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Abstract We introduce a new parser generator, called Berry-Sethi Parser (BSP), for am-
biguous regular expressions (RE). The generator constructs a deterministic finite-state 
trans-ducer that recognizes an input string, as the classical Berry-Sethi algorithm does, and 
ad-ditionally outputs a linear representation of all the syntax trees of the string; for 
infinitely ambiguous strings, a policy for selecting representative sets of trees is chosen. To 
construct the transducer, the RE symbols, including letters, parentheses and other 
metasymbols, are distinctly numbered, so that the corresponding language becomes locally 
testable. In this way a deterministic position automaton can be constructed, which 
recognizes and translates the input into a compact DAG representation of the syntax trees. 
The correctness of the construction is proved. The transducer operates in a linear time on 
the input. Its descriptive complexity is analyzed as a function of established RE parameters: 
the alphabetic width, the number of null string symbols and the height of the RE tree. A 
condition for checking RE ambiguity on the transducer graph is stated. Experimental 
results of running the parser gen-erator and the parser on a large RE collection are 
presented. The POSIX RE disambiguation criterion has also been applied to the parser.

1 Introduction

The popularity of regular expressions (REs) as a notation for specifying text patterns comes 
from their expressiveness and also from the availability of efficient algorithms for string 
recognition. Actually, the term “regular expression” has different meanings: the classical 
for-mal language notation introduced by S. Kleene (also known as rational expression), and 
var-ious technical notations that are supported by certain libraries, such as RE2, or are 
available within programming languages such as Perl. In this paper we exclusively refer to 
the clas-sical notation introduced by S. Kleene but, since most technical notations include 
Kleene’s REs as a core, our work may be of some value also for people interested in 
technical REs.

Most applications transform an RE into a finite automaton, deterministic (DFA) or not 
(NFA). Such an automaton simply checks that the input text is correct, i.e., it acts as a 
language recognizer. But this is insufficient for the applications that require also a syntax 
tree of the recognized text; in that case a parser, rather than a simple recognizer, is needed. 
Moreover, if the RE is ambiguous, a multiple matching of the same text is possible, each 
matching corresponding to a distinct syntax tree. In such cases, the ability to select one or a 
few syntax trees out of the many (even infinitely many) possible is sometimes placed as a 
further requirement on the parser. Our approach is to generate a representation of all
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the syntax trees for an ambiguous text, in such a way that a subsequent disambiguation,
if required, is possible; for instance, we later mention the way to incorporate the standard
POSIX disambiguation criterion into the parser. It should be obvious that such an approach
is preferable to a parser that incorporates a fixed immutable disambiguation criterion.

To illustrate, malware detection in programs is a security application where RE parsing
may be useful. In [1] a method is proposed, based on obtaining a few suspicious program
execution traces (or executable files) and modeling them as strings over a (finite) alphabet
Σ = { bk | 1 ≤ k ≤ n } of n ≥ 1 basic blocks (each blockbk also has some attributes
such as an address, parameters, etc.). Such strings are collected in a library and are scanned
for malicious basic block patternsP , which are described by REs; e.g.,P = ( b1 b

∗
i )

∗
b2

with i 6= 2. Notice that if it holdsb1 = bi for somei, the pattern itself is described ambigu-
ously. Clearly, this amounts to parse the library with the possibly ambiguous REΣ∗ P Σ∗.
Furthermore, to assess the security risk, it is important to determine the occurrence place
of the malicious pattern in the trace (or file); e.g., whether the pattern occurs in the header,
trailer, etc. This amounts to model the trace (or file) structure, i.e., to compute the syntax
tree(s) of the strings in the library. Software tools that support the description, detection and
classification of malicious RE patterns would benefit from the inclusion of an efficient RE
parser. Similar situations occur in querying semi-structured data bases, where the paths that
connect a pair of objects in the data base are specified by typically ambiguous REs.

Some methods (discussed in Sect. 5) for obtaining parsers for ambiguous REs are known,
which differ both in how they construct the pure recognizer, and in how they construct and
represent the syntax trees. Here we present a new practical parser generator, which is based
on rigorous concepts from the theory of finite automata and languages, so that its correctness
can be formally proved. We call our parser / parser-generatorBerry-Sethi Parser(BSP), as it
adds parsing capabilities to the classical recognizer – known asBS algorithm– of the same
name [3]. The latter belongs to the class ofposition automata, because its states are keyed
to the positions of the input letters within the RE.

We construct the syntax trees of input strings by the positional approach (inspired by
[20]), but now we include also the positions of themetasymbols, i.e., parentheses, null string
symbols and operators (star and concatenation). All the trees of an ambiguous input string
are compactly encoded in the parser output, which is abstractly represented by a directed
acyclic graph (DAG) to avoid the duplication of common subtrees. Additionally, the REs
that have an infinite ambiguity degree – also known asproblematic REs– raise the issue
of parsing termination, thus they need a criterion for stopping the syntax tree computation
after producing a sufficient sample of trees. Problematic REs are rarely permitted by existing
parsers, but they are safely handled by BSP.

The abstract model of our parser is adeterministic finite-state transducer: at each tran-
sition it reads an input character and outputs a finite string, which represents a finite slice
of the syntactic DAG. Therefore, the transducer operates deterministically and in real-time.
Moreover, given such a transducer, it is straightforward to check whether the RE is ambigu-
ous, by inspecting the transducer graph, a useful feature.

The state and transition complexities of the transducer and of the underlying BS recog-
nizer are identical; it is known that the size of the classic BS DFA is related to the number
of input characters (alphabetic positions) occurring in the RE. To estimate the size of the
transducer, we compute an upper bound on the size of the output function, thus obtaining a
relation to some parameters of the RE, such as the height of the syntax tree of the RE and
the number of null string symbols present in the RE.



We have implemented the BSP generator and parsing algorithm with attention to perfor-
mance. Then we have measured the parser generation time, parser size and parsing speed,
on inputs of increasing length, obtaining encouraging results for a large collection of REs.

To sum up, the main contributions of this paper are the following:

– a novel rigorous and efficient deterministic algorithm for parsing any ambiguous RE and
for returning a representation ofall the syntax trees

– a correctness proof of the algorithm and an analysis of the parser descriptive complexity

– the suitability to the applications that require a selection of the trees, since the tree repre-
sentation permits filtering by a disambiguation criterion, e.g., the POSIX standard one

– a new ambiguity test for a RE

– an open implementation of the parser, coded in Java, which has been extensively experi-
mented by using unbiased benchmarks and which compares favorably with a widespread
RE library such as RE2

The paper is organized as follows. Sect. 2 lists the basic definitions and the representations
used for REs and linearized syntax trees. It introduces the sets that characterize thelocal
regular languages, and it ends by recalling the construction of the classic Berry-Sethi rec-
ognizer. Sect. 3 presents first the BSP parser generator algorithm, intuitively and formally,
then the construction of the DAG and the linearized syntax trees. The analysis of the parser
size, the correctness proof, and the statement of the RE ambiguity condition end the section.
Sect. 4 describes our implementation, reports experimental measures, and sketches the BSP
extension that incorporates the POSIX disambiguation criterion. Sect. 5 lists and concisely
compares some existing RE parsers, and Sect. 6 concludes.

2 Basic concepts

For the basic notions needed about REs and finite automata / transducers, it suffices to list
our terminology and notation.

2.1 Regular expressions and trees

The terminal alphabetis denoted byΣ. The input alphabetis the union ofΣ with two
special marks: thestart-of-text“ ⊢ ” and theend-of-text“ ⊣ ”. The empty(or null) string is
denoted byε. For a stringx ∈ Σ∗, the length is|x | ≥ 0, the j-th character isx [j] with
1 ≤ j ≤ |x |, and|x |a is the number of occurrences of charactera ∈ Σ in the stringx.

An RE is a formula over the alphabetΣ ∪ M , whereM is the set (disjoint fromΣ)
of metasymbolsand is listed in Tab. 1. Notice that in an RE the empty string is denoted
by 1 instead ofε. As usual, union and concatenation are associative operations, and the
operator priority is in descending order: iteration, concatenation and union. We assume that
the argument of an iteration operator is always parenthesized.

Example 1 (running example)The following two RE are equivalent because of the well
known identity( e )∗ = ( e )+ | 1, wheree is any RE:

(

( a )+ | b a | a b a
)∗

b (1)



Table 1 SetM of the metasymbols that may occur in an RE.

metasymbol meaning

1 empty stringε

| union operator

· concatenation operator – optional

∗ + iteration operators – Kleene star and cross

( )
delimiters of (non-empty) subexpressions –
square brackets are also used for better readability

(

(

( a )+ | b a | a b a
)+

| 1

)

b (2)

For brevity, the parser construction algorithm will do without the star. ⊓⊔
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Fig. 1 Abstract syntax trees of an RE. Left: AST of the REe =
(

( ( a )+ | b a | a b a )+ | 1
)

b in Eq.
(2). Right: Marked AST (MAST) of the same RE – see also the marked REĕ in Eq. (3).

Thelanguage generatedby an REe with terminal alphabetΣ isL (e) ⊆ Σ∗, and each string
in languageL (e) is calledlegal. If ε ∈ L (e), both the language and the RE arenullable.

Trees of RE and of legal stringsTo prevent confusion, we callabstractthe trees representing
the syntax structure of an RE. A self-explanatoryabstract syntax tree(AST) is shown in Fig.
1 (left). We also need a richer representation, where the tree structure shows up in the tree
frontier in the form of parentheses, and all the leaf symbols are numbered, say, from left
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LST: ω1 = 1( 2( 3( a4 )3 b5 a6 )2 )1 b11 LST: ω2 = 1( 2( a7 b8 a9 )2 )1 b11

Fig. 2 Two marked syntax trees (MST) for the ambiguous stringa b a b generated by REe =
(

( ( a )+ | b a | a b a )+ | 1
)

b and their string representationsω1 andω2 as linearized syntax trees
(LST) – see Fig. 1.

to right, to make them distinct. This representation is called amarked abstract syntax tree
(MAST), and it is exemplified in Fig. 1 (right) and formalized in the Def. 1 below.

Every string in languageL (e) has at least one syntax tree. If a legal string has two or
more trees, it isambiguous, with ambiguity degreeequal to the number of trees; also the RE
e is called ambiguous. Notice that the ambiguity degree of a string is not necessarily finite.

We want to represent a syntax tree of a string in languageL (e) by means of the same
marking used in the MAST ofe, and we call it amarked syntax tree(MST). To illustrate,
consider the ambiguous stringa b a b, which is generated by the RE of Eq. (2) in two different
ways, represented in Fig. 2 by the left and right MSTs.

More explicitly, an MST of a stringx ∈ L (e) is a tree such that the internal nodes are
of the types “• ” or “ + ”. Notice that the nodes of type “| ” are unnecessary. The leaf nodes
are of the same types as the nodes in the MAST ofe. In an MST, each node of type “+ ” has
a number of child nodes equal to the number of iterations of the subexpression under “+ ”.
For instance, in Fig. 2 (left) the iteration node identified by2(+ )2 has two child nodes,
while in Fig. 2 (right) the same iteration node has one.
It is important to observe that, as an AST represents the structure of an REe, a MAST
represents the structure of a different RE, which we call amarked RE(MRE), denoted̆e.
For instance, we list the MRE having as MAST the tree in Fig. 1 (right); for clarity we use
square brackets instead of parentheses to group subexpressions:

ĕ = 1(

[

2(
[

3( [ a4 ]
+ )3 | b5 a6 | a7 b8 a9

]+
)2 | 110

]

)1b11 (3)

The set of the terminals of the MRE in Eq. (3) (different from those ofe) is denoted byΩ:

Ω =
{

a4, b5, a6, a7, b8, a9, b11
}

marked input alphabet̆Σ

∪
{

1(, )1, 2(, )2, 3(, )3, 110
}

marked metasymbols̆M



where the first set is themarked input alphabet, denoted byΣ̆, and the second set consists
of themarked metasymbols, denoted byM̆ . Two stringsω1 andω2 in L (ĕ) are:

ω1 = 1( 2( 3( a4 )3 b5 a6 )2 )1 b11 and ω2 = 1( 2( a7 b8 a9 )2 )1 b11

Looking at Fig. 2, the meaning of such strings is to linearly represent the marked syntax
trees of the strings generated by the original REe. Such strings are calledlinearized syntax
trees(LST) and will be the output of the BSP parser.

It is time to collect and formalize the relevant technical terms into a definition.

Definition 1 (marked regular expression and linearized syntax tree)Themarked regu-
lar expressionMRE ĕ associated to an REe overΣ is defined by the following procedure:

1. Apply toe the translationT J · K inductively defined as follows, wheree1 ande2 are REs,
anda ∈ Σ:

T J ( e )+ K =
(

[ T J e K ]+
)

T J ( e ) K =
(

[ T J e K ]
)

T J e1 · e2 K = T J e1 K · T J e2 K T J e1 | e2 K = T J e1 K | T J e2 K

T J a K = a T J 1 K = 1

Let T J e K be the result of step1.

2. InT J e K, assign a distinct number, e.g., in increasing left to right order, to the following
symbols: open parentheses, symbols inΣ and empty string symbols “1 ”. Assign to each
closed parenthesis the same number as the one of the matching open parenthesis (notice
that square brackets and operator symbols are not numbered).
Let Σ̆, calledmarked input alphabet, denote the set of the numbered terminals, and let
M̆ =

{

h(, )h, . . . , 1i, . . .
}

denote the set ofmarked metasymbols.

Theterminal alphabetof the MRE is the unionΩ = Σ̆ ∪ M̆ . For any symbol in the alphabet
Ω, define the letter-to-letter non-erasing homomorphismunmark: Ω → Σ ∪

{

‘ ( ’ , ‘ ) ’ , 1
}

that deletes the subscript. For a numbered terminalbh ∈ Σ̆, we say thatbh belongs to the
classidentified by the “plain” symbolb = unmark(bh).

For any symbol in the alphabetΩ, define the letter-to-letter erasing homomorphism
flatten: Ω → Σ asflatten(α) = unmark(α) if α ∈ Σ̆ and asflatten(α) = ε if α ∈ M̆ .
In other words,flattenunmarks all the subscripted terminals and deletes all the subscripted
metasymbols. For instance,flatten

(

1( 2( a7 b8 a9 )2 )1 b11
)

= a b a b.
Each string in languageL (ĕ) is called alinearized syntax tree(LST). More precisely,

we define two sets of LSTs:

for anyx ∈ L (e) LST(x) =
{

ω ∈ L (ĕ) | unmark(ω) = x
}

LST(e) =
⋃

x∈L (e)

LST(x)

Notice that if it holdsω ∈ LST(x), then stringω is the frontier of an MST of stringx and
we say thatω is thelinearized representationof such a tree.

A stringx ∈ L (e) is ambiguousif, and only if, it holds|LST(x) | > 1. ⊓⊔

The next property immediately follows from the above definitions.

Proposition 1 (parenthesis run)For any REe, any linearized syntax treeω ∈ LST(e) does
not contain more than2h consecutive parentheses, where the integerh ≥ 0 is the maximum
nesting depth of the parentheses in the REe (if h = 0, in e there are no parentheses). ⊓⊔



Examples of MREs are in Eq. (3) and in the Ex. 2 below. Notice that an MRE never uses
the metasymbol1 (empty string), though it may contain a numbered copy such as13. Fig. 2
shows two LSTs of the same string.

Infinite ambiguity If an iterated subexpression is nullable, then for one or more legal strings
the ambiguity degree is infinite. This situation is singled out as “problematic” in [11] and
is illustrated in the next example. In practice, it is useless to enumerate all the trees of such
strings, and just one tree or a few ones can be chosen (to be better explained in Sect. 3).

Example 2 (infinite ambiguity)The degree of ambiguity of every string inL (e1):

e1 = ( a | 1 )+ ĕ1 = 1( [a2 | 13 ]
+ )1 (4)

is infinite because the iterated subexpression( a | 1 ) is nullable. Consider the associated
MRE ĕ1 in Eq. (4). The setLST(a) comprises infinitely many strings, such as the following:

1( a2 )1 1 ( a2 13 )1 1( 13 a2 )1 1( 13 a2 13 )1 1( a2 13 13 )1 . . . (5)

Each such string represents a different syntax tree. In practice, it is hard to imagine any
reason for the parser to return all such insignificantly different trees, and the simplest ones
suffice, e.g., the first four, which do not contain two adjacent13 symbols. ⊓⊔

Local languagesThe well known family oflocal languages, strictly included within the
regular language family, is characterized by a very simple type of finite automaton, which
serves as baseline for the Berry-Sethi construction.

For any charactersa, b ∈ Σ, any stringsx, y ∈ Σ∗ and any languageL ⊆ Σ∗, we define
the sets ofinitials Ini ⊆ Σ, finals Fin⊆ Σ, digrams Dig⊆ Σ2 andfollowers Fol⊆ Σ:

Ini (L) = { a | ax ∈ L } Fin (L) = { b | x b ∈ L }

Dig (L) = { a b | xa b y ∈ L } Fol (L, a) = { b | a b ∈ Dig (L) }

If L = L (e), we write Ini (e) for Ini
(

L (e)
)

and similarly for the other sets. We omit the
well known (e.g., in [9]) simple algorithms for computing such sets.

The above sets characterize the family oflocal languages [4,18], also known as2-strictly
locally testable or sliding-window recognizable languages.

Definition 2 (local language)A languageL ⊆ Σ∗ is local if there exist finite setsIni, Fin
andDig such that:

∀x 6= ε x ∈ L ⇐⇒
(

x ∈ Ini (L)Σ∗ ∧ x ∈ Σ∗ Fin (L) ∧ Dig ({x }) ⊆ Dig (L)
)

(6)

Notice that an equivalent definition is possible using the follower set instead of the digrams.
The DFA recognizing the local language defined by Eq. (6) is straightforward: given a

string, it checks that the initial letter is in the setIni, the final one is inFin, and that, if any
two lettersa, b are read in a row, the digrama b ∈ Dig. Such a recognizer is called alocal
automaton.

The following well-known sufficient condition is later needed.

Proposition 2 (RE and local language)If every symbol of alphabetΣ occurs at most once
in an REe, then the languageL (e) is local. ⊓⊔



2.2 Classical Berry-Sethi recognizer

It is well-known (e.g., see [24]) that the BS method [3] for constructing a DFA that recog-
nizes languageL (e) is related to the so-called position automaton methods, in the first place
those of McNaughton-Yamada and Glushkov. The idea of BS is to transform a given REe by
distinctly numbering each letter occurring in it, thus obtaining a new RE denoted byē, such
that by Prop. 2 a local DFA accepts languageL (ē) ⊆ Σ̆∗, whereΣ̆ is the marked alphabet
of Def. 1. Then, by erasing the numbers from the arc labels of the DFA, a recognizer for the
original languageL (e) is obtained, which can be directly constructed to be deterministic
by means of the subset construction. The original construction and correctness proof in [3]
are based on the Brzozowski derivatives, but we prefer to follow the simpler approach in [4]
(also in [9]), which relies on local languages.

Definition 3 (BS DFA) Let e be an RE overΣ ∪ M . Theinput markedRE ē overΣ̆ ∪ M

is obtained frome by marking each symbol inΣ with a distinct integer (notice that the
metasymbols are not marked). The initial and digram sets of languageL (ē ⊣) are resp.
denotedIni (ē ⊣) andDig (ē ⊣). Define the DFAABS=

(

Σ, QBS, q0, δBS, F
)

, where:

– Each stateq ∈ QBS is uniquely identified by a non-empty set, called thecontentsof q and
denoted byI (q) ⊆ Σ̆ ∪ {⊣ }, i.e., a set comprising marked symbols and possibly also
the end-of-text.

– The stateq0 is such thatI (q0) = Ini (ē ⊣). Each final stateq ∈ F is such that⊣ ∈ I (q).

– For every stateq ∈ QBS and charactera ∈ Σ, let:

Ia (q) =
{

ah ∈ Σ̆ | ah ∈ I (q) ∧ unmark(ah) = a
}

– The function or graphδBS: QBS×Σ → QBS is defined as follows:

δBS(q, a) = q′ ⇐⇒

{

∃ ah ∈ Ia (q) ∧

I (q′) =
{

bk ∈ Σ̆ ∪ {⊣ } | ah bk ∈ Dig (ē ⊣)
}

Example 3 (Ex. 1 continued)The input marked RE (choosing for comparability the same
numbering as in Fig. 1) is:

Σ̆ = { a4, b5, a6, a7, b8, a9, b11 }

ē ⊣ =
(

( a4 )
+ | b5 a6 | a7 b8 a9

)∗
b11 ⊣

(7)

The initial set ofL (ē ⊣) is Ini (ē ⊣) = { a4, b5, a7, b11 } and the digram set is:

Dig (ē ⊣) =

{

a4a4, a4b5, a4a7, a4b11, b5a6, a7b8,

b8a9, a9a4, a9b5, a9a7, a9b11, b11 ⊣

}

The BS recognizer is shown in Fig. 3.

3 BS Parser

We extend the BS method to generate, instead of a recognizer, a parser calledBerry-Sethi
parser (BSP) that returns the linearized syntax trees of the input string. The parser is a
deterministic finite-state transducer(DFT), which has the BS recognizer as underlying DFA.

First, we introduce the main ideas informally and by means of examples, then we list
the generation algorithm of the parser and we analyze the parser size. We finish with the
algorithm that computes the linearized syntax trees and its correctness proof.
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Fig. 3 The BS recognizerABS for the input marked RĒe =
(

( a4 )+ | b5 a6 | a7 b8 a9
)∗

b11 of Ex. 3.

3.1 Intuitive presentation

Recognizer of linearized syntax treesThe first conceptual step builds the recognizer of the
set of linearized syntax treesLST(ĕ ⊣) ⊆

(

Σ̆ ∪ M̆
)∗

{⊣ }, see Def. 1. Since all the terminal
symbols occurring in̆e ⊣ are distinct by definition, by Prop. 2 the languageLST(ĕ ⊣) is local
and its local automaton is obvious.

We start from non-infinitely ambiguous REs, by considering the REe of Eq. (2) and the
associated MRĔe in Fig. 4 (top). The top graph of Fig. 4 shows the recognizer ofLST(ĕ ⊣),
with nodes drawn differently: the initial state and the states entered by labeled input symbols
are thicker, while the nodes entered by metasymbols are thin. The bottom of Fig. 4 shows a
language-equivalent finite-state machine, the arcs of which are labeled by a finite language.
We call such a machine “state-trimmed”, because all the thin nodes have been eliminated. It
is important to notice that, for all the arcs, every string in the labelling finite language has a
fixed format: it starts with zero or more metasymbols and ends with an input symbol, e.g.,
the string “1( 2( b5 ” on the arc0 → 5. Such strings are called (LST) segments, and the input
symbol at their end is calledend symbol.

We show how the trimmed graph in Fig. 4 reflects the fact that the RE has a non-infinite
ambiguity degree. In the top graph, every path between thick nodes that passes only through
thin nodes is acyclic, e.g., the path from0 to 5. Therefore, in the trimmed graph, the label
of arc0 → 5, obtained by collapsing finitely many paths from0 to 5, is a finite language.

LST recognizer of an infinitely ambiguous REWhen the ambiguity degree is unbounded,
the arc labels in the state-trimmed graph may become infinite languages. For the REe1 and
MRE ĕ1 in Eq. (4) (see Ex. 2), the recognizer ofL (ĕ1 ⊣) is shown in Fig. 5 (top left).
Now, some paths from thick node to thick node, traversing only thin nodes, are cyclic, e.g.,

path0 1(
−→ 1

13−→ 3
13−→ 3 . . . 3

a2−−→ 2. In such cases, when the thin nodes traversed are
eliminated, to preserve equivalence, the new arc in the state-trimmed graph must have an
infinite language for label. Thus, the arc0 → 2 of the trimmed graph in Fig. 5 (top right)
is labeled by language “1( a2 | 1( 13 [ 13 ]

∗ a2 ”. Similarly, the other arcs are labeled by
infinite languages. We observe that all the LSTs of stringa2 ⊣ (enumerated by Eq. (5) in Ex.
2) are included in the label of the recognizing path0 → 2 → 5. It is important to observe
that, by Prop. 1, every cyclic path in the local recognizer of the LSTs inL (ĕ) contains at
least one numbered letter or one numbered symbol1; otherwise a string sufficiently long to
violate Prop. 1 could be obtained by iterating the cycle.
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Fig. 4 Top graph: the local recognizer of LSTs for the running example Ex. 1. Bottom “state-trimmed” graph:
the nodes are exactly the thick ones of the top graph.

Since we want to limit the number of LSTs returned for each string of infinite ambi-
guity degree, we have to choose a criterion for discarding an infinite number of LSTs. The
following criterion is reasonable and easy to implement, but any other would fit into the
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Fig. 5 Top left: the (local) recognizer of the LSTs for the infinitely ambiguous (i.e., problematic) RE
e1 = ( a | 1 )+ of Ex. 2. Top right: the equivalent state-trimmed machine. Bottom: the same state-trimmed
machine restricted to a finite ambiguity degree.

BSP parser, provided it bounds the number of LSTs. We state the criterion as a rule for
transforming the local LST recognizer into a state-trimmed finitely ambiguous recognizer.

How to bound ambiguityFor each pair of thick nodesp andq (possibly coincident) in the
local recognizer ofL (ĕ ⊣), take every path that connectsp to q without traversing another
thick node, and that does not traverse twice an arc labeled by the same empty string symbol,
say by13. The labels of the taken paths are calledacyclic segments(AS) of an LST. To
construct the state-trimmed ambiguity bounding machine, shown in Fig. 5 (bottom), we
collapse such paths into an arc and we label it with the union of the ASs of the paths.



To illustrate, the label of the path2
13−→ 3

13−→ 3
)1
−→ 4

⊣
−→ 5 of Fig. 5 (top left) is not

an AS according to the ambiguity bounding criterion, therefore it is not attached to the arc
from 2 to 5 of the state-trimmed graph at the bottom of the same figure.

From recognizer to parserFrom the machine that recognizes the LSTs, we move ahead
towards the construction of the parser that recognizes the input strings and computes their
LSTs. The parser is a deterministic finite-state transducer, which extends the classicABS

recognizer with an output function denoted byρ. At each transition, the functionρ emits a
piece of information essentially consisting of metasymbols, which represents a part of one
or more LSTs. For convenience, the input string is marked on the left by the start-of-text
symbol⊢. The initial state of the parser is calledstart. The initial transition from statestart
reads the start-of-text and emits the first piece of LSTs. Upon termination, the concatenation
of all such pieces encodes all the LSTs of the given input string.

We recall that a transition
(

q
a
−→ q′

)

∈ δBS is associated to a set of digramsb c ∈

Dig (ē ⊣), i.e., the digrams of the input marked RĒe. More precisely, the marked input
symbolsb andc are in the setsIa (q) andI (q′), respectively (see Sect. 2.2). When taking the
transitionq a

−→ q′, the transducer emits an output consisting of a generalization of the digram
b c, namely a set of segments of a linearized syntax tree; more precisely, the valueρ (q, a)
of the output function includes all the marked metasymbol strings that may be enclosed
betweenb andc in any LST. To illustrate, for the running example of REĕ in Fig. 4 and
the digrama4 a4 in the input string, the output functionρ includes, among others, the two
marked metasymbol stringsε and “)3 3( ”. We represent each such string within a3-tuple,
which has the digram symbols as first and third component, as follows:

digram metasymbolic string representation as a3-tuple

a4 a4 ε 〈a4, ε, a4 〉

a4 a4 )3 3( 〈a4, )3 3( , a4 〉

In the top graph of Fig. 4, the stringsε and “ )3 3( ” respectively correspond to the arc8 a4−−→ 8
and to the path:

8
)3
−→ 12

3(
−→ 4

a4−−→ 8

The preceding ideas are presented precisely in the following section.

3.2 The BSP algorithm

As the BSP algorithm is based on the entities intuitively presented above, we list more
precisely their definitions. Letx ∈ L (e ⊣), with x = a1 . . . an ⊣ (for n ≥ 1) or x =⊣, and
let ω ∈ LST(x), thereforeω ∈

(

Σ̆ ∪ M̆
)∗

{⊣ } and, by Def. 1, it isx = flatten(ω).

Definition 4 (factorization) The factorization into segmentsof a stringω ∈ LST(x) ⊣ is:

ω = ζ1 · . . . · ζj · . . . · ζn · ζn+1 with n ≥ 0, where: (8)

ζj = µj aj µj , aj ∈ M̆∗, Σ̆ for 1 ≤ j ≤ n (9)

ζn+1 = µn+1 ⊣ µn+1 ∈ M̆∗ (10)

Each termζk, with 1 ≤ k ≤ n+ 1, is called asegment. Each termµj is a (possibly empty)
string of marked metasymbols. The symbolsaj (marked input letter) and⊣ are called the
end symbolsof the segmentsζj andζn+1, respectively. ⊓⊔



For every linearized syntax treeω ∈ LST(x) ⊣, the factorization into segments is clearly
unique. Later, we sometimes omit the end-of-text⊣ from the last segment.

To illustrate, we list the factorization into segments of two stringsω1, ω2 ∈ LST(a a a),
wherea a a ∈ L (e1) ande1 = ( a | 1 )+ (see Ex. 2). The MRE is̆e1 = 1( [ a2 | 13 ]

+ )1:

ζ1 · ζ2 · ζ3 · ζ4 = 1( 13
µ1

a2 · ε

µ2

a2 · 13
µ3

a2 · 13 )1
µ4

ζ1 · ζ2 · ζ3 · ζ4 = 1( 13
µ1

a2 · ε

µ2

a2 · 13 13
µ3

a2 · 13 )1
µ4

Actually, the setLST(a a a) contains infinitely many other strings that differ only in the
number of occurrences of the marked empty string symbol13. We believe that listing such
cases would be wasteful and in the next definition we formalize an idea for binding the
ambiguity exposed by the parser. Let all the symbols be defined as in Def. 4.

Definition 5 (acyclic segment – AS)A segmentζ = µ ah or ζ = µ ⊣ is acyclic, shortened
as AS, if and only if|µ |1j ≤ 1 for all j, i.e., all the metasymbols of type1 that occur inµ
(if any) have distinct marks. Theacyclic marked languageLacyclic(e) defined by REe is:

Lacyclic(e) =
{

ω ∈ L (ĕ) | ω = ζ1 . . . ζj . . . ζn and every segmentζj is acyclic
}

Theset AS(e) of the acyclic segmentsof RE e is:

AS(e) =
{

ζj | ζ1 . . . ζj . . . ζn ∈ Lacyclic(e)
}

The set of theacyclic linearized syntax treesof a stringx ∈ L (e) is:

LSTacyclic(x) = LST(x) ∩ Lacyclic(e)

As a consequence of Prop. 1, the setAS (e) is always finite. Therefore, it is possible for the
parser to compute online the acyclic LSTs.

Notice that languageLacyclic(e) is obtained from the languageL (ĕ) ≡ LST(e) of Def. 1
by deleting all the strings that contain two or more instances of the same marked metasymbol
1 without a marked input symbol̆Σ in between. This does not exclude that two identically
subscripted parentheses may occur in an acyclic segment.

Our approach to construct the parser, similarly to the BS recognizer, relies on the sets of
initials and followers, the elements of which are the acyclic segments instead of the marked
alphabet symbols. In the next definition all the symbols are as in Def. 4 and 5.

Definition 6 (initial / follower segment) Theset of initial acyclic segmentsand theset of
the acyclic segments that followah are:

IniAS (e ⊣) =
{

ζ1 | ζ1 . . . ζn+1 ∈ Lacyclic(e ⊣)
}

with n ≥ 0

FolAS(e ⊣, ah) =
{

ζj+1 | ζ1 . . . ζj ζj+1 . . . ζn+1 ∈ Lacyclic(e ⊣) and ζj = µj ah
}

We say thatζj+1 is a follower of ah and thatFolAS(e ⊣, ah) is thefollower setof ah.

Clearly, the setIniAS(e ⊣) and all the setsFolAS(e ⊣, ah) of acyclic segments are finite and
computable.

For the RE of the running example, the setIniAS and all the setsFolAS are listed in Tab.
2. Such sets and their contents are orderly listed by scanning the MRE from left to right. By
erasing the metasymbols̆M in Tab. 2, the initial and follower symbols (or equivalently the
digrams) coincide with those of the classical BS method for the same REe; see Sect. 2.2.



Table 2 The set ofinitial AS and all the sets offollower AS for the MRE of the running example.
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marked
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3.3 Parser Generation

We put together the preceding intuitions and definitions into Alg. 1, which constructs the
BSP parser as a deterministic finite-state transducer (DFT). It is convenient, though slightly
redundant, to formalize the transducer before its construction; a formal definition is also
necessary for proving the correctness of the BSP parser. We define the transducer by ex-
tending the BS recognizer with a new initial state and adding the output function; as before,
each state is identified by its contents.

Definition 7 (finite-state transducer)Let e be an RE over alphabetΣ, let ĕ be the corre-
sponding MRE, and letABS=

(

Σ, QBS, q0, δBS, F
)

be the DFA of Def. 3. The transducer
A is the7-tupleA =

(

Σ ∪ { ⊢ } , Q, start, δ, ρ, F, O
)

, where:

– Q = QBS ∪ { start }, wherestart is the initial state and itscontentsareI (start) = { ⊢}

– the set of final states isF as inABS

– the state-transition graph isδ = δBS ∪
{

start
⊢
−→ q0

}

, whereq0 is the initial state ofABS

– the output alphabet isO = ℘
(

(

Σ̆ ∪ { ⊢ }
)

× M̆∗ ×
(

Σ̆ ∪ {⊣ }
)

)

– theoutput functionρ : Q×
(

Σ ∪ { ⊢ }
)

→ O is defined as follows:

ρ (start, ⊢) =
{

〈 ⊢, µ, c 〉 | c ∈ Σ ∧ µ c ∈ IniAS(e ⊣)
}

∀ q, q′ ∈ QBS ∀ a ∈ Σ such that
(

q
a
−→ q′

)

∈ δBS

ρ (q, a) =
{

〈 b, µ, c 〉 | b ∈ Ia (q) ∧ µ c ∈ FolAS(e ⊣, b)
}

We recall that symbol a is an input letter (unmarked), and that symbols b and c are marked; 
in particular, it holds b ∈ Σ̆ and c ∈ Σ̆ ∪ { ⊣ }. Moreover, symbol b is of class a, i.e., a = 
unmark (b). ⊓



Algorithm 1: Construction of the Berry-Sethi Parser (BSP).

Input: the setsIniAS andFolAS of an REe
Output: the transducerA =

(

Σ ∪ { ⊢ } , Q, start, δ, ρ, F, O
)

I (start) :=
{

⊢
}

// create initial state start

Q :=
{

start
}

// initialize state set Q

tag statestart // process initial state start

I (q0) :=
{

c | µ c ∈ IniAS ( e ⊣ )
}

// create new state q0

untag stateq0 // new state q0 is still unprocessed

TS:=
{

〈 ⊢, µ, c 〉 | µ c ∈ IniAS ( e ⊣ )
}

// assign set TS of output 3-tuples

Q := Q ∪
{

q0
}

// update state set Q

δ :=
{

start
⊢
−→ q0

}

// initialize transition function δ

ρ :=
{

start
TS
−→ q0

}

// initialize output function ρ

while ∃ stateq ∈ Q that is untaggeddo // create and process other states

tag stateq // process state q

foreach input symbola ∈ Σ do // scan each input symbol a

I (q′) := ∅ // create new state q′ (initially empty)

untag stateq′ // new state q′ is still unprocessed

TS:= ∅ // initialize 3-tuple set TS

foreach b ∈ Ia (q) do // scan each marked b ∈ Σ̆ of class a in q

I (q′) := I (q′) ∪
{

c | µ c ∈ FolAS ( e ⊣, b )
}

// update state q

TS:= TS∪
{

〈 b, µ, c 〉 | µ c ∈ FolAS ( e ⊣, b )
}

// update set TS

if I (q′) 6= ∅ then // if new state q′ is not empty, then

if q′ 6∈ Q then // if q′ is not in the state set Q, then

Q := Q ∪
{

q′
}

// update state set Q

δ := δ ∪
{

q
a
−→ q′

}

// update transition function δ

ρ := ρ ∪
{

q
TS
−→ q′

}

// update output function ρ

F :=
{

q ∈ Q | ⊣ ∈ I (q)
}

// create the set F of final states

Notice that the value of the output functionρ is a finite set of3-tuples included in the domain
O. As customary, in the examples we represent the state-transition function and the output
function as arc labels.

Explanation of Alg. 1In the first steps, the algorithm creates the initial statestart, the state

q0 of the DFAABS, and the arcstart ⊢
−→ q0 with the outputρ defined by the initial segments

IniAS(e). Then, thewhile loop examines each stateq ∈ Q in turn and tags it to avoid
reexamining. For the current stateq, the outermostfor loop creates a new stateq′ as the
target of an arcq a

−→ q′ with inputa ∈ Σ; the innermostfor loop examines the contents of
stateq and for each marked symbolb of classa therein, it inserts into the setI (q′) all the
end symbolsc of the acyclic segmentsFolAS(e ⊣, b). The value of the output functionρ for
the arcq a

−→ q′ is built by using the metasymbolic partµ of the same acyclic segments. At
last, the algorithm identifies the final states, which contain the end-of-text⊣.



Example 4 (transducer construction)The result of the application of Alg. 1 to REe, given
the setsIniAS andFolAS in Tab. 2, is shown in Fig. 6. By construction, every state of trans-
ducerA is accessible from the initial state and is connected to a final state.

We compare the transducerA in Fig. 6 and the DFAABS in Fig. 3. If we disregard the
output functionρ and the initial statestart, the state-transition graphs ofA andABS are
identical. Moreover, for each pair of corresponding states inA andABS, the state contents
I (·) are identical sets.

Thus the following relation holds between the languages recognized:L (A) =⊢ L (ABS).
This proves that Alg. 1 is correct with respect to the language recognition property, and it
remains to be proved (in Sect. 3.6) that the output of transducerA is correct.

In fact, the novelty of Alg. 1 is the output function that encodes all the LSTs of the
input, and we illustrate with the computation ofρ (⊢ b). For completeness, we list all the
3-tuples in the output, including some that are useless for the construction of the LSTs (to
be explained in Sect. 3.5):

ρ (⊢ b) =























〈

⊢, 1 ( 2 ( 3 ( , a4
〉

〈

⊢, 1 ( 2 ( , b5
〉

〈

⊢, 1 ( 2 ( , a7
〉

〈

⊢, 1 ( 110 ) 1, b11
〉























·











〈 b5, ε, a6 〉

〈 b11, ε, ⊣ 〉











In Sect. 3.5 we explain how such an output represents the LSTs of the input string. In
fact, stringb has just the LST encoded by

〈

⊢, 1 ( 110 ) 1, b11
〉

· 〈 b11, ε, ⊣ 〉, namely:
“ 1 ( 110 ) 1 b11 ”. More examples are in Fig. 8.

The next example illustrates the case of an infinitely ambiguous RE.

Example 5 (infinitely ambiguous case)For the RE of Ex. 2 reproduced below:

e1 = ( a | 1 )+ ĕ1 = 1( [ a2 | 13 ]
+ )1

with the local recognizer seen in Fig. 5 (top left) we list the initial and follower sets needed
by Alg. 1:

IniAS(e1 ⊣) =
{

1( a2, 1( 13 a2, 1( 13 )1 ⊣
}

FolAS(e1 ⊣, a2) =
{

a2, 13 a2, )1 ⊣, 13 )1 ⊣
}

The graph of the transducer is shown in Fig. 7. We list the output emitted for two input
strings, namelyε anda, and for brevity we show only the3-tuples that occur in some LST:

input output

⊢ ε { 〈 ⊢, 1( 13 )1, ⊣ 〉 }

⊢ a







〈 ⊢, 1(, a2 〉

〈 ⊢, 1( 13, a2 〉







·







〈 a2, )1, ⊣ 〉

〈a2, 13 )1, ⊣ 〉







The syntax trees of stringsε anda are depicted in Fig. 9 in Sect. 3.5.
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〈

a6, 3 ( , a4
〉
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〈
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〉

Fig. 6 The graph of transducerA constructed by Alg. 1 for the REe of Eq. (3). The setsIniASandFolASused
by the algorithm are taken from Tab. 2. Each arc carries an input symbol and the output produced, which is a
set of3-tuples, omitting for brevity the brackets “{ ” and “ } ”.
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ρ (q0, a) =




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


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
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Fig. 7 The graph of transducerA constructed by Alg. 1 for the REe1 = ( a | 1 )+ of Ex. 5.

3.4 Transducer size

To analyze the size or descriptive complexity of the transducerA constructed by Alg. 1, we
first define some complexity measures for REs. Lete, ē andĕ be an RE over alphabetΣ, the
input marked RE and the marked RE, respectively.



Definition 8 (complexity measures ofRE) Thealphabetic sizeof e is the cardinality of the
marked input alphabet̆Σ. Theε-sizeof e, denoted bynε, is the number of marked symbols
1 in ĕ (nε ≥ 0). The maximum nesting depth of the operator “+ ” in e is denoted ash
(h ≥ 1). ⊓⊔

It is straightforward to figure out how the number of states and transitions of transducerA

depend on the above complexity measures. From Def. 7, the graph ofA has the same nodes

and arcs as the DFAABS has, plus the statestart and the arcstart ⊢
−→ q0. In the worst case,

the size ofABS is:

|QBS| = 2| Σ̆ |+1

| δBS| = |Σ | × |QBS| = |Σ | × 2| Σ̆ |+1
where term+1 is for ⊣

Thus the worst-case size of transducerA in terms of nodes and arcs is:

|Q | = |QBS|+ 1 = 2| Σ̆ |+1 + 1 ∈ O
(

2| Σ̆ |
)

| δ | = | δBS|+ 1 = |Σ | × 2| Σ̆ |+1 + 1 ∈ O
(

|Σ | × 2| Σ̆ |
)

=

if |Σ | constant

O
(

2| Σ̆ |)
(11)

where| δ | reduces toO
(

2| Σ̆ |
)

if we consider the alphabet size|Σ | as a constant.
Every arc of transducerA supports the output functionρ. It takes some effort to figure

out how the size ofρ depends on the measures of REe. For every arc
(

q
a
−→ q′

)

∈ δ, the
value ofρ (q, a) is a set of3-tuples〈 b, µ, c 〉, whereb c is a digram of⊢ ē ⊣, i.e., the input
marked RE encompassed by the start and end marks. Therefore, it holdsb ∈ Σ̆ ∪ { ⊢ } and
c ∈ Σ̆ ∪ {⊣ }. By construction we have:b ∈ I (q), c ∈ I (q′), µ c ∈ FolAS(⊢ e ⊣, b) and
FolAS(⊢ e ⊣, ⊢) = IniAS(e). We want to count how many3-tuples may label an arc ofA.

For any digramb c ∈ Dig (⊢ ē ⊣), let C (b, c) be the number of substrings of type
b ζ, whereζ = µ c is an acyclic segment (Def. 5) of some stringω ∈ L (ĕ ⊣) that does
not include any two copies of a marked symbol1j without any input letter in between. We
denote asC′ (b, c) andC′′ (b, c) the numbers of the segmentsζ that do not include any
symbol of type1j and that include one or more symbols of type1j, respectively. Clearly, it
holdsC (b, c) = C′ (b, c) + C′′ (b, c).

In the worst case we haveC′ (b, c) = h, whereh is the nesting depth of the operator
“ + ” in the REe, because a minimum of one and a maximum ofh such operators may be
applied to generateb ζ = b µ c. For instance, the following REe2 and MREĕ2 have nesting
depthh = 3 and the valueC listed below:

e2 =
(

(

( a )+
)+

)+
ĕ2 = 1(

[

2(
[

3( [a4 ]
+ )3

]+
)2

]+

)1

C(a4, a4) = C′(a4, a4) =
∣

∣

{

〈a4, ε, a4〉 , 〈a4, )3 3(, a4〉 , 〈a4, )3 )2 2( 3(, a4〉
} ∣

∣ = 3

Concerning the termC′′(b, c), still in the worst case, we have the following (withnε ≥ 1):

C′′ (b, c) =

nε
∑

i=1

hi ×Dnε,i =

nε
∑

i=1

hi × nε × (nε − 1) × . . . × (nε − i+ 1) (12)

where the termDnε, i is the number ofordered selections without repetitionsof nε ≥ 1
marked symbols1 in groups ofi symbols. The count for the numberC′′ corresponds to all
the possible ways of including any number of marked symbols1 in any order, by applying
the nested operators “+ ”, from a minimum of one up to a maximum ofh, to generate a



(sub)segment of type1j µ 1k, where the stringµ ⊂ Ω∗ does not include any marked symbol
1. To illustrate how numberC′′ is computed, consider the REe3 and the MRĔe3:

e3 = a
(

(

( 1 | 1 | 1 | 1)+
)+

)+
b

ĕ3 = a1 2(

[

3(
[

4( [ 15 | 16 | 17 | 18 ]
+)4

]+
)3

]+

)2 b9

Then, it ish = 3 andnε = 4, andC′′ (a1, b9) counts many elements, such as the following:

〈 a1, 2( 3( 4( 16 )4 )3 3( 4( 15 )4 )3 )2, b9 〉

〈 a1, 2( 3( 4( 18 )4 4( 15 )4 )3 3( 4( 17 )4 )3 )2, b9〉

. . .

We remark that large values for the termC′′ computed through Eq. (12) arise in the contrived
case of the REs that have a high numbernε of symbols of type1j that are deeply nested
within the iteration operators. In Sect. 4 we show that in the practical cases, where the
number of marked symbols1 is limited or null, the transducer size grows quite slowly with
the RE size, because the termC′′ is small or vanishes.

To sum up, in the frequent situation when the RE contains no or few symbols1, it holds
C (b, c) ≈ h. Then, considering the input alphabet size to be a constant, in the worst-case
the transducer size|A | is bounded by the sum of the nodes and arcs (each arc is weighted
with the size of its output label), as follows:

|A | ≤ |Q |+ | δ | ×
∑

b ∈ Σ̆ ∪ { ⊢ }

c ∈ Σ̆ ∪ {⊣ }

C (b, c) = |Q |+ | δ | ×
(

| Σ̆ |+1
)2

× h ∈ O
(

2| Σ̆ | × | Σ̆ |2 × h
)

At last, we notice that in practice the exponential factor2| Σ̆ | = O ( |QBS| ) from Eq. (11)
is marginal, since the number of nodes of the DFAABS that are underlying transducerA is
often limited.

3.5 Construction of linearized syntax tree

First, we show that the output computed by transducerA for an input stringx can be inter-
preted as aDirected Acyclic Graph(DAG), denoted byDAG(x). The DAG nodes carry as
label a string of marked symbols and metasymbols. Then, we show that the labels of certain
DAG paths represent the languageLSTacyclic(x) of Def. 5.

The transducerA accepts a string⊢ x ∈ L (⊢ e) with these computations:

start ⊢
−→ q0

x[1]
−−−→ q1 . . . qj−1

x[j]
−−→ qj . . . qn−1

x[n]
−−−→ qn if |x | = n > 0

or start
⊢
−→ q0 if x = ε

(13)

and computes the non-empty output sequenceρ, as follows:

ρ (start, ⊢ x) = ρ (start, ⊢) ρ (q0, x[1]) . . . ρ (qj−1, x[j]) . . . ρ (qn−1, x[n]) (14)

= ρ1 . . . ρn ρn+1



In accordance with Def. 7 and with Alg. 1, each factorρj with 1 ≤ j ≤ n+ 1, to be called
a DAGslice, is a finite set of3-tuplest of the form:

t = 〈 b, µ, c 〉 ∈
(

Σ̆ ∪ { ⊢ }
)

× M̆∗ ×
(

Σ̆ ∪ {⊣ }
)

For each sliceρj with 1 ≤ j ≤ n+ 1 and for each tuplet = 〈 b, µ, c 〉 ∈ ρj, we define the
indexed tupletj = 〈 b, µ, c 〉j obtained by appending tot the indexj as a subscript. In this
way we distinguish any two identical tuples that occur in different slices. The DAG graph is
next defined.

Definition 9 (DAG of a string and recognizing labeled path)The DAG of a stringx ∈

L (e) is a pairDAG(x) = (V, E), whereV andE are the sets of vertices and edges.

– The setsV of theverticesandE of theedgesof the DAG are defined as follows:

V =
{

tj | 1 ≤ j ≤ n+ 1 ∧ t ∈ ρj
}

E =
{ (

〈 b, µ, c 〉j ,
〈

b′, µ′, c′
〉

j+1

)

1 ≤ j ≤ n ∧ c = b′
}

(15)

Set V contains all the indexed tuplestj . A vertex 〈 ⊢, µ, c 〉1 is initial and a vertex
〈 b, µ, ⊣ 〉n+1 is final. Notice that this classification is not mutually exclusive and that
at least one initial and one final vertex exists. Each edge is defined by a pair of vertices.

– The labelλ of a vertex〈 b, µ, c 〉 is the segment resulting from the concatenation of its
second and third component:λ ( 〈 b, µ, c 〉 ) = µ c.

– A labeled pathis a sequence of one or more labeled vertices connected by edges. A
labeled path from an initial vertex to a final vertex is calledrecognizing.

– The label of a recognizing patht1 . . . tn+1 is the concatenation of the labels of its ver-
tices:λ (t1 . . . tn+1) = λ (t1) . . . λ (tn+1). ⊓⊔

The labels of the DAG nodes are strings of the same type as thesegmentsζj of an LST,
see Eq. (8). Since in Eq. (15) an edge connects two3-tuples such that the third component
of the first3-tuple agrees with the first component of the second, every recognizing path
corresponds to the computation by which the transducerA recognizes the input stringx. Yet
a DAG may also contain edges that do not belong to any recognizing path.

To sum up, the structure of a recognizing path is the following, with the node labels
shown above the horizontal brackets:

µ1 a1

〈 ⊢, µ1, a1 〉1
initial node1

−−−→
arc1

µ2 a2

〈 a1, µ2, a2 〉2
node2

. . .
nodes
& arcs

µn an

〈 an−1, µn, an 〉n
noden

−−−→
arcn

µn+1 ⊣

〈 an, µn+1,⊣ 〉n+1
final noden + 1

(16)

To illustrate, we show the output for two preceding examples.

Example 6 (DAG and recognizing paths – I)For the REe of Eq. (3), we show in Fig. 8 (top)
a computation by the transducer of Fig. 6. The input string isa a b. The graphDAG(a a b) is
partially shown in Fig. 8 (middle). All the edges in the recognizing paths are drawn as solid
arrows, and only a few others as dashed arrows. Since stringa a b is 2-ambiguous, there are
two (acyclic) LSTs,ω1 andω2, and the DAG has two recognizing paths with the path labels:

1( 2( 3( a4
slice 1

a4

slice 2

)3 )2 )1 b11
slice 3

⊣

slice 4

= ω1 and 1( 2( 3( a4
slice 1

)3 3( a4
slice 2

)3 )2 )1 b11
slice 3

⊣

slice 4

= ω2



where the labels of the individual path nodes in the slices are highlighted. On the other hand,
the path:

〈

⊢, 1 ( 2 ( , a7
〉

1
−→ 〈 a7, ε, b8 〉2

stops prematurely in the sliceρ2 and fails to recognize the input. The non-recognizing path:
〈

⊢, 1 ( 2 ( 3 ( , a4
〉

1
−→ 〈a4, ε, a4 〉2 −→ 〈 a4, )3, b5 〉3 −→ 〈 b5, ε, a6 〉4

ends in a non-final node in the sliceρ4. The useless nodes (dashed) can be eliminated.⊓⊔

Example 7 (DAG and recognizing paths – II)Returning to the REe1 of Ex. 5, we depict
in Fig. 9 two computations by the transducer of Fig. 7, for the (ambiguous) stringsε anda.
One DAG suffices for both strings, since stringε is a prefix of stringa. ⊓⊔

3.6 Correctness of the LST construction

We have already justified the correctness of the construction of the LST in our presentation
and on the examples. Indeed, the following proof does no more than orderly collecting and
formalizing previous remarks and hints. Its directness and simplicity strengthen our claim
that the BSP approach is a very natural one for parsing REs.

Theorem 1 (correctness of linearized syntax tree construction)For every stringx ∈

L (e), the set of the labels of the recognizing paths of graph DAG(x) coincides with the set
LSTacyclic(x) ⊣ of the acyclic linearized syntax trees (see Def. 5). ⊓⊔

Proof We discuss only the casex 6= ε, the other case being simpler. There are two parts:

part 1 – set of the recognizing path labels of DAG(x) ⊆ LSTacyclic(x) ⊣
Let λ be the label of a recognizing path (Def. 9). We prove thatλ ∈ LSTacyclic(x) ⊣.
Stringλ has the form shown in Eq. (16), i.e.,λ = µ1 a1 µ2 a2 . . . µn an µn+1 ⊣, where
each segmentµi c, with 1 ≤ i ≤ n+ 1 andc ∈ Σ̆ ∪ {⊣ }, is the label of a DAG vertex
ti ∈ ρi of type〈 ⊢, µ1, a1 〉 for i = 1, or of type〈 ai−1, µi, ai 〉 for 2 ≤ i ≤ n, or of type
〈an, µn+1, ⊣ 〉 for i = n+ 1. From Eq. (13), the BSP computation is:

start ⊢
−→ q0

x [1]
−−−→ q1 . . . qj−1

x [j]
−−−→ qj . . . qn−1

x [n]
−−−→ qn

while from Eq. (14) the output sequenceρ is:

ρ (start, ⊢ x) = ρ (start, ⊢) ρ (q0, x [1]) . . . ρ (qj−1, x [j]) . . . ρ (qn−1, x [n])

= ρ1 . . . ρn ρn+1

From the Def. 7 of transducerA, the output function takes the values:

ρ (start, ⊢) =
{

〈 ⊢, µ, c 〉 | c ∈ Σ ∧ µ c ∈ IniAS(e ⊣)
}

ρ (q, a) =
{

〈 b, µ, c 〉 | b ∈ Ia (q) ∧ µ c ∈ FolAS(e ⊣, b)
}

for all q, a ∈ QBS, Σ

By combining the above equations, we get:

µ1 a1 = µ1 x[1] ∈ IniAS(e ⊣)

µi ai = µi x[i] ∈ FolAS(e ⊣, x[i− 1]) for all 2 ≤ i ≤ n

µn+1 ⊣ ∈ FolAS(e ⊣, x[n])

therefore, from Def. 6, we obtainλ ∈ LSTacyclic(x ⊣).



BSP (transducerA) accepting path for the stringa a b with output functionρ – see Fig. 6

⊢

a4
b5
a7
b11

a4
b5
a7
b11
b8

a4
b5
a7
b11
b8

a6
⊣
a9start

q0 q1 q1

q2

↑

⊢

〈

⊢, 1 ( 2 ( 3 ( , a4
〉

〈

⊢, 1 ( 2 ( , b5
〉

〈

⊢, 1 ( 2 ( , a7
〉

〈

⊢, 1 ( 110 ) 1 , b11
〉

a

〈 a4, ε, a4 〉
〈

a4, ) 3 3 ( , a4
〉

〈

a4, ) 3 , b5
〉

〈

a4, ) 3 , a7
〉

〈

a4, ) 3 ) 2 ) 1 , b11
〉

〈 a7, ε, b8 〉

a

〈 a4, ε, a4 〉
〈

a4, ) 3 3 ( , a4
〉

〈

a4, ) 3 , b5
〉

〈

a4, ) 3 , a7
〉

〈

a4, ) 3 ) 2 ) 1 , b11
〉

〈 a7, ε, b8 〉

b

〈 b5, ε, a6 〉

〈 b11, ε, ⊣ 〉

〈 b8, ε, a9 〉

ρ (start,⊢) = ρ1

ρ (q0, a) = ρ2 ρ (q1, a) = ρ3

ρ (q1, b) = ρ4

DAG(a a b) — all the arcs in the recognizing paths (solid) and a few other arcs (dashed)

⊢,
1
(
2
(
3
( , a4

⊢,
1
(
2
( , b5

⊢,
1
(
2
( , a7

⊢,
1
( 110 )

1
, b11

a4, ε, a4

a4, )
3 3

( , a4

a4, )
3
, b5

a4, )
3
, a7

a4, )
3

)
2

)
1
, b11

a7, ε, b8

a4, ε, a4

a4, )
3 3

( , a4

a4, )
3
, b5

a4, )
3
, a7

a4, )
3

)
2

)
1
, b11

a7, ε, b8

b5, ε, a6

b11, ε, ⊣

b8, ε, a9

ρ1 : slice1 (initial) ρ2 : slice2 ρ3 : slice3 ρ4 : slice4

rec. arc

rec. arc

rec. arc

rec. arc

re
c.

ar
c

non-rec. arc

non-rec. arc

no
n-

re
c.

ar
c

MST of a a b MST of a a b•

•

1( •

2( +

•

3( +

a4 a4

)3

)2

)1

b11

•

•

1( •

2( +

•

3( +

a4

)3

•

3( +

a4

)3

)2

)1

b11

acyclic
LST : ω1 = 1( 2( 3( a4 a4 )3 )2 )1 b11

acyclic
LST : ω2 = 1( 2( 3( a4 )3 3( a4 )3 )2 )1 b11

Fig. 8 LST construction of stringa a b for Ex. 6. Top: accepting path of transducerA. Middle: DAG of string
a a b with two recognizing paths – the brackets and indices of the3-tuples are omitted and the node labels
are highlighted in bold. Bottom: marked and linearized syntax trees.



BSP accepting paths for stringsε anda – Fig. 7 overlappedDAG(ε) andDAG(a)

⊢
a2
⊣

a2
⊣

start
→

q0

−→
acceptε q0

−→

accepta

⊢

〈

⊢, 1 ( , a2
〉

〈

⊢, 1 ( 13, a2
〉

〈

⊢, 1 ( 13 ) 1, ⊣
〉

a

〈 a2, ε, a2 〉

〈 a2, 13, a2 〉
〈

a2, ) 1 , ⊣
〉

〈

a2, 13 ) 1 , ⊣
〉

ρ (start,⊢) = ρ1

ρ (q0, a) = ρ2

ε : 1 ( 13 ) 1 acyclic LSTs ofε (one) anda (four)

a : 1 ( a2 ) 1, 1 ( a2 13 ) 1, 1 ( 13 a2 ) 1, 1 ( 13 a2 13 ) 1

ρ1 : slice 1 ρ2 : slice2

⊢,
1
( , a2

⊢,
1
( 13, a2

⊢,
1
( 13 )

1
, ⊣

a2, ε, a2

a2, 13, a2

a2, )
1
, ⊣

a2, 13 )
1
, ⊣

MST of ε MSTs ofa•

1( +

13

)1

•

1( +

a2

)1

•

1( +

a2 13

)1

•

1( +

13 a2

)1

•

1( +

13 a2 13

)1

Fig. 9 LST construction for the ambiguous stringsε anda of Ex. 7 – the ambiguity ofε is not preserved.

part 2 – LSTacyclic(x) ⊣ ⊆ set of the recognizing path labels of DAG(x)
We prove that if the linearized syntax treeω ∈ LSTacyclic(x) ⊣, then there exists a recog-
nizing path in the graphDAG(x) with labelλ equal toω. From Def. 1, there is a string
x ⊣∈ L (e ⊣) with flatten(ω) = x ⊣. From Eq. (8), and from Def.s 5 and 6, the decom-
position ofω into ASs isω = ζ1 . . . ζn ζn+1, whereζ1 = µ1 a1, . . . , ζn = µn an,
ζn+1 = µn+1 ⊣, with unmark(aj) = x [j] (1 ≤ j ≤ n). From Def. 7, there is a trans-
ducerA for e. From Eq.s (13) and (14), the transducerA accepts string⊢ x and outputs
ρ = ρ1 . . . ρn ρn+1. From Eq.s (15) in Def. 9, sliceρ1 contains a3-tuple〈 ⊢, µ1, a1 〉,
each sliceρi with 2 ≤ i ≤ n contains a3-tuple〈ai−1, µi, ai 〉, and sliceρn+1 contains
a3-tuple〈an, µn+1, ⊣ 〉. From Eq. (16), the graphDAG(x) contains a recognizing path
and the labelλ is equal toω. ⊓⊔

3.7 Complexity of parsing

It is well known that, for any REe, the classical Berry-Sethi recognizer of languageL (e)
(Sect. 2.2) has a linear time complexity in the length|x | of the accepted stringx. The
same property holds for the BSP parser, including the construction of the transducer output,
because the output alphabet is fixed, determined by the REe. Since the number of DAG
nodes in every slice is limited, the DAG construction is also linear in|x |. All the acyclic
LSTs of stringx can be produced by a (say, depth-first) visit of the DAG, and the building
cost of each LST is linear in|x |, because the length of every segment is limited.

Proposition 3 (parsing complexity)For any REe and for any stringx ∈ L (e), the com-
plexity of computingρ (start, ⊢ x) isO

(

| x |
)

. The complexity of computing the set of acyclic
linearized syntax trees ofx is O

(

|x | × |LSTacyclic(x) |
)

.



3.8 RE ambiguity condition

In practical applications, it is sometimes necessary to know how to decide whether a given
RE is ambiguous, which is a problem known to be decidable since long [6]. For the users
faced with such a requirement, we show how to detect RE ambiguity on the transducer
graph.

To proceed without losing generality, we need to revise the definition of acyclic lin-
earized syntax tree, i.e., of the setLacyclic(e) in Def. 5. In fact, if a stringx ∈ L (e) is finitely
ambiguous, the cardinality of the setLSTacyclic(x) is greater than one, which means that the
ambiguity ofx remains visible when the cyclic segments are eliminated. The situation may
differ in the case of a problematic RE, i.e., when the degree of ambiguity is unlimited. Al-
though the ambiguity is usually preserved inLSTacyclic(x) for an infinitely ambiguous string
x, yet, for certain particular problematic REs, some stringx, though ambiguous, has only
one acyclic LST. See this RE:

( 1 )+ marked as 1( [ 12 ]
+ )1

where the empty stringε is ambiguous, though it is left with only one representative in the
setLSTacyclic(ε), namely “1( 12 )1 ”.

If preserving ambiguity in such cases is mandatory, it suffices to extend the notions
of acyclic segment AS and acyclic segment setAS(e) (given in Def. 5), so as to keep the
two segments “1( 12 )1 ” and “ 1( 12 12 )1 ” in Lacyclic(ε). But care must be taken not to
jeopardize the finiteness of the set of acyclic segments. Next, we extend the definition of
acyclic segment.

Definition 10 (extended acyclic segment – EAS)A segmentζ = µah or ζ = µ ⊣ is
extended acyclicif and only if it holds|µ |1j ≤ 2 for all j, i.e., all the metasymbols of type
1 occur inµ no more than twice. Extended acyclic segments are denotedEASand their set
is calledEAS(e). ⊓⊔

Clearly, a comparison of Def. 5 and Def. 10 shows that it holdsAS(e) ⊆ EAS(e) for any
RE e, and the containment is strict only for a problematic RE. The subsequent definitions
of the setsLacyclic(e) andLST(x) in Def. 5 remain unchanged, though now they use EAS
instead of AS.

To prevent confusion, we qualify asambiguity preservingthe transducerA constructed
by Alg. 1 using the EAS of Def. 10, and we denote it byAAP instead ofA. Notice that the
state-transition graphs ofA (based onAS(e)) andAAP are structurally identical, and they
only differ in the output function: that ofAAP contains more3-tuples than that ofA does,
if (and only if) the RE is problematic. Fig. 10 shows both graphs for the problematic RE
e = ( 1 )+, where it holdsρ (start, ⊢) ⊂ ρAP (start,⊢).

Therefore, the correctness proof in Th. 1 holds true unchanged for the graphDAG(x)
and the setLST(x) of a stringx accepted by transducerAAP, as the proof is based on the
state-transition graph. Thus the transducerAAP can build all the acyclic syntax trees that the
transducerA can, and a few more if (and only if) the RE is problematic.

The next ambiguity condition (Prop. 4) captures RE ambiguity without exception. This
ambiguity condition is stated on transducerAAP (instead ofA), first for a stringx generated
by an REe, then for a whole REe (the first statement is functional to the second).

In the discussion below, for any stringx, we callcleanthe graphDAG(x) of x deprived
of all the nodes and arcs that are not part of a recognizing path.



Proposition 4 (string and RE ambiguity) Assume it holdsx ∈ Σ∗, |x | = n ≥ 0 and
1 ≤ i ≤ n+ 1. These two statements hold, for a string and an RE, respectively:

string A stringx ∈ L (e) is ambiguous if, and only if, the DAG(x), computed by the trans-
ducerAAP of e and cleaned, has a sliceρi that contains two3-tuplesti = 〈 a, µ, b 〉i
andt′i =

〈

a′, µ′, b′
〉

i
with equal third symbolsb = b′ (whereb, b′ ∈ Σ̆ ∪ {⊣ }).

RE An REe is ambiguous if, and only if, the state-transition graph of the transducerAAP

of e has an arcγ such that the output functionρ on γ contains two3-tuplest andt′

(as above but without subscripti) with equal third symbolsb = b′ (as above). ⊓⊔

Proof By Th. 1 (restated forAAP), a stringx has two or more LSTs in the setLST(x) if,
and only if, the graphDAG(x) has as many recognizing paths. The two proofs follow:

string if part – Suppose stringx is ambiguous, then it has two LSTs and its graphDAG(x)
comprises two recognizing paths. If such paths merge, there is a sliceρi, not the last
(i 6= n+1), that contains two3-tuplesti, t

′
i that have the same successor3-tuplet′′i+1

in the next sliceρi+1. Thereforeti, t′i have equal third symbolsb = b′ ∈ Σ , since
by the DAG construction such a symbol is the first oft′′i+1. Else, if such paths end
separately, since both are recognizing, the last sliceρn+1 contains two final3-tuples
tn+1, t′n+1, which therefore have equal third symbolsb = b′ = ⊣.
only-if part – Suppose a sliceρi of the cleanedDAG(x) of string x contains two
3-tuplesti, t

′
i. By the DAG cleanliness, the3-tuplesti, t

′
i belong to two recognizing

paths inDAG(x), thus stringx has two LSTs and is ambiguous.
comment – The DAG cleanliness is unnecessary for the “if” part, and the equality
b = b′ is unnecessary for the “only if” part. However, the equality is necessary for
both sides of the next RE ambiguity statement.

RE if part – Suppose REe is ambiguous, then its transducerAAP recognizes an ambigu-
ous string⊢ x. From the string statement (if part), the graphDAG(x) has a sliceρi
that contains two3-tuplesti, t′i that have equal third symbolsb = b′. By the DAG
construction, the state-transition graph ofAAP has an arcγ such that the output func-
tion ρ on γ is ρi. Thusρ on γ contains two3-tuplest, t′, obtained fromti, t′i by
canceling their subscripti, which therefore have equal third symbolsb = b′.
only-if part – Suppose that the transducerAAP of REe has an arcγ, where:

γ =
(

q
c
−→ r

)

q, r are states ofAAP andc ∈ Σ ∪ { ⊢ }

and that the setρ (q, c), i.e., the output functionρ on γ, contains two3-tuplest, t′

that have equal third symbolsb = b′. By Alg. 1, the state-transition graph ofAAP is
trim, thus there is a string⊢ x = ⊢ x [1] . . . x [n] ∈ ⊢ Σ∗ that labels a recognizing
path ofAAP traversingγ. Then, there is a graphDAG(x) such that its sliceρi =
ρ (q, x [i − 1]) with x [i − 1] ∈ Σ for 2 ≤ i ≤ n+ 1, or its sliceρ1 = ρ (start, ⊢)
for i = 1 – see also Eq. (14) – contains two3-tuplesti, t′i, obtained fromt, t′ by
applying the subscripti, that have equal third symbolsb = b′. Stringx can always be
taken in such a way that the3-tuplesti, t′i belong to recognizing paths ofDAG(x),
thus the DAG can be assumed to beclean, as follows:
1. By the DAG construction, the3-tuplesti, t

′
i are necessarilyreachablefrom some

initial node(s) through two DAG paths, or they are themselves initial nodes.

2. If n ≥ 1, i.e., stringx is not empty, the DAG has two or more slices, therefore:



– If sliceρi is not the last, i.e.,i 6= n+1, by Alg. 1 transducerAAP has an arcβ:

β =
(

r
x [i]
−−−→ s

)

s is a state ofAAP andx [i] = unmark(b) = unmark(b′)

whereρ (r, x [i]), i.e., the output functionρ onβ, contains a3-tuplet′′ that has
first symbola′′ = b = b′. Sliceρi+1 is equal toρ (r, x [i]), thus it contains a3-
tuplet′′i+1, into which the two DAG paths merge. Ift′′i+1 is final (b′′ = ⊣), the
two paths havereached– and merged into – one final node. Else, by repeating
the argument fromt′′i+1 onwards, the two paths – unified from now on – will
reach together one final node through a series of3-tuples, i.e., DAG nodes,
driven by the string suffixx [i] . . . x [n], the symbolsx [·] of which are taken
so as to match the classes of the third symbolsb in the series of3-tuples.

– If slice ρi is the last, namelyρn+1, i.e.,i = n+ 1, the3-tuplestn+1, t′n+1 are
final (b = b′ = ⊣), thus the two DAG paths separatelyreachtwo final nodes.

3. If n = 0, i.e., stringx is empty and the only slice isρ1, each DAG path separately
reducesto a single node (without edges), which is both initial and final.

In all cases, the two DAG paths through the3-tuplesti, t′i go from an initial node to
a final node, thus they arerecognizing. Hence the3-tuplesti, t

′
i, which have equal

third symbolsb = b′, belong also to thecleanedgraphDAG(x). From the string
statement (only-if part), stringx is ambiguous, therefore REe is ambiguous.
comment – As said, equalityb = b′ is necessary and sufficient for RE ambiguity.⊓⊔

Example 8 (RE ambiguity condition – Prop. 4)We show two cases. For the first one, con-
sider the RE in Eq. (2). Since it is not problematic, we do not need the transducerAAP,
because in this case the definition of acyclic segment AS in Def. 5 preserves ambiguity.
In Fig. 6, the transducerA has the arcq0

a
−→ q1, the output of which comprises the two

following 3-tuplest, t′ with equal third symbolsa4 that meet Prop. 4 (RE statement):

ρ (q0, a) ⊃
{

〈a4, ε, a4 〉

3-tuplet

, 〈a4, )3 3(, a4 〉

3-tuplet′

}

Therefore, the RE in Eq. (2) is ambiguous. In Fig. 8, stringa a b is a witness of such an
ambiguity, with the two3-tuples belonging to sliceρ2 of the (clean) DAG.

The second case is such that the ambiguity of certain strings is not observable on the
standard transducerA and is instead visible on the ambiguity preserving transducerAAP. The
REe1 = ( a | 1 )+ in Ex. 5 ambiguously generates the empty stringε. The state-transition
graph of the transducerA of e1, constructed by Alg. 1, is in Fig. 7. The transducerA recog-

nizes stringε by taking the arcstart ⊢
−→ q0 with outputρ (start, ⊢) =

{ 〈

⊢, 1 ( 13 ) 1, ⊣
〉 }

.
Since such an output contains only one3-tuple, the ambiguity ofε is not observable onA.
In fact, the DAG ofε shown in Fig. 9 (top right) reduces to a single initial and final node (in
sliceρ1), which corresponds to a single syntax tree (bottom left of Fig. 9).

The ambiguity ofε is detected by the ambiguity preserving transducerAAP of e1, yet for
brevity we do not construct the whole state-transition graph ofAAP, and we focus instead on
its relevant arc and output function label. Thus we recalculate the set of initials, according
to the notion ofextended acyclic segment(EAS in Def. 10), and we denote itIniEAS:

IniEAS(e1 ⊣) =
{

1( a2, 1( 13 a2, 1( 13 )1 ⊣

initial for ε

, 1( 13 13 )1 ⊣

initial for ε

}



where symbol13 may occur up to twice (but no more) in a segment. Therefore, the ambigu-
ity of string ε becomes visible on transducerAAP, as the initial arc has to hold two3-tuples
with equal third symbol⊣, coming from the last two initials (outlined). Notice that REe1
contains an iterated nullable subexpression, or differently said it is problematic.

On the other hand, the ambiguity of stringa is already visible on the standard transducer

A of Fig. 7, where Prop. 4 (RE statement) is verified on the arcs of pathstart
⊢
−→ q0

a
−→ q0.

In fact, four recognizing paths of stringa are visible in the DAG ofa shown in Fig. 9, and
the corresponding four syntax trees are drawn at the bottom (right) of the same figure.⊓⊔

Example 9 (ambiguity preservation and detection)Fig. 10 shows both parsersA andAAP

for the problematic REe = ( 1 )+, with MRE ĕ =
[

1( 12 )1
]+

, which generates the (in-
finitely ambiguous) empty stringε; the DAGs ofε are also depicted for both parsers. Trans-
ducerA does not satisfy Prop. 4, whereasAAP does so, as the two3-tuples inρAP (start, ⊢)
have equal third symbols⊣ (case 3 in Prop. 4). ⊓⊔

transducer of REe DAG(ε)

start ⊣A → →
ρ (start, ⊢) = { 〈 ⊢, 1( 12 )1, ⊣ 〉 }

⊢
⊢, 1( 12 )1, ⊣

start ⊣AAP → →

ρAP (start, ⊢) =

{

〈 ⊢, 1( 12 )1, ⊣ 〉

〈 ⊢, 1( 12 12 )1, ⊣ 〉

}

⊢

⊢, 1( 12 )1, ⊣

⊢, 1( 12 12 )1, ⊣

Fig. 10 TransducersA (BS Parser) andAAP (ambiguity preserving) for the problematic REe = ( 1 )+ (left),
and both DAGs ofε (right) – the DAG computed byAAP has two recognizing paths (each of one node).

ObservationThe examples above should have made clear that, to decide whether an RE is
ambiguous, it suffices to inspect the transducer graph and look for any arc holding any two
3-tuples with equal third symbols. Deciding whether a single string is ambiguous requires to
compute its DAG by means of the transducer, then to clean it and eventually check if a slice
still contains two3-tuples; cleaning is easily done by means of well-known algorithms.

4 Implementation and experimentation

We realized a parser generator tool that reads an RE and constructs the BSP parser, and we
measured the generation process speed, the size of the generated transducer, and the BSP
parsing speed. Both the generator and the produced parser are coded in Java.1 In detail:

1. We describe the main phases composing the generator and we present the timing mea-
surement for the generator, obtained using as input a large random collection of REs.

1 The code is available athttps://github.com/FLC-project/BSP together with the input data
used for the experiments.



2. We present the experimental results pertaining to the BSP parser, which include the size
of the transducers and the parsing speed of the generated parsers.

3. We outline an implementation option for generating a parsing algorithm that incorporates
the POSIX disambiguation criterion and returns the syntax tree selected in agreement
with such a criterion.

Phases of the parser generatorThegeneratortakes as input an REe and returns the BSP
parser. The parser consists of a fixed Java program plus some data structures, calledparsing
tables, that are specific fore and ensure a faster access by the parser code. In the first two
phases the generator prepares the input data needed by Alg. 1:

1. Compute the marked abstract syntax tree MAST ofe, and the set of the digrams that
occur in the marked RĔe.

2. Compute the acyclic segmentsAS(e) (see Def. 5).

Then the parser construction properly starts, applies Alg. 1 and comprises two more phases:

3. Construct the transducer graph and, in particular, its output function.

4. Reformat the transducer graph and the output function into the parsing tables.

At parsing time, the parsing tables efficiently drive the parser moves. Separate time mea-
surements for the execution of the phases from (1) to (4) are later reported.

Experimental measurementsWe report some experimental results about the generator and
the generated parser: parser building speed, parser size and parsing speed.

A practical problem we had to face is what collection of REs to choose for our exper-
imentation, since – to the best of our knowledge – no benchmark for measuring and com-
paring the performance of algorithms related to REs is publicly available. Thus we created
a large collection of REs, randomly generated by another tool that we have developed in a
related project [8].2 The current collection comprises1, 000 REs of increasing length up to
100 characters, counting the terminals and metasymbols, and it is subdivided in ten classes
of length[0− 10], [10− 20], . . . , [90− 100].

First, we report how the size of the generated BSP parser, actually the size of the trans-
ducer, depends on the length of the RE. For the transducer, we measured the number of
states, arcs and3-tuples of the output functionρ, and we computed the ratios of such num-
bers to the RE length, i.e., the total number of RE symbols. Then we averaged the result
for each of the ten classes of REs. The ratiosnum. of states / RE lengthandnum. of arcs
/ RE lengthare almost constant as the length of the RE increases (therefore the values are
not reported), meaning that the DFA recognizer underlying the transducer has a linearly in-
creasing size. On the other hand, for the output functionρ, the average number of3-tuples
per arc takes the following values:

length of the RE 10 20 30 40 50 60 70 80 90 100

num.3-tuples / RE length
of the output functionρ

0.78 0.81 0.96 1.28 1.35 2.24 4.07 5.69 6.47 8.10

From the discussion of the transducer size in Sect. 3.4, it is expected that the number of
3-tuples should grow more than linearly with respect to the RE length: in our benchmark

2 The benchmark and generator codes are available athttps://github.com/FLC-project/BSP.



we found the dependence to be approximately quadratic. Consequently, the parser genera-
tion speed decreases as the RE length increases. Yet, the above experimental figures support
our remark in Sect. 3.4 that the combinatorial growth – expressed by Eq. (12) – for the
number of3-tuples labelling the transducer transitions, does not occur in practice. The mea-
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Fig. 11 Parser construction speed vs RE length – for comparison the generation speed for the pure BS rec-
ognizer is also shown (upper plot).

surements3 in Fig. 11 show the generator speed. For comparison, the plot displays also the
generation speed of the BS recognizer; the generation is faster since it does not pay the price
of computing the acyclic segments AS and the derived information needed by the parser.
The plots in Fig. 12 split the total parser generation time into the time spent in each phase of
the generator. We found that the weight of phases (1) and (2) decreases for longer REs. The
variance of all the measured distributions increases with the RE length, a fact to be expected
from the presence of more heterogeneous REs within the classes of higher length.

Next, we give some figures for the parsing time, which we have obtained by running
the parsers on many input texts. For each REe in the benchmark, we randomly generated a
collection of input texts, in such a way as to ensure that the RE operators ine are uniformly
chosen in the generation of such texts. The parsing speed is about43 [chars]/[ms] and it
remains essentially constant for all the texts, in agreement with Prop. 3. For comparison,
the recognition speed of the pure BS recognizer is about89 [chars]/[ms], slightly less than
twice the parser speed.

Disambiguation byPOSIXor other criteria Since the BSP parser delivers all the linearized
parse trees of an ambiguous text, it is not difficult to extend it in order to select the one tree

3 On a computer AMD Athlon64 X2 4200+ with clock2.2 GHz and operating system Windows10.
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Fig. 12 Parser generation time vs RE length – averaged over each RE length class.

that meets specific disambiguation criteria, such as the POSIX criterion [15] or thegreedy
one, e.g., [11]. We implemented both, and we briefly illustrate the POSIX case.

The disambiguation algorithm we used is essentially the one described by Okui and
Suzuki [20], within their parser generator. In particular, they present a method for stepwise
comparing the linearized syntax trees while they are constructed, and for choosing the tree
to be returned according to POSIX. We briefly explain how we applied a similar method on
top of BSP. The method consists of two phases:

1. For an accepted stringx, with |x | = n, the graphDAG(x) (see Def. 9) is traversed in
reverse. The nodes ofDAG(x) are identified and tagged, starting from the final nodes in
the sliceρn+1 and following backwards the paths according to the conditions defined by
Eq. (15). The DAG obtained by discarding the untagged nodes, i.e., the clean DAG (see
Sect. 3.8), is used in the next phase.

2. The DAG is visited in the opposite direction, by touching the slices fromρ1 to ρn+1

following the arrows depicted in Fig. 8 (middle). For every slice, a bounded amount of
information is locally used to choose the node having POSIX priority; this allows the
method to identify the LST of the prior tree with a time complexity linear inn.

The BSP parser that performs POSIX disambiguation is necessarily slower, because it pays
the extra cost of computing the prior LST. It may be interesting to compare the speed of
about43 [chars]/[ms] without disambiguation, which – as said – is essentially independent
of the RE length, against the speed with POSIX disambiguation, plotted in Fig. 13. For large
REs the POSIX parser runs on average at about20% of the BSP speed.
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Comparison with an existing libraryTo provide a rough comparison with the performance
of the existing software that supports RE parsing, we mention that the speed of BSP com-
pares favorably with that of the popular program library RE2, as shown in Fig. 14.4

5 Related work

The study of ambiguous REs started very early – the original proof of the decidability of
ambiguity is in [6] – but developments of practical parser generators for ambiguous REs
came much later and many new algorithms have been proposed in recent years. We are
going to discuss some of them, which are closer to ours.

For clarity, we recall the distinction between the algorithms for REmatchingand RE
parsing, which respectively mean just a recognizer of the input string or a recognizer that
also outputs one (or more) syntax tree(s). Within the class of RE parsers, the algorithms
differ with respect to the coverage of the syntax trees they produce:total versuspartial.
The algorithms that perform a partial coverage also differ from one another and produce an

4 Since RE2 outputs one tree and is coded in C++, to offset the difference due to the programming
language we implemented a version of BSP that uses POSIX disambiguation for selecting one tree and
is coded in C++ as well; some experimental results are available athttps://github.com/FLC-
project/BSP. A systematic experimental comparison between existing RE parsing algorithms would be
interesting, but it requires more research and presents practical difficulties. Only a few published algorithms
come with well-engineered and available programs, and such programs may be coded in different languages.
Moreover, the parsing process may return incomparable information on the syntax trees. Lastly, such a re-
search has to face the problem of choosing an unbiased collection of REs as a benchmark.
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Fig. 14 Performance comparison of BSP with the RE2 library – texts of[0− 1] MB.

arbitrary or randomly chosen syntax tree, or the one tree that meets a precise criterion for
disambiguation, chiefly the POSIX and the greedy criteria, already mentioned.

The well-known classic RE matching methods, namely McNaughton-Yamada, Gluskhov,
Brzozowski, Antimirov and Thompson, translate an RE into a finite automaton. They have
been later improved in many ways; in particular, the Berry-Sethi positional method, which
we use as a baseline, stems from the McNaughton-Yamada and Brzozowski derivative ap-
proaches. Since the classic methods and their successors have been thoroughly analyzed and
compared in the literature – see, e.g., [2,13,24] where a large bibliography is included – we
do not discuss them, and we start by motivating our choice of Berry-Sethi as the base of our
development.

Our BSP parser, like most but not all the others, uses an FA to recognize the input string,
and additionally computes and outputs the syntax trees. This task is easier and faster if the
internal states traversed by the FA have a direct relation to the RE syntactic structure, i.e.,
to its abstract syntax tree. For this goal, the so-calledpositionalmethods score better than
the others, because each state of the FA is keyed to a set of RE positions, which correspond
to positions in the RE abstract syntax tree. Moreover, such a correspondence determines at
parsing time a relation between the FA states visited and the slices of the syntax tree(s) being
constructed. An inspiring example of performing parsing on top of a positional recognizer
occurs in the POSIX parser [20], which uses the McNaughton-Yamada method. We choose
instead the Berry-Sethi method because it directly produces a DFA that is typically quite
close to the minimal one; furthermore, the generation algorithm and the DFA produced have
a simple formalization, if one follows the approach [4] based on local languages.
The vast literature on RE matching and parsing can be roughly categorized into:

i computational theoretic studies on the space and time needed for matching and parsing



ii parsing algorithms with different coverage of syntax trees (total vs partial)
iii RE software libraries

Since our focus is on practical and provably correct algorithms, for brevity we only discuss
category (ii ), with one exception in category (i), i.e., [5], but we recall that we have experi-
mentally found that the BSP parsing speed compares favorably with the popular RE2 library.
A representative list of parsing algorithms is in Tab. 3, where each one is accompanied by a

Table 3 A representative chronological list of algorithms for parsing ambiguous REs.

authors and reference algorithm description and comments

S. Kearns [16]
It is based on a recursive procedure, which delivers the sequence of the
states that are traversed by an NFA; then the sequence is converted into
a parse tree; it does not state the tree selection criterion.

D. Dubé and M. Feeley [10]
It finds all the parse trees that match a DFA computation; it uses the
sequence of DFA states to find a path in an NFA graph, then it emits the
parse tree as transduction; it does not state the tree selection criterion.

V. Laurikari [17]
It relies on an NFA, which performs a quasi-POSIX matching in linear-
time; it hints at a method to transform such an NFA into a DFA.

A. Frisch and L. Cardelli [11]
It gives a rigorous definition of thegreedycriterion; it makes a first
backward pass, by using an NFA and saving the list of traversed states;
then it makes a forward pass, in which it builds the prior tree.

S. Okui and T. Suzuki [20]
It is based on an NFA and performs a POSIX matching; its efficient
linear-time construction of the parse tree has inspired our BSP.

L. Nielsen and F. Henglein [19]
It is linear-time and produces a compact representation of the parse
tree; it is a variant ofgreedymatching; it is superseded by Grathwohl
paper [12].

S. Haberet al. [14]
It performs agreedymatching in a way similar to theJava.regexlibrary.
It scans the strings backwards and then it processes in linear-time the
state list obtained.

N. Grathwohlet al. [12] It performs a two-passgreedyparsing, based on an NFA simulation.

N. Schwarz, A. Karper,
and O. Nierstrasz [21]

It performs agreedymatching in linear-time, based on an FA with
memorization; it combines parser generation and parsing phases.

M. Sulzmannet al. [22,23]
These two algorithms, based on Brzozowski derivatives, the first setting
the ground for the second, generate a DFA delivering the POSIX tree
in linear-time. A development for checking RE ambiguity is in [23].

P. Bille and I. Li Gørtz [5]
This theoretical study, not based on automata theory, strives to mini-
mize the asymptotic time and space complexities; it returnssometree
that achieves to minimize time and space.

short description, to which we add a few comments.

For the non-positional methods used for POSIX parsing, we mention the utilization of a
Thompson recognizer in the parser [10]. A drawback of Thompson method is that the rec-
ognizer is non-deterministic and performs many spontaneous moves. Truly, the Thompson
construction went through several optimization stages – see [13] for an account – which re-
duce the number of spontaneous transitions, therefore it may be promising for parser genera-



tion. Yet, to our knowledge, such upgrades have not been considered for ambiguous parsing
until now.

Actually, the proposed or existing parsers also differ with respect to the output they
produce, i.e., the syntax trees, and to whether the tree construction is carried out on-line or
in a subsequent pass after string recognition. In contrast to the BSP parser, most existing
parsers known to us produce only one syntax tree, which is either casual or the prior one
according to the POSIX / greedy criterion. An example of the former case is the work by P.
Bille and I. Li Gørtz [5], which focuses on the analysis of time and space complexity. One of
the Sulzmann parsers [23] is able to enumerate the syntax trees of the input string. The list
in Tab. 3 includes a majority of cases where the methods used for performing recognition,
and especially for computing and selecting the trees, are not completely formalized.

To our knowledge, none of the existing parsers includes all the key features of our
method, namely: the construction of a deterministic finite-state transducer able to output on-
line a compact representation of all the syntax trees; the ability to handleproblematicREs;
the controlled exclusion of the irrelevant trees that arise in the infinitely ambiguous strings;
the correctness proof of the parser; the compact representation of all the relevant syntax
trees as a DAG; the predisposition of the parser to perform disambiguation by the POSIX
or greedycriterion; the possibility of checking, directly on the transducer graph, whether a
string or an RE is ambiguous; and the support by a software tool, validated experimentally.

6 Conclusion

We hope that the algorithm we have proposed and the supporting software tools and bench-
mark will be useful, not only for RE-based search applications, but also for other RE ap-
plications that may require adjustment or specialization. Examples of such applications are:
malware detection [1], and parsing forExtendedBNF grammars, i.e., for context-free gram-
mars that use REs in their production rules. BSP could be possibly used as a component for
such applications since its tailoring to new requirements should require less effort than other
parsers would need, thanks to the simple formal structure of our parser generator.

Further developments of BSP may be considered in the future. In our time complexity
analysis, we have considered the non-uniform membership problem, that is, we have not
counted the RE size. Yet in some application scenarios an RE is used just for one or a few
texts. In such cases, it would be interesting to minimize the complexity of the uniform mem-
bership problem by developing a parser similar to BSP, but based on a non-deterministic po-
sition automaton. Another direction is to extend the RE metalanguage, for instance to accept
REs that include counting operators.

More experimental work is also planned to compare the performance of BSP and other
parsers, as well as RE program libraries.

AcknowledgementTo the anonymous reviewers for their valuable suggestions and refer-
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