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A B S T R A C T   

Digital technologies, such as advanced analytics, autonomous vehicles or the Internet of Things, are often touted 
as means to substantially improve operations. While this potential has been frequently highlighted and evidenced 
from single case applications, we still lack a deeper theoretical understanding of the underlying mechanisms how 
digital technologies can support process improvement in general, and lean practices more specifically. In this 
paper, we use a qualitative study based on focus group design to understand how manufacturing and supply 
chain management professionals perceive the potential of digital technologies in support of lean practices. We 
identify eight digital waste reduction mechanisms that illustrate how digital technologies can support lean 
practices. These include a cluster of mechanisms that augment operational execution in terms of speed and 
precision of execution, as well as flexibility in space and time. Furthermore, we identify a second cluster of 
mechanisms that augment decision-making through visibility, feedback, engagement, and prevention. In terms of 
managerial implications, our findings provide firms with a structured approach how to identify those digital 
technologies that can most effectively support their respective process improvement activities.   

1. Introduction 

Digital technologies are powerful innovations that have rightfully 
captured the imagination of practitioners and scholars alike how they 
could support and enhance operations (see for example Frank et al. 
(2019), Benitez et al. (2020), Dalenogare et al. (2018) or Wee et al. 
(2015)). A growing number of studies are at hand that have studied the 
digital technologies that are commonly clustered as ‘Industry 4.0’ (see, 
for example Buer et al. (2018), Culot et al. (2020) or Weking et al. 
(2019)), and some have linked these technologies directly to process 
improvement through lean practices (Gillani et al., 2020; Wagner et al., 
2017). For example, Wagner et al. (2017) argue that digitalization will 
not only support lean, but it will also enlarge its scope. The common 
view is that digitalization will enhance operational improvements, and 
in turn, improve operational performance (see, for example: Davies 
et al., 2017; Kolberg and Zühlke, 2015; Li et al., 2020; Moeuf et al., 
2020; Tortorella et al., 2019 and 2020). 

While a consensus view may be emerging, much of this discourse 
remains conceptual in nature and lacks empirical confirmation. Most 
contributions either provide a conceptual discussion of the potential 
relation between Lean and Industry 4.0 (see, for example Buer et al. 

(2018) or Núñez-Merino et al. (2020)) or refer to projected future ben
efits (see, for example: Rosin et al. (2020) and Tortorella et al. (2019)). 
We took this gap as starting point and initially conducted an exploratory 
survey of European manufacturing plants in 2019 (Cifone et al., 2019). 
Our aim was to understand whether, and how, firms seize the oppor
tunities that digital technologies present to improve their operational 
performance using lean practices. To this effect we targeted lean com
panies with at least one plant in Europe leading us to a final dataset 
comprehending 105 plants corresponding to 88 different companies. 
Questions were related mainly to lean practices implementation (Shah 
and Ward, 2003), to digital technology implementation, and to opera
tional performance (Shah and Ward, 2003) that were realised after any 
integration of lean practices and digital technologies. Our survey find
ings demonstrate that while the majority of plants show a high degree of 
lean maturity, they still have not embraced digitalization to a compa
rable degree. As such, it was not possible to provide a quantitative 
empirical perspective of the extent that digital technologies can support 
lean practices. While there is nascent evidence suggesting that digital 
technologies can indeed support lean practices (see Section 2.3), the 
exact mechanisms enabling new technologies to reduce wastes are still 
not entirely clear. These mechanisms are important to understand as 
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they offer companies the opportunity to identify appropriate technolo
gies to best address the different lean wastes. In addition, the mecha
nisms offer researchers new perspectives to further investigate the 
different conceptual links between new digital technologies and lean 
practices. The current study continues this line of inquiry using a qual
itative research design to obtain detailed insights into how digital 
technologies enable lean practices, or in short, enable a ‘Lean 4.0’. To 
this effect we selected a focus-group-based research design and con
ducted 12 in-depth sessions across two countries with 48 experience 
managers. We aimed at assessing what potential manufacturing and 
supply chain management professionals see for digital technologies to 
support lean, while also assessing the respective perceived importance 
of each of the six digital technology clusters. 

Our findings first and foremost confirm that, as has been suggested 
before, digital technologies offer significant potential to support and 
enhance lean within manufacturing. Extending previous studies, we 
identify eight digital waste reduction mechanisms how digital technol
ogies can support lean: firstly, those that enhance operational execution, 
and secondly those that enhance operational decision making. Our findings 
contribute a theoretical view towards understanding the true impact of 
Industry 4.0 technologies can have on process improvement in general, 
and lean practices in particular. We are advancing a largely conceptual 
debate on the relationship between Industry 4.0 and lean by providing 
empirical evidence of the likely implications digital technologies will 
have on lean practices. Our findings also have direct managerial rele
vance as a guideline by firms wishing to adopt digital technologies, 
showing which technologies most effectively can support certain im
provements on the shop-floor. 

The remainder of this paper is structured as follows. Section 2 re
views the relevant literature on Lean, Industry 4.0 as well as the rela
tionship between the two concepts. Section 3 shows the research 
methodology, discussing the digital technologies we adopted in our 
study, the focus group design, and the coding process that lead us to 
unveil the digital waste reduction mechanisms. Then, we present our 
results and discussion in Section 4. The paper ends with the conclusions 
in Section 5, which highlights the implications of the study, limitations 
and future research directions. 

2. Theoretical background 

In this section, we set out by briefly reviewing the established lean 
concepts and practices in the context of process improvement within the 
manufacturing firms. We then proceed to identifying the technology 
clusters that are most relevant in this context. Finally, we synthesize the 
relationship between these two streams of the literature. 

2.1. Lean manufacturing: concepts and practices 

The concept of lean production, and its evolution over time, have 
been widely researched and discussed in the operations management 
literature over the past three decades, and its key tenets thus must not be 
repeated here (for historical overviews see Holweg (2007), Hines et al. 
(2004) and Fujimoto (1999); for reviews of key lean tools and practices 
see Monden (1998), Shah and Ward (2007, 2003), Liker (2004), 
Womack et al. (1990), Hopp and Spearman (2020, and Cusumano et al. 
(2021))tor. 

Lean production can be conceptualised at various levels: its guiding 
philosophy, the principles that guide its implementation, and the under
lying practices that lead to actual process improvement. At its core, the 
lean philosophy is to improve processes by removing muda (waste), 
muri (overburden) and mura (unevenness) from the process. The most 
common way to state the lean philosophy is through Taiichi Ohno 
original seven wastes in manufacturing (often abbreviated as TIMWOOD 
– Transportation, (excess) Inventory, Motion, Waiting, Overproduction, 
Overprocessing and Defects), which later have been expanded to also 
include ‘Skills’, or wasted human talent and ideas. Muda, together with 

mura and muri, provide the original, and still the most succinct, way 
how to conceptualise lean (Bicheno and Holweg, 2016). All lean prac
tices, as for example outlined by Shah and Ward in their seminal papers 
(Shah and Ward, 2003, 2007) in essence are focussed on addressing one 
or several of these wastes. It is for that reason that we adopt the eight 
wastes for our study, in order to understand how digital technologies can 
help reduce these eight wastes from manufacturing processes. In other 
words, using the fundamental concept of the eight wastes allows us to 
identify the actual digital waste reduction mechanisms how the various 
technologies support their reduction within the manufacturing process. 

This conceptual framing also represents a limitation that future 
research should seek to overcome. Specifically, further studies may wish 
to link specific lean practices, as for example identified by Monden 
(1998), Shah and Ward (2003), Liker (2004), and many others, to see 
how digital technologies can support, enhance, or possibly impede the 
main lean practices. It is likely that certain digital technologies will 
support lean practices better than others, and it will be important to 
understand these differential effects in the long term – even though they 
may exceed the scope of this initial study. 

2.2. Industry 4.0 

Contrary to lean production, digital technologies and their growing 
role within operations practices are a nascent phenomenon (Schnie
derjans et al., 2020). Companies have always used new technologies to 
advance their processes, with the shipping container being probably the 
most successful example of a technical revolution that significantly 
improved supply chain processes and shaped global trade flows (Lev
inson, 2010). However, it is important to note that digital technologies 
not always fulfil the expectations they are said to achieve. An example is 
Radio Frequency Identification (RFID) technology that has triggered 
high expectations for process improvement in retailing operations, but 
so far, have only been able to partially fulfil (Gaukler and Seifert, 2007). 

The most recent wave of digital technologies is often referred to as 
‘Industry 4.0’, a term that was coined within German industrial policy in 
2011 (BMBF-Internetredaktion, 2016; Kagermann et al., 2011). Most 
prominently, Industry 4.0 was recognized as the ‘Fourth Industrial 
Revolution (4IR)’ by the World Economic Forum (Schwab, 2016). 
Because of its novelty, there is neither a world-wide accepted definition 
of it nor a proper classification of technologies under its umbrella (Culot 
et al., 2020). Different authors provide indeed both their own definition 
of Industry 4.0 as well as of technologies (Buer et al., 2018; Moeuf et al., 
2017; Weking et al., 2019). Generally speaking, Industry 4.0 represents 
the further digitalization of the manufacturing world (Dalenogare et al., 
2018; Weking et al., 2019). It is recognized as the convergence of several 
different technologies (Raj et al., 2020). Even though most technologies 
were already well-known in the manufacturing world before the explicit 
definition of Industry 4.0 (Culot et al., 2020; Tortorella et al., 2020a), 
their low-cost availability as well as their increase of power are some of 
its enablers. 

The industry 4.0 concept has equally captured the attention of 
scholars, focusing on the increase in operational capabilities (Bai et al., 
2020). Specifically, most studies focus on how these augmented capa
bilities improve firm performance (Gillani et al., 2020). Within the In
dustry 4.0 the advent of Internet of Things (IoT), cloud services, big data, 
advanced analytics enable the creation of cyber-physical systems (CPS), 
which is the keystone and the real innovation of Industry 4.0 (see, for 
example: Frank et al., 2019 and Wang et al., 2016). The ultimate aspi
ration of Industry 4.0 is the creation of a network among humans and 
objects connected through real-time data (Lopes de Sousa Jabbour et al., 
2018; Osterrieder et al., 2020; Wagner et al., 2017). Such networks will 
cover the whole supply chain, facilitating relationships among all 
different stakeholders (Benitez et al., 2020; Dalenogare et al., 2018) 
resulting in a horizontal integration among involved actors as a 
process-related element of Industry 4.0 (Shahin et al., 2020). Industry 
4.0 is portrayed as a way for companies to reach unprecedented level of 
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innovation (Moeuf et al., 2020) and of operational performance (Gillani 
et al., 2020; Tortorella et al., 2019). These drastic advances in tech
nologies for operations and supply chain management have indeed the 
greatest impact on companies operational success (Chiarini et al., 2020). 
Among others, Industry 4.0 facilitates companies in strengthening or 
building a flexible and agile supply chain, in fully customizing of 
products and in achieving higher efficiency within their process (see, for 
example Gillani et al., 2020; Osterrieder et al., 2020; Wang et al., 2016). 
Exploiting advanced analytics and big data, companies can detect 
possible future patterns regarding customers, suppliers or production 
assets and therefore to enhance their reactive capability to any change 
(Weking et al., 2019). On the other hand, companies can – leveraging 
CPS – create a modular and changeable production system, that in turn 
allows the production of highly customized products (Tortorella et al., 
2020). 

In summary, virtually all technologies associated within Industry 4.0 
(i.e., Internet of Things, advanced analytics, robotics, additive 
manufacturing, augmented reality and others) are seen to play a strong 
role in enhancing operational efficiency (Buer et al., 2018; Dalenogare 
et al., 2018; Frank et al., 2019). Yet the actual mechanisms how these 
improvements can be realised is far less clear, as is the way in which 
Industry 4.0 will be integrated into existing operations management 
approaches, such as lean practices. 

2.3. Synthesis: Integrating Lean and Industry 4.0 

The integration of lean and Industry 4.0 into the ‘Lean 4.0’ concept is 
increasingly being discussed in the concurrent practitioner, as well as 
the academic literature (e.g. Buer et al., 2018). There are several 
differing perspectives on how this might be achieved, while two main 
perspectives are emerging in this debate (Núñez-Merino et al., 2020). 
The first perspective describes lean as a basis for the implementation of 
Industry 4.0 (Hambach et al., 2017). Indeed, since lean practices are 
aimed at waste reduction along the process (Womack and Jones, 2003), 
having a streamlined and in-control process might represent a prereq
uisite for any process digitalization (Buer et al., 2018). Companies with a 
higher associated level of lean implementation benefit the most in 
embracing Industry 4.0 and in grasping its potentials (see for example: 
Hoellthaler et al., 2018; Rossini et al., 2019). In other words, lean 
implementation is not a binary prerequisite, yet amplifies the positive 
effects of digitalization (Chiarini et al., 2020). 

The second stream of research refers to Industry 4.0 as being a 
necessary complement to ‘traditional’ lean (Kolberg and Zühlke, 2015; 
Tortorella et al., 2020). Here, it is argued, that today’s market re
quirements are complex with customers demanding highly personalized 
products, which may hinder traditional lean to still be fully effective. 
Industry 4.0 could be used for lean to keep up with the pace of cus
tomisation (Rosin et al., 2020; Sanders et al., 2016). In this sense, In
dustry 4.0 represents the means that lean can exploit to adapt to new 
trends in the manufacturing world, preserving its process’ robustness. 

Irrespectively, the strong interest in the topic from the academic 
community is evident, while the novelty still makes it difficult to assess 
the impact of Lean 4.0 for most companies. To the best of authors’ 
knowledge, available scientific studies are mostly focused on theoretical 
research (see, for example Buer et al., 2018; Shahin et al., 2020) or on 
the possible impact of Lean 4.0 on companies performance (see, for 
example: Rosin et al., 2020; Rossini et al., 2019; Tortorella et al., 2021a, 
b). A conclusive analysis of what Lean 4.0 is and the roles that Industry 
4.0 technologies will play in the waste reduction fight is still 
outstanding. 

This research marks a first attempt at studying the mechanisms 
explaining how digital technologies can enhance lean. The scope is 
limited to industrial operations management, comprising 
manufacturing, logistics and supply chain operations, since this marks 
the traditional application space for lean. We do see equal potential for 
digital technologies in service and other non-manufacturing operations 

yet. For the purpose of this study a tight boundary was necessary in 
order to identify tangible mechanisms. The main gap we seek to address 
is that, to date, we neither understand the mechanisms how digital 
technologies can actually support lean, nor know if there is any indi
cation how important each of these technologies is in comparison. To 
this effect, we designed a focus-group-based research approach, which 
we report on in the next section. 

3. Methodology 

The lack of digital maturity was a key outcome of our preliminary 
survey (Cifone et al., 2019), we hence amended our focus towards 
identifying the potential mechanisms that describe how digital tech
nologies can support lean, what we refer to as ‘digital waste reduction 
mechanisms’ in short. We initially considered a case study design, yet 
this was discounted as most digital technology implementations were 
found to still be at a pilot stage, rendering any comparative or even 
longitudinal analyses difficult. Hence, we decided to pursue our inves
tigation by means of qualitative research, opting for a focus group 
design. Firstly, we select six main technologies that are impactful for 
process improvement. Although many emerging technologies have 
become available to support lean, we focused on technology clusters 
that were already widely discussed in practice and literature. This way 
we ensure that experts had sufficient exposure and potential knowledge 
on their functionally, application and potential impact. Secondly, we 
conducted twelve focus group sessions with industry experts from the 
manufacturing and logistics sectors. 

3.1. Technology selection 

As we are interested in the technologies’ benefits that aim at process 
improvement, we carefully screened for relevant technologies in this 
context. We performed a thorough selection of literature, mostly com
prehending practitioners’ articles, white papers as well as reports issued 
by large technology and big consultancy firms. The reason for using 
these sources is their immediate focus on the application of digital 
technology and their relative timeliness. Not including scientific litera
ture must not be considered as a limitation in this context: as suggested 
by Bokrantz et al. (2017), these publications cover a broad scope of is
sues, they appeal greatly to industrial management field and they are 
highly reputable. The initial research was carried out via web search 
starting in February 2018, with frequent updates up until August 2019, 
using the keywords of: ‘industry 4.0’, ‘bundles industry 4.0’, ‘smart 
manufacturing’, ‘industry 4.0 technologies’, ‘digital technologies 4.0’ 
and ‘industry 4.0 categories’. We collected documents in English, which 
provided us with a set of 38 practitioner publications and reports (for 
example ‘Time to accelerate in the race toward Industry 4.0’ by the 
Boston Consulting Group, 2016, or ‘Industry 4.0: How to navigate 
digitalization of the manufacturing sector’ published by McKinsey, 
2015) that are available from the authors on request. For each docu
ment, we collected the list of Industry 4.0 technologies or drivers 
mentioned, and then merged them all so to focus only on the most 
prominent technologies in our scope of analysis (see Appendix A). 

We discovered that even though there is still considerable ambiguity 
as to which technologies go under Industry 4.0 umbrella, alongside great 
variation in the terminology itself, a consensus view emerged with six 
technologies as the ones potentially most relevant for process 
improvement. Technologies identified, briefly described below, are (in 
alphabetical order): additive manufacturing, advanced analytics, 
autonomous vehicles, Internet of Things (IoT), robotics and virtual and 
augmented reality (V/A reality). Out of these technologies, cyberse
curity clearly sit at a higher level, being concerned with overarching 
safety, privacy, security and knowledge protection concepts (Anderl, 
2014). Other emerging technologies such as robotic process automation 
(RPA), blockchain or smart contracts might have important implications 
for lean as well but are often still fuzzy and less well-known outside a 
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small pool of true subject matter experts. Therefore, we opted to exclude 
them for the study. 

Advanced analytics are methodologies and tools used to analyse 
and extract values from data, that nowadays are available in a huge 
amount that is too difficult to be managed by traditional data-processing 
application software (Lorenz et al., 2016; Schlaepter et al., 2015; Pozzi 
et al., 2021). They comprehend techniques such as machine learning 
(ML), artificial intelligence (AI), data mining and simulation (Davies, 
2015; Hoberg 2020). 

Autonomous vehicles offer the possibility of having a completely 
autonomous or semi-autonomous type of transportation for both short 
and long distances. They constitute a radical innovation that could assist 
in the efficient management of production lines, handling of warehouse 
inventories and supporting intra- and inter-logistics services (Blanchet 
et al., 2014). 

Additive manufacturing refers to the process of manufacturing 
products by adding material layer upon layer from 3D models, without 
the need to use any specialised tools (Chan et al., 2018; Weller et al., 
2015). In general, it allows unprecedented freedom in products devel
opment, enabling thus the production of highly customized products 
(Heinen and Hoberg, 2019; Holmström et al., 2016, 2019). Nowadays, it 
is particularly suitable for small batches, while it cannot achieve the 
high output rates required for mass production (Friesike et al., 2018). 

Internet of Things is mainly built upon the interconnectivity among 
objects, such as electronic devices, smartphones, machines, modes of 
transportation, enabled by the internet (Dalenogare et al., 2018; 
Schlaepter et al., 2015). According to Atzori et al. (2017) and Alqahtani 
et al. (2019), the main IoT technologies are RFID platforms, pervasive 
computing platforms, cyber-physical systems, sensors networks and 
M2M systems. The exchange of information between objects generates a 
huge amount of data, which can be subsequently analysed to increase 
added value for companies (Lopes de Sousa Jabbour et al., 2018; Hoberg 
and Herdmann, 2018; Weiβhuhn and Hoberg 2021). 

Robotics have been long prevalent in modern manufacturing, and 
their use continues to grow. Nowadays, the availability of new genera
tions of robots has opened new perspectives for automation (Frank et al., 
2019). Indeed, they are equipped with high-performance sensors and 
thus increasingly do not need safety fences anymore, being able to fairly 
interact with the environment (Stadnicka and Antonelli, 2019). 

Virtual and augmented realities are interactive experiences where 
real-world objects are either represented completely ‘virtually’, or else 
are ‘augmented’ by computer-generated perceptual information (Stan
kovic et al., 2017). Virtual Reality is indeed an immersive 
three-dimensional computer-built environment that can be explored and 
with which it is possible to interact using devices or wearables, such as 
viewers, gloves, earphones (Frank et al., 2019). On the other hand, 
augmented reality consists of the enrichment of existing environment 
with digital information, as additional animations or digital contents 
that enable the user to have a deeper knowledge of what surrounds him 
or her (Elia et al., 2016; Rüssmann et al., 2015). 

3.2. Focus group design 

Focus groups have been successful applied in varying contexts 
(Stewart et al., 2007) by collecting data from group of individuals for a 
topic defined by the research team (Morgan, 1993). Based on the 
interaction with the individuals during the focus group, the research 
aims to draw from complex personal experiences, beliefs, perceptions 
and attitudes of the participants (Nyumba et al., 2018). In prior opera
tions literature, focus groups have been applied to gain insights into the 
value of innovative technologies such as additive manufacturing for 
example (Wagner and Walton, 2016). The process for designing 
focus-group-based research begins with identifying the main aim and 
defining the key research objectives of the study (Morgan et al., 1998). 
In our research, the objectives are twofold. First, we aim to identify the 
mechanisms that link digital technologies to lean wastes, exploring the 

potential mechanisms that allow new technologies to reduce waste and 
thus enhance lean. Second, we aim to obtain the experts’ assessment on 
the importance the new technologies have to address waste across its 
different dimensions. For this purpose, we used the classic eight wastes 
of lean concept already discussed in Section 2.1 that are: transportation, 
inventory, motion, waiting, overproduction, overprocessing, defects, 
and skills (Bicheno and Holweg, 2016). For each of the wastes, we ob
tained the experts’ assessment on how the new technologies described in 
the previous paragraph can support its reduction. 

We decided to run two focus groups for each of the six technology 
clusters. By running each focus group in two countries, we aimed to 
correct for potentially different maturity levels and country-specific 
experiences with the technologies. All twelve focus group sessions 
were conducted at Politechnico di Milano, Italy, and Kühne Logistics 
University, Germany, between May 2019 and December 2019. For each 
of the focus group sessions we recruited five to ten experts using contact 
databases provided by Politecnico di Milano and the German logistics 
association (BVL), ensuring that the participants had operational re
sponsibilities in their organisation. The databases, as well as the two 
countries where focus groups have been performed, were selected in 
favour of convenience sampling to allow for closer control of partici
pants’ responsibilities, as well coherence in the national contexts of their 
firms. We looked for covering a spread set of industrial experts’ back
ground, and this is the most relevant criteria. The choice of Germany and 
Italy was really driven by the location of the authors and the access to 
experts. However, we could have leveraged any experts in more mature 
economies. Initially, we were not sure if the depth of the discussion 
would differ between Italy and Germany but ultimately we did not 
observe a difference. Participating experts had an average work expe
rience of 14 years and were commonly having roles such as supply chain 
manager, operations manager or senior consultant. Further, we invited 
selected academics to our focus groups based on their operations 
knowledge and/or prior industry expertise. Appendix B provides details 
of the experts’ profiles and the composition of the focus groups (note 
that some experts were involved in different focus groups). 

3.3. Execution and coding 

Each of the twelve focus group sessions was conducted based on the 
methodology outlined in the left part of Fig. 1. To test and fine-tune the 
methodology and the software used, a pilot focus group was conducted 
with four participants in May 2019 before the main study. While up to 
three researchers were present in each of the sessions, one researcher 
was present across every session to ensure consistency in terms of pro
cess and timing. 

Each session started with a presentation of the objectives and an 
outline of the methodology. Next, a researcher briefly explained the 
technology under discussion and defined the scope. For example, 
advanced analytics includes all different predictive analytics, machine 
learning, or deep learning tools while blockchain or robotic process 
automation was not intended to be included in the discussion. Partici
pants had the opportunity to ask questions to ensure a common under
standing of the sub-technologies that should be considered. In a next 
step, a brief recap of the eight wastes including examples was given by 
the researcher. Again, participants had the opportunity to ask questions 
to verify their understanding. The entire introduction was supported by 
a short slides set that was also provided beforehand to the participants. 

Following the introduction, the workshop started with the first in
dividual task for the participants. Appendix B provides details of all 
focus groups items. All participants were asked to identify potential 
mechanisms that enable the technology to reduce the first waste, e.g. for 
the technology ‘advanced analytics’ to reduce the waste ‘trans
portation’. A challenge in typical focus group discussions is to encourage 
more reticent participants to take part in the discussions and bring their 
ideas forward (Lloyd, 2011). To discourage this behaviour we asked the 
participants to provide their initial input via laptop/tablet into the 

F.D. Cifone et al.                                                                                                                                                                                                                                



International Journal of Production Economics 241 (2021) 108258

5

software PollEV, using its web interface. We encouraged participants to 
provide the three main mechanisms they could identify for each com
bination of waste and technology. All mechanisms provided were added 
to a long list that was then shown to the participants. For example, in the 
first focus group on ‘advanced analytics’, participants provided 13 
mechanisms to address the waste ‘transportation’. These included 
statements such as ‘less transportation since products can be made 
where demanded [due to better forecasting]’, ‘less transport due to 
better use of capacity based on space optimization’ or ‘better layout 
reduced transport lengths in plant’. 

Based on the long list we initiated the group discussion. The 
researcher read out each mechanism and asked the participant who 
provided the statement to explain his/her reasoning. Since the state
ments were anonymous, each participant had the same chance to be 
called up and present his/her ideas. Then other participants were asked 
to comment on their agreement/disagreement with the mechanism. 
During the discussion, a researcher was taking notes for the further 
analysis. In line with the GDPR, we obtained consent to capture the 
comments made by participant through an observer taking notes during 
the sessions. Participants did feel uncomfortable about being recorded, 
thus rendering a verbatim transcription impossible. While this is 
certainly a limitation, the sessions were run before the Covid-19 
pandemic in person, allowing for a rich discussion with and amongst 
the participants. 

Once all mechanisms were addressed (typically several statements 
were heading into similar directions and could be skipped) the process 
moved on the next individual task. Here, the participants were asked to 
turn back to their laptop/tablet to provide their individual ratings on the 
importance of the technology to reduce the waste under consideration 
using the PollEV software. They could rate the technology on scale from 
‘No impact – 1’ to ‘High impact – 5’. This activity provided the assess
ment of the technology importance. This process was then repeated for 
each of the eight wastes. The focus group sessions took between 90 and 

120 min each. After the end of the session, participants were invited to 
food and drinks for informal feedback. Based on the discussions, par
ticipants confirmed that they felt that the interaction in the focus group 
represented their views well. 

The analysis of the twelve focus groups outlined in the right part of 
Fig. 1 is aimed at unveiling the meaning of data collected by extracting 
main themes emerging from data, named digital waste reduction 
mechanisms. Data collected during focus groups come both from the 
long list of mechanisms recorded in PollEv from participants and from 
the notes taken by a researcher during the group discussion in each 
session. A single document containing all data was imported into NVivo 
11, a qualitative data management software (Creswell, 2003) that sup
ported us in managing vast amount of data, in tracking the analysis 
process and in re-coding (Cullen and Webster, 2007). 

Contents were then coded independently by three researchers, 
exploiting both manual and electronic coding and following systemati
cally the ‘free coding approach’ proposed by Campbell et al. (2013). This 
approach is based on an iterative process where codes emerge induc
tively from empirical data as significant themes and final nodes are 
gradually built up. It was considered appropriate for this research due to 
its exploratory characteristic (Frankfort-Nachmias and Nachmias, 
1982), instead of using a deductive approach which defines codes a 
priori. The aim was to cluster the long list of mechanisms provided by 
experts during focus groups, highlighting emerged macro themes, 
namely digital waste reduction mechanisms. 

For the purpose of an external audit, we used peer-debriefing and 
inter-coder agreement. Peer-debriefing relies on the discussion of 
emerged themes with other researchers belonging to authors’ de
partments (Bokrantz et al., 2019). They work as outsider to criticize and 
discuss both data collection and analysis with the other coders (Corley 
and Gioia, 2004). After peer-debriefing sessions, we revised and slightly 
changed the final emerged clusters of mechanisms. On the other hand, 
inter-coder agreement must be considered when multiple researchers 

Fig. 1. Methodological process for focus groups.  
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code the whole set of data. Even if any structured way on how to perform 
inter-coder agreement assessment is available for inductive approach 
(Campbell et al., 2013), one well-known approach consists in reaching 
the consensus coding among researchers. Researchers were indeed 
asked to agree on codes, revising them and the emerged clusters of 
mechanisms accordingly (Bokrantz et al., 2019). Similarly, it is still not 
available any formal assessment of coding reproducibility for inductive 
coding, while they have been typically created for deductive contexts 
(Campbell et al., 2013; Krippendorff, 1980). Moreover, to enhance 
trustworthiness of our data and assess the reproducibility of our coding, 
two further external researchers coded data collected and examined 
matching of results as proposed by Bokrantz et al. (2019). 

The coding and analysis process produced eight main clusters, spe
cifically eight digital waste reduction mechanisms, that will be discussed 
in detail in the subsequent section. Since we look for mechanisms 
through which technologies may reduce wastes, we discarded any codes 
that do not fit to any waste. In this context we created a further category 
called ‘Other’ where codes not specifically related to wastes have been 
clustered (e.g. revenue improvement levers or levers impacting in
vestments), which were not considered further in our analyses. In total, 
93 responses (15 %) were thus excluded from the analysis. 

4. Discussion 

Overall, it quickly emerged that the industry experts were generally 
well-aware of the various digital technologies and their applications in a 
manufacturing context, and that many initial pilot implementations 
were already underway in their respective organisations. The most 
prominent theme that emerged across all sessions was the role of data, 
and more specifically, how the digital transformation in general pro
vided better and more timely data, which in turn then enabled many of 
the waste reductions that were discussed subsequently. In this section, 
we will outline the main findings from the focus groups. 

4.1. Differential impact of technologies on the eight wastes 

Across the twelve focus groups we found that all six technology 
clusters as well as all eight wastes were consistently mentioned in the 
discussion, yet to varying degrees. For example, advanced analytics, IoT, 
robotics and V/A technologies were mentioned considerably more often 
than autonomous vehicles and additive manufacturing, for example, as 
shown in Table 1. Even more stark was the differential response when it 
came to the eight wastes, whereby we found almost 1:3 difference be
tween the lowest, overprocessing, and the highest, overproduction. In 
itself these descriptive findings are of course not conclusive, yet provide 
a strong indication that across the 48 possible technology-waste com
binations there are certain combinations that are perceived to be 
considerably more promising than others. This is an important 

indication for our initial hypothesis, namely that not all technologies are 
equally helpful or supportive of lean efforts. In other words, as Table 3 
shows, there is a strong perception within practice that the impact of the 
various digital technologies on process improvement varies greatly. The 
differential perception is also mirrored in the importance participants 
associated with each technology-waste combination. As Table 1 shows, 
the ratings of importance on a 5-point Likert scale varied greatly across 
combinations, from 4.6 to 1.4. 

Combined, these descriptive findings of the frequencies and 
perceived importance provide very strong evidence indeed that digital 
technologies do not uniformly support lean improvements, yet that 
certain technologies support the reduction of certain wastes, while some 
technologies have an overall small impact and/or no impact at all. In the 
following, we will turn our attention to the mechanisms that link the 
technologies to the reduction of the respective wastes, in order to 
elucidate the reasons for this differential impact. 

4.2. Identification of mechanisms 

To identify these digital waste reduction mechanisms, we coded the 
respective responses into clusters, as outlined above in Section 3.3 In 
total, out of the 594 individual response items recorded, we identified 
eight mechanisms how the six digital technologies support the reduction 
of the respective wastes. These eight digital waste reduction mecha
nisms are listed in Table 2, including their definitions and frequencies, as 
well as examples provided by experts during focus groups sessions. 

Having identified the clusters in the responses from the focus groups 
makes it possible to show graphically how different technologies can 
contribute to the reduction of wastes in manufacturing. Fig. 2 shows the 
results of our focus groups in a Sankey chart – linking the six technology 
clusters on the left with the eight wastes on the right, showing the 
connections via the eight mechanisms we identified. 

In addition to the first finding, that digital technologies are perceived 
to support lean improvements to a varying degree, this analysis show 
there are eight common mechanisms that link all six technologies to all 
eight wastes. These mechanisms are shared across all digital technolo
gies, although again, they are seen to support lean to a varying degree 
each. Overall, the eight digital waste reduction mechanisms identified 
span across two generic ways how to improve operations: first, tech
nologies that are execution-enhancing, this includes precision and speed 
of execution, as well as flexibility in time and space. Examples include 
additive manufacturing that adds flexibility in space and time, or 
improved precision of execution due to more accurate definition of 
needs. Second, there are technologies that are decision-enhancing, which 
includes visibility, feedback, engagement and prevention. Examples 
include machine learning that can update planning and schedules, as 
well as improved feedback from the process itself, amongst others by 
preventing mistakes through better information. It is worth highlighting 

Table 1 
Frequencies and importance of technology-waste combinations in the focus group research.   

Transportation Inventory Motion Waiting Overproduction Overprocessing Defects Skills Total 

Frequency Advanced Analytics 16 27 10 18 29 5 18 12 135 
Autonomous Vehicles 9 12 12 17 4 2 14 12 82 
Additive Manufacturing 12 19 2 7 29 9 12 5 95 
IoT 18 26 14 11 24 10 10 10 123 
Robotics 19 11 16 14 19 11 13 9 112 
V/A Reality 12 21 16 8 16 9 20 15 117 
Total 86 116 70 75 121 46 87 63 664 

Importance Advanced Analytics 3.9 4.1 2.3 3.1 3.6 3.1 3.9 3.0 3.4 
Autonomous Vehicles 3.6 2.9 4.6 4.0 2.1 2.5 3.7 3.7 2.6 
Additive Manufacturing 3.1 2.9 1.4 2.4 2.8 2.6 2.8 2.6 3.6 
IoT 3.7 4.0 3.3 3.7 3.7 2.7 4.3 3.8 3.4 
Robotics 3.0 2.8 4.0 3.9 2.6 3.5 4.5 3.0 3.4 
V/A Reality 2.9 2.5 3.4 2.9 2.5 2.0 3.4 2.7 2.8 
Average 3.4 3.2 3.2 3.3 2.9 2.7 3.7 3.1   
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that the two cluster of mechanisms identified do not represent an ab
solute categorisation: indeed, they are grouped according to their main 
characteristics, while specific features of each digital waste reduction 
mechanism may even fit both clusters. 

More specifically, digital technologies provide greater visibility of the 
process. In particular, new data sources offered by IoT technology as 
well as analytics capabilities enhance visibility along the different pro
cesses. This mechanism is illustrated, for example, by responses items 
like ‘Advanced analytics to improve demand forecast’ and ‘IoT to 
automatically balance production lines’. In one focus group there was a 
vivid discussion of all the potential data sources (e.g. weather, holiday 
plans or price discounts) and AI approaches (e.g. machine learning, 
decision trees) that can be leveraged to improve demand forecasting in 
operations planning. Based on the improved demand forecast, replen
ishment orders and workforce planning (among many other decisions) 
can be improved. In another focus group, the idea of using IoT sensors at 
the different production stages to improve the line balancing was raised. 
Again better visibility can be achieve based on IoT data (e.g. yield rates, 
throughput times) to decide on product routing and volumes. 

In line with greater visibility, the precision of execution can be 
advanced using comprehensive, more accurate, and more timely data, 
less error-prone and less variable processes. For example, augmented 
reality glasses can guide the picker to the right shelf and integrated 
cameras and optical pattern recognition technology will enable the 
glasses to automatically validate the item picked in warehouses that 
cannot be easily automated. 

Next, the speed of execution can be improved, as information are 
made available at the workplace without time-consuming delays. Much 
more data is gathered and shared in real-time and new flexible assets 
reduce production and transportation times. All this relates to blue- 
collar processes in operations as well as white collar processes such as 
planning. For example, new planning tools using supplier’s data inte
grated via cloud platforms can enable much faster decision making and 
reduce time lags. 

Furthermore, technologies can be exploited to increase employees’ 
engagement. Analytics solutions for example enable employees to spend 
less time on data cleaning and crunching, and more time on problem- 
solving activities. Tacit knowledge and data gathered in blue-collar 
contexts can be captured and leveraged for process improvement. One 
commonly cited application are robots in manufacturing that will 
further reduce simple, repetitive tasks (e.g. loading parts in/out of ma
chines) and enable employees to leverage their experience towards 
improving the process – as opposed to simply operating it. 

Flexibility in time refers to the potential to both customize processes to 
fulfil customers’ request as required and produce on demand. Additive 
manufacturing technologies enable firms to manufacture goods without 
the need to first create tools and without the need to achieve certain 
batch sizes. Likewise, real-time rescheduling of delivery trucks enables 
firms to respond to urgent customer request and change priorities. 
Similarly, flexibility in space exploits technologies to design and manage 
the assets properly and to enable a more responsive system. Here goods 

Table 2 
Overview of eight digital waste reduction mechanisms.   

Mechanism Definition Explanation Examples Frequency 

1 Visibility Technologies exploited in order to 
improve the planning phase. Based on 
information available in real time and to a 
greater visibility. 

Ability to (i) manage demand ex ante, forecasting it, 
and anticipate customers’ needs, (ii) analyse data ex 
post to better plan the activities, (iii) avoiding stocks 
and WIP, and (iv) reducing batch size. 

Advanced analytics to improve demand 
forecast, IoT to automatically balance 
production lines. 

161 

2 Precision of 
execution 

Technologies exploited in order to 
improve process accuracy and reliability 
(characteristics of the process). 

Ability to (i) ensure a process is well controlled, (ii) 
manage the variation in process outcome, (iii) 
manage the quality of the output of a process, and 
(iv) ensure process safety. 

Autonomous vehicles to reduce human 
errors, Additive manufacturing to 
produce very complex products by 
design. 

108 

3 Speed of 
execution 

Technologies exploited in order to speed 
up processes. 

Ability to enable time reduction in terms of (i) lead 
time, (ii) setup time, and (iii) delivery time. 

Autonomous vehicles with route 
planning utilization to reduce 
transportation time, Robotics to 
synchronize operations and reduce setup 
time. 

100 

4 Feedback Technologies exploited in order to 
improve feedback system and to identify 
defects and process errors in real time. 

Ability to create feedback to human operators or 
systems by (i) data provided for analysis, (ii) 
visualization of results and (iii) guidance on output 
achieved. 

V/A Reality to identify defects and errors, 
IoT to create a self-correcting system. 

95 

5 Engagement Technological capabilities exploited in 
order to enrich employees’ job. 

Ability to provide employees with (i) tools/ 
possibilities to dedicate their effort to value-added 
activities, (ii) systems that enable their well-being, 
and (iii) approaches that increase their motivation. 

Robotics to reduce non-value added 
movements from operators, V/A Reality 
for more effective training. 

86 

6 Flexibility in 
time 

Technologies exploited in order to 
customize output and to fulfil customers’ 
request. The production can be linked to 
actual demand, as required. 

Ability to increase flexibility in terms of (i) 
responding to changing volumes (volume 
flexibility), (ii) ability to reschedule (mix 
flexibility), and (iii) flexibility to changing product 
requirements (product flexibility). 

Additive manufacturing to produce with 
smaller lots, Advanced analytics to better 
follow customers’ requirements. 

44 

7 Flexibility in 
space 

Technologies exploited in order to design 
and manage the assets properly as to 
enable a more responsive system and a 
local production. 

Ability to exploit greater flexibility in terms of (i) 
production location and (ii) factory layout. 

IoT to support locations decision, 
Robotics to create a more compact 
layout. 

41 

8 Prevention Technologies exploited in order to 
anticipate defects or the need for 
intervention, as well as to carry out 
preventive maintenance. 

Ability to prevent disruptions due to (i) better 
anticipation of disruptions, (ii) preventive 
maintenance, and (iii) more timely and effective 
execution of countermeasures. 

Advanced analytics to predict tool 
degradation, Additive manufacturing to 
efficiently create ad hoc spare parts. 

29  

Table 3 
The ten most often mentioned technology-mechanism-waste links.  

# Individual link Frequency 

1 Advanced Analytics-Visibility-Overproduction 18 
2 Advanced Analytics-Visibility-Inventory 17 
3 Additive Manufacturing-Flexibility in time-Overproduction 12 
4 IoT-Visibility-Inventory 12 
5 V/A Reality-Engagement-Skills 12 
6 IoT-Visibility-Overproduction 11 
7 Advanced Analytics-Engagement-Skills 10 
8 Additive Manufacturing-Visibility-Inventory 10 
9 Autonomous Vehicles-Engagement-Skills 10 
10 Advanced Analytics-Precision in execution-Waiting 9  
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can be moved without much effort to avoid movement of workers (e.g. 
due to Kiva robots in Amazon warehouses) or movement of goods can be 
minimized (e.g. due to local 3D printing). 

Finally, prevention exploits technologies to anticipate the need for 
intervention and to avoid them. Preventive maintenance enabled by 
sensors and analytics ensure that the production equipment can be 
repaired before a critical failure occurs. Augmented reality solutions for 
operators provide guidance on how to execute processes even if the SOP 
documentation is only available far from the workspace. Likewise, new 
exoskeletons use in car manufacturing or warehouses support the er
gonomics of workers and reduced fatigues and injuries. 

It is worth noting that the digital improvement mechanisms above 
closely relate to the existing literature on process improvement within 
manufacturing and the wider supply chain, confirming the broad theo
retical concepts of lead-time reduction, the reduction of undesired 
variation, as well as the benefits of increased flexibility and visibility of 
the process (Holweg et al., 2018). Digital technologies, for example, 
reduce the lead-time for the production processes as well as the 
lead-time of data or feedback to be received by the process controller, 
thus greatly enhancing the quality and speed of any corrective action. 
Equally, being able to receive more timely and better data reduces un
desired variation, which in turn again improves the ability to plan and 
adjust the process, as needed. The improvements in flexibility that are 
enabled by digital technologies follow the same volume, mix and 
product categories identified by Slack (1987). 

Thus we argue that digital technologies do not provide any new 
improvement mechanisms in their own rights, yet in effect do present an 
augmentation and new combination of existing theoretical concepts that 
are well documented within the operations and supply chain manage
ment literatures. In theoretical terms, this is probably the most impor
tant finding, as it clearly allows for an explanation of these new 
technologies in terms of the existing operations management theory. 

4.3. Relative importance of mechanisms 

In order to identify the most promising avenues how digital tech
nologies can support operations, we can show the technology- 
mechanism-waste connections as a Pareto chart, see Fig. 3. Out of the 

total 594 individual response items in our data, 214 links are mentioned 
(out of a theoretically possible pool of 384). While it does not fall into a 
classic 80/20, there are clearly linkages that are perceived more 
important than other. Specifically, the first 20 % of links represent 49 % 
of all responses. The top ten represent 18 % of the overall responses, 
while 50 % of links represent 79 % of all mentions. 

Within these, the ten most important technology-mechanism-waste 
combinations are as shown in Table 3. What is striking here, again, is 
the general importance of data as enabler of improvements. Specifically, 
it is the availability of better and more timely data, as well as the ability 
to use that data via advanced analytics to improve operational out
comes, which in turn reduces one or several wastes in manufacturing. 

These findings are of direct managerial relevance, as the linkages 
identified in Table 3 represent those that are being perceived as most 
promising. In other words, these links are most likely to yield a positive 
return on the investment in digital technologies. They can act as guid
ance to firms considering the implementation of digital technologies, in 
order to maximise their likelihood of achieving a positive impact on the 

Fig. 2. Sankey chart of the linkages between technologies, mechanisms and wastes.  

Fig. 3. Pareto analysis of individual technology-mechanism-waste links.  
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performance of their manufacturing operations. 

5. Conclusion 

First and foremost, our findings confirm the widely accepted notion 
that digital technologies represent a major opportunity to improve 
existing products and processes. As their rate of adoption is set to in
crease, understanding the mechanisms how they actually augment 
operational execution will become more important. In the following we 
set out our contributions to theory, managerial implications, and sug
gestions for further research. 

5.1. Theoretical contributions 

Our main contribution to the debate on the adoption of digital 
technologies is to provide insights into the actual mechanisms how 
digital technologies can support process improvement. Our findings thus 
directly contribute to the nascent debate how the Lean and Industry 4.0 
concepts interact, and how their combination leads to actual perfor
mance improvements (Buer et al., 2018; Frank et al., 2019; Gillani et al., 
2020; Shahin et al., 2020; Tortorella et al., 2021b). A deeper under
standing of the actual mechanisms will allow future research to eluci
date clear strategies which configurations are most appropriate in a 
given context. This, in turn, will elevate the existing debate from a 
generalist view that digital technologies will improve (which is the 
consensus view), to a more differentiated discourse as to which tech
nologies are most likely to have the greatest impact on performance in a 
given context. To this effect we identify eight ‘digital waste reduction 
mechanisms’, which represent distinct modes how digital technologies 
impact on process improvement. We propose that digital technologies 
will generally work by either enhancing operational execution, or by 
improving operational decision-making. The former includes increased 
precision and speed in execution, as well as improved flexibility in time 
and space. The latter includes enhanced visibility, feedback, engage
ment and prevention. While we cannot claim exclusivity, our findings do 
provide us with some degree of confidence that these two clusters are 
central to understanding the performance improvements related to 
digital technology adoption. 

In this context it is interesting to note that the mechanisms we have 
identified here closely match those previously established in the oper
ations management literature. A reduction in uncertainty (i.e. ‘improved 
visibility’) has been highlighted as a general mechanism previously, in 
the same way as reductions in lead-time (i.e. ‘speed of execution’) and 
variation (i.e. ‘precision of execution’) (Schmenner and Swink, 1998; 
Holweg et al., 2018). The impact of digital technologies, in this context, 
can thus be explained as a general means of enhancing operational ca
pabilities at process level. This bring about an interesting connotation 
(and one that extends beyond the remits of this paper), namely that one 
could posit that digital technologies have an equally positive impact on 
other process improvement methodologies like Six Sigma, the Theory of 
Constraints, or even more general approaches like Business Process 
Reengineering. 

5.2. Managerial implications 

Our findings have further implications for practice. As firms seek to 
harness the potential of digital technologies in their improvement ef
forts, we can support the view that there is synergy by merging within a 
wider ‘Lean 4.0’ strategy (Chiarini et al., 2020; Núñez-Merino et al., 
2020; Tortorella et al., 2021a). Yet beyond this general insight, our 
findings provide more specific guidance which technology can support a 
given desired improvement outcome. Firms seeking to adopt such 
approach should be aware that each digital technology serves a bespoke 
set of mechanisms. In this sense, any digital transformation should start 
by considering which is the objective a company is willing to achieve, 
rather than what is technically feasible. By firstly defining the lean 

wastes companies are trying to tackle, going through the digital waste 
reduction mechanisms, they can clearly understand which technology is 
most suited to support their objective. Aligning their desired improve
ment goals with the mechanisms that each technology enables will result 
in the greatest success. As Toyota would also argue, simply investing in 
any technology, without a clear understanding of how it will support 
lean efforts, bears the danger of being a waste in its own right. Even 
though the practitioner literature generally may suggest as much, it is 
clear that Industry 4.0 technologies are clearly a means to an end, not an 
end in itself. 

5.3. Limitations and future research 

Our study contributes to a nascent yet important debate in the op
erations management literature. As the Industry 4.0 applications in 
practice will become mainstream, the ability to study these will improve 
drastically. At this early point in the wider digital transformation of 
manufacturing operation, our qualitative study provides important in
sights – these, however, should be considered within the limitations of 
our study. First and foremost, we limit our study to the improvement 
achieved by reducing wastes in existing processes. We consciously dis
regarded all the mechanisms (15 % of responses) that were out of this 
scope, as for example how the Internet of Things may be vehicle for the 
creation of new business models or how Additive Manufacturing may 
enable the creation of new products. A second limitation of our study is 
related to how we quantify importance of ‘digital waste reduction 
mechanisms’. Indeed, we measured it by considering their relative fre
quencies, that is, in terms of how many times they were mentioned by 
experts during our focus groups. It will be important to also assess the 
actual value of mechanisms within the context of actual implementa
tions. It is conceivable, for example, that a mechanism mentioned only 
once yet has a greater impact on waste reduction than mechanisms 
mentioned more frequently. Finally, we had to limit ourselves to tech
nologies that could already be well evaluated by available experts. For 
this reason we excluded the potentially relevant technology blockchain. 

Two important areas for future research emerge: first, our analysis is 
based on perception of our focus group participants. As digital tech
nology implementations mature, and move from pilot projects to 
mainstream applications, our findings need to be confirmed empirically 
by studying actual implementations. Second, the role of skills, and the 
potential de-skilling and impediments to process improvement related 
to digital technologies need to be analysed further. While the impact of 
digital technologies on skills was vividly debated within the focus 
groups, it was very interesting to note that much of that discussion 
centred around the skills needed for a given task. The common 
perception was that digital technologies, like augmented reality, not 
only prevent mistakes (for example via poka-yoke), but also lower the 
skills needed for executing a given task. In other words, digital tech
nologies lower the skill level needed for task execution, and in turn, may 
lead to more task automation in the future. However, the notion of 
wasted or unused human skills was very difficult to grasp for participants, 
and only on one occasion did the discussion refer to the potential issue 
that digital technologies – by simplifying the task at hand – may be 
detrimental to process improvement. By adding a digital technology one 
can potentially add a barrier that reduces engagement with the process, 
and in turn, hinders worker engagement with process improvement. In 
this context, it is important to better understand the general role that 
technology might play in this context (Neumann et al., 2021). Using 
technology to substitute for skills, for example via poka-yoke devices 
implemented via augmented reality, could also create barriers for 
workers to act freely, to be empowered, within the process. As such it 
has two opposing effects: one the one hand it immediately reduces de
fects by preventing errors, but in the long run may also hinder 
improvement activities by reducing empowerment (i.e. the scope to act). 
This area of tension is an important area for future research in our view, 
and highlights the general point that a much more differentiated 
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understanding of the role of digital technologies in operations and supply chain management is needed.  

Appendices. 

Appendix A. Sources used in the review of the ‘grey’ literature  

Table 4 
Overview of ‘grey’ literature considered in the review  

ID Title Year Author Company 

1 Time to accelerate in the race toward Industry 4.0 2016 M. Russmann, M. Lorenz, P. Gerbert, M. Waldner, J. 
Justus, P. Engel, A. Bause 

The Boston Consulting Group 

2 Industry 4.0: The Capgemini Consulting View 2014 J. Bechtold, C. Lauenstein, A. Kern, L. Bernhofer Capgemini 
3 Industry 4.0: challenges and solutions for the digital 

transformation and use of exponential technologies 
2015 D. Schlaepter, M. Koch, P. Mzerkofer Deloitte 

4 Industry 4.0: The future of productivity and Growth in 
Manufacturing Industries 

2015 M. Russmann, M. Lorenz, P. Gerbert, M. Waldner, J. 
Justus, P. Engel, M. Harnisch 

The Boston Consulting Group 

5 Industry 4.0: How to navigate digitalization of the manufacturing 
sector 

2015 D. Wee, R. Kelly, J. Cattell, M. Breunig McKinsey 

6 Industry 4.0: Digitalization for productivity and growth 2015 R. Davies European Parliament 
7 Industry 4.0: Building the digital enterprise 2016 R. Geissbauer, J. Vedso, S. Schrauf PwC 
8 Crafting the future: a roadmap for industry 4.0 in Mexico 2015 M. Rios, O. Correa, E. Acuna, A. Gonzalez Mexican Ministry of Economy 
9 Information economy report 2017 A. Guterres, M. Kituyi United Nations Conference on Trade 

and Development 
10 Redefine your company based on the company you keep 2018 P. Daugherty Accenture 
11 Shaping the Future of Construction: Breakthrough in Mindset and 

Technology 
2018 World Economic Forum and The Boston Consulting 

Group 
World Economic Forum and The 
Boston Consulting Group 

12 Industry 4.0 and Smart manufacturing market report 2018–2023 2018 M. Wopata, J. Rickert, K. Lueth, P. Scully IoT Analytics 
13 Planning for the warehouse of the future 2018 M. Veenman, U. Tagscherer, 

E. Schärtl, A. Herold 
Swisslog 

14 The post-digital era is upon us: are you ready for what’s next? 2019 P. Daugherty, M. Carrel-Billiard Accenture 
15 Top 50 emerging technologies: growth opportunities of strategic 

imperative 
2016 R. Kumar, L. O’Connor, A. S, A. Shukla Frost & Sullivan 

16 Emerging technologies: changing how we live, work and play 2019 M. Makhija Ernst & Young 
17 Industry 4.0 for the future of manufacturing in the EU 2016 M. Tiraboschi European Commission 
18 A reality check for today’s C-suite on industry 4.0 2018 P. Harris, M. Hendricks, E. Logan, P. Juras KPMG 
19 Industry 4.0 – opportunities and challenges for SMEs in the North 

Sea Region 
2018 Interreg North Sea Region Interreg North Sea Region 

20 HFS Blueprint guide: Industry 4.0 services 2017 P. Jain, T. Mondal Accenture 
21 Industry 4.0: engaging with disruption 2018 Ernst & Young - India Ernst & Young 
22 Industry 4.0: Go fourth insights into the next industrial revolution 2018 D. Peters Irwin Mitchell 
23 Industry 4.0 and ICS sector report 2018 European Cyber Security Organisation European Cyber Security Organisation 
24 Industry 4.0: India Inc. gearing up for change 2018 AIMA and KPMG AIMA and KPMG 
25 Industry 4.0: The new industrial revolution. How Europe will 

succeed 
2014 M. Blanchet, T. Rinn, G. Von Thaden, G. De 

Thieulloy 
Roland Berger 

26 India’s Readiness for Industry 4.0 – A focus on automotive sector 2017 C. Swarnima, P. Mehra, A. 
Daso 

Grant Thornton 

27 Industry X.0: Combine and Conquer - Unlocking the power of 
digital 

2017 D. Abood, A. Qilligan, R. Narsalay Accenture 

28 The 2018 World Manufacturing Forum Report: Recommendations 
for the Future of Manufacturing 

2018 World Manufacturing Forum World Manufacturing Forum 

29 Industry 4.0: Making your business more competitive 2017 Senior experts at CGI CGI Group Inc. 
30 Man and Machine in Industry 4.0 2015 M.Lorenz, M. Rubmann, R.Stack, K. L. Lueth, M. 

Bolle 
The Boston Consulting Group 

31 Industry 4.0: opportunities behind the challenge 2017 M. Stankovic, R. Gupta, J. E. Figueroa United Nations Industrial Development 
Organization 

32 National Policy on Industry 4.0 2018 Ministry of International Trade and Industry Ministry of International Trade and 
Industry 

33 Readiness for the Future of Production Report 2018 2018 World Economic Forum World Economic Forum 
34 Accelerating clean energy through Industry 4.0 2017 United Nations Industrial Development United Nations Industrial Development 

Organization 
35 SAP Leonardo Digital manufacturing 2017 J. Tulusan, P. Hidvegi SAP Leonardo 
36 Unlocking Industry 4.0 Potential 2018 Deloitte Deloitte 
37 Industry 4.0 as an evolution, not a revolution 2019 N. Enose, S. Ramachandran Infosys 
38 2019 Manufacturing: Trends Report 2018 Microsoft Microsoft   
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Table 5 
Frequency of technologies mentioned in the ‘grey’ literature reviewed   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Total 

Advanced Analytics  X X X X X X X X X X  X X X X X X X X X X X X X X X X X X X X X X X X X  35 
Digital Manufacturing X X X X X X X X X  X X X  X X X X X X  X X X X X X X X X X X X  X X X X 34 
Internet of Things X X X X X X X  X X X X X X X X X X X X  X X X X X  X X X X X X X X X X X 35 
Robotics X X X X X X  X X  X X X  X X X X X X X X X X X X X  X X  X X   X  X 28 
V/A reality X  X X X X X   X X X  X X X  X X X  X X X  X X   X X X X X    X 26 
Cybersecurity    X   X   X    X X  X X X X    X X X      X    X   14 
Autonomous Vehicles X  X X       X X X      X   X   X X X   X  X       12 
Block chain          X    X  X     X      X    X  X X X    9 
Horizontal & Vertical System Integration    X    X           X       X    X  X    X   7 
Mobile Device     X  X    X                X  X          5 
Smart Sensors      X X    X              X              4 
Biotechnology & Nanotechnology   X              X                X      3 
Smart Materials                 X        X        X      3 
Predictive Maintenance X                             X      X   3 
Process Automation                X X    X                  3 
Social Business Media X                           X           2 
Geoengineering   X                              X      2 
Neurotechnology   X                              X      2 
Energy Storage     X                          X        2 
Quantum Computing              X                   X      2 
Advanced Materials                                X      X 2 
Digital Twins                                     X X 2   

F.D
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Appendix B. Focus group overview and participant profiles  

Table 6 
Focus groups participants demographic  

NUMBER OF PARTICIPANTS 

Blinded for peer review Blinded for peer review Total 

Advanced Analytics 6 6 12 
Autonomous vehicles 7 5 12 
Additive manufacturing 10 6 16 
IoT 5 7 12 
Robotics 6 5 11 
V/A Reality 6 6 12 

PARTICIPANTS PROFILE 
Expert Role Years of experience Sector 

1 Head of technical department 6 Metal products 
2 Consultant 37 Consultancy 
3 Process Manager na Metal products 
4 Consultant 3 Academia 
5 Consultant 4 Academia 
6 na na  
7 na na  
8 Head of sales 8 Automotive 
9 Senior Partner 30 Consultancy 
10 Project manager 7 Logistics and supply chain 
11 Project manager 8 IT 
12 Consultant 13 Consultancy 
13 Process Manager 6 Household appliance industry 
14 Sales manager 10 Logistics and supply chain 
15 Consultant 13 Consultancy 
16 Lawer 6 Consultancy 
17 Operations Manager 4 Logistics and supply chain 
18 Procurement manager 15 Aerospace 
19 Supply chain manager 15 Chemical 
20 Consultant 3 Academia 
21 Production manager 20 Chemical 
22 Process engineer 5 Automotive 
23 Logistics Manager 19 Food and beverage 
24 Consultant 29 Consultancy 
25 Process Engineer 4 Automotive 
26 Head of manufacturing 21 Automotive 
27 After Sales Manager 35 Machinery 
28 Process Manager 19 Food and beverage 
29 Process manager 16 Logistics and supply chain 
30 Operations Manager 20 Machinery 
31 Logistics Expert 17 Food and beverage 
32 na 33 na 
33 Consultant 2 Academia 
34 na na na 
35 na na na 
36 na na na 
37 Supply Chain Manager 8 Logistics and supply chain 
38 na na na 
39 Process Manager 7 Logistics and supply chain 
40 Account Manager 16 Logistics and supply chain 
41 Manager 18 PR organization 
42 Project manager 15 Logistics and supply chain 
43    
44 Sales Manager 8 Logistics and supply chain 
45 Consultant 8 Logistics and supply chain 
46 Consultant 3 Academia 
47 Head of logisitcs 20 na 
48 Consultant 25 Consultancy  

Appendix C. Focus group items  

Table 7 
Focus group items  

INDIVIDUAL TASKS 

1 Which are the three mechanisms most impacting on transportation? 
2 Which is the overall impact on transportation? (No impact; Low impact; Average impact; Good impact; High impact) 
3 Which are the three mechanisms most impacting on excess of inventory? 
4 Which is the overall impact on excess of inventory? (No impact; Low impact; Average impact; Good impact; High impact) 
5 Which are the three mechanisms most impacting on motion? 

(continued on next page) 
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Table 7 (continued ) 

INDIVIDUAL TASKS 

6 Which is the overall impact on motion? (No impact; Low impact; Average impact; Good impact; High impact) 
7 Which are the three mechanisms most impacting on waiting? 
8 Which is the overall impact on waiting? (No impact; Low impact; Average impact; Good impact; High impact) 
9 Which are the three mechanisms most impacting on overprocessing? 
10 Which is the overall impact on overprocessing? (No impact; Low impact; Average impact; Good impact; High impact) 
11 Which are the three mechanisms most impacting on overproduction? 
12 Which is the overall impact on overproduction? (No impact; Low impact; Average impact; Good impact; High impact) 
13 Which are the three mechanisms most impacting on defects? 
14 Which is the overall impact on defects? (No impact; Low impact; Average impact; Good impact; High impact) 
15 Which are the three mechanisms most impacting on skills? 
16 Which is the overall impact on skills? (No impact; Low impact; Average impact; Good impact; High impact) 
17 Which will be the overall role of Technology under discussion on Lean 4.0? (No importance; Low importance; Average importance; Good importance; High importance)  
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