer operates in a linear time on
the input. Its descriptive complexity is analyzed as a function of established RE parameters:
the alphabetic width, the number of null string symbols and the height of the RE tree. A
condition for checking RE ambiguity on the transducer graph is stated. Experimental
results of running the parser gen-erator and the parser on a large RE collection are
presented. The POSIX RE disambiguation criterion has also been applied to the parser.

1 Introduction

The popularityof regularexpression$REs)asa notationfor specifyingtext patternccomes
from their expressivenesand also from the availability of efficient algorithmsfor string
recognition.Actually, the term “regular expression’hasdifferent meaningsthe classical
for-mal languagenotationintroducedby S. Kleene(alsoknownasrationalexpression)and
var-ious technicalnotationsthat are supportedby certain libraries, suchas RE2, or are
availablewithin programminganguagesuchasPerl. In this paperwe exclusivelyreferto

the clas-sicalnotationintroducedby S. Kleenebut, sincemosttechnicalnotationsinclude
Kleene’'sREs as a core, our work may be of somevalue also for peopleinterestedin

technicalREs.

Most applicationstransforman RE into a finite automatondeterministic(DFA) or not
(NFA). Suchan automatonsimply checksthat the input text is correct,i.e., it actsasa
languagerecognizer.But this is insufficientfor the applicationsthat requirealsoa syntax
treeof therecognizedext; in thatcasea parser,ratherthana simplerecognizerjs needed.
Moreover,if the RE is ambiguousa multiple matchingof the sametext is possible,each
matchingcorrespondingo a distinctsyntaxtree.In suchcasestheability to selectoneor a
few syntaxtreesout of the many (eveninfinitely many)possibleis sometimeglacedasa
further requiremenbn the parser. Our approach is to geneeatepresentatioaof all
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the syntax trees for an ambiguous text, in such a way that a subsequent disambiguation,
if required, is possible; for instance, we later mention the way to incorporate the standard

POSIX disambiguation criterion into the parser. It should be obvious that such an approach

is preferable to a parser that incorporates a fixed immutable disambiguation criterion.

To illustrate, malware detection in programs is a security application where RE parsing
may be useful. In [1] a method is proposed, based on obtaining a few suspicious program
execution traces (or executable files) and modeling them as strings over a (finite) alphabet
Y ={b| 1<k<n}ofn > 1 basic blocks (each block, also has some attributes
such as an address, parameters, etc.). Such strings are collected in a library and are scanned
for malicious basic block pattern®, which are described by REs; e.@,= (b1 b)) bo
with i # 2. Notice that if it holdsb; = b; for somei, the pattern itself is described ambigu-
ously. Clearly, this amounts to parse the library with the possibly ambiguous'RE X*.
Furthermore, to assess the security risk, it is important to determine the occurrence place
of the malicious pattern in the trace (or file); e.g., whether the pattern occurs in the header,
trailer, etc. This amounts to model the trace (or file) structure, i.e., to compute the syntax
tree(s) of the strings in the library. Software tools that support the description, detection and
classification of malicious RE patterns would benefit from the inclusion of an efficient RE
parser. Similar situations occur in querying semi-structured data bases, where the paths that
connect a pair of objects in the data base are specified by typically ambiguous REs.

Some methods (discussed in Sect. 5) for obtaining parsers for ambiguous REs are known,
which differ both in how they construct the pure recognizer, and in how they construct and
represent the syntax trees. Here we present a new practical parser generator, which is based
on rigorous concepts from the theory of finite automata and languages, so that its correctness
can be formally proved. We call our parser / parser-geneBzary-Sethi Parse(BSP), as it
adds parsing capabilities to the classical recognizer — knovidsaagorithm- of the same
name [3]. The latter belongs to the clasgokition automatabecause its states are keyed
to the positions of the input letters within the RE.

We construct the syntax trees of input strings by the positional approach (inspired by
[20]), but now we include also the positions of tinetasymbold.e., parentheses, null string
symbols and operators (star and concatenation). All the trees of an ambiguous input string
are compactly encoded in the parser output, which is abstractly represented by a directed
acyclic graph (DAG) to avoid the duplication of common subtrees. Additionally, the REs
that have an infinite ambiguity degree — also knowrpablematic REs- raise the issue
of parsing termination, thus they need a criterion for stopping the syntax tree computation
after producing a sufficient sample of trees. Problematic REs are rarely permitted by existing
parsers, but they are safely handled by BSP.

The abstract model of our parser isleterministic finite-state transduceat each tran-
sition it reads an input character and outputs a finite string, which represents a finite slice
of the syntactic DAG. Therefore, the transducer operates deterministically and in real-time.
Moreover, given such a transducer, it is straightforward to check whether the RE is ambigu-
ous, by inspecting the transducer graph, a useful feature.

The state and transition complexities of the transducer and of the underlying BS recog-
nizer are identical; it is known that the size of the classic BS DFA is related to the number
of input characters (alphabetic positions) occurring in the RE. To estimate the size of the
transducer, we compute an upper bound on the size of the output function, thus obtaining a
relation to some parameters of the RE, such as the height of the syntax tree of the RE and
the number of null string symbols present in the RE.



We have implemented the BSP generator and parsing algorithm with attention to perfor-
mance. Then we have measured the parser generation time, parser size and parsing speed,
on inputs of increasing length, obtaining encouraging results for a large collection of REs.

To sum up, the main contributions of this paper are the following:

— anovel rigorous and efficient deterministic algorithm for parsing any ambiguous RE and
for returning a representation afl the syntax trees

— a correctness proof of the algorithm and an analysis of the parser descriptive complexity

— the suitability to the applications that require a selection of the trees, since the tree repre-
sentation permits filtering by a disambiguation criterion, e.g., the POSIX standard one

— a new ambiguity test for a RE

— an open implementation of the parser, coded in Java, which has been extensively experi-
mented by using unbiased benchmarks and which compares favorably with a widespread
RE library such as RE

The paper is organized as follows. Sect. 2 lists the basic definitions and the representations
used for REs and linearized syntax trees. It introduces the sets that charactefa=athe
regular languages, and it ends by recalling the construction of the classic Berry-Sethi rec-
ognizer. Sect. 3 presents first the BSP parser generator algorithm, intuitively and formally,
then the construction of the DAG and the linearized syntax trees. The analysis of the parser
size, the correctness proof, and the statement of the RE ambiguity condition end the section.
Sect. 4 describes our implementation, reports experimental measures, and sketches the BSP
extension that incorporates the POSIX disambiguation criterion. Sect. 5 lists and concisely
compares some existing RE parsers, and Sect. 6 concludes.

2 Basic concepts

For the basic notions needed about REs and finite automata / transducers, it suffices to list
our terminology and notation.

2.1 Regular expressions and trees

The terminal alphabetis denoted byX. The input alphabetis the union ofX with two
special marks: thetart-of-text” " and theend-of-text +”. The empty(or null) string is
denoted bye. For a stringz € X*, the length is = | > 0, the j-th character is [;] with
1<j<|z|,and|z|q is the number of occurrences of charaeter 3 in the stringz.

An RE is a formula over the alphabé&t U M, whereM is the set (disjoint fromy)
of metasymbolsind is listed in Tab. 1. Notice that in an RE the empty string is denoted
by 1 instead ofs. As usual, union and concatenation are associative operations, and the
operator priority is in descending order: iteration, concatenation and union. We assume that
the argument of an iteration operator is always parenthesized.

Example 1 (running exampldjhe following two RE are equivalent because of the well
known identity(e)* = (e)™ | 1, wheree is any RE:

((a)+ |ba|aba>*b 1)



Table 1 SetM of the metasymbols that may occur in an RE.

metasymbol meaning

1 empty stringe

| union operator

concatenation operator — optional

x4 iteration operators — Kleene star and cross

delimiters of (non-empty) subexpressions —
square brackets are also used for better readability

(((a)+|ba|aba)+ |1)b @)

For brevity, the parser construction algorithm will do without the star. O
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Fig. 1 Abstract syntax trees of an RE. Left: ASTofthe RE: (((a)™ | ba | aba)™ | 1) binEq.
(2). Right: Marked AST (MAST) of the same RE — see also the marked REEQ. (3).

Thelanguage generatebly an REe with terminal alphabel’ is L (e) C ¥, and each string
in languagel (e) is calledlegal. If ¢ € L (e), both the language and the RE awdlable.

Trees of RE and of legal string$o prevent confusion, we cabstractthe trees representing

the syntax structure of an RE. A self-explanatabgtract syntax treAST) is shown in Fig.

1 (left). We also need a richer representation, where the tree structure shows up in the tree
frontier in the form of parentheses, and all the leaf symbols are numbered, say, from left
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LST: w1 = 1(2(3(a4)3bsas)2)1b11 LST: w2 = 1(2(arbsag)2 )1 bi1

Fig. 2 Two marked syntax trees (MST) for the ambiguous stringab generated by REe =
(((a)™ | ba | aba)t | 1) band their string representationg andws as linearized syntax trees
(LST) —see Fig. 1.

to right, to make them distinct. This representation is calledaaked abstract syntax tree
(MAST), and it is exemplified in Fig. 1 (right) and formalized in the Def. 1 below.

Every string in languagé (e) has at least one syntax tree. If a legal string has two or
more trees, it immbiguouswith ambiguity degreequal to the number of trees; also the RE
e is called ambiguous. Notice that the ambiguity degree of a string is not necessarily finite.

We want to represent a syntax tree of a string in language by means of the same
marking used in the MAST of, and we call it anarked syntax treéMST). To illustrate,
consider the ambiguous string a b, which is generated by the RE of Eq. (2) in two different
ways, represented in Fig. 2 by the left and right MSTs.

More explicitly, an MST of a string: € L (e) is a tree such that the internal nodes are
of the types ‘e " or “ +". Notice that the nodes of type|” are unnecessary. The leaf nodes
are of the same types as the nodes in the MASA. bf an MST, each node of typef*” has
a number of child nodes equal to the number of iterations of the subexpression untler “
For instance, in Fig. 2 (left) the iteration node identified 4§y )2 has two child nodes,
while in Fig. 2 (right) the same iteration node has one.

It is important to observe that, as an AST represents the structure of an & MAST
represents the structure of a different RE, which we callaaked RE(MRE), denotect.

For instance, we list the MRE having as MAST the tree in Fig. 1 (right); for clarity we use
square brackets instead of parentheses to group subexpressions:

o + +
e=1( 2({3([%] )3 | bsas | a7bsa9} )2 | lio |)1b11 (3
The set of the terminals of the MRE in Eq. (3) (different from those)a$ denoted by?:

2 ={ aa, bs, as, ar, bg, ag, b11 } U { 1(, )1, 2(, )2, 3(, )3, 110 }
| | |

marked input alphabe¥’ marked metasymbol37




where the first set is thearked input alphabetlenoted by, and the second set consists
of themarked metasymbgldenoted b)l\Zl. Two stringsw; andws in L (€) are:

w1 = 1(2(3(as)3bsa6)2)1b11 and w2 = 1(2(arbgag)2)1 b1

Looking at Fig. 2, the meaning of such strings is to linearly represent the marked syntax
trees of the strings generated by the original/RBuch strings are calldohearized syntax
trees(LST) and will be the output of the BSP parser.

Itis time to collect and formalize the relevant technical terms into a definition.

Definition 1 (marked regular expression and linearized syntax tree)The marked regu-
lar expressiorMRE ¢ associated to an REover X is defined by the following procedure:

1. Apply toe the translatior?” [ - ]| inductively defined as follows, wheeg ande; are REs,
anda € X:

T(e) 1= ([TIel]") TL(e)]=([TLe]])
Tleir -ea]=T[e1] - T[ez2] Tler | e2] =T[e1] | Tez2]
Tla] =a T[1] =1

LetT [ e] be the result of step.

2. InT [e], assign a distinct number, e.g., in increasing left to right order, to the following
symbols: open parentheses, symbol&iand empty string symbols1*. Assign to each
closed parenthesis the same number as the one of the matching open parenthesis (notice
that square brackets and operator symbols are not numbered).
Let %, calledmarked input alphabetdenote the set of the numbered terminals, and let
M= { G )ny ooy Liy e } denote the set aharked metasymbols

Theterminal alphabebf the MRE is the union2? = X U M. For any symbol in the alphabet
02, define the letter-to-letter non-erasing homomorphismark 2 — > u {*(*,*)",1}
that deletes the subscript. For a numbered terniipat 32, we say thab,, belongs to the
classidentified by the “plain” symbob = unmark(by,).

For any symbol in the alphabe?, define the letter-to-letter erasing homomorphism
flatten: 2 — X asflatten(o) = unmark(a) if o € 3 and adflatten(a) = ¢ if a € M.
In other wordsflattenunmarks all the subscripted terminals and deletes all the subscripted
metasymbols. For instancﬁﬁtten( 1(2(a7bgag)2)1b11) =abab.

Each string in languagé (¢) is called alinearized syntax treé_ST). More precisely,
we define two sets of LSTs:

foranyz € L(e) LST(z) ={weL(¢)| unmark(w)==z}
LST(e) = | LST(x)
z €L (e)

Notice that if it holdsw € LST(z), then stringw is the frontier of an MST of string: and
we say thatv is thelinearized representatioof such a tree.
Astringz € L (e) is ambiguousf, and only if, it holds| LST(z) | > 1. O

The next property immediately follows from the above definitions.

Proposition 1 (parenthesis run)For any REe, any linearized syntax tree € LST(e) does
not contain more thah consecutive parentheses, where the intéger0 is the maximum
nesting depth of the parentheses in thedRE h = 0, in e there are no parentheses). O



Examples of MREs are in Eqg. (3) and in the Ex. 2 below. Notice that an MRE never uses
the metasymbal (empty string), though it may contain a numbered copy sudh aBig. 2
shows two LSTs of the same string.

Infinite ambiguity If an iterated subexpression is nullable, then for one or more legal strings
the ambiguity degree is infinite. This situation is singled out as “problematic” in [11] and
is illustrated in the next example. In practice, it is useless to enumerate all the trees of such
strings, and just one tree or a few ones can be chosen (to be better explained in Sect. 3).

Example 2 (infinite ambiguityJhe degree of ambiguity of every string in(e; ):
e1=(a | 1)" & =1([laz | 137" 0 4)

is infinite because the iterated subexpresgion| 1) is nullable. Consider the associated
MRE ¢ in Eq. (4). The set.ST(a) comprises infinitely many strings, such as the following:

1(a2)1 1(a213)1 1(1za2)1 1(13a213)1 1(a21313)1 ... (5

Each such string represents a different syntax tree. In practice, it is hard to imagine any
reason for the parser to return all such insignificantly different trees, and the simplest ones
suffice, e.g., the first four, which do not contain two adjadensymbols. m]

Local languagesThe well known family oflocal languages, strictly included within the
regular language family, is characterized by a very simple type of finite automaton, which
serves as baseline for the Berry-Sethi construction.

For any characters, b € X, any stringse, y € X* and any languagé C X*, we define
the sets ofnitials Ini C %, finals FinC ¥, digrams DigC 2 andfollowers FolC X:

Ini(L)y={a| azelL} Fin(L) ={b| zbelL}
Dig(L) ={ab| zabyelL} Fol(L,a) ={b| abeDig(L)}

If L = L (e), we writelni (e) for Ini (L (e)) and similarly for the other sets. We omit the
well known (e.g., in [9]) simple algorithms for computing such sets.

The above sets characterize the familyoafal languages [4, 18], also known 2sstrictly
locally testable or sliding-window recognizable languages.

Definition 2 (local language)A languagelL C X* is local if there exist finite setii, Fin
andDig such that:

Ve#e wel < (zehi(L)S* A xe S Fin(L) A Dig({xz}) CDig(L)) (6)

Notice that an equivalent definition is possible using the follower set instead of the digrams.
The DFA recognizing the local language defined by Eq. (6) is straightforward: given a
string, it checks that the initial letter is in the det, the final one is irFin, and that, if any
two lettersa, b are read in a row, the digramb € Dig. Such a recognizer is calledacal
automaton
The following well-known sufficient condition is later needed.

Proposition 2 (RE and local language)f every symbol of alphabet occurs at most once
in an REe, then the languagé (e) is local. ]



2.2 Classical Berry-Sethi recognizer

It is well-known (e.g., see [24]) that the BS method [3] for constructing a DFA that recog-
nizes languagé (e) is related to the so-called position automaton methods, in the first place
those of McNaughton-Yamada and Glushkov. The idea of BS is to transform a givebyRE
distinctly numbering each letter occurring in it, thus obtaining a new RE denotegdsiizh

that by Prop. 2 a local DFA accepts langudgée) C %*, whereX is the marked alphabet

of Def. 1. Then, by erasing the numbers from the arc labels of the DFA, a recognizer for the
original languagel (e) is obtained, which can be directly constructed to be deterministic
by means of the subset construction. The original construction and correctness proof in [3]
are based on the Brzozowski derivatives, but we prefer to follow the simpler approach in [4]
(also in [9]), which relies on local languages.

Definition 3 (BS DFA) Let e be an RE ovet? U M. Theinput markedRE & over . U M

is obtained frome by marking each symbol i’ with a distinct integer (notice that the
metasymbols are not marked). The initial and digram sets of langlidge-) are resp.
denotedni (¢ 4) andDig (¢ ). Define the DFA4gs = ( X, QBs, qo, dss, F' ), where:

— Each statg € Qgsis uniquely identified by a non-empty set, called toatentf ¢ and
denoted byl (¢) € ¥ U {1}, i.e., a set comprising marked symbols and possibly also
the end-of-text.

— The statey is such thatl (go) = Ini (€ H). Each final statg € F'is such that € I (g).
— For every statg € Qg and charactes € X, let:

Io(q)={an€X| apel(qg) Aunmarka)=a }
— The function or grapligs: Qs x X — Qpsis defined as follows:
Jap € Ia(q) A
I(d)={breXU{4} | apbyeDig(c)}

Example 3 (Ex. 1 continued)he input marked RE (choosing for comparability the same
numbering as in Fig. 1) is:

es(q, a) = ¢ <= {

(@)

2 ={au, bs, as, ar, bs, ag, b11 }
e = ((a4)+ | b5 ae | cwbgag) b1

The initial set ofLZ (¢ ) is Ini (e ) = { a4, b5, a7, b11 } and the digram set is:

L aqasq, agbs, asar, agbii, bsas, arbs,
Dig (e H) =
bsag, agas, agbs, agaz, agbi1, bi1 -

The BS recognizer is shown in Fig. 3.

3 BS Parser

We extend the BS method to generate, instead of a recognizer, a parseBeahg®ethi
parser (BSP) that returns the linearized syntax trees of the input string. The parser is a
deterministic finite-state transduc@®FT), which has the BS recognizer as underlying DFA.

First, we introduce the main ideas informally and by means of examples, then we list
the generation algorithm of the parser and we analyze the parser size. We finish with the
algorithm that computes the linearized syntax trees and its correctness proof.



Fig. 3 The BS recognizeAgs for the input marked RE = ( (a4 )T | bsas | a7bsag )™ b1y of Ex. 3.

3.1 Intuitive presentation

Recognizer of linearized syntax tre@$e first conceptual step builds the recognizer of the
set of linearized syntax treeST(¢ ) C (YU M)™ {+ }, see Def. 1. Since all the terminal
symbols occurring it — are distinct by definition, by Prop. 2 the langudgeT (¢ ) is local
and its local automaton is obvious.

We start from non-infinitely ambiguous REs, by considering theREEQ. (2) and the
associated MRE in Fig. 4 (top). The top graph of Fig. 4 shows the recogniz&rSf (¢ ),
with nodes drawn differently: the initial state and the states entered by labeled input symbols
are thicker, while the nodes entered by metasymbols are thin. The bottom of Fig. 4 shows a
language-equivalent finite-state machine, the arcs of which are labeled by a finite language.
We call such a machine “state-trimmed”, because all the thin nodes have been eliminated. It
is important to notice that, for all the arcs, every string in the labelling finite language has a
fixed format: it starts with zero or more metasymbols and ends with an input symbol, e.g.,
the string “1 (2( b5 ” on the arcd — 5. Such strings are callel$T) segmentsand the input
symbol at their end is calleehd symbol

We show how the trimmed graph in Fig. 4 reflects the fact that the RE has a non-infinite
ambiguity degree. In the top graph, every path between thick nodes that passes only through
thin nodes is acyclic, e.g., the path framo 5. Therefore, in the trimmed graph, the label
of arcO — 5, obtained by collapsing finitely many paths frénto 5, is a finite language.

LST recognizer of an infinitely ambiguous REhen the ambiguity degree is unbounded,
the arc labels in the state-trimmed graph may become infinite languages. For theaR¢

MRE ¢é; in Eqg. (4) (see Ex. 2), the recognizer bf(¢; ) is shown in Fig. 5 (top left).
Now, some paths from thick node to thick node, traversing only thin nodes, are cyclic, e.g.,

path0 2Gq day 3t g 39209 1y gyuch cases, when the thin nodes traversed are
eliminated, to preserve equivalence, the new arc in the state-trimmed graph must have an
infinite language for label. Thus, the a&ic— 2 of the trimmed graph in Fig. 5 (top right)

is labeled by languagei{az | 1(13[13]* a2”. Similarly, the other arcs are labeled by
infinite languages. We observe that all the LSTs of stigng (enumerated by Eq. (5) in Ex.

2) are included in the label of the recognizing paths 2 — 5. It is important to observe

that, by Prop. 1, every cyclic path in the local recognizer of the LST5 (i#) contains at

least one numbered letter or one numbered sympotherwise a string sufficiently long to
violate Prop. 1 could be obtained by iterating the cycle.
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Fig. 4 Top graph: the local recognizer of LSTs for the running example Ex. 1. Bottom “state-trimmed” graph:
the nodes are exactly the thick ones of the top graph.

Since we want to limit the number of LSTs returned for each string of infinite ambi-
guity degree, we have to choose a criterion for discarding an infinite number of LSTs. The
following criterion is reasonable and easy to implement, but any other would fit into the



(local) LST recognizer state-trimmed infinitely
&1 4= 1(laz | 13}+ )1 ambiguous LST recognizer

az | 13[13]* a2

state-trimmed finitely ambiguous LST recognizer

a2, lzaz

2 1(13)1 4

Fig. 5 Top left: the (local) recognizer of the LSTs for the infinitely ambiguous (i.e., problematic) RE
e1 = (a | 1)7 of Ex. 2. Top right: the equivalent state-trimmed machine. Bottom: the same state-trimmed
machine restricted to a finite ambiguity degree.

BSP parser, provided it bounds the number of LSTs. We state the criterion as a rule for
transforming the local LST recognizer into a state-trimmed finitely ambiguous recognizer.

How to bound ambiguityFor each pair of thick nodgsandq (possibly coincident) in the

local recognizer of_ (¢ ), take every path that connegtdo ¢ without traversing another

thick node, and that does not traverse twice an arc labeled by the same empty string symbol,
say byls. The labels of the taken paths are calEgyclic segment§AS) of an LST. To
construct the state-trimmed ambiguity bounding machine, shown in Fig. 5 (bottom), we
collapse such paths into an arc and we label it with the union of the ASs of the paths.



To illustrate, the label of the pam1—3> 3 22,3 054 2 5 of Fig. 5 (top left) is not

an AS according to the ambiguity bounding criterion, therefore it is not attached to the arc
from 2 to 5 of the state-trimmed graph at the bottom of the same figure.

From recognizer to parsef~rom the machine that recognizes the LSTs, we move ahead
towards the construction of the parser that recognizes the input strings and computes their
LSTs. The parser is a deterministic finite-state transducer, which extends the elassic
recognizer with an output function denoted fayAt each transition, the functiop emits a
piece of information essentially consisting of metasymbols, which represents a part of one
or more LSTs. For convenience, the input string is marked on the left by the start-of-text
symbolr. The initial state of the parser is callethrt The initial transition from statstart
reads the start-of-text and emits the first piece of LSTs. Upon termination, the concatenation
of all such pieces encodes all the LSTs of the given input string.

We recall that a transitiofig <+ ¢') € dgs is associated to a set of digrarbs €
Dig (e ), i.e., the digrams of the input marked REMore precisely, the marked input
symbolsb andc are in the seté, (¢) andI (¢'), respectively (see Sect. 2.2). When taking the
transitiong = ¢, the transducer emits an output consisting of a generalization of the digram
be, namely a set of segments of a linearized syntax tree; more precisely, thep\alue)
of the output function includes all the marked metasymbol strings that may be enclosed
betweenh andc in any LST. To illustrate, for the running example of REn Fig. 4 and
the digrama4 a4 in the input string, the output functiomincludes, among others, the two
marked metasymbol stringsand “)s 3(”. We represent each such string withir3-duple,
which has the digram symbols as first and third component, as follows:

digram metasymbolic string representation a3-tuple
a4 a4 € <a47 g, a4>
ag aq )3 3( (a4, )33(,a4)

In the top graph of Fig. 4, the stringsnd * )3 3( ” respectively correspond to the ac™ 8
and to the path:

8251256 4 %8

The preceding ideas are presented precisely in the following section.

3.2 The BSP algorithm

As the BSP algorithm is based on the entities intuitively presented above, we list more
precisely their definitions. Let € L (e ), withz = a1 ... anp 4 (forn > 1) orz =+, and
letw € LST(z), thereforew € (£ U M)™ {4} and, by Def. 1, itisc = flatten(w).

Definition 4 (factorization) Thefactorization into segmentsf a stringw € LST(z)  is:

w=C¢ ... ¢ i Cn o Cngl with n > 0, where: (8)
Cj:ujaj uj,ajeM*7Zv/’ fori<j;<n (9)
Cnt1 = pn41 HMn+1 € M* (10)

Each term(y,, with 1 < k& < n 4+ 1, is called asegmentEach terny; is a (possibly empty)
string of marked metasymbols. The symbals(marked input letter) and are called the
end symbolsf the segments; and¢, 1, respectively. O



For every linearized syntax tree € LST(z) H, the factorization into segments is clearly
unique. Later, we sometimes omit the end-of-texXtom the last segment.

To illustrate, we list the factorization into segments of two striagsws € LST(aa a),
whereaaa € L (e1) ande; = (a | 1)7 (see Ex. 2). The MRE i& = 1([a2 | 13]7 )1:

G -C-¢-CG=1(lzaz- g az-lgaz- 13):
1 (] L1 L1
1 H2 13 Ha

C1-C -G -C=1(lz3ax- e az-1313a2-13);
| | [ | |
M1 M2 M3 Ha
Actually, the sel.ST(aaa) contains infinitely many other strings that differ only in the
number of occurrences of the marked empty string syripoWe believe that listing such
cases would be wasteful and in the next definition we formalize an idea for binding the
ambiguity exposed by the parser. Let all the symbols be defined as in Def. 4.

Definition 5 (acyclic segment — ASA segment = pay, or ¢ = p is acyclic, shortened
as AS, ifand only iff |1, < 1 for all 4, i.e., all the metasymbols of typethat occur in
(if any) have distinct marks. Thecyclic marked languagé@acyciic (¢) defined by REe is:

Lacycic(e) = {w € L(€)| w={1...¢ ... ¢n and every segmet; is acyclic }
Theset ASe) of the acyclic segments RE ¢ is:
AS(e)={¢ | ¢ G Cn € Lagyic(e) }
The set of theacyclic linearized syntax treexs a stringz € L (e) is:
LSTacyclic(z) = LST(x) N Lacyciic(€)

As a consequence of Prop. 1, the 4ét(e) is always finite. Therefore, it is possible for the
parser to compute online the acyclic LSTs.

Notice that languag@acyciic (¢) is obtained from the languagde(¢) = LST(e) of Def. 1
by deleting all the strings that contain two or more instances of the same marked metasymbol
1 without a marked input symbal in between. This does not exclude that two identically
subscripted parentheses may occur in an acyclic segment.

Our approach to construct the parser, similarly to the BS recognizer, relies on the sets of
initials and followers, the elements of which are the acyclic segments instead of the marked
alphabet symbols. In the next definition all the symbols are as in Def. 4 and 5.

Definition 6 (initial / follower segment) The set of initial acyclic segmentnd theset of
the acyclic segments that follawy, are:

INias (e 4) = { ¢1 | ¢ ... Cat1 € Lacycic(e ) } withn > 0
Folas(e 4, an) = { 1| ¢ oo  GiGyr -+ Gntt € Lacyeic(e ) and ¢ = pjap }

We say that;;, is afollower of a;, and thatFolas(e , ay,) is thefollower setof ay,.

Clearly, the setnias (e ) and all the setolas(e , aj) of acyclic segments are finite and
computable.

For the RE of the running example, the §@hs and all the setfolas are listed in Tab.
2. Such sets and their contents are orderly listed by scanning the MRE from left to right. By
erasing the metasymbolg in Tab. 2, the initial and follower symbols (or equivalently the
digrams) coincide with those of the classical BS method for the same &te Sect. 2.2.



Table 2 The set ofinitial AS and all the sets dbllower AS for the MRE of the running example.

é = 1([2([3([a4]+)3 | bsag | a7b8a9]+)2 | 110} )1 b11

Inias(e 1) = { 1(2(3(as, 1(2(bs, 1(2(a7, 1(110)1b11 }

marked

set of followers ofi;, — Fol -
symbolay, h as(e -, ap)

aq ag  )33(as  )3bs )zar  )3)2)1b1u
bs
ag ar  )2)1bnn
ar
bs

ag ar  )2)1bnn

3.3 Parser Generation

We put together the preceding intuitions and definitions into Alg. 1, which constructs the
BSP parser as a deterministic finite-state transducer (DFT). It is convenient, though slightly
redundant, to formalize the transducer before its construction; a formal definition is also
necessary for proving the correctness of the BSP parser. We define the transducer by ex-
tending the BS recognizer with a new initial state and adding the output function; as before,
each state is identified by its contents.

Definition 7 (finite-state transducer)Let e be an RE over alphabei, let ¢ be the corre-
sponding MRE, and letiss = ( X, Qss, o, dss, I ) be the DFA of Def. 3. The transducer
Aisthe7-tupleA = (X U {+}, Q, start, &, p, F, O), where:

— Q = Qgs U { start}, wherestartis the initial state and itsontentsare! (start) = { +}
— the set of final states i5 as inAgs
— the state-transition graph és= dgs U { start = q0 } wheregy is the initial state ofAgs
- theoutputalphabeti@:p((i U{F})xM*x (£U{4} ))
— theoutput functiorp: Q x (X U {+} ) — O is defined as follows:

p(start F) ={ (F, p,c) | c€X A pcelniag(e) }

Vg, ¢ €Qss YacX  suchthatq > q¢') € dss
p(q,a)Z{ <bvlu’c>| bEIa(q)/\/J,CEFO|A3(e—{,b)}

We recallthatsymbola is aninput letter (unmarked)andthatsymbolsb andc aremarked,;

in particular,it holdsb € X andc € ¥ U { 4 }. Moreover,symbolb is of classa, i.e.,a =
unmark (b). M



Algorithm 1: Construction of the Berry-Sethi Parser (BSP).

Input: the setdniasandFolas of an REe
Output: the transduced = (X U {+}, Q, start, 6, p, F, O)

I(start):={ + } I/ create initial state start
Q:= { start } /1 initialize state set Q
tag statestart /] process initial state start
I(q):={c| pcelnias(e-) } /1 create new state qo
untag stateyg /'l new state qo is still unprocessed
TS:={ (F, p, c) | pc€lnias(e-) } // assign set TS of output 3-tuples
Q=QU{q} /1 update state set Q
5::{starti>qo} // initialize transition function §
p::{startqu} /] initialize output function p
while 3 stateq € Q that is untaggedo /] create and process other states
tag stateg /] process state ¢
foreach input symbola € X' do /'l scan each input synbol a
I(¢):=0 Il create new state ¢ (initially enpty)

untag statey’ /1 new state ¢ is still unprocessed
TS:=0 [l initialize 3-tuple set TS
foreachb € I, (¢) do /1 scan each marked be ¥ of class a in g
I(@):=I()U{c| pceFolas(e,b)} /'l update state g

| TS:=TSU { (b, ¢) | pceFolas(ed, b) } /1l update set TS

if I(q')# 0then /1 if newstate ¢’ is not enpty, then

if ¢ € Qthen /1 if ¢’ is not inthe state set @Q, then
LQ::QU{q’} /'l update state set Q
s=6U{qg>q} /1 update transition function §
_p::pU{qu’} /1 update output function p
F:={qeQ| Hel(q)} Il create the set F of final states

Notice that the value of the output functipiis a finite set oB-tuples included in the domain
0. As customary, in the examples we represent the state-transition function and the output
function as arc labels.

Explanation of Alg. 1in the first steps, the algorithm creates the initial sttt the state

qo Of the DFA Ags, and the arstart L qo With the outputp defined by the initial segments
Inias(e). Then, thewhi | e loop examines each stagec @ in turn and tags it to avoid
reexamining. For the current stajethe outermosf or loop creates a new staté as the
target of an arg — ¢ with inputa € X; the innermosf or loop examines the contents of
stateq and for each marked symbblof classa therein, it inserts into the sét(q’) all the
end symbolg of the acyclic segmentlas(e 4, b). The value of the output functiomfor
the arcq = ¢ is built by using the metasymbolic pattof the same acyclic segments. At
last, the algorithm identifies the final states, which contain the end-ofitext



Example 4 (transducer constructiofihe result of the application of Alg. 1 to RE given
the setdnias andFolasin Tab. 2, is shown in Fig. 6. By construction, every state of trans-
ducerA is accessible from the initial state and is connected to a final state.

We compare the transducdrin Fig. 6 and the DFAAgsin Fig. 3. If we disregard the
output functionp and the initial statestart, the state-transition graphs df and Ags are
identical. Moreover, for each pair of corresponding stateg end Ags, the state contents
I (+) are identical sets.

Thus the following relation holds between the languages recognizetl) =+ L (Ags).

This proves that Alg. 1 is correct with respect to the language recognition property, and it
remains to be proved (in Sect. 3.6) that the output of transdddgrcorrect.

In fact, the novelty of Alg. 1 is the output function that encodes all the LSTs of the
input, and we illustrate with the computation @f+- b). For completeness, we list all the
3-tuples in the output, including some that are useless for the construction of the LSTs (to
be explained in Sect. 3.5):

<h1(2(3(7a4>
(1 (5 (. bs) ) (b5, e a6)
(F1(a(ar) (b, &, )
(k1 (110 )4, b11)

In Sect. 3.5 we explain how such an output represents the LSTs of the input string. In
fact, stringb has just the LST encoded b, , (110 ), b11) - (b11, &, 1), namely:
“, (110 ), b11". More examples are in Fig. 8.

p(Hb) =

The next example illustrates the case of an infinitely ambiguous RE.
Example 5 (infinitely ambiguous cadeyr the RE of Ex. 2 reproduced below:
e1=(a | 1)" & =1([az | 13]" 0

with the local recognizer seen in Fig. 5 (top left) we list the initial and follower sets needed
by Alg. 1:

Inias(e1 ) = { 1(az2, 1(13a2, 1(13)1 4 }
Folas(e1 4, az) = { a2, 1za2, )1, 13)1 1 }

The graph of the transducer is shown in Fig. 7. We list the output emitted for two input
strings, namely anda, and for brevity we show only th&tuples that occur in some LST:

input output

Fe {(F 1(13)1, 4) }

Ea <|_71(7a2> . <a27 )17_|>
<F,1(137 a2> <a27 13)1,%>

The syntax trees of stringsand a are depicted in Fig. 9 in Sect. 3.5.



(a4, €, aq) (as, €, as)

<a47 )33(,0,4) <a,47 )33(,a4>
<a6,3(,a4> <a47 )3’b5> <a4, )3,b5>
(as, ¢, bs) (as, )3, a7) “ (as, )y, ar)
{ae, €, ar) (a4, )3 )p )y, b1r) ﬂ (as, )5 )g )y, b11)
(as, )g )1,b11) a0 (a7, ¢, bs) ” (az, €, bg)
q3 a a
] as e b: /\ bs
— b ar a7
b11
(bs, €, as )
(b11, €, ) (b >
5, €, A6
(ag, 5(, as) (b11, &, 1)
(ag, €, bs) (bs, €, ag)

<h1(2(3(,a4>
<'_71(2(7b5> =
<}—,1(2(,a7>

(Fy1(ho)y, bun)

(ag, €, a7)
<‘l91 )2 )11b11>

<a67 3(7a4>
(as, €, bs)
(ae, €, ar)
(a6, )p )1, b11)

Fig. 6 The graph of transducet constructed by Alg. 1 for the REof Eq. (3). The setiniasandFolas used
by the algorithm are taken from Tab. 2. Each arc carries an input symbol and the output produced, which is a
set of3-tuples, omitting for brevity the brackets{* and “ } ".

(a2, ¢, a2)

p (g0, @) = (a2, 13, a2)

' <a27 )17_|>

’1 7_1
(k1 (,a2) (o2, 12 )y, )

p(dtart, ) = (F, 1 (13, a2)

(Foa(13)y, ) ¢

—>|E a_|2—>

start F
q0

Fig. 7 The graph of transducet constructed by Alg. 1 forthe RE; = (a | 1)1 of Ex. 5.

3.4 Transducer size

To analyze the size or descriptive complexity of the transddceonstructed by Alg. 1, we
first define some complexity measures for REs.d,etande be an RE over alphabét, the
input marked RE and the marked RE, respectively.



Definition 8 (complexity measures oRE) Thealphabetic sizef e is the cardinality of the
marked input alphabe¥f. Thee-sizeof e, denoted by, is the number of marked symbols
1in & (ne > 0). The maximum nesting depth of the operater ™ in e is denoted a%
(h>1). O

It is straightforward to figure out how the number of states and transitions of transdlucer
depend on the above complexity measures. From Def. 7, the graphas the same nodes

and arcs as the DFAgs has, plus the statgtart and the arstart Lt qo- In the worst case,
the size ofAgsis:

|Qss| = 2l ¥I+1

y where term+-1 is for
|dss| = | | x |Qes| = | X | x 2! ¥+

Thus the worst-case size of transduden terms of nodes and arcs is:
|Q|:|QBS|+1:2‘2|+1+1€O(2‘2|) if | 2 | constant
- 1

» 11
16]=0ss|+1 = || x2¥F p1eo(|5|x21¥) = o(2!*]) -
where| § | reduces ta@( 2l ¥ ) if we consider the alphabet siz& | as a constant.

Every arc of transduced supports the output function It takes some effort to figure
out how the size op depends on the measures of REFor every arq ¢ % ¢') € 4, the
value ofp (¢, a) is a set of3-tuples(bd, u, c), whereb cis a digram of- € , i.e., the input
marked RE encompassed by the start and end marks. Therefore, ibholHsu { +} and
¢ € ¥ U {-}. By construction we havei € 1 (q),c € I(¢'), pc € Folas(F e , b) and
Folas(F e -, ) = Inias(e). We want to count how mari-tuples may label an arc of.

For any digrambc € Dig (- e ), let C (b, c¢) be the number of substrings of type
b¢, where¢ = pcis an acyclic segment (Def. 5) of some strinage L (¢ ) that does
not include any two copies of a marked symbglwithout any input letter in between. We
denote as”’ (b, ¢) andC” (b, c) the numbers of the segmentghat do not include any
symbol of typel ; and that include one or more symbols of type respectively. Clearly, it
holdsC (b, ¢) = C’ (b, ¢) + C” (b, ¢).

In the worst case we hav&’ (b, c) = h, whereh is the nesting depth of the operator
“+”in the REe, because a minimum of one and a maximunk.guch operators may be
applied to generate¢ = b i c. For instance, the following RE; and MREé; have nesting
depthh = 3 and the value listed below:

+ +

62:(((a)+)+) ey = 1({2([3([a4]+)3} 2| N

Clas,as) = C'(as,a4) = | { (aa, €, aa), (as, )3 3(, as), {as, )3 )2 2(3(, as) }| =3
Concerning the ternd” (b, ¢), still in the worst case, we have the following (with > 1):
Ne ) Ne )
C"(b,ye)=> h' xDpi=> hixnex(me—1)x ... x (ne—i+1) (12
i=1 i=1
where the termD,,_ ; is the number obrdered selections without repetition$ n. > 1
marked symbolg in groups ofi symbols. The count for the numbét’ corresponds to all

the possible ways of including any number of marked symibatsany order, by applying
the nested operators”, from a minimum of one up to a maximum @f, to generate a



(sub)segment of type; . 15, where the string. C 22* does not include any marked symbol
1. To illustrate how numbe€”’ is computed, consider the Rz and the MRE3:

eg:a(((1|1|1|1)+)+)+b

"
€3 = a1 2 [3( [4([15 [ 16|17 | 18]+)4}+)3

)2 by

Then, itish = 3 andn. = 4, andC” (a1, by) counts many elements, such as the following:

(a1, 2(3(4(16)a)33(4(15)a)3)2, bo)
(a1, 2(3(4(18)a4a(1s5)a)33(a(17)a)3)2, bo)

We remark that large values for the te€iff computed through Eqg. (12) arise in the contrived
case of the REs that have a high numherof symbols of typel ; that are deeply nested
within the iteration operators. In Sect. 4 we show that in the practical cases, where the
number of marked symbolsis limited or null, the transducer size grows quite slowly with
the RE size, because the te@ff is small or vanishes.

To sum up, in the frequent situation when the RE contains no or few syrmbitlsolds
C (b, ¢) = h. Then, considering the input alphabet size to be a constant, in the worst-case
the transducer sizeA | is bounded by the sum of the nodes and arcs (each arc is weighted
with the size of its output label), as follows:

A< 1QI+161xD . C o) =1QI+]6]x (|1Z]+1)*x he (2 ¥ x| £ xh)

beXu{r}
ceXu {4}

At last, we notice that in practice the exponential fagor | = 0 (| Qss|) from Eq. (11)
is marginal, since the number of nodes of the DFs that are underlying transducdris
often limited.

3.5 Construction of linearized syntax tree

First, we show that the output computed by transdutéosr an input stringz can be inter-
preted as ®directed Acyclic Grapi(DAG), denoted byDAG (z). The DAG nodes carry as
label a string of marked symbols and metasymbols. Then, we show that the labels of certain
DAG paths represent the languag®Tacyciic () of Def. 5.
The transducen accepts a string = € L (+ e) with these computations:
(1] z[j] z[n]

- x[1 .
start—qo —>q1 ... ¢j—1 — G ... o1 —> qn  if|z|=n>0 (13)

or start = qo0 ifz=c¢

and computes the non-empty output sequenees follows:

p (start b xz) = p(start, ) p(qo, z[1]) ... p(gj—1, z[j]) --- p(gn—1, z[n]) (14)
=p1 ... Pn Pnt1



In accordance with Def. 7 and with Alg. 1, each fagipwith 1 < j < n 4+ 1, to be called
a DAGslice, is a finite set o$-tuplest of the form:

t=(bypc)e(ZU{F})xMx(ZU{4})

For each slicg); with 1 < j < n 4 1 and for each tuple = (b, p, c) € p;, we define the
indexed tuple; = (b, i, c); obtained by appending tothe index; as a subscript. In this
way we distinguish any two identical tuples that occur in different slices. The DAG graph is
next defined.

Definition 9 (DAG of a string and recognizing labeled path)The DAG of a stringe €
L (e) is a pairDAG (z) = (V, E), whereV andE are the sets of vertices and edges.

— The setsd/ of theverticesand F of the edgesof the DAG are defined as follows:

V={tj| 1<j<n+1Atep;} (15)

E:{(<b7p’7c>j7<b/7/1'/7cl>j+1)‘ ].S_]STL/\C:Z)/}

SetV contains all the indexed tuples. A vertex (&, i, ¢), is initial and a vertex
(b, 1y )i is final. Notice that this classification is not mutually exclusive and that
at least one initial and one final vertex exists. Each edge is defined by a pair of vertices.

— The labelX of a vertex{b, u, ¢) is the segment resulting from the concatenation of its
second and third component:( (b, p, ¢)) = pe.

— A labeled pathis a sequence of one or more labeled vertices connected by edges. A
labeled path from an initial vertex to a final vertex is caltedognizing

— Thelabel of a recognizing path; ... ¢t,+1 is the concatenation of the labels of its ver-
ticesIA (t1 ... tng1) = A(E1) - A (Ent1). ]

The labels of the DAG nodes are strings of the same type aseti@ents; of an LST,
see Eg. (8). Since in Eqg. (15) an edge connects3uples such that the third component
of the first3-tuple agrees with the first component of the second, every recognizing path
corresponds to the computation by which the transdda@cognizes the input string Yet
a DAG may also contain edges that do not belong to any recognizing path.

To sum up, the structure of a recognizing path is the following, with the node labels
shown above the horizontal brackets:

p1ay w2 a2 fin Gn, Mot
I 1 I 1 I 1 I 1
(F,pi,a1); — (a1, p2,a2)y ... (@n—1,pn,an), — (an,pnt1, 1), 41 (16)
initial node1 arcl node2 nodes noden arcn final noden + 1
& arcs

To illustrate, we show the output for two preceding examples.

Example 6 (DAG and recognizing paths +br the REe of Eq. (3), we show in Fig. 8 (top)

a computation by the transducer of Fig. 6. The input stringais. The grapfDAG (a a b) is
partially shown in Fig. 8 (middle). All the edges in the recognizing paths are drawn as solid
arrows, and only a few others as dashed arrows. Since sttibds 2-ambiguous, there are
two (acyclic) LSTsw1 andw2, and the DAG has two recognizing paths with the path labels:

I1(2(3(a4||£i;||)3)2)11711I Ij =w; and .1(2(3(a4..)33(a4..)3)2)1bll. Ij = w2

slicel slice2  slice3 slice 4 slice 1 slice 2 slice 3 slice 4




where the labels of the individual path nodes in the slices are highlighted. On the other hand,
the path:

<'77 1(2(7 a’7>1 — <a’77 €, b8>2
stops prematurely in the slige and fails to recognize the input. The non-recognizing path:
<|_7 1 ( 2(3(7 a4>1 — <a47 67 a4>2 — <a47 )37 b5>3 — <b57 67 CL6>4

ends in a non-final node in the slipg. The useless nodes (dashed) can be eliminated.

Example 7 (DAG and recognizing paths —Rgturning to the RE; of Ex. 5, we depict
in Fig. 9 two computations by the transducer of Fig. 7, for the (ambiguous) striagda.
One DAG suffices for both strings, since string a prefix of stringa. O

3.6 Correctness of the LST construction

We have already justified the correctness of the construction of the LST in our presentation
and on the examples. Indeed, the following proof does no more than orderly collecting and
formalizing previous remarks and hints. Its directness and simplicity strengthen our claim
that the BSP approach is a very natural one for parsing REs.

Theorem 1 (correctness of linearized syntax tree constructionfjor every stringz €
L (e), the set of the labels of the recognizing paths of graph DAGoincides with the set
LSTacyeiic () 1 of the acyclic linearized syntax trees (see Def. 5). O
Proof We discuss only the case# ¢, the other case being simpler. There are two parts:

part 1 — set of the recognizing path labels of DAG C LSTacyciic (z) -
Let X be the label of a recognizing path (Def. 9). We prove that LSTacyciic(z) .
String A has the form shown in Eq. (16), i.&.,= pu1 a1 p2az ... pnan pnt+1 -, Wwhere
each segmeni; ¢, with 1 <i <n+ 1andc € ¥ U {-}, is the label of a DAG vertex
t; € p; of type (-, u1, a1 ) fori =1, orof type(a;_1, u;, a; ) for 2 < i < n, or of type
{an, pn+1, 1) fori =n+ 1. From Eq. (13), the BSP computation is:

[ x [1] z [J] z [n]
stat—q0o —q1 ... ¢j—1 — qj ... Gn—1 — Gn

while from Eq. (14) the output sequengés:
p (start Fz) = p (start -) p (g0, z[1]) ... p (gj—1, 2[j]) - p (gn—1, z[n])
=p1 ... Pn Pntl
From the Def. 7 of transducet, the output function takes the values:
p(start ) = { (Fyp,c) | c€X A pc€lnias(e %)}
plg,a) ={ (bypu,c)| bela(q) N pceFolas(e, b)}forallg, ac Qs X
By combining the above equations, we get:
piar = p1 :C[l] S |niA5(6 4)
wia; = ;i zfi] € Folag(eH, z[i —1]) forall2<i<n
pnt+1 1 € FO|/_\s(e , :r[n])

therefore, from Def. 6, we obtaik € LSTacyciic(z ).



BSP (transduceA) accepting path for the stringa b with output functionp — see Fig. 6

p (g0, @) = p2

(aa, €, as)
p(startk) = p1
<"7](2(3(7’14>
<F71(2(=b5>

<a4, )33(,a4>
(aa, )g.b5)
<a4, )37a7>

<h1(2(v‘17> @ <“47 )3 )2)1,b11>
(Foq (110 )y, 011) b; (a7, ¢, bs)

p(q1, a) = p3
(aq, €, as)
<a4, )33(,a4>
(as, )3, b5) p(qr, b) = pa
(as, )y, ar) (bs, €, ag )

az | (a4, )3 )a )i>b11) [ag | (bi1, e )
bs (a7, €, bg) bs | (bs,e,a9) |a6
_{

[F} u
start F b @
11

q0

ar
b11 @
bs

q1 q1

a7
b11 b ag
bg q2

DAG (a a b) — all the arcs in the recognizing paths (solid) and a few other arcs (dashed)

p1: slicel (initial) po: slice2

MST ofaa b /'\

. b

/\

as ag
acyclic
LST : w1 = 1(2(3(asasq)3)2)1 b11

acyclic
LST : w2 = 1(2(3(as)33(as)3)2)1b11

Fig. 8 LST construction of string a b for Ex. 6. Top: accepting path of transducérMiddle: DAG of string
a a b with two recognizing paths — the brackets and indices of3tingples are omitted and the node labels
are highlighted in bold. Bottom: marked and linearized syntax trees.



BSP accepting paths for stringanda — Fig. 7 overlappedDAG (¢) andDAG (a)

p(qo, a) = p2 p1: dlicel po: slice2
p(start ) = p (az, e, az)
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Fig. 9 LST construction for the ambiguous stringanda of Ex. 7 — the ambiguity of is not preserved.

part 2 — LSTacyeiic (z) - C set of the recognizing path labels of DAG)
We prove that if the linearized syntax treec LSTacycic () -, then there exists a recog-
nizing path in the grapBAG (z) with label A equal tow. From Def. 1, there is a string
z H€ L (e ) with flatten(w) = = 4. From Eq. (8), and from Def.s 5 and 6, the decom-
position ofw into ASs isw = (1 ... (nCnt1, Whereds = p1 a1, ..., (n = pnan,
Cnt1 = png1 1, Withunmark(a;) = z[j] (1 < j < n). From Def. 7, there is a trans-
ducerA for e. From Eq.s (13) and (14), the transdugeaccepts string: = and outputs
p=p1 ... pnpn+1- From Eq.s (15) in Def. 9, slice; contains &-tuple (-, u1, a1 ),
each slicep; with 2 < i < n contains &-tuple (a;_1, 4, a; ), and slicep,, 1 contains
a3-tuple{an, pn+1, ). From Eq. (16), the grapBAG (z) contains a recognizing path
and the labeh is equal taw. O

3.7 Complexity of parsing

It is well known that, for any RE, the classical Berry-Sethi recognizer of langudge)

(Sect. 2.2) has a linear time complexity in the lengih of the accepted string. The

same property holds for the BSP parser, including the construction of the transducer output,
because the output alphabet is fixed, determined by the.Fice the number of DAG
nodes in every slice is limited, the DAG construction is also linegrin All the acyclic

LSTs of stringz can be produced by a (say, depth-first) visit of the DAG, and the building
cost of each LST is linear ifw |, because the length of every segment is limited.

Proposition 3 (parsing complexity) For any REe and for any stringr € L (e), the com-
plexity of computing (start, - z) is O (| x |). The complexity of computing the set of acyclic
linearized syntax trees afis O (|| x | LSTacycic(z) |).



3.8 RE ambiguity condition

In practical applications, it is sometimes necessary to know how to decide whether a given
RE is ambiguous, which is a problem known to be decidable since long [6]. For the users
faced with such a requirement, we show how to detect RE ambiguity on the transducer
graph.

To proceed without losing generality, we need to revise the definition of acyclic lin-
earized syntax tree, i.e., of the d&tyqic (e) in Def. 5. In fact, if a stringe € L (e) is finitely
ambiguous, the cardinality of the de8T,cyciic () is greater than one, which means that the
ambiguity ofz remains visible when the cyclic segments are eliminated. The situation may
differ in the case of a problematic RE, i.e., when the degree of ambiguity is unlimited. Al-
though the ambiguity is usually preserved ®Tacyciic () for an infinitely ambiguous string
z, yet, for certain particular problematic REs, some stringhough ambiguous, has only
one acyclic LST. See this RE:

(1)*" marked as 1([12]T )

where the empty string is ambiguous, though it is left with only one representative in the
setLSTacyciic (), namely “1(12)1 "

If preserving ambiguity in such cases is mandatory, it suffices to extend the notions
of acyclic segment AS and acyclic segmentA8{e) (given in Def. 5), so as to keep the
two segments {(12)1” and “1(1212)1" In Lacycic(e). But care must be taken not to
jeopardize the finiteness of the set of acyclic segments. Next, we extend the definition of
acyclic segment.

Definition 10 (extended acyclic segment — EAS) segment = pay or ¢ = p s
extended acycliif and only if it holds| 1|1, < 2 for all 4, i.e., all the metasymbols of type
1 occur ing no more than twice. Extended acyclic segments are def©A&hnd their set
is calledEAS(e). ]

Clearly, a comparison of Def. 5 and Def. 10 shows that it héi8¢e) C EAS(e) for any
RE ¢, and the containment is strict only for a problematic RE. The subsequent definitions
of the setSLacycic (e) andLST(x) in Def. 5 remain unchanged, though now they use EAS
instead of AS.

To prevent confusion, we qualify anbiguity preservinghe transducer constructed
by Alg. 1 using the EAS of Def. 10, and we denote it hiyp instead ofA. Notice that the
state-transition graphs of (based omS(e)) and Aap are structurally identical, and they
only differ in the output function: that afiap contains more3-tuples than that ofd does,
if (and only if) the RE is problematic. Fig. 10 shows both graphs for the problematic RE
e = (1), where it holds (start ) C pap (start ).

Therefore, the correctness proof in Th. 1 holds true unchanged for the Dre®liz)
and the set.ST(xz) of a stringz accepted by transducetap, as the proof is based on the
state-transition graph. Thus the transdudgs can build all the acyclic syntax trees that the
transducerA can, and a few more if (and only if) the RE is problematic.

The next ambiguity condition (Prop. 4) captures RE ambiguity without exception. This
ambiguity condition is stated on transduckip (instead ofA), first for a stringz generated
by an REe, then for a whole RE (the first statement is functional to the second).

In the discussion below, for any stringwe callcleanthe graptDAG (z) of = deprived
of all the nodes and arcs that are not part of a recognizing path.



Proposition 4 (string and RE ambiguity) Assume it holds € X*, || = n > 0 and
1 <i < n+ 1. These two statements hold, for a string and an RE, respectively:

string A stringz € L (e) is ambiguous if, and only if, the DAG), computed by the trans-
ducer Aap of e and cleaned, has a sligg that contains tw@-tuplest; = (a, u, b)
andt; = (a’, ¢/, b" ), with equal third symbols = v’ (whereb, b’ e 2 u{Y.

i

RE  An REeis ambiguous if, and only if, the state-transition graph of the transduger
of e has an arcy such that the output functignon ~ contains twa-tuplest and#’
(as above but without subscrigitwith equal third symbols = ' (as above). O

Proof By Th. 1 (restated fordap), a stringz has two or more LSTs in the seBT(z) if,
and only if, the grapDAG (z) has as many recognizing paths. The two proofs follow:

string if part — Suppose string is ambiguous, then it has two LSTs and its gr&g#G (z)
comprises two recognizing paths. If such paths merge, there is aglicet the last
(i # n+1), that contains tw8-tuplest;, t; that have the same succes3duplet;’, |
in the next slicep; 1. Thereforet;, t; have equal third symbols= b’ € X, since
by the DAG construction such a symbol is the firstf, . Else, if such paths end
separately, since both are recognizing, the last glice contains two finaB-tuples
tn+1, tn1 1, Which therefore have equal third symbels- b’ = .
only-if part — Suppose a slicg; of the cleanedAG (z) of string z contains two
3-tuplest;, t;. By the DAG cleanliness, th&tuplest;, t; belong to two recognizing
paths inDAG (z), thus stringr has two LSTs and is ambiguous.
comment — The DAG cleanliness is unnecessary for the “if” part, and the equality
b = 1’ is unnecessary for the “only if” part. However, the equality is necessary for
both sides of the next RE ambiguity statement.

RE if part — Suppose RE is ambiguous, then its transducékp recognizes an ambigu-
ous string- z. From the string statement (if part), the grdpAG (=) has a slicep;
that contains twe@-tuplest;, ¢; that have equal third symbols= ¥'. By the DAG
construction, the state-transition graph/f has an are such that the output func-
tion p on v is p;. Thusp on ~ contains two3-tuplest, ', obtained from¢;, ¢; by
canceling their subscript which therefore have equal third symbels- b'.
only-if part — Suppose that the transducésp of RE e has an arey, where:

y=(qg=>r) q, r are states ofipandc € X U {+}

and that the set (¢, ¢), i.e., the output functiop on v, contains twa3-tuplest, ¢’
that have equal third symbals= ’. By Alg. 1, the state-transition graph dfxp is
trim, thus there is a string = = + = [1] ... z [n] € + X* that labels a recognizing
path of Aap traversingy. Then, there is a grapBPAG (z) such that its slicep; =
plg,zfi—1])withz[i — 1] € ¥ for2 < i <n+1,oritsslicep; = p(start )
for i = 1 — see also Eq. (14) — contains tWetuplest;, ¢;, obtained from, ¢’ by
applying the subscrigt that have equal third symbais= ¢'. Stringz can always be
taken in such a way that ttgetuplest;, ¢, belong to recognizing paths &fAG (),
thus the DAG can be assumed todbean as follows:
1. By the DAG construction, thé-tuplest,, ¢, are necessarilgeachablefrom some
initial node(s) through two DAG paths, or they are themselves initial nodes.

2. Ifn > 1, i.e., stringz is not empty, the DAG has two or more slices, therefore:



— If slice p; is not the last, i.e4 # n + 1, by Alg. 1 transducer ap has an arg:

B=(r LAUR s) sis astate ofdap andz [i] = unmark(b) = unmark(b’)

wherep (r, x [4]), i.e., the output functiop on 3, contains &-tuplet” that has
first symbola” = b =¥'. Slicep;,; is equal top (r, = [1]), thus it contains &-
tuplet; ;, into which the two DAG paths merge. #f, , is final ¢ = ), the
two paths haveeached- and merged into — one final node. Else, by repeating
the argument from;’, ; onwards, the two paths — unified from now on — will
reachtogether one final node through a series3dfiples, i.e., DAG nodes,
driven by the string suffix [i] ... = [n], the symbolst [-] of which are taken

S0 as to match the classes of the third symbafsthe series o8-tuples.

— If slice p; is the last, namely,,+1, i.e.,i = n+ 1, the3-tuplest,,+1, tﬁlﬂ are
final (b = ¥’ = ), thus the two DAG paths separategachtwo final nodes.

3. If n =0, i.e., stringz is empty and the only slice js , each DAG path separately
reducedo a single node (without edges), which is both initial and final.

In all cases, the two DAG paths through wuplest;, t; go from an initial node to

a final node, thus they arecognizing Hence the3-tuplest;, t;, which have equal

third symbolsb = ¥/, belong also to theleanedgraphDAG (). From the string

statement (only-if part), string is ambiguous, therefore REs ambiguous.

comment — As said, equality = b’ is necessary and sufficient for RE ambiguityz

Example 8 (RE ambiguity condition — Prop.We show two cases. For the first one, con-
sider the RE in Eqg. (2). Since it is not problematic, we do not need the transduger
because in this case the definition of acyclic segment AS in Def. 5 preserves ambiguity.
In Fig. 6, the transduced has the argy - ¢1, the output of which comprises the two
following 3-tuplest, ¢’ with equal third symbols, that meet Prop. 4 (RE statement):

p(q0, a) D { I(a47 g, a4>l7 I<a47 )33(, a4>| }

3-tuplet 3-tuplet’

Therefore, the RE in Eq. (2) is ambiguous. In Fig. 8, stringp is a witness of such an
ambiguity, with the twa-tuples belonging to slicgs of the (clean) DAG.

The second case is such that the ambiguity of certain strings is not observable on the
standard transducerand is instead visible on the ambiguity preserving transddgerThe
REe; = (a | 1)" in Ex. 5 ambiguously generates the empty stenghe state-transition
graph of the transducet of e1, constructed by Alg. 1, is in Fig. 7. The transdugerecog-
nizes string by taking the arstart = g with outputp (start ) = { (-, (1), )}
Since such an output contains only d¥uple, the ambiguity of is not observable onl.
In fact, the DAG of= shown in Fig. 9 (top right) reduces to a single initial and final node (in
slice p1), which corresponds to a single syntax tree (bottom left of Fig. 9).

The ambiguity ot is detected by the ambiguity preserving transdutgr of e1, yet for
brevity we do not construct the whole state-transition graphApf and we focus instead on
its relevant arc and output function label. Thus we recalculate the set of initials, according
to the notion ofextended acyclic segmeAS in Def. 10), and we denotelitigas

Inigas(er ) = { 1(az2, 1(13as, I1(13)1 4{ I1(13 13)1 %I }

initial for e initial for e




where symboll s may occur up to twice (but no more) in a segment. Therefore, the ambigu-
ity of string e becomes visible on transducégp, as the initial arc has to hold twtuples
with equal third symboH, coming from the last two initials (outlined). Notice that RE
contains an iterated nullable subexpression, or differently said it is problematic.

On the other hand, the ambiguity of striags already visible on the standard transducer

A of Fig. 7, where Prop. 4 (RE statement) is verified on the arcs ofsﬂathi 70 = qo.

In fact, four recognizing paths of stringare visible in the DAG of: shown in Fig. 9, and
the corresponding four syntax trees are drawn at the bottom (right) of the same figare.

Example 9 (ambiguity preservation and detecti®ig. 10 shows both parsers and Aap

for the problematic R = (1), with MRE ¢ = [1( 12 )1]+, which generates the (in-
finitely ambiguous) empty string the DAGs ofe are also depicted for both parsers. Trans-
ducerA does not satisfy Prop. 4, whereadgp does so, as the twtuples inpap (start, )
have equal third symbols (case 3 in Prop. 4). O

transducer of REe DAG ()

start, F) = { (F, 1(12)1, -
A%@p(ar ) {<F 1(12)1 >}A@_>

(F, 1(12)1, )
pap (start, ) = { (F,1(1212)1, ) }

o -G : L0

Fig. 10 Transducersi (BS Parser) andiap (ambiguity preserving) for the problematic RE= (1)1 (left),
and both DAGs ot (right) — the DAG computed bylap has two recognizing paths (each of one node).

Observation The examples above should have made clear that, to decide whether an RE is
ambiguous, it suffices to inspect the transducer graph and look for any arc holding any two
3-tuples with equal third symbols. Deciding whether a single string is ambiguous requires to
compute its DAG by means of the transducer, then to clean it and eventually check if a slice
still contains two3-tuples; cleaning is easily done by means of well-known algorithms.

4 Implementation and experimentation

We realized a parser generator tool that reads an RE and constructs the BSP parser, and we
measured the generation process speed, the size of the generated transducer, and the BSP
parsing speed. Both the generator and the produced parser are coded'imideeil:

1. We describe the main phases composing the generator and we present the timing mea-
surement for the generator, obtained using as input a large random collection of REs.

1 The code is available &it t ps: / / gi t hub. com! FLC- pr oj ect / BSP together with the input data
used for the experiments.



2. We present the experimental results pertaining to the BSP parser, which include the size
of the transducers and the parsing speed of the generated parsers.

3. We outline an implementation option for generating a parsing algorithm that incorporates
the POSIX disambiguation criterion and returns the syntax tree selected in agreement
with such a criterion.

Phases of the parser generatdihe generatortakes as input an REand returns the BSP
parser. The parser consists of a fixed Java program plus some data structurepacsithep
tables that are specific foe and ensure a faster access by the parser code. In the first two
phases the generator prepares the input data needed by Alg. 1:

1. Compute the marked abstract syntax tree MASE,dnd the set of the digrams that
occur in the marked RE

2. Compute the acyclic segme®S(e) (see Def. 5).
Then the parser construction properly starts, applies Alg. 1 and comprises two more phases:

3. Construct the transducer graph and, in particular, its output function.
4. Reformat the transducer graph and the output function into the parsing tables.

At parsing time, the parsing tables efficiently drive the parser moves. Separate time mea-
surements for the execution of the phases from (1) to (4) are later reported.

Experimental measuremente report some experimental results about the generator and
the generated parser: parser building speed, parser size and parsing speed.

A practical problem we had to face is what collection of REs to choose for our exper-
imentation, since — to the best of our knowledge — no benchmark for measuring and com-
paring the performance of algorithms related to REs is publicly available. Thus we created
a large collection of REs, randomly generated by another tool that we have developed in a
related project [8F. The current collection comprisés000 REs of increasing length up to
100 characters, counting the terminals and metasymbols, and it is subdivided in ten classes
of length[0 — 10], [10 — 20], ...,[90 — 100].

First, we report how the size of the generated BSP parser, actually the size of the trans-
ducer, depends on the length of the RE. For the transducer, we measured the number of
states, arcs angttuples of the output functiop, and we computed the ratios of such num-
bers to the RE length, i.e., the total number of RE symbols. Then we averaged the result
for each of the ten classes of REs. The ratiam. of states / RE lengémdnum. of arcs
/ RE lengthare almost constant as the length of the RE increases (therefore the values are
not reported), meaning that the DFA recognizer underlying the transducer has a linearly in-
creasing size. On the other hand, for the output functicthe average number 8ftuples
per arc takes the following values:

length of the RE 10 20 30 40 50 60 70 80 90 100

num.3-tuples / RE length

. 0.78 0.81 0.96 1.28 1.35 2.24 4.07 5.69 6.47 8.10
of the output functiop

From the discussion of the transducer size in Sect. 3.4, it is expected that the number of
3-tuples should grow more than linearly with respect to the RE length: in our benchmark

2 The benchmark and generator codes are availatiietaps: / / gi t hub. coml FLC- pr oj ect / BSP.



we found the dependence to be approximately quadratic. Consequently, the parser genera-
tion speed decreases as the RE length increases. Yet, the above experimental figures support
our remark in Sect. 3.4 that the combinatorial growth — expressed by Eq. (12) — for the
number of3-tuples labelling the transducer transitions, does not occur in practice. The mea-
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Fig. 11 Parser construction speed vs RE length — for comparison the generation speed for the pure BS rec-
ognizer is also shown (upper plot).

surement$in Fig. 11 show the generator speed. For comparison, the plot displays also the
generation speed of the BS recognizer; the generation is faster since it does not pay the price
of computing the acyclic segments AS and the derived information needed by the parser.
The plots in Fig. 12 split the total parser generation time into the time spent in each phase of
the generator. We found that the weight of phases (1) and (2) decreases for longer REs. The
variance of all the measured distributions increases with the RE length, a fact to be expected
from the presence of more heterogeneous REs within the classes of higher length.

Next, we give some figures for the parsing time, which we have obtained by running
the parsers on many input texts. For eacheRtthe benchmark, we randomly generated a
collection of input texts, in such a way as to ensure that the RE operatoegénuniformly
chosen in the generation of such texts. The parsing speed is 4bdcharg/[mg and it
remains essentially constant for all the texts, in agreement with Prop. 3. For comparison,
the recognition speed of the pure BS recognizer is aBgithargd/[md, slightly less than
twice the parser speed.

Disambiguation byPOSIXor other criteria Since the BSP parser delivers all the linearized
parse trees of an ambiguous text, it is not difficult to extend it in order to select the one tree

3 On a computer AMD Athlor64 X2 4200+ with clock 2.2 GHz and operating system Windows.
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Fig. 12 Parser generation time vs RE length — averaged over each RE length class.

that meets specific disambiguation criteria, such as the POSIX criterion [15] grebdy
one, e.g., [11]. We implemented both, and we briefly illustrate the POSIX case.

The disambiguation algorithm we used is essentially the one described by Okui and
Suzuki [20], within their parser generator. In particular, they present a method for stepwise
comparing the linearized syntax trees while they are constructed, and for choosing the tree
to be returned according to POSIX. We briefly explain how we applied a similar method on
top of BSP. The method consists of two phases:

1. For an accepted string with |z | = n, the graphDAG (z) (see Def. 9) is traversed in
reverse. The nodes &fAG (z) are identified and tagged, starting from the final nodes in
the slicep,,+1 and following backwards the paths according to the conditions defined by
Eqg. (15). The DAG obtained by discarding the untagged nodes, i.e., the clean DAG (see
Sect. 3.8), is used in the next phase.

2. The DAG is visited in the opposite direction, by touching the slices fpano pp41
following the arrows depicted in Fig. 8 (middle). For every slice, a bounded amount of
information is locally used to choose the node having POSIX priority; this allows the
method to identify the LST of the prior tree with a time complexity linearin

The BSP parser that performs POSIX disambiguation is necessarily slower, because it pays
the extra cost of computing the prior LST. It may be interesting to compare the speed of
about43 [charg/[mg without disambiguation, which — as said — is essentially independent

of the RE length, against the speed with POSIX disambiguation, plotted in Fig. 13. For large
REs the POSIX parser runs on average at aboWt of the BSP speed.
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Fig. 13 Parse speed with POSIX disambiguation vs RE length — teXt ef1] MB.

Comparison with an existing libraryfo provide a rough comparison with the performance
of the existing software that supports RE parsing, we mention that the speed of BSP com-
pares favorably with that of the popular program library2R&s shown in Fig. 14.

5 Related work

The study of ambiguous REs started very early — the original proof of the decidability of
ambiguity is in [6] — but developments of practical parser generators for ambiguous REs
came much later and many new algorithms have been proposed in recent years. We are
going to discuss some of them, which are closer to ours.

For clarity, we recall the distinction between the algorithms for rR&chingand RE
parsing which respectively mean just a recognizer of the input string or a recognizer that
also outputs one (or more) syntax tree(s). Within the class of RE parsers, the algorithms
differ with respect to the coverage of the syntax trees they prodota:versuspartial.

The algorithms that perform a partial coverage also differ from one another and produce an

4 Since RE outputs one tree and is coded in-G-, to offset the difference due to the programming
language we implemented a version of BSP that uses POSIX disambiguation for selecting one tree and
is coded in G-+ as well; some experimental results are availabléntatps: // gi t hub. com FLC-
pr oj ect/ BSP. A systematic experimental comparison between existing RE parsing algorithms would be
interesting, but it requires more research and presents practical difficulties. Only a few published algorithms
come with well-engineered and available programs, and such programs may be coded in different languages.
Moreover, the parsing process may return incomparable information on the syntax trees. Lastly, such a re-
search has to face the problem of choosing an unbiased collection of REs as a benchmark.
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Fig. 14 Performance comparison of BSP with the Rbrary — texts of[0 — 1] MB.

arbitrary or randomly chosen syntax tree, or the one tree that meets a precise criterion for
disambiguation, chiefly the POSIX and the greedy criteria, already mentioned.

The well-known classic RE matching methods, namely McNaughton-Yamada, Gluskhov,
Brzozowski, Antimirov and Thompson, translate an RE into a finite automaton. They have
been later improved in many ways; in particular, the Berry-Sethi positional method, which
we use as a baseline, stems from the McNaughton-Yamada and Brzozowski derivative ap-
proaches. Since the classic methods and their successors have been thoroughly analyzed and
compared in the literature — see, e.g., [2,13,24] where a large bibliography is included — we
do not discuss them, and we start by motivating our choice of Berry-Sethi as the base of our
development.

Our BSP parser, like most but not all the others, uses an FA to recognize the input string,
and additionally computes and outputs the syntax trees. This task is easier and faster if the
internal states traversed by the FA have a direct relation to the RE syntactic structure, i.e.,
to its abstract syntax tree. For this goal, the so-cgbesitional methods score better than
the others, because each state of the FA is keyed to a set of RE positions, which correspond
to positions in the RE abstract syntax tree. Moreover, such a correspondence determines at
parsing time a relation between the FA states visited and the slices of the syntax tree(s) being
constructed. An inspiring example of performing parsing on top of a positional recognizer
occurs in the POSIX parser [20], which uses the McNaughton-Yamada method. We choose
instead the Berry-Sethi method because it directly produces a DFA that is typically quite
close to the minimal one; furthermore, the generation algorithm and the DFA produced have
a simple formalization, if one follows the approach [4] based on local languages.

The vast literature on RE matching and parsing can be roughly categorized into:

i computational theoretic studies on the space and time needed for matching and parsing



ii parsing algorithms with different coverage of syntax trees (total vs partial)

iii RE software libraries

Since our focus is on practical and provably correct algorithms, for brevity we only discuss
category i{), with one exception in category){i.e., [5], but we recall that we have experi-
mentally found that the BSP parsing speed compares favorably with the pop@dbRiEy.

A representative list of parsing algorithms is in Tab. 3, where each one is accompanied by a

Table 3 A representative chronological list of algorithms for parsing ambiguous REs.

authors and reference

algorithm description and comments

S. Kearns [16]

Itis based on a recursive procedure, which delivers the sequence of the
states that are traversed by an NFA; then the sequence is converted into
a parse tree; it does not state the tree selection criterion.

D. Dubé and M. Feeley [10]

It finds all the parse trees that match a DFA computation; it uses the
sequence of DFA states to find a path in an NFA graph, then it emits the
parse tree as transduction; it does not state the tree selection criterion.

V. Laurikari [17]

It relies on an NFA, which performs a quasi-POSIX matching in linear-
time; it hints at a method to transform such an NFA into a DFA.

A. Frisch and L. Cardelli [11]

It gives a rigorous definition of thgreedycriterion; it makes a first
backward pass, by using an NFA and saving the list of traversed states;
then it makes a forward pass, in which it builds the prior tree.

S. Okui and T. Suzuki [20]

It is based on an NFA and performs a POSIX matching; its efficient
linear-time construction of the parse tree has inspired our BSP.

It is linear-time and produces a compact representation of the parse

L. Nielsen and F. Henglein [19] tree; it is a variant ofreedymatching; it is superseded by Grathwohl

paper [12].

S. Haberet al. [14]

It performs agreedymatching in a way similar to théava.regedibrary.
It scans the strings backwards and then it processes in linear-time the
state list obtained.

N. Grathwohlet al. [12]

It performs a two-pasgreedyparsing, based on an NFA simulation.

N. Schwarz, A. Karper,
and O. Nierstrasz [21]

It performs agreedymatching in linear-time, based on an FA with
memorization; it combines parser generation and parsing phases.

M. Sulzmannret al. [22, 23]

These two algorithms, based on Brzozowski derivatives, the first setting
the ground for the second, generate a DFA delivering the POSIX tree
in linear-time. A development for checking RE ambiguity is in [23].

P. Bille and I. Li Ggrtz [5]

This theoretical study, not based on automata theory, strives to mini-
mize the asymptotic time and space complexities; it retaometree
that achieves to minimize time and space.

short description, to which we add a few comments.

For the non-positional methods used for POSIX parsing, we mention the utilization of a
Thompson recognizer in the parser [10]. A drawback of Thompson method is that the rec-
ognizer is non-deterministic and performs many spontaneous moves. Truly, the Thompson
construction went through several optimization stages — see [13] for an account — which re-
duce the number of spontaneous transitions, therefore it may be promising for parser genera-



tion. Yet, to our knowledge, such upgrades have not been considered for ambiguous parsing
until now.

Actually, the proposed or existing parsers also differ with respect to the output they
produce, i.e., the syntax trees, and to whether the tree construction is carried out on-line or
in a subsequent pass after string recognition. In contrast to the BSP parser, most existing
parsers known to us produce only one syntax tree, which is either casual or the prior one
according to the POSIX / greedy criterion. An example of the former case is the work by P.
Bille and I. Li Gartz [5], which focuses on the analysis of time and space complexity. One of
the Sulzmann parsers [23] is able to enumerate the syntax trees of the input string. The list
in Tab. 3 includes a majority of cases where the methods used for performing recognition,
and especially for computing and selecting the trees, are not completely formalized.

To our knowledge, none of the existing parsers includes all the key features of our
method, namely: the construction of a deterministic finite-state transducer able to output on-
line a compact representation of all the syntax trees; the ability to hanolidematicREs;
the controlled exclusion of the irrelevant trees that arise in the infinitely ambiguous strings;
the correctness proof of the parser; the compact representation of all the relevant syntax
trees as a DAG; the predisposition of the parser to perform disambiguation by the POSIX
or greedycriterion; the possibility of checking, directly on the transducer graph, whether a
string or an RE is ambiguous; and the support by a software tool, validated experimentally.

6 Conclusion

We hope that the algorithm we have proposed and the supporting software tools and bench-
mark will be useful, not only for RE-based search applications, but also for other RE ap-
plications that may require adjustment or specialization. Examples of such applications are:
malware detection [1], and parsing féxtendedBNF grammars, i.e., for context-free gram-
mars that use REs in their production rules. BSP could be possibly used as a component for
such applications since its tailoring to new requirements should require less effort than other
parsers would need, thanks to the simple formal structure of our parser generator.

Further developments of BSP may be considered in the future. In our time complexity
analysis, we have considered the non-uniform membership problem, that is, we have not
counted the RE size. Yet in some application scenarios an RE is used just for one or a few
texts. In such cases, it would be interesting to minimize the complexity of the uniform mem-
bership problem by developing a parser similar to BSP, but based on a non-deterministic po-
sition automaton. Another direction is to extend the RE metalanguage, for instance to accept
REs that include counting operators.

More experimental work is also planned to compare the performance of BSP and other
parsers, as well as RE program libraries.

Acknowledgemento the anonymous reviewers for their valuable suggestions and refer-
ences.
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