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Abstract. In this work, we investigate a distributed optimal control problem

for an extended phase field system of Cahn–Hilliard type which physical context

is that of tumor growth dynamics. In a previous contribution, the author has
already studied the corresponding problem for the logarithmic potential. Here,

we try to extend the analysis by taking into account a non-smooth singular
nonlinearity, namely the double obstacle potential. Due to its non-smoothness

behavior, the standard procedure to characterize the necessary conditions for

the optimality cannot be performed. Therefore, we follow a different strategy
which in the literature is known as the “deep quench” approach in order to

obtain some optimality conditions that have to be interpreted in a more general

framework. We establish the existence of optimal controls and some first-
order optimality conditions for the system are derived by employing suitable

approximation schemes.

1. Introduction. In recent years there has been an increased focus on the in-
vestigation and understanding of tumor growth by the mathematical community
(see, e.g., [15]). Unfortunately, the phenomena which occur in real cases is far
too complex to be approached by experimental techniques as a whole. Therefore,
the mathematical modeling can be a useful instrument to reduce the problem in a
manageable one since it is able to isolate some particular mechanisms which can be
hopefully sufficient to forecast something helpful for medical treatments. Here, we
concentrate on the subclass of models known in the literature as diffuse interface
models which are derived by continuum mixture theory. The system we are going to
consider in what follows constitutes a variation of the model originally introduced
in [30] in order to describe the evolution of a young tumor, before the development
of quiescent cells in the presence of a nutrient species (see [14, 29, 31, 38] and also
[7, 8, 10, 20]). It consists of a Cahn–Hilliard equation for the phase variable (see,
e.g., [33] and the huge references therein), coupled with a reaction-diffusion equa-
tion for an unknown species acting as a nutrient, for instance oxygen or glucose.
Furthermore, by interpreting the tumor and the healthy cells as inertia-less fluids,
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the contribution of the velocity field can be included in the investigation by as-
suming a Darcy law or a Stokes-Brinkman equation. In this regards, let us refer
to [16, 19, 21, 23, 24, 25, 26, 28], where further mechanisms such as chemotaxis
and active transport are also taken into account. Furthermore, we also point out
the paper [22], where a non-local model is proposed. Lastly, for different physically
meaningful choices of the potentials, we refer to [1] and to the references therein,
where some numerical simulations and comparison with clinical data can be found
as well. Further investigations and mathematical models related to biology can be
also found e.g. in [16] and [21]. Let us begin introducing our problem. First of all,
let Ω ⊂ R3 denote some open and bounded domain with smooth boundary denoted
by Γ. For convenience, given a fixed final time T > 0, we introduce the standard
parabolic cylinder and its boundary by setting

Qt := Ω× (0, t), Σt := Γ× (0, t) for every t ∈ (0, T ],

Q := QT , and Σ := ΣT . (1.1)

The problem we are going to deal with consists in minimizing the cost functional

J (ϕ, σ, u) :=
b1
2
‖ϕ− ϕQ‖2L2(Q) +

b2
2
‖ϕ(T )− ϕΩ‖2L2(Ω) +

b3
2
‖σ − σQ‖2L2(Q)

+
b4
2
‖σ(T )− σΩ‖2L2(Ω) +

b0
2
‖u‖2L2(Q) (1.2)

subject to the control contraints

u ∈ Uad := {u ∈ L∞(Q) : u∗ ≤ u ≤ u∗ a.e. in Q}, (1.3)

and to the state system

α∂tµ+ ∂tϕ−∆µ = P (ϕ)(σ − µ) in Q (1.4)

µ = β∂tϕ−∆ϕ+ ξ + π(ϕ) in Q (1.5)

ξ ∈ ∂I[−1,1](ϕ) in Q (1.6)

∂tσ −∆σ = −P (ϕ)(σ − µ) + u in Q (1.7)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ (1.8)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω. (1.9)

At this first stage, we would confine the technicalities as much as possible, trying to
describe the general purpose of the article. Anyhow, let us point out that ∂n stands
for the outward normal derivative, and ∂I for the subdifferential of the indicator
function of the interval [−1, 1], that is, the function which vanishes there, and takes
the value +∞ elsewhere. Indeed, in the interval [−1, 1], we have the following
characterization

s ∈ ∂I[−1,1](r) if and only if s


≤ 0 if r = −1

= 0 if − 1 < r < 1.

≥ 0 if r = +1

As far as in the above lines numerous quantities occur, let us sketch the role they
cover in our treatment, postponing the complete investigation on the hypotheses
we need to require on them to the next section. First we suppose α, β to be strictly
positive constant. Secondly we assume that the symbols b0, b1, b2, b3, b4 that appear
in 1.2 represent nonnegative constants, while ϕQ, σQ, u∗, u

∗ and ϕΩ, σΩ denote some
prescribed functions in their respective domains Q and Ω. Furthermore, the set Uad
models the admissible set in which we can choose the control variables.
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Let us spend a few words as the physical background of the involved variables
are concerned. The variable ϕ, called phase variable, is devoted to accounting for
the presence of the tumor in the evolution process. It represents a rescaled density
which ranges in [−1, 1], where the extreme values −1 and 1 model the complete
tumorous case and the healthy one, while the values in between denote intermediate
concentrations. The second variable µ stands for the chemical potential for ϕ, while
σ is a rescaled density which takes into account the nutrient-rich extracellular water
fraction. Furthermore, we assume that σ ranges from 0 to 1 and that when σ is
close to zero the nutrient is poor, while when σ is close to one, it is rich. Moreover,
the function P stands for a nonlinearity which describes the proliferation of the
tumorous cells in the tissue. As regards u, it represents the control variable, which
in the application consists of a supply of a nutrient or a drug in chemotherapy. A
more complete description of the model, along with some variations, can be found
in [7, 8, 10, 20]. Now, let us present some literature concerning some optimal
controllability results for these systems. Up to our knowledge, the first control
problem for a system very close to our system is [9]. There, the state system
slightly differs from 1.4–1.9, since, formally, consists of the same model in the case
α = β = 0. Moreover, the investigation has to be restricted to regular potentials
with polynomial growth, so that the double-obstacle one is not allowed. In that
regards, we also point out the recent [4], where the authors extend the analysis of
[9] employing a time-dependent cost functional which, in addition, penalizes the
long-time treatments and the large mass of the tumor at the end of the medication.
Next, we point out [34], where the author, adding the two relaxation terms α∂tµ,
β∂tϕ generalizes the optimal control problem [9] extending the analysis to the case
of singular and regular double-well potentials. With the current contribution, we
aim at showing that [34] can be generalized allowing also non-regular and singular
potentials to be considered. Lastly, regarding the models which take into account
the velocity field, let us mention the recent contributions [17, 18], where the authors
establish the existence of optimal control and provide some necessary and sufficient
conditions for optimality (see also [36]).

From a heuristic viewpoint, our problem consists of choosing an admissible con-
trol variable u to force the dynamics of the system to evolve towards a fixed final
configuration which is considered to be desirable for some practical reason (e.g.
surgery).

Summing up, our goal consists in solving the following problem.

(P0) Minimize J (ϕ, µ, u) subject to the control contraints 1.3 and under the

requirement that the variables (ϕ, σ) yield a solution to 1.4–1.9.

Once the well-posedness of the system 1.4–1.9 has been shown for every admissible
u, we can define the corresponding control-to-state mapping S0 as the map that
assigns to a fixed control the corresponding state, namely S0 : u 7→ (µ, ϕ, σ), where
(µ, ϕ, σ) solves 1.4–1.9. Moreover, let us fix a convention that will be used repeatedly
in the paper: with S0,2 we denote the map S0 restricted to the second and third
components, that is, S0,2(u) = (ϕ, σ). Furthermore, it is possible to introduce, over
Uad, the so-called reduced cost functional as follows

Jred(u) := J (S0,2(u), u). (1.10)

Thus, since we will assume Uad to be closed, bounded, convex and nonempty, we
are able to formally characterize the necessary condition that every optimal control
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ū has to satisfy by means of the following variational inequality

〈DJred(ū), v − ū〉 ≥ 0 for every v ∈ Uad, (1.11)

where DJred denotes the derivative of 1.10 in a proper functional sense. In this
direction, it will be necessary to prove some regularity result for S0 and we would
need I[−1,1](·) to be differentiable, which is not the case. For this reason, the
standard procedure to characterize the optimality conditions, which is essentially
based on 1.11, fails and we have to proceed with a different strategy (see, e.g.,
[32, 37]).

The technique that we are going to exploit is often referred to in the literature
as “deep quench” approach and it lies on a suitable approximation and some mono-
tonicity arguments. As far as some recent application of this strategy is concerned,
we mention the paper [11] and [6]. The former deals with an optimal control prob-
lem for the simpler Allen–Cahn system endowed with dynamic boundary conditions,
whereas the latter focuses the attention on the Cahn–Hilliard system combined with
dynamic boundary conditions in which the control variable represents the optimal
velocity for the system. We also refer the reader to [5, 12, 13] where, with the same
technique, other phase separation problems were faced.

Here, let us only sketch the idea behind this approximation scheme. The key
idea is the following: the differential inclusion 1.6 is replaced by a function which,
at every stage, resembles the logarithmic double-well potential and which, in a
proper sense, approximates the double obstacle nonlinearity as the parameter of the
approximation goes to zero. This plan will be quite effective since the corresponding
approximating problem complies with the framework of [34], and therefore all the
results there established are at our disposal. So, we formally substitute the inclusion
1.6 as follows

ξ = g(γ)h′(ϕ), (1.12)

where h is defined by

h(s) :=

{
(1− s) ln(1− s) + (1 + s) ln(1 + s) if s ∈ (−1,+1)

2 ln 2 if s ∈ {−1,+1},
(1.13)

and where g is a positive and regular function acting on the parameter.
We postulate that the function g is positive, such that g ∈ C0(0, 1], and that, for

every γ ∈ (0, 1], it satisfies the following limit properties

lim
γ↘0

g(γ) = 0, lim
γ↘0

g(γ)h(s) = 0 ∀s ∈ [−1,+1]. (1.14)

Moreover, the explicit expression of h, allows us to compute that h′(s) = ln
(

1+s
1−s
)
,

and that h′′(s) = 2
1−s2 > 0 for s ∈ (−1, 1). Hence, combining the requirements 1.14

with these expressions, we also realize that

lim
γ↘0

g(γ)h′(s) = 0 ∀s ∈ (−1,+1), lim
γ↘0

(
g(γ) lim

s→±1
h′(s)

)
= ±∞.

For instance, an admissible choice for the function g could be g(γ) := γp, for some
p > 0. In that framework, it follows that the graph of g(γ)h′(·) became closer to
the one of ∂I[−1,1](·) as the parameter γ goes to zero. Starting from this setting, we
will show that also the family of control problems generated by this substitution,
are close to (P0) as γ ↘ 0 in a suitable sense.
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We will see that this approximation scheme turns out to be sufficient to prove
the existence of an optimal control for the system 1.4–1.9. Anyhow, this approach
will also point out some weakness and limitations. In particular, we will realize that
nothing can be said as the approximation of optimal control for (P0) by sequences
of optimal controls for the approximating problem is concerned. This fact totally
prevents the possibility to recover some necessary conditions for the initial problem
by passing to the limit in the necessary conditions of the approximating ones.

However, something can be said if we restrict the analysis to local results. In
fact, localizing the problem around a fixed optimal control for (P0), we can prove a
kind of local density result in terms of approximating optimal controls. Namely, we
can show that for every fixed control for (P0), say ū, there exists an approximating
sequence which, at every stage, is constituted by an optimal control for a suitable
approximating problem. In order to prove such an approximation result, it will
be convenient to introduce another cost functional, called adapted, which reads as
follows

J̃ (ϕ, σ, u) := J (ϕ, σ, u) +
1

2
‖u− ū‖2L2(Q). (1.15)

Let us point out that J̃ strongly depends on the fixed control ū and also that if

we take (ϕ, σ) as (ϕ̄, σ̄) = S(ū), the adapted cost functional J̃ reduces to J . In

this sense J̃ consists of a local perturbation of J around the optimum ū. Next, we
will solve the control problem for the approximating system subject to the adapted
cost functional and, providing to show some uniform estimates with respect to γ,
we will pass to the limit in the corresponding optimality conditions to characterize
the one for our initial system.

The plan of the rest of the paper is as follows. In the following section, we
provide a precise description of the arguments introduce up to now at a formal level.
Moreover, we fix our setting and assumptions, and also state the established results.
From the third section on, we focus the attention on the corresponding proofs.
Furthermore, Section 3 is totally devoted to the investigation of the approximating
problem, while the existence of optimal controls has been proved in Section 4. To
conclude, in Section 5 we perform the asymptotic analysis that will allow us to
obtain the necessary condition for the problem we are dealing with.

2. Setting and main results. In this section, we state the main results on exis-
tence of optimal controls and on the optimality conditions. First of all, let us define
some functional spaces that will be extremely useful later on

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ},

Y :=

(
H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

)3
, Ŷ := Π2 ◦ Y,

where Π2 stands for the projection of the first two components. Furthermore, we
endow them with their natural norm to obtain some Banach spaces, and agree
that the symbol ‖·‖X denotes the norm associated with a generic Banach space X.
Moreover, we denote with 〈·, ·〉 the duality pairing between V and its dual V ∗.

Our basic assumptions on the system 1.4–1.9, on Uad, and on the cost functional
1.2 are as follows

b0, b1, b2, b3, b4 are nonnegative constants, but not all zero. (2.1)

ϕQ, σQ ∈ L2(Q), ϕΩ, σΩ ∈ H1(Ω), u∗, u
∗ ∈ L∞(Q) with u∗ ≤ u∗ a.e. in Q. (2.2)
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α, β > 0. (2.3)

P ∈ C2(R) is nonnegative, bounded and Lipschitz continuous. (2.4)

π̂ ∈ C3(R) and π := π̂′ is Lipschitz continuous. (2.5)

µ0, ϕ0, σ0 ∈ H1(Ω). (2.6)

|ϕ0| ≤ 1 a.e. in Ω. (2.7)

We thus may infer that the choices of u∗ and u∗ entails that the set Uad in turn is
bounded, closed, convex and nonempty. Moreover, given a positive constant R, we
introduce

UR ⊂ L2(Q) be a nonempty and bounded open set such that it contains Uad,
and ‖u‖2 ≤ R for all u ∈ UR.

Let us emphasize that the singular, while not regular, double-well potential we are
considering is usually referred to as the double-obstacle potential and it reads as

F2obst := I[−1,1] + π̂.

One has also to keep in mind that ∂I[−1,1] may be multivalued and therefore, we
introduce a selection ξ by 1.6 that may not be regular enough to possess a trace.

Now, we can start to list our results.

Theorem 2.1 (Well-posedness). Suppose that 2.3-2.7 are fullfilled. Then, for every
u ∈ L2(Q), there exists a unique quadruplet (µ, ϕ, σ, ξ) ∈ Y × L2(Q) which solves
1.4–1.9.

Proof. It directly follows as a special case from [7, Thm. 2.2, p. 2426] and [8,
Thm. 2.2, p. 97].

The above result allows us to properly introduce the control-to-state mapping
S0 : L2(Q) → Y, which is the map that assigns to every admissible control u the
corresponding solution (µ, ϕ, σ) to system 1.4–1.9. As the approximating system
is concerned, assuming 1.13–1.14, and replacing 1.6 by 1.12, we get the following
system which depends on γ and reads as

α∂tµ
γ + ∂tϕ

γ −∆µγ = P (ϕγ)(σγ − µγ) in Q (2.8)

µγ = β∂tϕ
γ −∆ϕγ + g(γ)h′(ϕγ) + π(ϕγ) in Q (2.9)

∂tσ
γ −∆σγ = −P (ϕγ)(σγ − µγ) + u in Q (2.10)

∂nµ
γ = ∂nϕ

γ = ∂nσ
γ = 0 on Σ (2.11)

µγ(0) = µγ0 , ϕ
γ(0) = ϕγ0 , σ

γ(0) = σγ0 in Ω, (2.12)

where {(µγ0 , ϕ
γ
0 , σ

γ
0 )}γ denotes a family of initial data. We postulate that such a

family fulfills the following requirements

(µγ0 , ϕ
γ
0 , σ

γ
0 ) ∈ (H1(Ω) ∩ L∞(Ω))×W ×H1(Ω) ∀γ ∈ (0, 1], (2.13)

|ϕγ0 | ≤ 1− γ/2 a.e. in Ω ∀γ ∈ (0, 1], (2.14)

(µγ0 , ϕ
γ
0 , σ

γ
0 )→ (µ0, ϕ0, σ0) strongly in V × V × V as γ ↘ 0. (2.15)

Even though they seem to be reasonable assumptions, the existence of a family
that satisfies all the above conditions is not so trivial. For this reason we refer
to Appendix 6, where the construction of such a family is shown in detail. Since
the approximating problem 2.8–2.12 perfectly fits the framework of [34], the result
below follows by a simple application of [34, Thm. 2.1].
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Theorem 2.2 (Well-posedness of the approximating system). Assume that 1.13–
1.14, 2.3-2.6, and 2.13–2.15 are in force.

(i) For every γ ∈ (0, 1] and every u ∈ Uad, the system 2.8–2.12 admits a unique
solution (µγ , ϕγ , σγ) that possesses the following regularity

ϕγ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ⊂ C0([0, T ];C0(Ω)) (2.16)

µγ , σγ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ) (2.17)

µγ ∈ L∞(Q), (2.18)

and whose second component also satisfies that

−1 < inf ϕγ ≤ supϕγ < 1 a.e. in Q.

(ii) For every given γ ∈ (0, 1] there exist constants ϕ∗(γ), ϕ∗(γ) ∈ (−1, 1), which
depend on γ, on the initial data, and on the data of the system such that

ϕ∗(γ) ≤ ϕγ ≤ ϕ∗(γ) a.e. in Q, (2.19)

where ϕγ is the second component of the unique solution to the approximating
system 2.8–2.12 associated to the given u.

Remark 1. Let us point out that, unfortunately, a uniform separation property
from (−1, 1) is out of reach. In fact, when γ ↘ 0, it may occur that

ϕ∗(γ)↘ −1 and/or ϕ∗(γ)↗ 1.

Nonetheless, although we cannot prove a separation result for 1.4–1.9, we will
see that in the asymptotic investigation the separation property 2.19 for the ap-
proximated system will be using several times. Another ingredient that will be
fundamental in the asymptotic analysis is the result below.

Lemma 2.3. Suppose that u ∈ UR, and that assumptions 1.13–1.14, 2.3-2.6, and
2.13–2.15 are fulfilled. Then, whenever γ ∈ (0, 1] and (µγ , ϕγ , σγ) is the correspond-
ing solution to 2.8–2.12, it holds that

‖(µγ , ϕγ , σγ)‖Y ≤ C2, (2.20)

where C2 is a positive constant which only depends on the data of the system, but
it is independent of the parameter γ. Moreover, we have the following estimate

‖g(γ)h′(ϕγ)‖L2(Q) ≤ C3. (2.21)

Once the state system 2.8–2.12 has been analyzed, we can address the correspond-
ing control problem and, as above, we set the following minimization problem.

(Pγ) Minimize J (ϕγ , σγ , u) subject to the control contraints 1.3 and under

the requirement that the variables (ϕγ , σγ) are the components of the

solution to 2.8–2.12.

Let us recall that in Theorem 2.2 the well-posedness of system 2.8–2.12 has been
already shown. Therefore, we are also in a position to define, for every γ ∈ (0, 1],
the well-posed map Sγ consisting of the control-to-state mapping associated to the
system 2.8–2.12, and the corresponding restriction Sγ,2. In addition, since (Pγ)
complies with the framework of [34], a simple application of [34, Thm. 2.6] leads to
the following lemma.

Lemma 2.4. Assume that 1.13–1.14, 2.1-2.7, and 2.13–2.15 are in force. Then,
whenever γ ∈ (0, 1] is given, the problem (Pγ) admits at least an optimal control.
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Now, let us present the existence result, whose proof will be structured this way:
first, we approximate in a suitable sense (P0) as γ ↘ 0 by (Pγ) and then, accounting
for some compactness and monotonicity arguments, we pass to the limit.

Theorem 2.5 (Existence of optimal controls). Suppose that 2.1-2.7 are fulfilled.
Then (P0) admits at least a solution.

As already mentioned, the existence result combined with some asymptotic tech-
niques turns out to be insufficient to properly characterize the optimality conditions
we are looking for. In particular, the fact that every optimal control for (P0) can be
found as a limit, in a proper topology, of some approximating sequences of optimal
controls for (Pγn) cannot be proven, whenever {γn} ⊂ (0, 1] denotes a sequence
which goes to zero as n↗∞. This gives no hope to recover some necessary condi-
tions for (P0) by the mere investigation of the ones of (Pγn), since the passage to
the limit at that stage will be meaningless.

However, even though we are not able to prove such a global result, a partial
one can be stated localizing the problem. The key idea, which was introduced by
Barbu in [2], consists of investigating the same approximating problem 2.8–2.12,
but focusing the attention on the control problem corresponding to the adapted
cost functional. Hence, the so-called adapted control problem reads as follows:

(P̃γ) Minimize J̃ (ϕγ , σγ , u) subject to the control contraints 1.3 and under the

requirement that the variables (ϕγ , σγ) yield a solution to 2.8–2.12,

where let us remind that J̃ is defined, once that ū has been fixed, by

J̃ (ϕ, σ, u) := J (ϕ, σ, u) +
1

2
‖u− ū‖2L2(Q).

Again, we can easily prove the following lemma which straightforwardly follows as
an application of [34, Thm. 2.6].

Lemma 2.6. Under the assumptions 1.13–1.14, 2.1-2.6, and 2.13–2.15, whenever

ū ∈ Uad and γ ∈ (0, 1] are given, the optimal control problem (P̃γ) possesses at least
a solution.

The key result which motivate the interest toward the adapted optimal control
problem is formalized in the next theorem where we will show that every fixed
optimal control for (P0) can be obtained as a limit of a sequence of optimal controls

for (P̃γ) which is of great importance for the forthcoming asymptotic analysis.
Indeed, we have:

Theorem 2.7. Assume that 1.13–1.14, 2.1-2.7, and 2.13–2.15 are in force. More-

over, let (ϕ̄, σ̄, ū) ∈ Ŷ ×Uad be an optimal choice for (P0). Then, for every sequence
{γn}n which goes to zero as n ↗ ∞, and for every n ∈ N, there exists an approx-

imating optimal triple for (P̃γn), namely (ϕ̄γn , σ̄γn , ūγn), whose components satisfy
the following convergences as n↗∞

ūγn → ū strongly in L2(Q) (2.22)

ϕ̄γn → ϕ̄ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.23)

σ̄γn → σ̄ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.24)

J̃ (ϕ̄γn , σ̄γn , ūγn)→ J (ϕ̄, σ̄, ū). (2.25)
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Let us emphasize that this is the correct way in which the assertion “(Pγ) ap-
proximates (P0) as γ ↘ 0” has to be interpreted. By virtue of the above result,
it is somehow reasonable that some optimality conditions can be earn exploiting
this result. Indeed, we will establish the first optimality conditions for (P0) by
passing to the limit as n ↗ ∞ in the corresponding optimality conditions for the

approximating problem (P̃γn).
In Section 5, we will present the adjoint system for 2.8–2.12 which was originally

treated in [34]. That system is formulated in terms of the variables qγ , pγ , rγ and it
represents a core argument in order to pass to the limit to characterize the optimality
conditions for 1.4–1.9. At this stage, let us only disclose that it admits existence
and uniqueness of a solution and also that we are able to show the regularity that its
solution enjoys (cf. Theorem 5.3). Next, we investigate the properties of this system
in order to let γ ↘ 0 to characterize the optimality conditions we are looking for.
To precisely state the asymptotic result we have established, let us first introduce
further spaces that will naturally come out from the mathematical analysis. We set

Z := (L∞(0, T ;H) ∩ L2(0, T ;V ))× (H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ))

× (H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )), (2.26)

W(0, T ) := H1(0, T ;V ∗) ∩ L2(0, T ;V ) ⊂ C0([0, T ];H), (2.27)

W0(0, T ) := {v ∈ W(0, T ) : v(0) = 0}, (2.28)

and endow these spaces with their natural norm to get three Banach spaces. To
avoid an heavy notation, we will denote the norm of W(0, T ) and W0(0, T ) by
‖·‖W and ‖·‖W0 , respectively. Furthermore, we convey to use W∗0 (0,T )〈·, ·〉W0(0,T )

for the duality product between the dual of W0(0, T ), W0(0, T )∗ and W0(0, T )
itself. Moreover, it is worth noting that the space L2(0, T ;V ∗) is embedded into
W0(0, T )∗. In fact, if z belongs to L2(0, T ;V ∗), for every v in W0(0, T ), we have
that

W0(0,T )∗〈z, v〉W0(0,T ) =

∫ T

0
V ∗〈z(t), v(t)〉V dt.

In conclusion, we present the results we are able to prove which specify how the
new optimality conditions have to be read.

Theorem 2.8. Suppose that 1.13–1.14, 2.1-2.7, and 2.13–2.15 are satisfied, and
let us define

λγn := g(γn)h′′(ϕ̄γn) q̄γn for every n ∈ N, (2.29)

where h is the function introduced by 1.13 and where {γn} ⊂ (0, 1] is a sequence
which goes to zero as n ↗ ∞. Then, there exists a positive constant C4 such that,
for every n ∈ N, the following holds true

‖(q̄γn , p̄γn , r̄γn)‖Z + ‖∂tq̄γn‖W0(0,T )∗ + ‖λγn‖W0(0,T )∗ ≤ C4, (2.30)

where the variables q̄γn , p̄γn , r̄γn denote the unique solutions to the adjoint problem
for 2.8–2.12 considered for the element of the sequence γn instead of for γ, and
where the constant C4 may depend on the data of the system, but it is independent
of n. In addition, up to a subsequence, we deduce the following convergences

q̄γn → q weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ) (2.31)
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p̄γn → p weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.32)

r̄γn → r weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.33)

λγ → λ weakly in W∗0 . (2.34)

This will allow us to let γ ↘ 0 and prove the following optimality conditions.

Theorem 2.9. Let the assumptions 1.13–1.14, 2.1-2.7, and 2.13–2.15 be fulfilled.

Furthermore, let (ϕ̄, σ̄, ū) ∈ Ŷ × Uad be an optimal choice for (P0). Then the
following properties hold true.
(i) Whenever a sequence {γn} ⊂ (0, 1] which goes to zero as n↗∞ is fixed, we have
that for every n ∈ N there exists an approximating optimal triple (ϕ̄γn , σ̄γn , ūγn) to

(ϕ̄, σ̄, ū), namely a triplet which solves the adapted control problem (P̃γn) and which,
as n↗∞, satisfies the convergences pointed out by 2.31–2.34.
(ii) Moreover, under the same assumptions we have that for every subsequence
{nk}k of N, there exists a subsequence {nkj}j, a triple (p, q, r) ∈ Z, and a functional
λ ∈ W0(0, T )∗ such that the variational inequality which characterizes the optimality∫

Q

(r + b0ū)(v − ū) ≥ 0 ∀v ∈ Uad, (2.35)

is satisfied. Furthermore, for a.a. t ∈ (0, T ), the triplet (q, p, r) solves the adjoint
system consisting of the following variational equation∫ T

0

〈∂tv, p− βq〉 −W∗0 〈λ, v〉W0 +

∫
Q

∇q · ∇v −
∫
Q

π′′(ϕ̄)qv

+

∫
Q

P ′(ϕ̄)(σ̄ − µ̄)(r − p) v =

∫
Q

b1(ϕ̄− ϕQ)v +

∫
Ω

b2(ϕ̄(T )− ϕΩ)v(T ), (2.36)

which holds for every v ∈ W0(0, T ), combined with

q − α∂tp−∆p+ P (ϕ̄)(p− r) = 0 in Q (2.37)

−∂tr −∆r + P (ϕ̄)(r − p) = b3(σ̄ − σQ) in Q (2.38)

∂np = ∂nr = 0 on Σ (2.39)

αp(T ) = 0, r(T ) = b4(σ̄(T )− σΩ) in Ω. (2.40)

In addition, we can show that

lim inf
n→∞

∫
Q

λγn q̄γn ≥ 0, (2.41)

and also a complementary slackness condition

lim
n→∞

∫
Q

λγn(1− (ϕ̄γn)2)Φ = 2 lim
n→∞

∫
Q

g(γn) q̄γnΦ = 0, (2.42)

are satisfied, where Φ is a general smooth function which vanishes at zero. Note
that the above limits should be considered, in principle, for the subsequence {nkj}j
as j ↗∞.

Remark 2. It can possibly occur that the limit triple (q, p, r), and/or λ may be not
uniquely determined. Indeed, it should happen that for different subsequences the
corresponding limit q, p, r, and λ may change. Anyhow, a proper kind of uniqueness
can be stated in term of a suitable projection. In fact, whenever b0 > 0, it follows
from the variational inequality 2.35 that

ū = PUad
(−b−1

0 r),
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where PUad
stands for the orthogonal projection onto Uad with respect to the stan-

dard inner product of L2(Q), so that r is uniquely determined in terms of ū.

In the remainder, we recollect some useful inequalities and properties that are
applied several times in the paper. First, we often owe to the well-known Young
inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0. (2.43)

Furthermore, since the evolution set Ω is a bounded subset of R3 and possesses
regular boundary, we can account for the Sobolev continuous embedding

H1(Ω) ↪→ Lq(Ω) which is satisfied for every q ∈ [1, 6], (2.44)

i.e. we have the existence of suitable constant for which the following inequality
holds true

‖v‖Lq(Ω) ≤ Cq‖v‖V for every v ∈ V and q ∈ [1, 6].

Let us conclude the section explaining a convention that we are going to employ as
far as constants are concerned. Since in the following we have to deal with several
estimates, we agree to use the symbol c for every constant which depends only on
the final time T , on Ω, the shape of the nonlinearities, on the norms of the involved
functions, and possibly on α and β, but it has to be independent of γ. Therefore,
the meaning of c might change from line to line and even in the same chain of
inequalities. On the other hand, the capital letters are devoted to denoting precise
constants which we eventually will refer to.

3. Approximating system. From this section on, we start with the proofs of the
stated results. In this section, we deal with the approximating system 2.8–2.12.
Since a lot of properties immediately follows from [34] no repetition is required
here. As a matter of fact, we only need to prove Lemma 2.3, namely check that the
constant C2 involved in the lemma turns out to be independent of γ. This property
will be fundamental later on to let γ ↘ 0 in order to to prove the existence of an
optimal control for (P0).

Proof of Lemma 2.3. We employ similar estimates to the ones performed in [34,
Proof of Thm. 2.1] while referred to the approximating problem 2.8–2.12. Further-
more, we will have the care to show that all the constants that will appear do not
depend on γ.
First estimate: We add to both sides of 2.9 the term ϕγ , multiply 2.8 by µγ , this
new second equation by −∂tϕγ and 2.10 by σγ , then we add the resulting equations
and integrate over Qt and by parts to obtain

α

2

∫
Ω

|µγ(t)|2 +

∫
Qt

|∇µγ |2 + β

∫
Qt

|∂tϕγ |2 +
1

2

∫
Ω

|ϕγ(t)|2 +
1

2

∫
Ω

|∇ϕγ(t)|2

+ g(γ)

∫
Ω

h(ϕγ(t)) +
1

2

∫
Ω

|σγ(t)|2 +

∫
Qt

|∇σγ |2 +

∫
Qt

P (ϕγ)(σγ − µγ)2

≤ α

2

∫
Ω

|µγ0 |2 +
1

2

∫
Ω

|ϕγ0 |2 +
1

2

∫
Ω

|∇ϕγ0 |2 + g(γ)

∫
Ω

h(ϕγ0)

+
1

2

∫
Ω

|σγ0 |2 +

∫
Qt

uσγ +

∫
Qt

ϕγ ∂tϕ
γ +

∫
Qt

π(ϕγ)∂tϕ
γ ,
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where almost all the integrals on the left-hand side are nonnegative since they are
squares and P is so by 2.4. In fact, the only term that needs further manipulations
is the sixth, the one in which g and h appear. First of all, let us recall that g
is assumed to be positive, that h is defined by 1.13 and that it remains bounded
in the interval (−1, 1). Moreover, as a solution, ϕγ possesses the regularity stated
by 2.16 and also enjoys the separation result 2.19. Therefore, both ϕγ(t) and ϕγ0
range in the inner part of the interval (−1, 1), and from this property, along with
the fact that h is bounded from below in [−1, 1], we infer that h(ϕγ(t)) is bounded
from below as well. Hence, we neglect that term and we are reduced to control the
integrals on the right-hand side which we denote by I1, ..., I8, in this order. Due to
the requirements 2.13–2.15 and the above observation we immediately deduce that

5∑
i=1

|Ii| ≤ c.

As the other terms are concerned, we invoke the Young inequality to show that

|I6|+ |I7|+ |I8| ≤
1

2

∫
Qt

|u|2 +
1

2

∫
Qt

|σγ |2 + 2δ

∫
Qt

|∂tϕγ |2 + cδ

∫
Qt

(|ϕγ |2 + 1),

for a positive δ yet to be determined. Hence, we fix 0 < δ < β/2 and a Gronwall
argument yields

‖µγ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕγ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σγ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c.
Second estimate: Now, we multiply 2.8 by ∂tµ

γ and 2.10 by ∂tσ
γ , add the re-

sulting equalities and integrate over Qt. Owing to the above estimate we easily
conclude that

‖µγ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σγ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c.
Third estimate: Equations 2.8 and 2.10 show a parabolic structure with respect
to the variables µγ and σγ , respectively. In turn, it follows from the above estimates
that their forcing terms both belong to L2(0, T ;H). Hence, since the initial data
2.12 are regular due to 2.13, the elliptic regularity theory for homogeneous Neumann
boundary problems produces

‖µγ‖L2(0,T ;W ) + ‖σγ‖L2(0,T ;W ) ≤ c.
Fourth estimate: Next, we aim at improving the regularity of ϕγ arguing in a
similar way via a comparison argument in 2.9. So, let us rearrange 2.9 as follows

−∆ϕγ + g(γ)h′(ϕγ) = f, where f := µγ − β ∂tϕγ − π(ϕγ), (3.1)

and we realize that the above estimates entail that f ∈ L2(0, T ;H). We then test
3.1 by −∆ϕγ and integrate over Ω to get, for a.a. t ∈ (0, T ), the following inequality∫

Ω

|∆ϕγ(t)|2 + g(γ)

∫
Ω

h′′(ϕγ(t)) |∇ϕγ(t)|2 ≤ 1

2

∫
Ω

|∆ϕγ(t)|2 +
1

2

∫
Ω

|f(t)|2,

where we have applied Young’s inequality on the right-hand side. The second term
of the left-hand side turns out to be positive since ϕγ(t) satisfies 2.19 and h′′ is
nonnegative in such an interval. Hence, we realize that

1

2

∫
Ω

|∆ϕγ(t)|2 ≤ 1

2

∫
Ω

|f(t)|2,

and the elliptic regularity theory for homogeneous Neumann problem yields that

‖ϕγ‖L2(0,T ;W ) ≤ c.
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Combining all the above estimates, it is straightforward to realize that 2.20 has
been proved.

Let us conclude by proving the second part of the lemma.
Fifth estimate: On account of the above estimates, a comparison in 2.9 directly
gives that

‖g(γ)h′(ϕγ)‖L2(Q) ≤ c, (3.2)

that is the estimate we are looking for.

4. Existence and approximation of optimal controls. Here, we essentially
aim to show the validity of Theorems 2.5 and 2.7.

Proof of Theorem 2.5. Let us pick an arbitrary sequence {γn} ⊂ (0, 1] which goes
to zero as n ↗ ∞. In view of Lemma 2.4, we can take an optimal triple for (Pγn)
associated with that sequence. Namely, for every n ∈ N, we consider the following
triple

(ϕγn , σγn , uγn) ∈ Ŷ × Uad, (4.1)

where (ϕγn , σγn) = Sγn,2(uγn). Moreover, from Lemma 2.3 and Theorem 2.2 it
follows that

|ϕγn | < 1 a.e. in Q, and ‖(ϕγn , σγn)‖Ŷ ≤ C2 for every n ∈ N, (4.2)

where the constant C2 is independent of γ. Therefore, thanks to well-known weak
star compactness, it is a standard matter to show that there exist some ū ∈ Uad,
and a triple (µ̄, ϕ̄, σ̄) ∈ Y, such that the following convergences

uγn → ū weakly star in L∞(Q)

ϕγn → ϕ̄ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

σγn → σ̄ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

µγn → µ̄ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

hold as n↗∞ . Furthermore, due to the continuity of the embedding

H1(0, T ;H) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ),

we infer that ϕ̄, σ̄ ∈ C0([0, T ];V ). In addition, also some strong convergences can be
recovered invoking the Aubin-Lions lemma (see, e.g., [35, Sect. 8, Cor. 4]). Indeed,
one can show that

ϕγn → ϕ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (4.3)

σγn → σ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (4.4)

µγn → µ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ). (4.5)

At this point, from the assumptions on the initial data 2.13–2.15, combined with
the above strong convergences, we infer that ϕ̄(0) = ϕ0 and σ̄(0) = σ0. By the same
token, we can handle both the nonlinearities P and π, that are Lipschitz continuous
by 2.4 and 2.6, respectively. In fact, as n↗∞, we also realize that

P (ϕγn)→ P (ϕ̄) strongly in L2(0, T ;H)

π(ϕγn)→ π(ϕ̄) strongly in L2(0, T ;H).

Moreover, estimate 3.2 also leads to the following weak convergence

g(γn)h′(ϕγn)→ ξ weakly in L2(0, T ;H). (4.6)
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Now, we claim that its limit, that we have denoted by ξ, has the same meaning
of the variable ξ introduced in 1.5, namely that ξ ∈ ∂I[−1,1](ϕ̄) a.e. in Q. For this
purpose, we account for the convexity property of h defined by 1.13. It yields that,
for every n ∈ N, the following inequality is satisfied∫

Q

g(γn)h(ϕγn) +

∫
Q

g(γn)h′(ϕγn)(w − ϕγn) ≤
∫
Q

g(γn)h(w) for all w ∈ B1,

where B1 := {v ∈ L2(Q) : |v| ≤ 1 a.e. in Q}. Then, we owe to 1.14 and deduce
that in the above inequality the former and the latter terms go to zero as n↗∞ .
Therefore, we combine the strong convergence 4.3 with the weak one 4.6 to find in
the limit ∫

Q

ξ(ϕ̄− w) ≥ 0 for every w ∈ B1, (4.7)

which means exactly that ξ is an element of the subdifferential of the extension of
I[−1,1](·) to L2(Q), or equivalently (cf. [3, Ex. 2.3.3., p. 25]) that ξ ∈ ∂I[−1,1](ϕ̄),
as we claimed. Hence, all the above convergences ensure us the possibility to pass
to the limit as n↗∞ and realize that (ϕ̄, σ̄, ū) solves 1.4–1.9 and also that it is an
admissible choice for (P0), i.e. that (ϕ̄, σ̄) = S0,2(ū).

To conclude, it remains to show that (ϕ̄, σ̄, ū) is in fact not only admissible,
but also optimal and we will manage this problem by accounting for monotonicity
arguments. In fact, recalling that 1.2 is lower semicontinuous, it turns out that the
following

J (ϕ̄, σ̄, ū) = J (S0,2(ū), ū) ≤ lim inf
n→∞

J (Sγn,2(uγn), uγn)

≤ lim inf
n→∞

J (Sγn,2(v), v) ≤ lim
n→∞

J (Sγn,2(v), v) = J (S0,2(v), v)

is satisfied for every fixed v ∈ Uad, where in the last inequality we exploit the
continuity of the cost functional with respect to the first component.

As a consequence of the above proof, we also realize the following corollary.

Corollary 1. Assume 1.13–1.14, 2.1-2.7, 2.13–2.15, and let {γn} ⊂ (0, 1] be a
sequence which goes to zero as n↗∞. Then, whenever a sequence {uγn} such that
uγn → ū weakly star in L∞(Q) is given, we have that

Sγn,2(uγn)→ S0,2(ū) weakly star in Ŷ.

Moreover, for every v ∈ UR, we have that

Sγn,2(v)→ S0,2(v) strongly in L2(0, T ;V ),

and, due to the continuity of the cost functional with respect to the first component,
also that

lim
n→∞

J (Sγn,2(v), v) = J (S0,2(v), v) for every v ∈ UR. (4.8)

Below, we prove Theorem 2.7, which is the best we can say as far as the approx-
imation of optimal controls for (P0) is concerned. Monotonicity and compactness
arguments will be the key arguments to show this result.

Proof of Theorem 2.7. Let γ ∈ (0, 1] be fixed, and let (ϕ̄γ , σ̄γ , ū) be an optimal

triple for (P̃γ) which exists by virtue of Lemma 2.6. The boundedness of Uad and
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Lemma 2.3 yield that there exist ϕ, σ, u, and a sequence {γn}, which goes to zero
as n↗∞, for which the convergences

ūγn → u weakly star in L∞(Q) (4.9)

ϕ̄γn → ϕ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (4.10)

σ̄γn → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (4.11)

are satisfied. Moreover, in view of Corollary 1, we also realize that (ϕ, σ, u) is an
admissible triple for (P0), i.e. that (ϕ, σ) = S0,2(u).

As a matter of fact, monotonicity arguments will allow us to say more. Indeed,
we are able to show that the limit u coincides with ū, and from the well-posedness of

S0 also that (ϕ, σ) = S0,2(u) = S0,2(ū) = (ϕ̄, σ̄). As far as J̃ is lower semicontinuous
and (ϕ̄, σ̄, ū) is optimal for (P0), we deduce that the following inequality holds true

lim inf
n→∞

J̃ (ϕ̄γn , σ̄γn , ūγn) ≥ J̃ (ϕ, σ, u) = J (ϕ, σ, u) +
1

2
‖u− ū‖2L2(Q)

≥ J (ϕ̄, σ̄, ū) +
1

2
‖u− ū‖2L2(Q), (4.12)

where we also exploit the definition of the reduced cost functional J̃ introduced by

1.15. In addition, owing to the optimality of (ϕ̄γn , σ̄γn , ūγn) for (P̃γn), we realize
that

J̃ (ϕ̄γn , σ̄γn , ūγn) = J̃ (Sγn,2(ūγn), ūγn) ≤ J̃ (Sγn,2(ū), ū) for every n ∈ N.

Therefore, we pass to the superior limit in both sides of the above inequality to
obtain that

lim sup
n→∞

J̃ (ϕ̄γn , σ̄γn , ūγn) ≤ J̃ (S0,2(ū), ū) = J̃ (ϕ̄, σ̄, ū) = J (ϕ̄, σ̄, ū), (4.13)

where the last equality has been treated invoking 4.8 and the fact that J̃ reduces to
J whenever it is considered to act on an optimal triple for (P0). Thus, combining
inequality 4.12 and 4.13 imply that

1

2
‖u− ū‖2L2(Q) = 0, (4.14)

which consists of the first convergence 2.22. Moreover, this also establishes that
ū = u and (ϕ̄, σ̄) = (ϕ, σ) which prove 2.23 and 2.24 as well. Finally, due to the
above estimates, we also find that

J (ϕ̄, σ̄, ū) = J̃ (ϕ̄, σ̄, ū) = lim inf
n→∞

J̃ (ϕ̄γn , σ̄γn , ūγn)

= lim sup
n→∞

J̃ (ϕ̄γn , σ̄γn , ūγn) = lim
n→∞

J̃ (ϕ̄γn , σ̄γn , ūγn),

so that the desired convergence 2.25 has been shown.

5. Optimality results. This final section is devoted to the check Theorems 2.8
and 2.9. We aim to characterize the optimality conditions for the initial system
1.4–1.9 by passing to the limit in the first-order necessary conditions of the approx-
imating problem. As already underlined, the mathematical analysis that comes out
will be quite involved since a sort of double approximation has to be considered.
To begin with, let us start to investigate the optimality results for the approximat-
ing system 2.8–2.12 which perfectly fits the framework of [34]. As far as numerous
problems were already investigated there, no repetition for the proofs is needed in
what follows.
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5.1. The linearized system of the approximating problem. In the remainder,
we require that ū ∈ UR is given, and we denote (µ̄γ , ϕ̄γ , σ̄γ) the corresponding
solution to 2.8–2.12. At this stage is not so important if ū is an optimal control or
not, it only matters that ū is fixed.

For a given γ ∈ (0, 1] and for every ψ ∈ L2(Q), the linearized system correspond-
ing to 2.8–2.12 reads as follows (c.f. [34, Sec. 4.2])

α∂tη
γ + ∂tϑ

γ −∆ηγ = P ′(ϕ̄γ)(σ̄γ − µ̄γ)ϑγ + P (ϕ̄γ)(ργ − ηγ) in Q (5.1)

ηγ = β∂tϑ
γ −∆ϑγ + g(γ)h′′(ϕ̄γ)ϑγ + π′(ϕ̄γ)ϑγ in Q (5.2)

∂tρ
γ −∆ργ = −P ′(ϕ̄γ)(σ̄γ − µ̄γ)ϑγ − P (ϕ̄γ)(ργ − ηγ) + ψ in Q (5.3)

∂nρ
γ = ∂nϑ

γ = ∂nη
γ = 0 on Σ (5.4)

ργ(0) = ϑγ(0) = ηγ(0) = 0 in Ω. (5.5)

An application of [34, Thm. 2.4] leads to the result below. Let us only point out
that the symbol h covers a different role there.

Lemma 5.1. Assume 1.13–1.14, 2.1-2.7, and 2.13–2.15. Then, whenever ψ ∈
L2(Q) is given, the system 5.1–5.5 admits a unique solution (ηγ , ϑγ , ργ) that belongs
to Y.

5.2. Fréchet differentiability of Sγ . Our next goal is concerned with the Fréchet
differentiability of the control-to-state mapping Sγ . Again, since the system 2.8–
2.12 was already investigated, let us recall the obtained result (c.f. [34, Thm. 2.5]).

Lemma 5.2 (Fréchet differentiability of Sγ). Assume that 1.13–1.14, 2.3-2.5, and
2.13–2.15 are fulfilled. Then the control-to-state mapping Sγ , viewed as a mapping
from UR into the state space Y, is Fréchet differentiable at ū. Moreover, for any ū ∈
UR the Fréchet derivative DSγ(ū) is a linear and continuous operator from L2(Q)
to Y. Furthermore, for every ψ ∈ L2(Q) we have that DSγ(ū)ψ = (ηγ , ϑγ , ργ),
where (ηγ , ϑγ , ργ) is the unique solution to 5.1–5.5 associated with ψ.

5.3. Optimality conditions for the adapted problem. In the following, we
deal with the optimality conditions for (P̃γ) that will turn out to be extremely
fruitful in view of the forthcoming asymptotic analysis. At a formal stage, we can

assert that wherever ūγ represents an optimal control for (P̃γ), which exists by
virtue of Lemma 2.6, the variational inequality, which characterizes the optimality
conditions we are looking for, reads

〈DJ̃red,γ(ūγ), v − ūγ〉 ≥ 0 ∀v ∈ Uad, (5.6)

where DJ̃red,γ denotes the Fréchet derivative of J̃red,γ and where this latter stands

for the reduced cost functional corresponding to J̃ and it can be defined as made

in 1.10, while referred to J̃ instead of J . Moreover, we can appeal to the chain
rule to infer that, for every fixed γ ∈ (0, 1], we have

DJ̃red,γ(ū) = D(ϕ̄,σ̄)J̃ (Sγ,2(ū), ū) ◦DSγ,2(ū) +DūJ̃ (Sγ,2(ū), ū). (5.7)

Having Lemma 5.2 at disposal, a simple application of [34, Cor. 2.7] yields:

Corollary 2 (First necessary condition). Suppose that the assumptions 1.13–1.14,
2.1-2.5, and 2.13–2.15 are fulfilled. Let γ ∈ (0, 1] be given, and let ūγ ∈ Uad be

an optimal control for (P̃γ) with its corresponding state (µ̄γ , ϕ̄γ , σ̄γ). Then, the
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necessary condition for the optimality reads as follows

b1

∫
Q

(ϕ̄γ − ϕQ)ϑγ + b2

∫
Ω

(ϕ̄γ(T )− ϕΩ)ϑγ(T ) + b3

∫
Q

(σ̄γ − σQ)ργ

+ b4

∫
Ω

(σ̄γ(T )− σΩ)ργ(T ) +

∫
Q

(b0ū
γ + (ūγ − ū))(v − ūγ) ≥ 0 ∀v ∈ Uad,

(5.8)

where ϑγ and ργ are the second and third components of the unique solution (ηγ , ϑγ ,
ργ) to the linearized system 5.1–5.5 associated with ψ = v − ūγ .

Anyhow, the presence of the linearized variables ϑγ and ργ in the above inequality
is rather unpleasant, thus we try to eliminate them by solving the so-called adjoint
system that consists of the problem below

β∂tq
γ − ∂tpγ + ∆qγ − g(γ)h′′(ϕ̄γ)qγ − π′′(ϕ̄γ)qγ

+ P ′(ϕ̄γ)(σ̄γ − µ̄γ)(rγ − pγ) = b1(ϕ̄γ − ϕQ) in Q (5.9)

qγ − α∂tpγ −∆pγ + P (ϕ̄γ)(pγ − rγ) = 0 in Q (5.10)

− ∂trγ −∆rγ + P (ϕ̄γ)(rγ − pγ) = b3(σ̄γ − σQ) in Q (5.11)

∂nq
γ = ∂np

γ = ∂nr
γ = 0 on Σ (5.12)

pγ(T )− βqγ(T ) = b2(ϕ̄γ(T )− ϕΩ), αpγ(T ) = 0, rγ(T ) = b4(σ̄γ(T )− σΩ) in Ω.
(5.13)

The well-posedness of the above system has been discussed in [34] where the fol-
lowing result was proved.

Theorem 5.3. Under the assumptions 1.13–1.14, 2.1-2.6, 2.13–2.15 and for every
fixed γ ∈ (0, 1], the system 5.9–5.13 has a unique solution (q̄γ , p̄γ , r̄γ) that in turn
satisfies the following regularity requirements

q̄γ , p̄γ , r̄γ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ). (5.14)

This will allow us to obtain the corresponding necessary condition for optimality
which reads as follows.

Theorem 5.4 (Well-posedness and necessary condition). Under the assumptions
1.13–1.14, 2.1-2.6, and 2.13–2.15, whenever ūγ represents an optimal control for

(P̃γ), there holds∫
Q

(r̄γ + (b0ū
γ + (ūγ − ū))(v − ūγ) ≥ 0 ∀v ∈ Uad, (5.15)

where r̄γ is the unique solution to the adjoint problem introduced by Theorem 5.3.

At this stage, we would be tempted to pass to the limit as γ ↘ 0 in the above
inequality to characterize the necessary conditions for (P0), but, unfortunately, the
corresponding mathematical analysis turns out to be more delicate and the precise
description is the purpose of the next paragraph.

5.4. First-order necessary condition for (P0). As sketched in the above lines,
we try to recover some optimality conditions for system 1.4–1.9 from inequality 5.15
showing that, in a proper sense, we can pass to the limit as γ ↘ 0. In this direction,
some compactness properties for the solution to the adjoint problem 5.9–5.13 need
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to be shown. Before moving on, let us introduce a further notation: in addition to
1.1, it will be useful to set the backward-in-time cylinder by setting

QTt := Ω× [t, T ], for 0 ≤ t < T .

Proof of Theorem 2.8. First, let us show some uniform estimates, with respect to
γ, that will allow us to justify the passage to the limit as the parameter goes to
zero.
First estimate: To begin with, let us add to both the members of 5.10 the term
p̄γ . Then, let us test 5.9 by −q̄γ , this new second equation by −∂tp̄γ , and 5.11 by
r̄γ . Finally, we add these equalities and integrate over QTt and by parts to find that

β

2

∫
Ω

|q̄γ(t)|2 +

∫
QT

t

∂tp̄
γ q̄γ +

∫
QT

t

|∇q̄γ |2 + g(γ)

∫
QT

t

h′′(ϕ̄γ)|q̄γ |2 −
∫
QT

t

∂tp̄
γ q̄γ

+ α

∫
QT

t

|∂tp̄γ |2 +
1

2

∫
Ω

|∇p̄γ(t)|2 +
1

2

∫
Ω

|p̄γ(t)|2 +
1

2

∫
Ω

|r̄γ(t)|2 +

∫
QT

t

|∇r̄γ |2

=
β

2

∫
Ω

|q̄γ(T )|2 +
1

2

∫
Ω

|∇p̄γ(T )|2 +
1

2

∫
Ω

|p̄γ(T )|2 +
1

2

∫
Ω

|r̄γ(T )|2

−
∫
QT

t

π′′(ϕ̄γ)q̄γ 2 +

∫
QT

t

P ′(ϕ̄γ)(σ̄γ − µ̄γ)(r̄γ − p̄γ) q̄γ

−
∫
QT

t

b1(ϕ̄γ − ϕQ)q̄γ +

∫
QT

t

P (ϕ̄γ)(r̄γ − p̄γ) ∂tp̄
γ −

∫
QT

t

p̄γ ∂tp̄
γ

+

∫
QT

t

b3(σ̄γ − σQ)r̄γ −
∫
QT

t

P (ϕ̄γ)(r̄γ − p̄γ)r̄γ ,

where we denote by I1, ..., I11 the integrals of the right-hand side, in that order.
As regards the left-hand side, we point out that the second and the fifth integrals
cancel out. Moreover, all the other terms on that side are nonnegative since we
also have that h′′(ϕ̄γ) is so, due to the separation result 2.19 for ϕγ and owing to
the explicit form of h′′. Therefore, it remains to control the right-hand side. The
assumptions on the final conditions allow us to straightforwardly establish that

4∑
i=1

|Ii| =
b22
2β

∫
Ω

|ϕ̄γ(T )− ϕΩ|2 +
b4

2

2

∫
Ω

|σ̄γ(T )− σΩ|2 ≤ c.

Moreover, we have that

|I5|+ |I7|+ |I10| ≤ c+ c

∫
QT

t

|q̄γ |2 + c

∫
QT

t

|r̄γ |2,

appealing to the Young inequality, to 2.2, and to 2.5. As the remaining integrals
are concerned, we compute

|I8|+ |I9|+ |I11| ≤ 2δ

∫
QT

t

|∂tp̄γ |2 + cδ

∫
QT

t

|P (ϕ̄γ)(r̄γ − p̄γ)|2

+ cδ

∫
QT

t

|p̄γ |2 + c

∫
QT

t

|r̄γ |2

≤ 2δ

∫
QT

t

|∂tp̄γ |2 + cδ

∫
QT

t

|p̄γ |2 + cδ

∫
QT

t

|r̄γ |2,
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where we have applied 2.4 and 2.43. Moreover, we obtain from 2.4, 2.5, 2.17, 2.19,
the Sobolev embedding 2.44, Young’s and Hölder’s inequality that

|I6| ≤ c
∫
QT

t

|P ′(ϕ̄γ)(σ̄γ − µ̄γ)q̄γ |2 + c

∫
QT

t

|r̄γ − p̄γ |2

≤ c
∫
QT

t

(|σ̄γ |2 + |µ̄γ |2)|q̄γ ||q̄γ |+ c

∫
QT

t

|r̄γ |2 + c

∫
QT

t

|p̄γ |2

≤ c
∫ T

t

(‖σ̄γ‖26 + ‖µ̄γ‖26)‖q̄γ‖6‖q̄γ‖2 + c

∫
QT

t

|r̄γ |2 + c

∫
QT

t

|p̄γ |2

≤ c
∫ T

t

(‖σ̄γ‖2V + ‖µ̄γ‖2V )‖q̄γ‖V ‖q̄γ‖H + c

∫
QT

t

|r̄γ |2 + c

∫
QT

t

|p̄γ |2

≤ 1

2

∫
QT

t

(|q̄γ |2 + |∇q̄γ |2) + c

∫ T

t

(‖σ̄γ‖4V + ‖µ̄γ‖4V )‖q̄γ‖2H

+ c

∫
QT

t

|r̄γ |2 + c

∫
QT

t

|p̄γ |2

≤ 1

2

∫
QT

t

|∇q̄γ |2 + c

∫
QT

t

|r̄γ |2 + c

∫
QT

t

|p̄γ |2 + c

∫
QT

t

|q̄γ |2.

Then, upon collecting the above estimates, we fix 0 < δ < α/2 and apply the
backward-in-time Gronwall lemma to infer that

‖q̄γ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖p̄γ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖r̄γ‖L∞(0,T ;H)∩L2(0,T ;V )

+ g(γ)

∫
Q

h′′(ϕ̄γ)|q̄γ |2 ≤ c. (5.16)

Second estimate: We proceed multiplying 5.10 by ∆p̄γ . Using the Young inequal-
ity and the above estimate, we deduce that

‖∆p̄γ‖L2(0,T ;H) ≤ c,

and, accounting for the elliptic regularity theory for homogeneous Neumann bound-
ary problems, also that

‖p̄γ‖L2(0,T ;W ) ≤ c. (5.17)

Third estimate: Next, let us rewrite the equation 5.11 as follows:

−∂tr̄γ −∆r̄γ = b3(σ̄γ − σQ)− P (ϕ̄γ)(r̄γ − p̄γ) =: f. (5.18)

Owing to the above estimates, 2.4, and using the fact that ϕ̄γ , as solution to 1.4–
1.9, satisfies 2.16, it is easy to realize that the forcing term f ∈ L2(0, T ;H). Hence,
since it reads as a backward-in-time parabolic equation, on account for the boundary
condition 5.12 and for the regularity of the final datum 5.13, we obtain that

‖r̄γ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (5.19)

Fourth estimate: Now, let us point out that whenever v ∈ W0(0, T ) is given, a
simple application of the integration by parts formula and the last of 5.13 lead to

βW∗0 〈∂tq̄
γ , v〉W0

= −β
∫ T

0

〈∂tv, q̄γ〉 − b2
∫

Ω

(ϕ̄γ(T )− ϕΩ)v(T ),
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which, in turn, implies that∣∣∣W∗0 〈∂tq̄γ , v〉W0

∣∣∣ ≤ β‖∂tv‖L2(0,T ;V ∗) ‖q̄γ‖L2(0,T ;V ) + ‖b2(ϕ̄γ(T )− ϕΩ)‖H ‖v(T )‖H
≤ c‖v‖W0 ,

where the previous estimates and the continuous embedding W0(0, T )
⊂ C0([0, T ];H) are taken into account. Dividing both sides by ‖v‖W0

and passing
to the supremum, we conclude that there exists a positive constant c such that

‖∂tq̄γ‖W∗0 ≤ c. (5.20)

Fifth estimate: We are left with the task to control λγ which was introduced by
2.29. First, let us rewrite the equation 5.9 as

λγ = g(γ)h′′(ϕ̄γ)q̄γ = β∂tq̄
γ − ∂tp̄γ + ∆q̄γ − π′′(ϕ̄γ)q̄γ

+ P ′(ϕ̄γ)(σ̄γ − µ̄γ)(r̄γ − p̄γ)− b1(ϕ̄γ − ϕQ).

Then, we consider the duality pairing between λγ and an arbitrary function v ∈
W0(0, T ) to get

W∗0 〈λ
γ , v〉W0

= βW∗0 〈∂tq̄
γ , v〉W∗0 −

∫
Q

∂tp̄
γv −

∫
Q

∇q̄γ · ∇v −
∫
Q

π′′(ϕ̄γ)q̄γv

+

∫
Q

P ′(ϕ̄γ)(σ̄γ − µ̄γ)(r̄γ − p̄γ)v −
∫
Q

b1(ϕ̄γ − ϕQ)v, (5.21)

where also 5.12 and 5.13 are taken into account. Hence, due to 2.2, 2.5 and to the
previous estimates, we claim that the above inequality implies that∣∣∣W∗0 〈λγ , v〉W0

∣∣∣ ≤ c‖v‖W0
, (5.22)

for a positive constant c. Indeed, bearing in mind 5.16–5.17, and 5.19–5.20, it is
clear that the only term which deserves further investigation is the fifth product on

the right-hand side of 5.21 that we denote by Ĩ. Then, let us separately prove how
it can be controlled. By virtue of the Hölder inequality, the boundedness of P ′ and
the Sobolev embedding 2.44, we conclude that

|Ĩ| ≤ c
∫
Q

|σ̄γ − µ̄γ ||r̄γ − p̄γ ||v| ≤ c
∫ T

0

‖σ̄γ − µ̄γ‖4‖r̄γ − p̄γ‖2‖v‖4

≤ c
∫ T

0

‖σ̄γ − µ̄γ‖V ‖r̄γ − p̄γ‖H‖v‖V ≤ c‖r̄γ − p̄γ‖L2(0,T ;H)‖v‖L2(0,T ;V ), (5.23)

where in the last inequality we also appeal to the fact that σ̄γ and µ̄γ , as solutions
to 2.8–2.12, satisfy 2.16 and 2.17 and therefore they both belong to L∞(0, T ;V ).
So that 5.22 is shown. Lastly, dividing both sides of 5.22 by ‖v‖W0

and passing to
the supremum, we obtain that there exists a positive constant c such that

‖λγ‖W∗0 ≤ c. (5.24)

To conclude, the application of the aforementioned estimates 5.16–5.17, 5.19–5.20,
and 5.24, lead to infer the existence of some q, p, r and λ such that, as n ↗ ∞,
2.31–2.34, are verified.

We will see that the above result will be sufficient to pass to the limit as γ ↘ 0,
at least in a suitable weak framework, as rigorously described in Theorem 2.9.
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Proof of Theorem 2.9. Owing to the uniform estimates pointed out in Theorem 2.8,
we realize that there exists some subsequence, which is again indexed by n, for which
we can pass to the limit in the inequality 5.15 to obtain that, for some limit r, 2.35
is satisfied.

Thus, we are led to show that such a limit solves a suitable adjoint problem for
1.4–1.9, and eventually prove some additional features on this system. To do that,
let us multiply the equations 5.9 by an arbitrary v ∈ W0(0, T ) and integrate over
Q. Accounting for the boundary conditions 5.12, and for the final ones 5.13, the
application of the integration by parts, leads to the following problem consisting of
a variational formulation∫ T

0

〈∂tv, p̄γn − βq̄γn〉 −W∗0 〈λ
γn , v〉W0 +

∫
Q

∇q̄γn · ∇v

−
∫
Q

π′′(ϕ̄γn)q̄γnv +

∫
Q

P ′(ϕ̄γn)(σ̄γn − µ̄γn)(r̄γn − p̄γn) v

=

∫
Q

b1(ϕ̄γn − ϕQ)v +

∫
Ω

b2(ϕ̄γn(T )− ϕΩ)v(T ) for every v ∈ W0(0, T ),

(5.25)

combined with the system

q̄γn − α∂tp̄γn −∆p̄γn + P (ϕ̄γ)(p̄γn − r̄γn) = 0 in Q (5.26)

−∂tr̄γn −∆r̄γn + P (ϕ̄γ)(r̄γn − p̄γn) = b3(σ̄γ − σQ) in Q (5.27)

∂np̄
γn = ∂nr̄

γn = 0 on Σ (5.28)

αp̄γn(T ) = 0, r̄γn(T ) = b4(σ̄γ(T )− σΩ) in Ω.
(5.29)

With the convergences 2.31–2.34 at our disposal, we would like to let n ↗ ∞ to
show that in the limit we get 2.36–2.40. Let us recall that, as pointed out by 4.3–4.4,
we have that

ϕ̄γn → ϕ̄, σ̄γn → σ̄, µ̄γn → µ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ).

In a similar fashion, we immediately deduce from 2.31–2.34 that, up to not relabeled
subsequence, there holds

p̄γn → p strongly in C0([0, T ];H) ∩ L2(0, T ;V )

r̄γn → r strongly in C0([0, T ];H) ∩ L2(0, T ;V ).

Therefore, even though some terms in 5.25–5.29 possess a strongly nonlinear be-
havior, recalling that π′′, P and P ′ are continuous, we have that the above strong
convergences allow us to let n↗∞ to obtain that in the limit 2.36–2.40 is satisfied.
This is the sense in which we can state that the limit (q, p, r) and λ enjoy an adjoint
system corresponding to 1.4–1.9.

To conclude, let us provide some additional properties which characterize such a
limit. First, let us multiply λγn , which is defined by 2.29, by q̄γn and integrate over
Q to realize that∫

Q

λγn q̄γn =

∫
Q

g(γn)h′′(ϕ̄γn)|q̄γn |2 ≥ 0 for every n ∈ N,

where we used that g is nonnegative, that h′′(s) = 2
1−s2 , and the fact that ϕ̄γn , as

a solution to 2.8–2.12, verifies the separation result 2.19 form which we infer that
h′′(ϕ̄γn) > 0. Then, by passing to the inferior limit, as n ↗ ∞, we conclude the
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first condition 2.41. Lastly, let us show a limit behavior that should suggest the
fact that, in the limit, λγn tends to concentrate in the sets where |ϕ̄| = 1. We now
multiply λγn by (1− (ϕ̄γn)2)Φ, for an arbitrary regular function Φ which vanishes
at zero, integrate over Q, and then pass to the limit as n↗∞ to find

LΦ := lim
n→∞

∫
Q

λγn(1− (ϕ̄γn)2) Φ.

Moreover, exploiting the definition of λγn , the explicit expression of h′′, and ac-
counting for the asymptotic properties 1.13–1.14 we are assuming, we realize that

LΦ = 2 lim
n→∞

∫
Q

g(γn) q̄γn Φ = 0,

which is exactly the condition 2.42 we are going to prove.

6. Appendix. Here, we focus on showing a possible way to construct an approxi-
mating family of data which fulfills requirements 2.13–2.15.

Lemma 6.1. Let (µ0, ϕ0, σ0) be a triplet belonging to V ×V ×V . Then, there exists
an approximating family {(µγ0 , ϕ

γ
0 , σ

γ
0 )}γ which satisfies all the following properties

(µγ0 , ϕ
γ
0 , σ

γ
0 ) ∈ (H1(Ω) ∩ L∞(Ω))×W ×H1(Ω) ∀γ ∈ (0, 1],

|ϕγ0 | ≤ 1− γ/2 a.e. in Ω ∀γ ∈ (0, 1],

(µγ0 , ϕ
γ
0 , σ

γ
0 )→ (µ0, ϕ0, σ0) strongly in V × V × V as γ ↘ 0.

Proof. Obviously, since only existence is stated above, we only show one possible
way to proceed. As the first and third variables are concerned, the choices are quite
natural. As σγ0 we can straightforwardly take, for every γ, σ0 itself. Secondly, it
is natural to choose as µγ0 a suitable truncation of µ0, since we want µγ0 to remain
bounded in V and to be uniformly bounded as well. So, we take µγ0 as the truncation
at level 1/γ of µ0, namely the function defined by

µγ0 :=


1/γ if µ0 > 1/γ

µ0 if |µ0| ≤ 1/γ.

−1/γ if µ0 < −1/γ

It is now a standard argument to check that µγ0 → µ0 strongly in V . To conclude,
let us face the remaining term which will require more attention. To recover the
zero normal derivative condition, we are tempted to choose as ϕγ0 the solution to
the following homogeneous Neumann boundary problem{

ϕγ0 − γ∆ϕγ0 = ϕ0 in Ω

∂nϕ
γ
0 = 0 on Γ,

in which ϕ0 appears as forcing term. Owing to the regularity of ϕ0, for every
γ ∈ (0, 1], it follows from standard results that there exists a unique solution ϕγ0
which belongs to W . Let us mention that in this framework one can also verify that
ϕγ0 → ϕ0 strongly in V . However, we also care to control the absolute value of ϕγ0
by 1− γ/2, which is not guaranteed if we proceed this way.

Thus, we will follow a similar technique, but first we need to truncate the data
in order to properly control the absolute value of the approximating variable. For
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convenience, let us denote as ϕ̃γ0 the truncation of ϕ0 at level 1 − γ/2. Then, we
consider the following problem which strictly resembles the above one{

ϕγ0 − γ∆ϕγ0 = ϕ̃γ0 in Ω

∂nϕ
γ
0 = 0 on Γ.

(6.1)

Similarly, it is easy deduce that, for every γ ∈ (0, 1], the unique solution ϕγ0 to 6.1
belongs to W . Moreover, by adding to both sides of the first equation of 6.1 the
term 1− γ/2, we arrive at the identity

(ϕγ0 + 1− γ/2)− γ∆(ϕγ0γ + 1− γ/2) = ϕ̃γ0 + 1− γ/2,

where the right-hand side is positive by construction of ϕ̃γ0 . Hence, the maximum
principle yields that

ϕγ0 + 1− γ/2 ≥ 0, which implies ϕγ0 ≥ −1 + γ/2.

By repeating the same strategy adding to both sides the term −1 + γ/2, it is easy
to conclude that |ϕγ0 | ≤ 1− γ/2. Finally, we are left with the task of showing that
ϕγ0 → ϕ0 strongly in V . In this direction, we multiply the first equation of 6.1 by ϕγ0
and integrate over Ω. Using the boundary condition and estimating the right-hand
side by mean of the Young inequality, we discover that∫

Ω

|ϕγ0 |2 + γ

∫
Ω

|∇ϕγ0 |2 ≤
1

2

∫
Ω

|ϕγ0 |2 +
1

2

∫
Ω

|ϕ̃γ0 |2,

and rearranging the terms, we obtain the boundedness of {ϕγ0}γ in V . Thus, from
weak compactness arguments, we immediately realize that ϕγ0 → ϕ0 at least weakly
in V . Now, we multiply the first equation by −∆ϕγ0 and integrate by parts to get∫

Ω

|∇ϕγ0 |2 + γ

∫
Ω

|∆ϕγ0 |2 =

∫
Ω

∇ϕ̃γ0 · ∇ϕ
γ
0 ,

where we also account for the homogeneous boundary condition for ϕγ0 . Due to the
Young inequality we control the right-hand side as follows∫

Ω

|∇ϕγ0 |2 + γ

∫
Ω

|∆ϕγ0 |2 ≤
1

2

∫
Ω

|∇ϕγ0 |2 +
1

2

∫
Ω

|∇ϕ̃γ0 |2,

and, adding this latter with the above estimate and rearranging the terms, we obtain
that

1

2

∫
Ω

|ϕγ0 |2 +
1

2

∫
Ω

|∇ϕγ0 |2 + γ

∫
Ω

|∇ϕγ0 |2 + γ

∫
Ω

|∆ϕγ0 |2 ≤
1

2

∫
Ω

|ϕ̃γ0 |2 +
1

2

∫
Ω

|∇ϕ̃γ0 |2,

from which we realize that ‖ϕγ0‖2V ≤ ‖ϕ̃
γ
0‖2V , and since that inequality continue to

hold if we pass to the superior limit, we realize that actually ϕγ0 → ϕ0 strongly in
V , as γ ↘ 0, which is the desired conclusion.
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