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Abstract
We present a numerical simulation study of advective–diffusive scalar transport in
three-dimensional high-contrast discontinuous permeability fields, generated with a
truncated pluri-Gaussian geostatistical approach. The numerical experiments are run
with an Eulerian approach using a novel unified numerical framework based on the
finite-volume library OpenFOAM®(Weller et al. in Comput Phys 12(6):620–631,
1998), for (1) generating random pluri-Gaussian porous media, (2) solving the steady
state Darcy-scale flow, (3) solving the advection diffusion equation, (4) computing
post-processing quantities such as first order statistics, spatial probability density func-
tions and breakthrough curves. A range of permeability contrasts, correlation lengths,
and Péclet numbers are tested to assess their relative weight on transport control and
for the first time, the deviation of a calibrated macrodispersive model from the Fick-
ian transport is quantified. We identify a hierarchy of non-Fickian transport triggering
factors. From the tested scenarios, permeability contrast is themain controlling param-
eter for the anomalous transport behaviour as it enhances the generation of preferential
flow paths which are characterised by high advective flow velocities. The Péclet num-
ber and the characteristic length at which facies transitions are observed as secondary
factors.
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1 Introduction

Subsurface flow and solute transport modelling is used in several engineering and
environmental fields (CO2 storage, groundwater remediation, oil recovery) where
mathematical and computational models play a central role in supporting the reli-
ability of analysis and design strategies. The effectiveness of advection–dispersion
models in describing solute transport in highly heterogeneous media such as geolog-
ical formations has been questioned (Adams and Gelhar 1992; Barlebo et al. 2004;
Fiori et al. 2016), and the definition of appropriate models and their parameteriza-
tion remains an open field of research (Zinn and Harvey 2003; Jankovic et al. 2017;
Bianchi and Zheng 2016; Yin et al. 2020). An important challenge is how to sim-
ulate non-Fickian behaviour, which originates mainly from physical heterogeneities
emerging across multiple scales (Dentz et al. 2011; Berkowitz et al. 2006; Gelhar and
Axness 1983). Transport is defined as anomalous or non-Fickian when solute plumes
and breakthrough curves display a significant departure from the predictions made by
an advective–dispersive model where dispersion is expressed with a Fickian analogy,
i.e. mechanical dispersion and molecular diffusion are grouped together in a single
effective coefficient (Bear 2012).

Approaches to modelling solute transport in heterogeneous porous media largely
differ depending on the scale of interest. In this work we start from amesoscale, which
corresponds to a resolution where geological porous media can be described by an
equivalent continuum with spatially heterogeneous properties (de Barros et al. 2022;
Riva et al. 2008). At this scale, solute transport is governed by two separate mech-
anisms: advection and local hydraulic dispersion which includes the contributions
of molecular diffusion and mechanical dispersion. At the mesoscale, spatial hetero-
geneity is explicitly represented, most commonly using a statistical model. We then
move to macroscale modelling, where the aim is to define an effective model able
to describe the dynamics of the system without an explicit description of the under-
lying heterogeneity. In classical descriptions (Dagan 2012), velocity at these scales
may be interpreted as the average Darcy velocity while the hydraulic dispersion coef-
ficient turns into a macrodispersion coefficient, employed to quantify the effect of
heterogeneity on solute spreading. This model has been questioned in the literature
and alternative non-Fickian effective models have been proposed (Hansen et al. 2018;
Zech et al. 2021; Neuman and Tartakovsky 2009). These approaches mainly focused
on cases where the underlying (mesoscale) log-conductivity field has a Gaussian dis-
tribution. Beyond this specific case, the validity of the Advection Dispersion Equation
(ADE) based macrodispersive models are not clearly identifiable a priori, although
they are certainly heavily controlled by the degree of heterogeneity of porous media
properties (Neuman and Tartakovsky 2009) and their spatial organisation. For exam-
ple this latter point was recently addressed in Yin et al. (2020), who investigated the
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role played by the injection area and the correlation length in activating anomalous
transport mechanisms. The persistence of this anomalous transport behaviour at the
macroscale can be due, for example, to these regions where the flow paths create
preferential fast channels (Edery et al. 2014), a feature that also influences reactive
transport settings (Edery et al. 2016, 2021).

In this work we investigate solute transport and the onset of anomalous or
non-Fickian transport behaviour in high-contrast heterogeneous permeability fields,
generated with the geostatistical pluri-Gaussian truncated (PGS) method (Mariethoz
et al. 2009). Solute transport has been widely investigated in continuous Gaussian and
non-Gaussian permeability fields (Gotovac et al. 2009; Sole-Mari et al. 2021), and
methods have also been proposed to handle non-continuous fields, suitable to repro-
duce geomaterials where property transition is marked by sharp interfaces (Bianchi
and Pedretti 2017). PGS random fields are used in this context to model actual sub-
surface geological media in a sedimentary setting. In this context this model is used to
link an assumed geological architecture or structure, e.g. driven by sedimentological
rules, with the spatial distribution of physical properties such as porosity or hydraulic
conductivity. This allows to create fields starting from given geological assumptions
and explicitly control the connectivity of high- and low-permeability facies. Therefore,
PGS can be employed to reproduce and interpret the emergence of non-Fickian trans-
port traits observed in real geological media. Simulation of solute transport in alluvial
settings, represented by discontinuous conductivity fields, has been considered by a
number of studies in the recent literature. Discontinuous permeability fields with a
high connectivity degree and sharp contrast between regions are recognised among
the most important factors that regulate the transport of solute (Zhang et al. 2013;
Bianchi and Zheng 2016). Facies properties can be qualitatively linked to non-Fickian
parameters for alluvial aquifers (Zhang et al. 2014), however such a link remains hard
to quantify in a predictive fashion. This is likely due to the fact that several factors can
contribute to the emergence of a non-Fickian behaviour of solute travel times. As noted
by Zhang et al. (2015), the Péclet number provides useful information on the duration
of the anomalous transport while the correlation length controls the connectivity and,
therefore, the onset of non-Fickian behaviour.

Starting from these existing results, our aim here is to investigate the connectivity
and conductivity contrast thresholds that drive a transition between Fickian and non-
Fickian response. Our objective is to then rank the factors triggering transition non-
Fickian transport. To this end, we quantify the deviation of the results obtained from
numerical simulations in PGS domains from Fickian behaviour by comparing them to
the analytical solution of the advection–dispersion equation. We rely on a quantitative
approach aimed at capturing the discrepancy between mesoscale simulations and a
macrodispersive model, rather than focusing on a detailed characterisation of the
processes involved. This allows us to identify the physical and structural thresholds
that can lead to non Fickian transport and ultimately contributes to the definition of
aquifer typing approaches where the relevance of non Fickian transport features may
become identifiable from a knowledge of the field properties.

To achieve these objectives we rely on numerical simulations, by solving the
advection–dispersion equation in heterogeneous media using an Eulerian finite vol-
ume method. This approach is implemented as a parallel open-source code based on
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OpenFOAM®(Weller et al. 1998), as part of the SECUReFoam library (Municchi
et al. 2022). The advantages of the Eulerian approach are that it allows the computa-
tion of Péclet number and that an accurate simulation of solute low concentration tails
does not require a large particle ensemble as with Lagrangian formulations, which
have often been used in the recent literature (Edery et al. 2014; Savoy et al. 2017;
Dentz et al. 2011). Moreover, the Eulerian description is closer to the experimental
conditions where results are often obtained in terms of molar or mass concentration
while Lagrangian approaches need to be post-processed to obtain local concentration
fields.

From an operational perspective, our approach is based on a single computational
framework, including a geostatistical algorithm for permeability field generation, a
numerical code for flow and transport simulation, and post-processing tools. This is
an interesting feature of our approach as the synthetic generation of realistic geo-
logical domains remains one of the main challenges in modelling flow and transport
(Heße et al. 2014). Several approaches are available to reproduce complex subsurface
structures [sequential Gaussian simulations (Dimitrakopoulos and Luo 2004),Markov
chain probability (Carle and Fogg 1997), Multiple-point statistics (Strebelle 2002)] as
well as a number of geostatistical open toolboxes [GSLib (Deutsch and Journel 1998),
T-PROGS (Carle 1999)]. Nevertheless, few open-source tools exist that provide inte-
grated geostatistical, flowand transport simulation solvers [OpenGeoSys (Kolditz et al.
2012), porousMultiphaseFoam (Horgue et al. 2015), DuMux (Flemisch et al. 2011)].

This work is structured as follows: in Sect. 2 we give the mathematical overview of
the problem, in Sect. 3 we describe the testcases and summarise the numerical method-
ologies. Numerical results and the post-processing are presented in Sect. 4, before we
draw conclusions and give some guidelines about the emergence of non-Fickian trans-
port. For the sake of clarity, the terms “facies” (uncountable) and “category” as well
as “lithotype” and “truncation” rule will be used interchangeably depending on the
context.

2 Methods

We describe here the methods underpinning our numerical simulations. We start by
presenting the geostatistical framework and thenmove to the descriptionof the physical
problem, i.e. the flow and transport setting.

2.1 Geostatistical model

Permeability fields are generated via the pluri-Gaussian Simulation (PGS)method, i.e.
applying a truncation rule to continuous multivariate Gaussian random fields (GRF)
(Mariethoz et al. 2009). Fields generated with this approach are characterised by:

• discontinuous permeability fields characterised by a discrete number of zones of
uniform permeability whose spatial arrangement is the result of a specific trunca-
tion rule [i.e., Lithotype rule (Armstrong et al. 2011)];
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• high geological realism since the truncation rule allows simulating observed geo-
metrical relations between geological facies (Koltermann and Gorelick 1996;
Linde et al. 2015; Armstrong et al. 2011).

GRFs can be generated in the frequency domain by multiplying independent com-
plex Gaussian random variables by the spectral representation of the covariance
function. The spatial field is then reconstructed by applying the inverse Fourier trans-
form to the spectral GRF. To ensure independence of the random field generation
from the mesh-discretisation and to allow arbitrary unstructured grids, we apply an
explicit discrete inverse Fourier transform discretised with N f frequencies in each
direction Following Mandelbrot and Van Ness (1968); Heße et al. (2014), a discrete-
in-frequencies continuous-in-space representation of a complexGRF is therefore given
by:

Z(x) =
N f∑

j=0

cos(2πa j · x)

√
S(a j )Wj + i

N f∑

j=0

sin(2πa j · x)

√
S(a j )W

′
j (1)

where x is the position vector, a j = (ax, j , ay, j , az, j ) is the j th frequency vector,
Wj and W ′

j are independent complex Gaussian random variable and S(a j ) is the
amplitude of the spectral measure. From Z , we can then extract two independent
Gaussian random fields from its real and imaginary parts.

The covariance function of a stationary field quantifies the covariance γ (r) between
a pair of values of a random variable located at points separated by the distance r . We
denote the correlation function as ρ(r) and the variance as σ 2 (where γ (r) = σ 2ρ(r)).

In this work, we assume an exponential correlation function

ρ(r) = 1 − e
−

√
r2x
λ2x

+ r2y

λ2y
+ r2z

λ2z (2)

with corresponding spectrum

S(a) = σ 2‖λ‖d �
( d+1

2

)

(
π

(
1 + a2xλ

2
x + a2yλ

2
y + a2z λ

2
z

)) d+1
2

, (3)

where d = 3 is the number of dimensions, � is the Gamma function, λ = (λx , λy, λz)

are the correlation lengths.
GRFs are continuous fields, but geological media are often characterised by abrupt

changes in physical and chemical properties. With the PGS approach discontinuous
patterns are reproduced from the truncation of two GRFs according to a lithotype or
truncation rule (Fig. 1), which bins continuous values into a set of categories.

The smooth transition which characterises the GRF is then replaced by n = (Nr +
1)(Ns + 1) categorical values where Nr and Ns are the number of thresholds applied
via the truncation rule to the two GRFs. In this sense, the “truncated” adjective refers
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(a) (b) (c)

Fig. 1 Truncated pluri-Gaussian simulation. a Continuous multivariate Gaussian random fields Z1 and
Z2 generation; b truncation rule for four facies domain and its corresponding thresholds on the Gaussian
distribution of the variables; c sample of a two-dimensional truncated pluri-Gaussian random field. The
arrows indicate the contribution of the two GRFs in assigning a given category at a selected location in
space

to a GRF that has been discretised through a binning process. The probability, i.e. the
proportion, of the facies ϕi is obtained from

pϕi (x) = [
G(ri ) − G(ri−1)

] [
G(si ) − G(si−1)

]
i = 1 . . . n (4)

where n is the number of categories, G is the cumulative Gaussian distribution with
the mean and the variance typical of each field. The lithotype rule allows to control
the probability of two different categories (or facies) to be in direct contact. This
constitutes a fundamental feature as it allows the simulated field to reflect geological
transition patterns observed in field data. According to the conceptual steps normally
used in PGS geostatistics, transition patterns are captured along the vertical direction
by processing field sample information through transition probability matrices (Carle
and Fogg 1996; Weissmann et al. 1999) while field observations and/or established
conceptual models of geological environments are used as guidance for the estimation
of transition patterns in the horizontal directions (Armstrong et al. 2011). In this work,
we assume the single truncation diagram, in Fig. 1. In our simulations we vary the
correlation lengths λ of the underlying GRFs and the permeability values assigned
to different categories. The four categories have equal probability and therefore vol-
umetric fractions pϕi = 25%. The distribution of the multivariate random variables
adopted to generate the underlying continuous Gaussian random fields in this study
has mean μ = 0 and σ = 1 and their correlation function is exponential.
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2.2 The flowmodel

We assume fluid flow obeys the standard Darcy’s equation which reads

V = − k
μ

(∇ p + ρg∇z), (5)

where V is the Darcy velocity vector [LT−1], k is the permeability tensor [L2], μ

is the dynamic viscosity [ML−1T−1], p is the pressure [MT−2L−1], ρ is the fluid
density [ML−3], g is the gravity constant [LT−2] and∇z = (0, 0, 1) [−] is an upward
unit vector. For this study we set g = 0 as any influence of the solute on the liquid
density is assumed to be negligible.

The flow solver implemented in OpenFOAM®(Weller et al. 1998) is based on
Eq. (5) assuming an incompressible fluid. Therefore pressure can be computed accord-
ing to a Poisson equation

∇ · V = −∇ · k
μ

∇ p = 0 (6)

wherewe have assumed no sources or sinks are present and the gravity term is zero. The
permeability tensor is, from this point, assumed diagonal and isotropic, i.e., k = kI,
I being the identity matrix. Boundary conditions for the pressure are zero gradient on
lateral sides and a fixed gradient of 50 Pa/m in the longitudinal direction.

2.3 Local transport model

The advective flux per unit area Jadv [LT−1] is the product of the advective Darcy
velocity V [LT−1] and solute concentration c [−]

Jadv = Vc. (7)

In line with previous work (Edery et al. 2014), we neglect mechanical dispersion and
model the diffusive fluxes Jmol [LT−1] as

Jmol = −φDmol∇c (8)

where Dmol [L2T−1] is the molecular diffusion tensor and φ is the porosity of the
medium. Summing up the advective and diffusive fluxes, the conservation of mass
yields the advection–diffusion equation, which, for the case of isotropic diffusion and
porosity and no source/sink terms is

∂c

∂t
+ ∇ · (vc) − Dmol∇2c = 0 (9)

where v ≡ V/φ is the fluid velocity, i.e. the velocity that would be measured by a
flow meter in the porous domain and Dmol = DI. We impose a constant concentra-
tion on the whole inlet face of the domain (9) and zero gradient on all the other sides.
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In this study, to focus on the effects of the heterogeneity, the geostatistical param-
eters and the Péclet number, we have made strong assumptions on the permeability
(isotropic and diagonal), porosity (constant) and neglected mesoscopic dispersion.
Whilst preliminary tests suggested these do not impact the main findings of this work,
the investigation of these processes may be tackled in future contributions.

2.4 Macrodispersionmodel

Transport mechanisms described so far characterise the transport behaviour at the
mesoscale, i.e. where geological and flow resolution allows for heterogeneity to be
modelled explicitly.However,macroscalemodels aim to provide an overall description
while using an effective/upscaled advection–dispersion equation neglecting hetero-
geneity. Here, we only focus on transport along the main velocity direction and the
longitudinal dispersion processes, therefore we will compare our results with a one-
dimensional advection–dispersion equation:

∂C

∂t
+ vx

∂C

∂x
− Dmac

xx
∂2C

∂x2
= 0, (10)

where C is the section-averaged concentration, Dmac
xx is the longitudinal component

of the macrodispersion tensor and vx indicates the spatial average of the longitudi-
nal component of the velocity. Macrodispersion in Fickian transport models can be
predicted or inferred. Predictive macrodispersion estimates are often evaluated com-
puting the product between a typical length scale and an average velocity (13) while
inferred macrodispersion assessments can be performed using the moments’ method
(20) or applying the least square method to the breakthrough curve, as illustrated in
Sect. 2.5.1.

2.5 Quantities of interest

The record of the section-averaged concentration in time at a control section (e.g. out-
let boundary or an arbitrary point) constitutes the breakthrough curve (BTC). Under a
continuous injection, the BTC is equivalent to the cumulative density function (CDF)
of the arrival times of the solute mass (F(t)) while its time derivative, which is a con-
centration rate, is the probability density function (PDF) of the arrival times ( f (t)).
These functions are typically obtained by injecting a pulse in time or a constant con-
centration at the inlet (or an injection point).

To enable the comparison between simulations considering different parameters
and different duration, we consider a dimensionless time T obtained by dividing t
by the average travel time, calculated as the ratio between the longitudinal domain
dimension and the average fluid velocity. This quantity is equivalent to the injected
pore volume. The section averaged concentration at the outlet is non-dimensionalised
by dividing it by the single inlet concentration and is represented by c.

In the post processing phase of the simulation results, the following quantities were
estimated:
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Péclet number

Pex [−] = vxλx

Dmol
; (11)

effective permeability

ke f fx [m2] = − vxμ

∂ p
∂x − ρg

; (12)

nominal macrodispersion

Di j
mac [m2/s] = φλT V (13)

where λ and V are typical lengths and velocity vectors. Equation (13) allows the
macrodispersion matrix to be approximated a priori starting from geostatistical (corre-
lation lengthλ) andflow (velocityV ) data, independent of theBTCdata.Concentration
data coming from the BTC constitutes the basis for the methods adopted to estimate
the macrodispersion from the mesoscale simulations, as illustrated in Sect. 2.5.1.

2.5.1 Breakthrough curve and inverse Gaussian approximation

The mass arrival time distribution simulated with the one-dimensional advection–
dispersion equation is the inverse Gaussian distribution. This corresponds to the
analytical solution of Eq. (10) in a semi-infinite one-dimensional domain with a
Dirac-delta initial condition. For practically relevant parameters, this is almost indis-
tinguishable from the solution on a finite domain with a Dirac-delta (in time)
concentration injection at the inlet. For our problem with a continuous injection at
the inlet, due to the linearity of the problem, the BTC is well approximated by the
integral in time of the Inverse Gaussian distribution, computed for a fixed section in
space (the outlet in our case).When transport behaviour is Fickian,we can approximate
the experimental BTCs with the cumulative density function of the Inverse Gaussian
distribution as

F(T ;μ1, ν) = c̄ = �

(√
ν

T

(
T

μ1
− 1

))
+ e

2ν
μ1 �

(
−

√
ν

T

(
T

μ1
+ 1

))
(14)

where � is the standard normal cumulative distribution function, μ1 is the first order
statistical moment of the concentration rate distribution and ν is a shape parameter.
The PDF of the solute arrival times can be obtained through a time derivative of (14)
and corresponds to the PDF of the solute arrival times. This PDF is expressed as
(Tartakovsky and Dentz 2019)

f (T ;μ1, ν) = ∂ c̄

∂T
=

√√√√ ν

2πT 3 exp

[
−ν(T − μ1)2

2μ2
1T

]
. (15)
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Other analytical solutions are available for different boundary conditions on finite
domains (Van Genuchten 1982). For the purposes of this paper, we will only consider
the Inverse Gaussian model as a reference for Fickian transport due to its simpler
analytical formulamore suitable to fitting andmomentmatching. Themacrodispersive
solution is generally a good approximation (Berkowitz et al. 2006) if

• domain is large;
• experiment time is long;
• domain’s properties are ergodic.

IN the assumption of a Fickian model such as (15) arrival times display a sharp and
exponential tail as t → ∞. Non-Fickian transport processes have a clear impact on
the shape of the PDF of the arrival times: early arrival concentrations raise the PDF
peak and power low scaling emerges prior to exponential decay (Berkowitz et al. 2006;
Edery et al. 2014).
The moments’ method
Following Yu et al. (1999); Kreft and Zuber (1978), the estimation of the statisti-
cal moments of the cumulative Inverse Gaussian is performed by approximating its
parameters μ1 and ν as

E[c̄] = μ1 (16)

Var [c̄] = μ2 − μ2
1 = μ3

1

ν
. (17)

To compute the first and second order moments we used

μ1 =
∫ +∞

0
f T dT =

∫ +∞

0
F ′TdT = −

∫ +∞

0
FdT + [FT ]+∞

0

= −
+∞∑

i=0

FiT + F+∞T+∞, (18)

μ2 =
∫ +∞

0
f T 2dT =

∫ +∞

0
F ′T 2dT = −2

∫ +∞

0
FTdT + [FT 2]+∞

0

= −2
+∞∑

i=0

Fi TiT + F+∞T 2+∞. (19)

The estimated effective velocity and macrodispersion coefficient can be estimated
from the statistical moments as

Vx = Lx

μ1
(20)

Dmac
xx = μ2V 3

2Lx
(21)

where Lx is the distance between the inlet and outlet sections (in our case the domain
length). To quantify the distance between the numerical outputs and the Inverse Gaus-
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sian approximation, a normalised error e was defined as

e = ||c̄(T ) − F(T )||
||c̄(T )|| · 100. (22)

Least squares estimation
Parameter estimation is performed by minimising the least squared error between
numerical data and the models (14) and (15). Under the assumption of identically dis-
tributed and uncorrelated errors this procedure corresponds to a maximum likelihood
estimation. This procedure is applied to three types of data

• probability density function of the solute arrival times, obtained by numerical
differentiation of the BTC values at the outlet;

• cumulative density function of the concentration arrival times (i.e. the BTC itself);
• PDF of the arrival times obtained in an interval of 0.5 dimensionless time unit,
centred around the peak of the probability density function of the arrival times.

In the first and third case, the analytical function used as reference to perform the least
squares fitting is the probability density function of the inverse Gaussian distribution
given by Eq. (15) while for the second case the analytical function is Eq. (14). For all
cases the analysis was performed using Python library lmfit constraining the esti-
mation so thatμ1 and ν were always non-negative. Values of the estimated parameters
uncertainty are also obtained from the diagonal entries of the parameters covariance
matrix computed by lmfit and were used to assess the reliability of the estimate.
The initial values for the least square estimation were set equals to values computed
for μ1 and ν with the moments’ method.

3 Numerical experiments

Geostatistical, flow and transport numerical simulations were conducted over hex-
ahedral domains which represent a portion of the subsurface with dimensions
(Lx/l, Ly/l, Lz/l) = (2, 1, 1) where Li are the dimensions of the domain and we
took l = Ly = Lz as the reference length. The mesh is unstructured and characterised
by cubic cells of dimension d/l = 0.01, so that the total number of cells is 2 × 106.

The permeability distribution within the domain corresponds to the field generated
with a PGS simulation while porosity is assumed homogeneous over the domain. All
the simulated fields considered in this study share the correlation function reported in
Eq. (2), the number of permeability zones, as well as the volumetric proportion for
each of the facies (see Table 1). We investigate the variability of the observed output
and of the estimated parameters as a function of three inputs: geostatistical parameters
(e.g., correlation length used to generate the conductivity fields), hydraulic properties
(i.e., permeability) and transport regime, defined in terms of Pe.

Based on the assigned permeability values, we distinguish two cases: low and high
contrast. For both cases the permeability values ki assigned to the four geomaterials
considered are evenly spaced on a logarithmic scale. However, for the low permeabil-
ity contrast case the four permeability values range between 10−10 and 10−13 m2 with
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Table 1 Parameters kept
constant throughout the
simulations

Geostatistical parameters

Correlation function Exponential

Number of facies 4

Volumetric proportion 25%

Flow parameters

Pressure gradient [Pa/m] 50

Transport parameters

Fixed inlet concentration [–] 1

a relative ratio log10(ki/ki+1) = 1 while for the high permeability contrast case per-
meability values range between 10−9 and 10−15 m2 and log(ki/ki+1) = 2. Boundary
conditions for the pressure are set as zero gradient along the lateral boundaries and a
one dimensional pressure gradient of 50 Pa/m aligned with the longitudinal direction.
A constant concentration is imposed on the inlet face, the remaining boundaries are
considered impermeable.

The simulation workflow is divided into three steps

• geostatistics: the permeability domain is generated using the truncated pluri-
Gaussian algorithm;

• flow: Eq. (5) is solved with the prescribed boundary conditions and provides the
steady state flow field;

• transport: advection–dispersion transientmodel is solvedwith continuous injection
for each simulation time step.

The simulations are run within the open-source OpenFOAM®-based library
SECUReFoam (Municchi et al. 2022) which includes the setRandomField util-
ity for truncated pluri-Gaussian simulations, simpleDarcyFoam and adaptive
ScalarTransportFoam solvers for flow and transport simulations. Most of the
simulations were run in parallel on 96 cores split between 8 HPC nodes. An adaptive
time step tied to the Courant number was implemented together with an automatic
check on the section-average outlet concentration value which stopped the transport
simulation when a value of 0.99 on the outlet boundary was reached. In this setting, the
overall simulation time ranges between 1 and 7 hours depending on the permeability
contrast adopted, with high contrast cases being characterised by larger CPU costs.
Transport simulation are the most expensive of the three simulation steps, accounting
for between the 70 and 95% of the total computational time for the low or high perme-
ability contrast setting, respectively. Steady state flow has been solved by discretising
the Darcy equation combined with mass balance, in a primal (non-mixed) form, i.e.,
with the pressure as the only variable. This exactly satisfies the mass balance at the
faces, as in the finite volume framework the velocity is discretised as fluxes over the
faces and so is the divergence term in the pressure equation. In terms of computational
time, this means that the solution for the flow field is typically achieved in a few
minutes, while the geostatistical simulation and post-processing could take up to 1h
approximately.

123



GEM - International Journal on Geomathematics (2022) 13 :17 Page 13 of 27 17

Fig. 2 Solute plume distribution in high contrast permeability domain at late time. Domain sizes are 2×1×1
and correlation lengths along the three directions are set to (0.8, 0.1, 0.1). On the left panel it is possible
to observe how low solute concentration values (0 blue–0.99 red) are confined to low permeability regions
(10−12 [m2] dark grey - 10−13 [m2] black) while on the right panel high concentration values (0.99 blue–
1.00 red) are highlighted and their spatial distribution clearly show that saturated zones are concentrated in
highly permeable regions (10−10 [m2] dark grey–10−11 [m2] black)

4 Results

The results presented in this section aim to assess the impact of the parameters related
to the PGS fields on solute transport processes. To this end, first, we compare the PDFs
of velocity point values obtained in the considered fields. Then,wemove to the analysis
of the transport simulations and we provide a qualitative assessment of the variability
exhibited by results obtained from realisations of the conductivity fields generated
with identical geostatistical parameters (Sect. 4.2). Finally, we analyse the impact of
three physical parameters on arrival time PDFs, namely permeability contrast (Sect.
4.3), the longitudinal correlation length used to generate the fields (Sect. 4.4) and
Péclet number (Sect. 4.5).

Before moving to these detailed analyses, Fig. 2 illustrates the simulation of the
solute plume at late times through a PGS field with high contrast permeability and
characterised by longitudinal correlation length of 0.8m. Figure 2 on the left highlights
the regions where concentration values falls beneath the 0.99 threshold while the right
panel visualises the regions where concentration values fall between 0.99 and 1. It is
possible to observe that the transport of the solute is facilitated in the high permeable
regions of the domain (white and light grey) while low permeability ones (dark grey
and black) form a flow barrier that impede advective solute transport.

4.1 Velocity PDFs

The velocity PDF has a direct influence on non-Fickian transport features (Comolli
et al. 2019) as large differences between permeability values may induce bi- or multi-
modal velocity distributions (Yin et al. 2020). The PDFs of point velocity values with
increasing longitudinal correlation lengths λx are shown in Fig. 3. The longitudinal
velocity Vx normalised with the average longitudinal velocity is reported on the hor-

123



17 Page 14 of 27 GEM - International Journal on Geomathematics (2022) 13 :17

Fig. 3 PDFs of the longitudinal velocity component for low and high contrast. Velocity PDFs are shown
for low (left) and high (right) permeability contrast. The correlation lengths λx span between 0.4 (darker
lines) and 1.0 (lighter lines)

Fig. 4 Conditional PDFs of the longitudinal velocity values in low (left) and high (right) permeability
contrast. Results are shown for correlation lengths λx = 0.4. The curves are shown with different colours
depending on the facies permeability, i.e., lighter colours correspond to low permeability and darker colours
to high permeability media

izontal axis of Figs. 3 and 4 as V ∗
x . The vertical axis of Fig. 3 reports the probability

density distribution as a function of the longitudinal velocity p(V ∗
x ). As expected,

the velocity distributions in Fig. 3 are comparable for different correlation lengths.
All distributions show four peaks of similar height corresponding to the four facies
that populate the domain. However, as the correlation length increases, the four peaks
become sharper reflecting the formation of preferential flow paths where velocities
are lumped around the mean velocity of a given facies, each corresponding to a mode
of the distributions (Fig. 4), similar to what is shown for a bimodal permeability dis-
tribution by Yin et al. (2020). This result also indicates that with a decrease of λx the
distribution of velocity values progressively converges towards a uniform distribution
across the whole range. Comparing the amplitude of the peaks in the two panels of
Fig. 3 we observe that as the permeability contrast increases the four modes of the
distribution appear more distinct for high contrast than for low contrast. Note also
that the high contrast distribution spans a much wider interval of velocity values as
compared to the low contrast one.

Figure 4 reports the conditional PDFs p(V ∗
x |k = ki ), where each distribution con-

siders only longitudinal velocities values computed in cells associated with a given
facies (i = 1 . . . 4). Velocities in highly permeable regions show an asymmetric dis-
tribution, characterised by a pronounced peak and a leftward tail. Conversely, velocity
values observed in the low permeability regions tend to assume a symmetric and com-
pact distribution. This distinct behaviour is particularly evident in high contrast media.
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Fig. 5 PDFsof solute arrival times associatedwith 10 realisationswith the same correlation length (λx = 0.8
m). Low and high permeability contrast on the left and right side of the panel respectively

This means that high-permeability regions may feature a broad distribution of velocity
values because of the overall connectivity of the field. Highly connected regions give
rise to fast channels in formations featuring large values of k but poorly connected
regions may also involve high-permeability cells.

4.2 Variability of transport behaviour across multiple realizations

Figure 5 displays the overlap of the PDF of the solute arrival times, obtained taking
the time derivative of the BTC (dc̄/dT ) obtained from 10 realisations of permeability
fields generated with the same geostatistical parameters. The observed variability
tends to be greater for early times while at later times the different realizations attain
similar values. This behaviour is the result of a continuous injection in the whole
inlet face, where the solute broadly explores the facies’ heterogenities as the solute
fill the whole domain. Local injections in high/low conductivity have been considered
in previous works (Zhang et al. 2015) and may display a larger variability within the
sample. A comparative study on the averaging property of Eulerian simulations in
local injection setting will be considered for future works. The outlined behaviour
does not show qualitatively relevant differences between low (left panel) and high
(right panel) permeability contrast. However, we observe a slightly larger spread in
computed early solute arrivals for the high contrast as compared to the low contrast
case (see the rising limb of the curves in Fig. 5). Because in the following we focus
on the assessment of the macroscopic response of the system and the departure from
a Fickian macrodispersive model, we deem a single realisation to be representative of
the response of the system to various combinations of the investigated parameters.

4.3 Effect of permeability contrast

Figure 6 illustrates the effect of the permeability contrast between facies on trans-
port, by comparing the results of transport simulations performed on two geological
domains with identical arrangement but assuming low and high permeability contrast.
Geostatistical, flow and transport parameters associated with the results in Fig. 6 are
shown in Table 2.
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Fig. 6 Top panels: breakthrough curves (left) and their time derivatives (right) simulated on identical
geological structure with low and high permeability contrast between the facies. Bottom panels: the curves
are overlappedwith the corresponding InverseGaussian approximations via least square (LSQ) ormoments’
method estimation in low (left) and high (right) permeability contrast case

The simulated BTCs (i.e., CDFs of the solute arrival times) are shown in the top left
panel of Fig. 6 while on top right panel of Fig. 6 the corresponding time derivative are
shown, these latter corresponding to the PDFs of arrival times. The dotted and dashed
lines in the bottompanels of Fig. 6 are computed applying themoment’smethod and the
least squaremethod illustrated inSect. 2.5.1 to the results of the numerical experiments.
A Fickian model based on the Inverse Gaussian distribution yields a reasonable fitting
of the numerical data for the low contrast simulation, where the premeability contrast
remains within one order of magnitude (see Fig. 6, bottom left and the first error
column in Table 3). In this case the match between the numerical simulation and the
Inverse Gaussian distribution is satisfactory especially for the peak and the right tail
of the distribution, representing late arrivals. While Eq. (14) represents the analytical
solution for the ADE in an infinite domain, in our case the optimal analytical solution
should consider the semi-infinite boundary condition adopted for the concentration.
The analytical expression can be found in Van Genuchten (1982). In the low contrast
case the results obtained with different estimation methods are self-consistent, i.e.
least squares and moments methods yield similar outcomes. For high permeability
contrast, the Inverse Gaussian distribution cannot match the simulated data (Fig. 6,
bottom right), regardless of the method used to estimate its parameters (Least Square
or Moments method).

In summary, Fig. 6 suggests that as the permeability contrast increases, the evolution
of the solute concentration shows significant departure from the Fickian model.

A detailed analysis of these results is shown in Table 3. Our results suggest that
the level of accuracy of macrodispersion models in capturing transport behaviour
decreases with the permeability contrast. Table 3 reports the values ofmacrodispersion
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Table 2 Geostatistical and flow
parameters for the low and high
permeability contrast fields used
to generate results reported in
Figure 6. The flow parameters
were defined by equations (11)
and (12)

Low contrast High contrast

Geostatistical parameters

λx [m] 0.8 0.8

log(ki+1/ki ) [−] 1 2

Var(log(k)) [logm4] 6.5 26.1

Flow parameters

ke f f ,x [m2] 2.11 × 10−11 1.49 × 10−10

Vx [m/s] 1.07 × 10−6 9.64 × 10−6

Pex [−] 21113 59633

The flow parameters were defined by Eqs. (11) and (12)

Table 3 Simulated (Ref erence solution) and estimated (Methods 1–4) values for average Darcy velocity
V̄x , macrodispersion Dmac and relative breakthrough error e values

Low contrast High contrast
V̄x [m/s] Dmac [m2/s] e [%] V̄x [m/s] Dmac [m2/s] e [%]

Reference solution 1.07 × 10−6 8.57 × 10−7 − 9.64 × 10−6 7.71 × 10−6 −
Method 1 6.94 × 10−7 4.97 × 10−7 16.20 7.03 × 10−7 1.59 × 10−6 79.5

Method 2 2.08 × 10−7 1.81 × 10−7 10.71 3.79 × 10−5 8.79 × 10−7 48.1

Method 3 6.50 × 10−7 6.09 × 10−7 11.94 6.36 × 10−7 2.33 × 10−6 126.7

Method 4 2.42 × 10−7 1.13 × 10−7 11.93 8.95 × 10−8 3.74 × 10−5 49.2

The re f erence solution values represent the average longitudinal velocity and the nominal macrodisper-
sion as from Eq. (13). Method 1 is the moments method, Method 2, 3 and 4 correspond to least squares
method applied to the simulated PDF, CDF and the PDF peak data. As a result of the unsuitability of the
Inverse Gaussian model to the describe the PDF in high permeability contrast scenarios, some values (italic)
are characterised by extremely large standard deviations (σ > 106)

parameters computed through approximation (13) (considered as a reference value)
and compare them with the the estimated ones. Transport parameters estimations are
closer to the reference values for the low contrast if compared to the high contrast
cases. Moreover the estimates obtained through least squares in the high contrast case
are generally affected by large confidence bounds (i.e., they are indicated in italic in
Tabel 7) thus the estimated values cannot be considered as reliable.

4.4 Effect of spatial correlation

Transport simulations are performed on PGS domains sharing comparable geosta-
tistical parameters (Table 4) while increasing longitudinal correlation lengths (Fig.
7). These provide interesting insights into the transition from Fickian to anomalous
transport in relation to the connectivity degree of the sediment structure (Fig. 8). We
emphasise here that the correlation length mentioned here is the one employed to
generate the continuous Gaussian random fields which are then employed to generate
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Table 4 Geostatistical and flow parameters for low permeability contrast simulations. The flow parameters
are defined by equations (11) and (12)

λx = 0.4 λx = 0.6 λx = 0.8 λx = 1.0

Geostatistical parameters

log(ki /ki+1) 1 1 1 1

Var(log(k)) [logm4] 6.7 6.6 6.6 6.6

Flow parameters

ke f f ,x [m2] 1.75 × 10−11 1.99 × 10−11 2.14 × 10−11 2.27 × 10−11

Pex [−] 3508 5972 8571 11355

The flow parameters are defined by Eqs. (11) and (12)

Fig. 7 Truncated pluri-Gaussian permeability fields with increasing longitudinal correlation length λx .
Clockwise order from top left panel: λx = 0.4, λx = 0.6, λx = 0.8, λx = 1.0

the conductivity fields (see Fig. 1). This length can be interpreted as the characteristic
length over which facies’ transitions are observed.

Figure 8 displays the PDFs of the solute arrival times obtained for a range of values
assigned to λx . As the longitudinal correlation length increases, the magnitude of the
peak value increases and the peak shifts towards earlier arrival times. This can be
explained observing that, with increasing correlation in the longitudinal direction, the
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Fig. 8 Arrival time PDFs computed as dc̄/dT for low (left panel) and high (right panel) permeability
contrast for as a function of the longitudinal correlation length λx . From the darkest to the lightest curve
the longitudinal correlation length λx = 1 increases with evenly spaced interval from 0.4 to 1

Table 5 Geostatistical and flow parameters’ for high permeability contrast simulations

λx = 0.4 λx = 0.6 λx = 0.8 λx = 1.0

Geostatistical parameters

log(ki /ki+1) 2 2 2 2

Var(log(k)) [logm4] 26.1 26.2 25.9 26.2

Flow parameters

ke f f ,x [m2] 1.50 × 10−10 1.76 × 10−10 1.93 × 10−10 2.05 × 10−10

Pex [−] 29953 52919 77127 102719

The flow parameters were defined by Eqs. (11) and (12) and are computed in the longitudinal direction of
the flow. Longitudinal correlation length increases from 0.4 to 1.0

connectivity between highly permeable facies favours the formation of fast channels
where advection prevails over diffusion thus leading to early arrivals. This effect is
more evident for the high contrast scenario (right side of Fig. 8) and is reflected
by the solute arrivals PDFs trends: as the domain connectivity increases, the initial
concentration peak rises while the central segment of the curve highlights a power law
response.

Tables 4 and 5 report relevant geostatistical and flow simulation parameters which
are required to interpret the results of the average Darcy velocity and macrodispersion
estimation process provided in Tables 6 and 7. As a result of the emergence of pref-
erential flow-paths, the effective permeability shows a positive trend for increasing
correlation lengths.

Comparing the relative error computed for low and high permeability contrast cases,
it is clear that the reliability of the Fickian model at the macroscale decreases with
the permeability contrast (see Fig. 9). We also observe a mild increasing trend of the
relative error with increasing values of the correlation length. This trend is justified by
the role of the preferential flow-paths which facilitate fast advective flow that make
overall solute behaviour anomalous.

Summarising the results of our numerical experiments, we observe that both corre-
lation length and permeability contrast are triggering factors for non-Fickian transport
behaviour. Increasing the correlation length by a factor 2 induces a 15-20 % increase
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Fig. 9 Longitudinal correlation
length vs relative error
computed as the departure from
Fickian model (Eq. 22) with
parameters estimated with the
moments method (Method 1)

in the observed error. Thus, the correlation length appears to have a milder effect if
compared with the permeability contrast.

4.5 Effect of Péclet

We analyse here the effect of the Péclet number on our results. This means that not
only the effect of different permeability fields (as in Sect. 4.3) or correlation lengths
(Sect. 4.4) were tested, but also the effect of the compound-specific diffusion coeffi-
cient. Our tests were conducted by decreasing the molecular diffusion coefficient of
one magnitude order at each simulation that correspond to an increase of the Péclet
(Pe) of one magnitude order at each simulation. The average Darcy velocity and the
correlation length λx are kept constant. The variations in Pe have a marked influence
on the right tail of the arrival times distributions, as shown in Fig. 10. This result is
in agreement with Zhang et al. (2015) and can be explained observing that diffusion
effects become apparent in late arrivals, while early arrivals are conversely driven by
advection-dominated processes. Left and right panels in Fig. 10 show the combined
effect of increasing Péclet (darker to lighter curves) in a low (left) and high (right)
permeability contrast domain. We observe that both trends display a linear trend in
Fig. 10, indicating a proportionality e ∼ a log(Pe), where the constant a depends on
the assumed permeability contrast. Thus, the analysis yields comparable conclusions
with the ones obtained in Sect. 4.4: while the interplay between increasing Péclet num-
bers and the departure from Fickian behaviour is clear, the increase of permeability
contrast still appears to play a predominant role.

Figure 11 shows that the increase in permeability contrast by one order ofmagnitude
exhibits a stronger control on transport behaviour than the increase in Péclet number by
one magnitude order as for comparable Pe, the error associated with low permeability
contrast simulations (light curve) is always lower than the error associated with the
high permeability contrast (dark curve). It is interesting to note that the permeability
contrast appears to control the rate at which the Fickian model error decreases for
decreasing Pe. The error is here represented by taking the approximation resuting
from the moments’ method (M.1 in Tables 6 and 7).
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Fig. 10 Arrival times PDFs in low (left) and high (right) permeability contrast domains sharing the same
geological structure (λx = 0.8 m) while characterised by a different Péclet. In case of low permeability
contrast, the Péclet number ranges between 8 × 102 and 8 × 104 while for high permeability contrast the
Péclet ranges between 6× 103 and 6× 105. Significant Péclet variation for these simulations was obtained
by changing the molecular diffusion coefficient

Fig. 11 Péclet number vs
relative error computed as in
Eq. (22). The interplay between
increasing Péclet numbers,
permeability contrast and
relative error is qualitatively
similar to the one exhibited by
the increasing longitudinal
correlation length in Fig. 8

5 Conclusions

In this work we have explored the impact of permeability contrast and, similarly to
Zhang et al. (2014, 2015) andYin et al. (2020), correlation length andPéclet number on
the emergence of non-Fickian transport in random discontinuous permeability fields.

The following conclusions can be drawn from the interpretation of our results:

• our results combine error and uncertainty quantificationmetrics to assess departure
from a Fickian transport regime in PGS fields. Emergence of non Fickian trans-
port is quantified upon relying on relative error with respect to the prediction of
a macrodispersive solution, where this latter can be obtained with diverse estima-
tion strategies. Large relative errors and large confidence intervals for estimated
parameters are indicative of the unsuitability of the Inverse Gaussian distribu-
tion in interpreting the outcomes of high-resolution numerical simulations, thus
indicating non-Fickian response;

• a Fickianmacrodispersivemodel canmatchwith reasonable accuracy solute arrival
times in ergodic domains featuring conductivity values distributed over up to four
orders of magnitudes. In such conditions the Fickian model underestimates early
arrival times, but can capture with good accuracy the peak and late arrivals. Overall
observed errors are in the order of 10-20 %. Lowest errors are obtained when the
characteristic size associated with the medium heterogeneity is much smaller than
the distance travelled by the solute;
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• for ergodic domains, a hierarchy of non-Fickian triggering factors can be estab-
lished: permeability contrast plays a primary role in determining the fate of the
solute, while correlation length and Péclet number can be both considered sec-
ondary non-Fickian transport triggering factors;

• fluid velocity PDFs support the prevalence of permeability contrast over correla-
tion length in triggering non-Fickian transport. The velocity distribution is strongly
modified by permeability contrast, displaying amuch larger spread in high contrast
media if compared with low contrast ones. Conversely, increasing the correlation
length only slightly affects the shape of the flow velocity PDFs. Interesting insights
are also gained upon considering velocity distributions separately by facies. In both
high and low contrast media flow velocity values in low permeability regions are
homogeneously distributed around the corresponding peak values. Conversely,
flow velocities in permeable facies display increasing skewness with increasing
permeability contrast indicating the occurrence of low velocity regions in highly
permeable media. This element could be further exploited in the context of macro-
scopic non-Fickian parameterisation, which will be considered in future works;

• the BTC variability observed between multiple realisations of the same geological
setting is more evident at early times while it tends to disappear at late times;

• the relative importance of diffusion and advective processes, captured by Pe,
plays an important role in the solute transport response. Yet, the influence of Pe
on the accuracy of amacrodispersivemodel ismarkedly influenced by the assumed
permeability contrast. Our results suggest a logarithmic trend e ∼ a log(Pe)where
the constant a is proportional to the assumed permeability contrast;

• while for Fickian or moderately non-Fickian transport the different parameter
estimation methods (method of moments or least-squares-based methods) are
equivalent, when amacrodispersion approximation is sought for significantly non-
Fickian curves, the choice of the fitting method is crucial as it can lead to very
different effective parameters and fitted curves. Although this is expected, due
to the lack of validity of the underlying model, it has important consequences
for practitioners that are nevertheless forced to use and fit macrodispersion effec-
tive parameters. Here, the method of moments is built to preserve accurately the
statistics but it could predict poorly the early arrival peak as well as the long tails.

Future works will include the extension to more realistic injection scenarios, vari-
able density and hydrodynamic dispersion models, investigating the effect of different
lithotype rules, aswell as interpreting the non-Fickian transport results withmore com-
plex anomalous transport models including spatial Markov processes (Sherman et al.
2021) and Generalised Multi-Rate Transfer equations (Municchi and Icardi 2020).

Acknowledgements Wewould like to especially thank Prof. John Billingham for his insightful suggestions
and for his detailed proofreading of this paper.

Funding This work was supported by the Royal Society through the grant No. IES\R3\170302.

Declaration

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

123



GEM - International Journal on Geomathematics (2022) 13 :17 Page 25 of 27 17

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adams,E.E.,Gelhar, L.W.: Field studyof dispersion in a heterogeneous aquifer: 2. Spatialmoments analysis.
Water Resour. Res. 28(12), 3293–3307 (1992)

Armstrong, M., Galli, A., Beucher, H., Loc’h, G., Renard, D., Doligez, B., Eschard, R., Geffroy, F.: Pluri-
gaussian Simulations in Geosciences. Springer, Berlin (2011)

Barlebo, H.C., Hill, M.C., Rosbjerg, D.: Investigating themacrodispersion experiment (made) site in colum-
bus, mississippi, using a three-dimensional inverse flow and transport model.Water Resour. Res. 40(4)
(2004). https://doi.org/10.1029/2002WR001935

Bear, J.: Hydraulics of Groundwater. Courier Corporation, Chelmsford (2012)
Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as

a continuous time randomwalk. Rev. Geophys. 44(2) (2006). https://doi.org/10.1029/2005RG000178
Bianchi,M., Zheng, C.: A lithofacies approach formodeling non-Fickian solute transport in a heterogeneous

alluvial aquifer. Water Resour. Res. 52(1), 552–565 (2016)
Bianchi, M., Pedretti, D.: Geological entropy and solute transport in heterogeneous porous media. Water

Resour. Res. 53(6), 4691–4708 (2017)
Carle, S.F.: T-Progs: Transition Probability Geostatistical Software, vol. 84. University of California, Davis

(1999)
Carle, S.F., Fogg, G.E.: Transition probability-based indicator geostatistics. Math. Geol. 28(4), 453–476

(1996)
Carle, S.F., Fogg, G.E.: Modeling spatial variability with one and multidimensional continuous-lag markov

chains. Math. Geol. 29(7), 891–918 (1997)
Comolli, A., Hakoun, V., Dentz, M.: Mechanisms, upscaling, and prediction of anomalous dispersion in

heterogeneous porous media. Water Resour. Res. 55(10), 8197–8222 (2019). https://doi.org/10.1029/
2019WR024919

Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (2012)
de Barros, F.P.J., Guadagnini, A., Riva, M.: Features of transport in non-Gaussian random porous sys-

tems. Int. J. Heat Mass Transf. 184, 122244 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.
122244

Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media:
a brief review. J. Contam. Hydrol. 120, 1–17 (2011)

Deutsch, C.V., Journel, A.G.: Gslib. Geostatistical Software Library and User’s Guide, vol. 369. Oxford
University Press, Oxford (1998)

Dimitrakopoulos, R., Luo, X.: Generalized sequential Gaussian simulation on group size ν and screen-effect
approximations for large field simulations. Math. Geol. 36(5), 567–591 (2004)

Edery, Y., Guadagnini, A., Scher, H., Berkowitz, B.: Origins of anomalous transport in heterogeneousmedia:
structural and dynamic controls. Water Resour. Res. 50(2), 1490–1505 (2014)

Edery, Y., Porta, G.M., Guadagnini, A., Scher, H., Berkowitz, B.: Characterization of bimolecular reactive
transport in heterogeneous porous media. Transp. Porous Media 115(2), 291–310 (2016). https://doi.
org/10.1007/s11242-016-0684-0

Edery,Y., Stolar,M., Porta,G.,Guadagnini,A.: Feedbackmechanisms between precipitation and dissolution
reactions across randomly heterogeneous conductivity fields. Hydrol. Earth Syst. Sci. 25(11), 5905–
5915 (2021). https://doi.org/10.5194/hess-25-5905-2021

Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P., Zech, A., Teutsch, G.: Debates–
stochastic subsurface hydrology from theory to practice: the relevance of stochastic subsurface

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2002WR001935
https://doi.org/10.1029/2005RG000178
https://doi.org/10.1029/2019WR024919
https://doi.org/10.1029/2019WR024919
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122244
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122244
https://doi.org/10.1007/s11242-016-0684-0
https://doi.org/10.1007/s11242-016-0684-0
https://doi.org/10.5194/hess-25-5905-2021


17 Page 26 of 27 GEM - International Journal on Geomathematics (2022) 13 :17

hydrology to practical problems of contaminant transport and remediation. What is characterization
and stochastic theory good for? Water Resour. Res. 52(12), 9228–9234 (2016)

Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P.,
Tatomir, A.,Wolff, M.: Dumux: Dune for multi-phase, component, scale, physics,... flow and transport
in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011)

Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water
Resour. Res. 19(1), 161–180 (1983)

Gotovac, H., Cvetkovic, V., Andricevic, R.: Flow and travel time statistics in highly heterogeneous porous
media. Water Resour. Res. 45(7) (2009) https://doi.org/10.1029/2008WR007168

Hansen, S.K., Haslauer, C.P., Cirpka, O.A., Vesselinov, V.V.: Direct breakthrough curve prediction from
statistics of heterogeneous conductivity fields. Water Resour. Res. 54(1), 271–285 (2018). https://doi.
org/10.1002/2017WR020450

Heße, F., Prykhodko, V., Schlüter, S., Attinger, S.: Generating random fields with a truncated power-law
variogram: a comparison of several numerical methods. Environ. Model. Softw. 55, 32–48 (2014)

Horgue, P., Soulaine, C., Franc, J., Guibert, R., Debenest, G.: An open-source toolbox for multiphase flow
in porous media. Comput. Phys. Commun. 187, 217–226 (2015)

Jankovic, I., Maghrebi, M., Fiori, A., Dagan, G.: When good statistical models of aquifer heterogeneity go
right: the impact of aquifer permeability structures on 3d flow and transport. Adv. Water Resour. 100,
199–211 (2017)

Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.-O., Fischer, T., Görke, U.J., Kalbacher, T.,
Kosakowski, G., McDermott, C.: Opengeosys: an open-source initiative for numerical simulation
of thermo-hydro-mechanical/chemical (thm/c) processes in porous media. Environ. Earth Sci. 67(2),
589–599 (2012)

Koltermann, C.E., Gorelick, S.M.: Heterogeneity in sedimentary deposits: a review of structure-imitating,
process-imitating, and descriptive approaches. Water Resour. Res. 32(9), 2617–2658 (1996)

Kreft, A., Zuber, A.: On the physical meaning of the dispersion equation and its solutions for different initial
and boundary conditions. Chem. Eng. Sci. 33(11), 1471–1480 (1978)

Linde, N., Renard, P., Mukerji, T., Caers, J.: Geological realism in hydrogeological and geophysical inverse
modeling: a review. Adv. Water Resour. 86, 86–101 (2015)

Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM
Rev. 10(4), 422–437 (1968)

Mariethoz, G., Renard, P., Cornaton, F., Jaquet, O.: Truncated plurigaussian simulations to characterize
aquifer heterogeneity. Groundwater 47(1), 13–24 (2009)

Municchi, F., Icardi, M.: Generalized multirate models for conjugate transfer in heterogeneous materials.
Phys. Rev. Res. 2(1), 013041 (2020)

Municchi, F., Pescimoro, E., Hidalgo, J., Icardi, M.: SECUReFOAMV0.1 (2022). https://doi.org/10.5281/
zenodo.6958098

Neuman, S.P., Tartakovsky, D.M.: Perspective on theories of non-Fickian transport in heterogeneous media.
Adv. Water Resour. 32(5), 670–680 (2009)

Riva, M., Guadagnini, A., Fernandez-Garcia, D., Sanchez-Vila, X., Ptak, T.: Relative importance of geosta-
tistical and transport models in describing heavily tailed breakthrough curves at the lauswiesen site.
J. Contam. Hydrol. 101(1–4), 1–13 (2008). https://doi.org/10.1016/j.jconhyd.2008.07.004

Savoy, H., Kalbacher, T., Dietrich, P., Rubin, Y.: Geological heterogeneity: goal-oriented simplification of
structure and characterization needs. Adv. Water Resour. 109, 1–13 (2017)

Sherman, T., Engdahl, N.B., Porta, G., Bolster, D.: A review of spatial markov models for predicting pre-
asymptotic and anomalous transport in porous and fractured media. J. Contam. Hydrol. 236, 103734
(2021)

Sole-Mari, G., Riva, M., Fernàndez-Garcia, D., Sanchez-Vila, X., Guadagnini, A.: Solute transport in
bounded porousmedia characterized by generalized sub-Gaussian log-conductivity distributions. Adv.
Water Resour. 147, 103812 (2021). https://doi.org/10.1016/j.advwatres.2020.103812

Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math.
Geol. 34(1), 1–21 (2002)

Tartakovsky, D.M., Dentz, M.: Diffusion in porous media: phenomena and mechanisms. Transp. Porous
Media 130(1), 105–127 (2019)

VanGenuchten,M.T.:Analytical Solutions of theOne-DimensionalConvective-DispersiveSoluteTransport
Equation, vol. 1661. US Department of Agriculture, Agricultural Research Service, Beltsville (1982)

123

https://doi.org/10.1029/2008WR007168
https://doi.org/10.1002/2017WR020450
https://doi.org/10.1002/2017WR020450
https://doi.org/10.5281/zenodo.6958098
https://doi.org/10.5281/zenodo.6958098
https://doi.org/10.1016/j.jconhyd.2008.07.004
https://doi.org/10.1016/j.advwatres.2020.103812


GEM - International Journal on Geomathematics (2022) 13 :17 Page 27 of 27 17

Weissmann, G.S., Carle, S.F., Fogg, G.E.: Three-dimensional hydrofacies modeling based on soil surveys
and transition probability geostatistics. Water Resour. Res. 35(6), 1761–1770 (1999)

Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuummechanics
using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

Yin, M., Zhang, Y., Ma, R., Tick, G.R., Bianchi, M., Zheng, C., Wei, W., Wei, S., Liu, X.: Super-diffusion
affected by hydrofacies mean length and source geometry in alluvial settings. J. Hydrol. 582, 124515
(2020)

Yu, C., Warrick, A., Conklin, M.: A moment method for analyzing breakthrough curves of step inputs.
Water Resour. Res. 35(11), 3567–3572 (1999)

Zech, A., Attinger, S., Bellin, A., Cvetkovic, V., Dagan, G., Dentz, M., Dietrich, P., Fiori, A., Teutsch,
G.: A comparison of six transport models of the made-1 experiment implemented with different
types of hydraulic data. Water Resour. Res. 57(5), 2020–028672 (2021). https://doi.org/10.1029/
2020WR028672

Zhang, Y., Green, C.T., Fogg, G.E.: The impact of medium architecture of alluvial settings on non-Fickian
transport. Adv. Water Resour. 54, 78–99 (2013)

Zhang, Y., Green, C.T., Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport inmobile-
immobile like alluvial settings. J. Hydrol. 512, 315–331 (2014)

Zhang, Y., Green, C.T., Tick, G.R.: Peclet number as affected by molecular diffusion controls transient
anomalous transport in alluvial aquifer-aquitard complexes. J. Contam. Hydrol. 177, 220–238 (2015)

Zinn, B., Harvey, C.F.: When good statistical models of aquifer heterogeneity go bad: a comparison of flow,
dispersion, and mass transfer in connected and multivariate gaussian hydraulic conductivity fields.
Water Resour. Res. 39(3) (2003). https://doi.org/10.1029/2001WR001146

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1029/2020WR028672
https://doi.org/10.1029/2020WR028672
https://doi.org/10.1029/2001WR001146

	Emergence of non-Fickian transport in truncated pluri-Gaussian permeability fields
	Abstract
	1 Introduction
	2 Methods
	2.1 Geostatistical model
	2.2 The flow model
	2.3 Local transport model
	2.4 Macrodispersion model
	2.5 Quantities of interest
	2.5.1 Breakthrough curve and inverse Gaussian approximation


	3 Numerical experiments
	4 Results
	4.1 Velocity PDFs
	4.2 Variability of transport behaviour across multiple realizations
	4.3 Effect of permeability contrast
	4.4 Effect of spatial correlation
	4.5 Effect of Péclet

	5 Conclusions
	Acknowledgements
	References




