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Abstract
In a context where companies are striving to produce highly customised goods 
in small batches and within short lead times, increasing attention is being put on 
the design and management of part feeding systems. This research is the first to 
model automated part feeding to supermarkets in a factory environment, consider-
ing an innovative technology called vertical robotic storage and retrieval systems. 
This technology allows automating the storage, picking, and internal transportation 
activities in an integrated process, thanks to rack-climbing robots roaming in both 
the shop floor and the storage racks. We develop an analytical model based on the 
queuing network approach to analyse the system performance, and we use it to per-
form numerical experiments and to evaluate the design trade-offs with reference to a 
real case in the automotive industry. Results show that an increase in the number of 
robots leads to better performance since the positive impact on the response time is 
stronger than the negative impact on the waiting times of robots at the supermarkets 
due to congestion. Furthermore, a configuration with multiple small supermarkets 
improves the efficiency of the replenishment process, compared to a setting with few 
big supermarkets.

Keywords Part feeding · Factory logistics · Mobile robot · Design trade-off · 
Queuing network

1 Introduction

The evolution of markets is requiring companies to reshape their production 
systems. Lifecycles are shortening and customers are demanding increasingly 
customised products and short lead times (e.g. Zhang et al. 2007; Dörmer et al. 
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2015). This entails manufacturing and transporting goods in small batches and 
leads to a sharp increase in the number of part variants handled in the factory 
(Fathi et al. 2016). In this context, modern factories call for responsive and effi-
cient part feeding systems, synchronised with production systems and thus able to 
deliver to the production line the right part variants in small totes in time for the 
products’ assembly (Limère et al. 2012; Chankov et al. 2016).

Part feeding is recognised as one of the main issues faced in the design and 
management of assembly systems (Boysen et al. 2015; Caputo et al. 2018), and 
an extensive body of literature is available on this topic, mostly dealing with the 
preparation, storage, and transportation of unit loads to assembly stations. None-
theless, some gaps remain to be addressed. In particular, despite the widespread 
adoption of supermarket warehouses (Boysen et al. 2009; Lolli et al. 2016; Emde 
2017), the replenishment process from the CW to the supermarkets is still under-
studied. Moreover, recently introduced automated material handling technologies 
have not been investigated in the context of part feeding systems, although they 
could be able to support tote replenishment activities in a flexible and responsive 
way. Among such technologies, the vertical robotic storage and retrieval system 
(VRSRS) is an emerging solution for tote handling based on mobile robots which 
can both navigate the shop floor and enter the storage racks (Fig. 1). Unlike other 
systems, that support the automation of either storage, picking, or transportation 
of unit loads inside the factory, VRSRS may allow seamlessly integrating these 
activities, while keeping layout flexibility. Only one paper has studied this tech-
nology so far (Azadeh et al. 2019), considering the deployment of VRSRS in a 
distribution centre and developing closed queueing network models of an end-of-
aisle picking system composed of a single storage aisle and a dedicated picking 
station, thus neglecting the possibility for robots to navigate outside the storage 
racks.

Based on these premises, this paper studies the design of a supermarkets 
replenishment system based on the VRSRS technology, addressing the following 
research questions (RQs):

Fig. 1  Mobile robots in VRSRS inside (a) and outside (b) the storage racks (Source: exotec.com/en/solu-
tions)
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RQ1 What is the relationship between the number of robots and the supermarkets 
replenishment lead-time?

When designing automated part feeding systems, a key issue is the right sizing 
of the equipment given the required performance. In the system under analysis, 
a critical performance is the replenishment lead-time to supermarkets, includ-
ing both travel times of the mobile robots and waiting times. An increase in the 
equipment size (i.e., in the number of robots) may have a beneficial impact on 
the lead-time but may also increase congestion and waiting times of robots inside 
the system. Hence, we investigate the relationship between the number of robots, 
that represent the main component of the investment cost of this system, and the 
supermarkets replenishment lead-time.

RQ2 What is the relationship between the design of supermarkets and their replen-
ishment lead-time?

Supermarkets are decentralised storage areas located on the shop floor, close 
to the assembly lines, where space is a critical resource: overly increasing the 
amount of stock in these areas affects the efficiency of production operations 
(Hanson and Brolin 2013; Faccio et  al. 2018). On the other hand, reducing the 
number of supermarkets and their storage capacity puts a strain on the part feed-
ing system, since it leads to an increase in the average distance between storage 
areas and assembly stations and to the need of a more responsive replenishment. 
Literature has already addressed this trade-off considering the transportation 
of unit loads from supermarkets to assembly lines. However, the results might 
change when shifting the focus to supermarkets replenishment and considering 
an automated system based on VRSRS. For instance, while a bigger number of 
supermarkets may reduce the average travel time to reach assembly stations, it 
may also increase the average travel time between the CW and the supermarkets; 
moreover, the waiting times of robots before the supermarkets must be taken into 
account. Therefore, with this RQ we aim at studying the relationship between the 
replenishment system performance and the design variables related to supermar-
kets, i.e. their number and size, when considering VRSRS. In other words, we 
look for the best option, in terms of replenishment lead-time, between a system 
configuration with several, small supermarkets and a configuration with few, big 
supermarkets.

To answer the RQs, we develop an analytical model that allows to estimate 
the system performance. The model extends the one by Azadeh et al. (2019) to 
include supermarket replenishment activities in a factory environment. Differ-
ently from Azadeh et al. (2019), the developed model considers a multi-aisle cen-
tral warehouse (CW) and a number of supermarkets, with robots performing stor-
age and retrieval cycles both in the CW and in the supermarkets. In addition, the 
model is a semi-open queuing network (SOQN), allowing to capture the impact 
of the robot fleet size on the system performance, including the waiting time of 
replenishment requests before being processed. We solve the model through the 
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matrix–geometric method (MGM), we validate it through discrete-event simula-
tion, and we perform numerical experiments using real-world data.

The contributions of this paper are as follows. We are the first to study and dis-
cuss the adoption of automated material handling systems for supermarket replen-
ishment, focusing on the VRSRS technology which is still understudied in the extant 
literature. We present an analytical model that represents a further example of the 
application of the queuing network theory to industrial problems. Through such 
model, we provide new and useful insights for the design of automated part feed-
ing systems to supermarkets and for starting to understand the value of the VRSRS 
technology.

The remainder of this paper is organised as follows. Section 2 gives an overview 
of the scientific literature on part feeding to assembly lines, highlighting the contri-
butions that deal with automated systems. Sections 3–6 describe the model, analy-
sis, and design insights, and Sect.  7 reports conclusions and directions for future 
research.

2  Related literature

The majority of studies on part feeding to assembly lines focus on the selection 
of feeding policies, through descriptive models (e.g. Bozer and McGinnis 1992; 
Caputo and Pelagagge 2011), case studies (e.g. Hua and Johnson 2010; Hanson and 
Brolin 2013), and analytical models (e.g. Faccio 2014; Limère et al. 2015; Caputo 
et al. 2018). The other contributions deal with the design and performance improve-
ment of part feeding systems, considering, for instance, inventory centralisation 
level (e.g. Battini et al. 2009; Emde and Boysen 2012b) and kitting system selection 
and optimisation (Hanson and Medbo 2019).

According to the very recent study by Schmid and Limère (2019), five main pro-
cesses may be identified within the scope of assembly line feeding: preparation of 
unit loads required by assembly stations, transportation of unit loads from the stor-
age areas to the assembly stations, usage of parts for assembly activities, intermedi-
ate storing of parts in supermarkets, and replenishment of supermarkets. In Table 1, 
we organise the reviewed literature according to this process classification, high-
lighting the contributions that deal with the introduction of automated systems.

As shown in Table  1, most of the reviewed papers consider in their study the 
preparation and transportation of unit loads. Preparation refers to the so-called kit 
assembly operation (e.g. Bozer and McGinnis 1992; Limère et al. 2012) or to the 
breakdown of big unit loads, such as pallets, into boxes or totes before moving them 
to assembly stations (e.g. Hanson and Brolin 2013; Schmid and Limère 2019). The 
papers dealing with transportation, instead, often consider the choice between the 
movement of big unit loads, performed through forklift trucks, as opposed to the 
transport of small boxes or totes, by means of tugger trains (e.g. Limère et al. 2012; 
Caputo et al. 2018). Moreover, a few contributions focus on the routing (Emde and 
Boysen 2012a), scheduling (e.g. Emde and Gendreau 2017), and loading (Diefen-
bach et al. 2019) of tugger trains in just-in-time contexts.
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There is relatively less research on the usage and intermediate storing of parts. 
The usage process includes the search and picking of parts performed by assembly 
operators: most contributions deal with the trade-off between time spent to search 
and pick parts at the assembly stations and time spent to prepare unit loads in the 
previous processes (e.g. Hanson and Brolin 2013; Faccio et al. 2018). Some stud-
ies also take into account ergonomics issues (Neumann and Medbo 2010; Battini 
et  al. 2017). As regards intermediate storing, some contributions only include in 
their total cost functions the inventory carrying costs at the supermarkets (e.g. Lolli 
et al. 2016; Caputo et al. 2018). Other ones present models and procedures to choose 
the number, size, and location of supermarkets (e.g. Battini et al. 2010; Emde and 
Boysen 2012b; Nourmohammadi et al. 2019a, b), that are decision variables of the 
so-called assembly line feeding problem (Schmid and Limère 2019). For instance, 
Battini et al. (2010) investigate the suitability of using supermarkets through a linear 
programming-based procedure considering inventory and transportation costs. Their 
results suggest that the adoption of supermarkets depends on several features of both 
assembly shop floor and parts; for instance, supermarkets are not suggested for big 
parts such as engines, while a high number of supermarkets is required in the case 
of parts with high value and small size. Emde and Boysen (2012b) introduce the 
so-called supermarket location problem. They develop a mathematical model to find 
the optimal number and placement of supermarkets and perform a computational 
study to evaluate the trade-off between the investment costs for supermarkets and the 
cost of transportation from supermarkets to assembly stations. They show that intro-
ducing supermarkets is beneficial when their number is relatively low (i.e., lower 
than five in their setting). Recently, the design of part feeding systems with super-
markets has been considered together with the assembly line balancing problem by 
Nourmohammadi et al. (2019a, b), that develop a hierarchical programming model 
considering the costs for installation, transportation, and inventory at supermarkets.

The papers dealing with supermarkets often neglect their replenishment from the 
CW or, in few cases, add the replenishment costs to their total cost functions, with-
out any further modelling or optimisation of this process (e.g. Caputo et al. 2015a; 
Limère et al. 2015). The only exception is Emde (2017), that introduces a program-
ming model to minimise the total stock in the supermarkets and the total number 
of replenishments in the time window, by varying the replenishment lot size and 
schedule.

Table  1 also shows that the number of papers on the automation of assembly 
line feeding processes is scarce, and no contributions regarding automated sys-
tems supporting replenishment and intermediate storing are available. Two types of 
automated systems supporting the preparation process can be found in literature: 
robotic kitting systems, where robots are placed in a kitting station or on-board auto-
mated storage/retrieval systems (Sellers and Nof 1989); hybrid robot-operator sys-
tems, where robots support operators in the picking (Boudella et al. 2018) or sorting 
(Fager et al. 2020) of parts. For the usage process, the reviewed literature describes 
vibratory bowl feeders (Lim et  al. 1994) and flexible feeders (e.g. Loy and Rein-
hart 2010; Finetto et  al. 2014) for the automated orientation of parts before they 
are picked by the operators, as well as dual head placement machines for the pick-
ing of parts at circuit card assembly lines (Wilhelm and Zhu 2009). As concerns 
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the transportation process, literature deals with automated unloading of tugger 
trains through shooter-racks (Emde et al. 2012) and automated transportation of kits 
through conveyors and elevators (Zijm et al. 2000), AGVs (Hwang et al. 2002), and, 
more recently, mobile robots (Kousi et al. 2019).

Mobile robots can also be employed in the replenishment and intermediate stor-
ing of parts through VRSRS, a new technology characterised by robots that can 
move both vertically (when climbing the storage racks) and horizontally (when trav-
elling within a storage level or outside the racks). To the best of our knowledge, only 
one paper focused on VRSRS exists, provided by Azadeh et al. (2019): they consider 
a system made of a single storage aisle with a dedicated picking station, located at 
the aisle input/output point, and they develop closed queueing network models to 
estimate the system performance, provide design insights, and make a comparison 
with autonomous vehicle storage and retrieval systems. Therefore, their models do 
not take into account the navigation of robots outside the storage racks and are not 
suitable to study the behaviour of VRSRS in a factory environment.

3  System description

Figure 2 shows the layout of the part feeding system to supermarkets considered in 
this paper. It consists of a CW that replenishes a number of supermarkets feeding, in 
turn, the assembly stations. This layout is widely adopted by companies in industries 
like the automotive and the mechanical one. Table 2 reports the notation used in this 
paper.

All warehouses are VRSRS with two single-deep storage racks per aisle. Each 
aisle is divided into several storage columns denoted as rack sections (Fig.  3). In 

Fig. 2  Layout of the VRSRS-based part feeding system
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each aisle, the first and last columns (i.e., columns 0 and NC + 1 ), as well as the 
first and last tiers (i.e., tiers 0 and NT + 1 ), are not used for storing, in order to let 

Table 2  Main notation

Notation Description

CW-related parameters
 NCW

A
 , NCW

T
,NCW

C
Number of storage aisles, tiers, and columns in the CW

 w, h Unit width and height per storage location in the CW
 LCW CW front length

Supermarkets-related parameters
 NS Number of supermarkets
 Si ith supermarket (i = 1, …, NS)

 NS
T
 , NS

C
Number of storage tiers and columns in each supermarket

 NS, F

T
Number of tiers in each supermarket dedicated to the storage of full 

totes

 NS, E

T
Number of tiers in each supermarket dedicated to the storage of 

empty totes
 w, h Unit width and height per storage location in the supermarkets
 SS Supermarkets size

 dS Distance between two neighbouring supermarkets

 dA→B Distance between the CW exit point and the supermarket area
Robots-related parameters
 NR Number of robots
 vIN , vOUT Robot velocity inside and outside the storage racks
 a Robot acceleration/deceleration
 τ Fixed time required for the robot to load or unload the tote

Other model parameters
 xj, yj Horizontal and vertical coordinate of point j
 � Request arrival rate (i.e. average hourly demand for totes by the 

assembly system)
 dk Travel distance of robots at node k 

(k = CW, CW → B, B → Si, S, Si → B,B → CW)
 tk Travel time of robots at node k 

(k = CW, CW → B, B → Si, S, Si → B,B → CW)
 stk Service time of node k 

(k = CW, CW → B, B → Si, S, Si → B,B → CW)
 �k Service rate of node k 

(k = CW, CW → B, B → Si, S, Si → B,B → CW)
System performance measures
 UR Expected robots utilisation
 E[LT] Expected replenishment lead-time
 E
[

LTA
]

 , E
[

LTB
]

Throughput time for the first and second networks
 QB1

 , QB2
Expected queue length at the external and idle robot buffers
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robots move across the rack sections. While the CW is usually made of multiple 
aisles, a supermarket always consists of a single aisle.

The aisles can be entered only by the robots, which handle mono-item totes 
denoted as ‘full totes’. The robots are able to visit each rack section by moving ver-
tically and horizontally in sequence along the outer unidirectional path, and each 
storage location of a rack by moving vertically in both the up and down directions. 
Each aisle has one input/output (i/o) point located at the coordinates xi∕o = −2 and 
yi∕o = 1 . As illustrated in Fig.  2, robots can also travel outside the warehouses to 
replenish the supermarkets passing through the CW exit point located in the middle 
of the cross-aisle (point A) and reaching the supermarket area passing through point 
B. Considering the side view of the system (Fig. 3), the CW exit point coordinates 
are xA ( xA < xi∕o ) and yA = yi∕o.

The supermarket feeding works according to the kanban system: whenever a tote 
is taken from the supermarket, its replenishment is triggered (Emde 2017). To fulfil 
the supermarket demand, robots (1) store an empty tote in the CW, (2) retrieve the 
required full tote from the CW, (3) reach the CW exit point and then the supermar-
ket, (4) store the full tote in the supermarket, (5) retrieve an empty tote from the 
supermarket, and (6) come back to the CW exit point. The retrieval of full totes 
from supermarkets to feed assembly stations is out of scope and it could be managed 
in different ways. For instance, if the supermarkets have a limited height, operators 
could manually retrieve full totes and store empty totes by accessing the supermar-
kets from their external sides.

As we consider that robots also handle returning empty totes from the supermar-
kets to the CW, they perform dual command cycles in the CW and supermarkets. 
We assume that the dual command cycle is always performed within a specific rack 

Fig. 3  Side view of an aisle of the VRSRS (Adapted from Azadeh et al. 2019)
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section, i.e. there is always at least one empty location available in the same rack 
section to store the empty tote. This assumption is always true for supermarkets as 
we assume to have NS, F

T
 storage tiers dedicated to full and NS, E

T
 storage tiers dedi-

cated to empty totes. As regards the CW aisles, this assumption is reasonable given 
the high number of storage columns and storage tiers, which makes it very likely to 
always find at least one empty storage location in each column (Azadeh et al. 2019).

The other modelling assumptions are listed below:

• Totes are stored randomly within the CW, i.e. the probability of choosing any 
rack section as well as any location in a rack section is based on the uniform 
distribution. We make the same assumption for the storage tiers dedicated to full 
totes within the supermarkets.

• The empty storage location to perform dual command cycles in the CW is ran-
domly selected, as well as the empty tote position to perform dual command 
cycles in the supermarkets.

• The replenishment of the CW is carried out after the regular shift, when the 
assembly stations are not working, and is therefore out of the scope of this paper. 
This assumption is in line with most of the previous studies on the modelling and 
analysis of automated warehouses through both queuing and simulation models 
(e.g., Bozer and Aldarondo 2018; Zou et  al. 2018; Tappia et  al. 2019) and it 
is valid in several real cases, in which the assembly activity is not organised in 
three shifts.

• Stock-out never happens at the CW. We assume that full totes required by the 
supermarkets are always available in the CW.

4  Semi‑open queuing network model

Coherently with the RQs, we model the part feeding system to supermarkets as a 
SOQN. This type of queuing network allows including the waiting time of replen-
ishment requests before being processed by a robot in the estimation of the total 
replenishment lead-time, which therefore represents the time interval between the 
tote consumption at the supermarket and the storage of a new tote of the same prod-
uct (e.g. Jia and Heragu 2009; Roy 2016). Moreover, using SOQNs makes possible 
to evaluate the relation between the inter-arrival time of tote replenishment requests 
and the system performance, and therefore to evaluate the trade-off between the 
throughput time in the inner network, which is determined by the number of robots, 
and the waiting time at the external queue. Section 4.1 provides the model descrip-
tion, whereas Sect. 4.2 describes the solution approach.

4.1  Modelling approach

The single-class SOQN model is reported in Fig. 4. The model is open with respect 
to the requests for tote replenishment and closed with respect to the number of 
robots, that corresponds to the fixed robot fleet size.
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In this model, one type of customer (i.e. requests for tote replenishment) and NR 
robots circulate in the network. We assume the arrival process for tote replenishment 
requests to be Poisson with parameter λ. At the synchronisation station (node J), the 
first request waiting at the external queue B1 and the first available robot at the buffer 
B2 are matched together.

Once in the system, the robot performs a dual command cycle in a randomly 
selected storage aisle of the CW starting (and returning) from (and to) the i/o point 
(nodes 1 to NCW

A
 ). Each storage aisle is modelled as a single-server station with 

Fig. 4  SOQN model of the VRSRS-based part feeding system
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general service time distribution. Through such modelisation we prevent blocking, 
as only one robot is allowed to enter an aisle at a certain time. If another robot wants 
to enter an occupied aisle, it needs to wait until the previous robot in the queue has 
exited that aisle. The expected travel distance, dCW , is estimated based on an equal 
probability of accessing any storage location according to the random storage policy 
and can be calculated using Eq. 1.

Upon entering the storage aisle from the i/o point, the robot covers a horizontal 
distance equal to ||

|

xi∕o − x0
|

|

|

 . The travel pattern followed by robots within the storage 
racks is modelled as in Azadeh et  al. (2019). First, the robot moves vertically to 
reach the last tier and horizontally to reach the selected column. Then, it moves ver-
tically to reach an empty position with coordinate ys , unloads the empty tote, reaches 
the retrieval position ( yr ) in the same column, picks up the full tote and comes back 
to the tier 0. At last, it moves to the point ( x0, y0 ) by moving horizontally and it 
comes back to the i/o point covering a horizontal and a vertical distance equal to 
|

|

|

xi∕o − x0
|

|

|

 and ||
|

yi∕o − y0
|

|

|

 , respectively.
The time required for a robot to reach the supermarket is modelled through 

infinite-servers (node NCW
A

+ 1 and nodes from NCW
A

+ 2 to NCW
A

+ NS + 1 ) as we 
assume that the aisles linking the CW and the supermarkets are large enough not 
to have interference among robots and that robots can skip obstacles with a short 
delay. Node NCW

A
+ 1 models the travel from the i/o point of the CW storage aisle to, 

first, point A and, then, the supermarket area (point B). Based on the random storage 
policy assumption within the CW, the mean travel distance at this node, dCW→B , is as 
follows:

Nodes from NCW
A

+ 2 to NCW
A

+ NS + 1 refer to the travel required to move from 
point B to the selected supermarket Si. The mean travel distance, dB→Si

 , is as follows:

In order to avoid blocking among robots, each supermarket is modelled like a 
single aisle of the CW through a single-server station (nodes from NCW

A
+ NS + 2 to 

NCW
A

+ 2 ∗ NS + 1 ). The expected travel distance inside the supermarket, dS , can be 
obtained through Eq. 4:

(1)
dCW = 2 ∗

|

|

|

xi∕o − x0
|

|

|

+
(

NCW
T

+ 1
)

∗ h + 2 ∗
NCW
C

∗ w

2

+
|

|

|

(

NCW
T

+ 1
)

∗ h − ys
|

|

|

+ |

|

ys − yr
|

|

+ yr + 2 ∗
|

|

|

yi∕o − y0
|

|

|

(2)dCW→B =
LCW

4
+ dA→B

(3)dB→Si
=

⎧

⎪

⎨

⎪

⎩

�

�

�

NS

2
− Si

�

�

�

∗ dS NS is odd
�

�

�

�

NS

2
− Si + 0.5

�

�

�

�

∗ dS NS is even
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Then the robot comes back to the CW (nodes from NCW
A

+ 2 ∗ NS + 2 to 
NCW
A

+ 3 ∗ NS + 2 ). The expected travel distances, dSi→B and dB→CW , can be calculated 
by using Eqs. 3 and 2, respectively, as they correspond to the distance from a CW stor-
age aisle to the selected supermarket.

Based on the travel distances, we calculate the travel time, tk , for each node k 
(k = CW, CW → B, B → Si, S, Si → B,B → CW ) assuming a trapezoidal veloc-
ity–time relationship (Eq. 5). Such assumption allows considering the robot accelera-
tion and deceleration delays (a) as well as the robot velocity, as in previous contribu-
tions on storage and retrieval systems using robots or shuttles (e.g. Lerher et al. 2015; 
Zou et al. 2016; Tappia et al. 2017). Based on the information provided by material 
handling systems manufacturers, we consider different values for the velocity inside 
and outside the storage racks ( vIN and vOUT , respectively). Therefore, in Eq. 5, vk = vIN 
for k = CW, S while vk = vOUT for the remaining nodes.

Then, we compute the service time for each node, stk . For k = CW. and S , the service 
time is given by the sum the travel time, tk , and of the fixed times required for the robot 
to load and unload the totes ( 2� ). For the remaining nodes, the service time is equal to 
the travel time. Table 3 reports the expected value of the service times.

The service rate of each node, �k , is equal to the inverse of the expected value of the 
service time (Eq. 6).

Finally, we compute the squared coefficients of variation of the service times inside 
the CW, cCW , and the supermarkets, cS , through Eq. 7.

(4)
dS = 2 ∗

|

|

|

xi∕o − x0
|

|

|

+ 2 ∗
|

|

|

yi∕o − y0
|

|

|

+
(

NS
T
+ 1

)

∗ h + 2 ∗
NS
C
∗ w

2

+
|

|

|

(

NS
T
+ 1

)

∗ h − ys
|

|

|

+ |

|

ys − yr
|

|

+ yr

(5)tk =

�

2 ∗ vk∕a +
�

dk − 2 ∗ v2
k
∕(2 ∗ a)

�

∕vk tk > 2 ∗ vk∕a

2 ∗
√

dk∕a tk < 2 ∗ vk∕a

(6)�k = E
[

stk
]−1

Table 3  Expected value of the 
service times

Node k Service time expected value

CW
E[stCW ] =

NCW
T
∑

s=1

NCW
T
∑

r=1, r≠s

tCW

NCW
T

∗(NCW
T

−1)
+ 2�

CW → B

B → CW
E[stCW→B

]

= E[stB→CW

]

= tCW→B

B → Si
Si → B

E[stB→Si

]

= E[stSi→B

]

= tB→Si

S
E[stS] =

N
S,F

T
∑

s=1

N
S,E

T
∑

r=1

tS

N
S,F

T
∗N

S,E

T

+ 2�
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4.2  Solution approach

The queuing network in Fig. 4 is a single-class SOQN composed of infinite-serv-
ers and multiple single-server stations which have generally distributed service 
time. Since this type of networks do not have product-form exact solutions, we 
obtain the system performance measures through a solution approach combining 
the MGM with the decomposition–aggregation method, which is the most accu-
rate approach to solve SOQNs (Roy 2016).

According to this solution approach, the original network is reduced to a two 
single-servers network (Fig. 5). The procedure for reducing the original network 
into a two single-servers network is an application of Norton’s theorem for Gor-
don–Newell networks (Chandy et  al. 1975). The first NCW

A
+ NS + 1 nodes are 

modelled as a single server with load-dependent service time (Station A), as well 
as the complement network (Station B). Then, the load-dependent service-rates 
for station A and B ( �−1

A
(k) and �−1

B
(k) , respectively) are obtained by modelling 

the stations as closed networks and solving them by using the approximate mean 
value analysis (AMVA, Buitenhek et al. 2000).

At this point, the MGM is applied to solve the two single-servers network. The 
MGM was developed by Neuts (1981) to solve Markov processes having a repeti-
tive property called the matrix–geometric property, according to which the gener-
ator matrix can be described in a block-tridiagonal form with repetitive elements 
and the solution of the steady-state probability vector can be given in matrix–geo-
metric form. The first step is the development of the generator matrix, which 
contains the transition rate from all the combinations of the states of the system. 
Each state of the system is defined by the vector (l, m, n) where l ≥ 0 is the num-
ber of requests in the external queue, 0 ≤ m ≤ K is the number of requests at Sta-
tion A, and 0 ≤ n ≤ K is the number of requests at Station B. Since a request can 
enter the network only if it is matched with a robot, and considering that the num-
ber of robots circulating in the network is fixed (thus, m + n ≤ K ), the first two 
dimensions can be aggregated without losing information. Therefore, the state of 
the system can be represented by the vector (p, n) , where p is equal to the sum of 

(7)ck =
(

E
[

st2
k

]

− E
[

stk
]2
)

∕E
[

stk
]2

Fig. 5  Reduced semi-open queuing network
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the number of requests in the external queue and the number of totes at Station A. 
The generator matrix of the reduced network, Q, is given by Eq. 8, while “Appen-
dix 1” reports its submatrices.

After identifying Q, the rate matrix R is calculated iteratively through Eq. 9, involv-
ing the repetitive part of the generator matrix (Neuts 1981).

By using the rate matrix R , all the stationary probability vectors are obtained. The 
boundary stationary probabilities �0 and �1 are calculated by solving the system of lin-
ear equations (Eq. 10), where F = (I − R)−1.

The other stationary probability vectors, corresponding to the repeating states, can 
be obtained by using the matrix geometric property, e.g. �2 = �1R.

Knowing the stationary probability vectors, the performance measures of interest 
are calculated. The expected external queue length at buffer B1 , QB1

 , the expected queue 
length at buffer B2 , QB2

 , and the expected number of requests at Stations A and B, QlA
 

and QlB
 , are given by Eqs. 11 to 14.

(8)Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B0 C

A1 B1 C

A2 B2 C

⋱ ⋱ ⋱

AK−1 BK−1 C

AK = A BK = B C

A B C …

⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)C + RA1 + R2A2 = 0

(10)

[

�0 �1

]

[

B0 C0

A1 B1 + RA2

]

= [0, 0]

[

�0 �1

][

e� Fe
]�

= 1

(11)QB1
= �1

⎡

⎢

⎢

⎢

⎣

0

⋮

0

1

⎤

⎥

⎥

⎥

⎦

+ �2

⎡

⎢

⎢

⎢

⎢

⎣

0

⋮

0

1

2

⎤

⎥

⎥

⎥

⎥

⎦

+⋯ + �K−1

⎡

⎢

⎢

⎢

⎣

0

⋮

K − 2

K − 1

⎤

⎥

⎥

⎥

⎦

+ �KF

⎡

⎢

⎢

⎢

⎣

0

1

⋮

K

⎤

⎥

⎥

⎥

⎦

+ �K+1F
2e

(12)QB2
= �0

⎡

⎢

⎢

⎢

⎣

K

K − 1

⋮

0

⎤

⎥

⎥

⎥

⎦

+ �1

⎡

⎢

⎢

⎢

⎣

K − 1

K − 2

⋮

0

⎤

⎥

⎥

⎥

⎦

+⋯ + �K−1

⎡

⎢

⎢

⎢

⎣

1

0

⋮

0

⎤

⎥

⎥

⎥

⎦



595

1 3

A performance model for mobile robot‑based part feeding systems…

In Eqs. 11, 13, and 14, e is the column vector of ones and F = (I − R)−1 , where I 
is the identity matrix.

Knowing QB2
 , the robot utilisation, UR , is given by Eq. 15.

Finally, based on Little’s Law, the throughput time for the first network, E
[

LTA
]

 , 
and for the second network,E

[

LTB
]

 , and the expected replenishment lead-time, 
E[LT] , are obtained by using Eqs. 16, 17, and 18, respectively.

5  Model validation

The solution procedure presented in Sect. 4 is implemented using Matlab software 
and validated through discrete-event simulation. The simulation model is built using 
Arena software. Similarly to the analytical model, also in the simulation model we 
consider exponential interarrival times between replenishment requests, and we 
assume that a random storage policy is adopted. The other assumptions reported in 
Sect. 3 for the analytical models (e.g. queues of infinite capacity for storage aisle and 
supermarket, FCFS service rule for managing all the queues) are also implemented 
in the simulation model. Unlike the analytical model, the simulation model assumes 
discrete space and considers the real travel distances. Travel times are computed 
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based on the trapezoidal velocity–time relationship. The simulation flowchart is 
reported in “Appendix 2”.

We set the CW storage capacity to 8832 totes and 
(

NCW
T

∗ h
)

∕
(

NCW
C

∗ w
)

= 1, . as 
it is the optimal ratio obtained in Azadeh et al. (2019). The data used are reported in 
Table 4. Data about the VRSRS (e.g. robot horizontal and vertical speed) were pro-
vided by the supplier Exotec Solutions, while the other data (e.g. distance between 
CW and supermarkets) refer to a real case. The case concerns the assembly plant of 
a European tier-1 supplier in the automotive dustry producing braking systems for 
cars.

To compare the results of the analytical model and simulation, we consider 36 
scenarios differing among each other in the request arrival rate, λ, namely 100, 110, 
and 120 requests/hour, the number of robots circulating in the system, NR, namely 
6, 7, and 8, the number of supermarkets, NS, namely 5 and 7, and the supermar-
kets size, SS, corresponding to the number of full totes that meet a 0.5- and 1-shift 
demand of the assembly stations (therefore, the storage capacity of each supermar-
ket ranges between 58 and 192 totes). The resulting robot utilisation, UR, varies 
between about 45% and 75%. For each scenario, we run 15 replications to estimate 
the following statistics: expected robot utilisation, UR, expected replenishment lead-
time, E[LT] , expected queue length at the external buffer, QB1

 , and expected queue 
length at the idle robot buffer, QB2

 . The number of replications is set to obtain a ratio 
between the half-width of the 90% confidence interval and the mean value lower 
than 5% for all the scenarios.

Table 5 shows the results about the model accuracy. The average absolute error 
is calculated as |A − S|∕S × 100% , where A and S denote the estimates obtained 
through the analytical and simulation model, respectively. Across the 36 scenarios, 
the average absolute error for the robot utilisation is about 3%. The average abso-
lute percentage error for the expected total throughput time is about 2%. For the 
expected queue length at buffers, the average absolute percentage error is 13.5% for 
B1 and 4.9% for B2. The maximum error is related to the expected queue length at 
the external buffer. As illustrated by Jia and Heragu (2009), errors in the external 
queue length can be up to 50% using the proposed solution approach, which is, to 
the best of our knowledge, the most effective method for solving semi-open queuing 

Table 4  Data used in the model 
validation

Variable Value Unit of measure

dA→B 18 m
w, h 0.42, 0.32 m
NCW
A

6 –

NCW
T

32 –

NCW
C

23 –
vIN 4 m/s
vOUT 1 m/s
a 1 m/s2

� 1.5 s
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networks. These errors are in line with those obtained in other applications of the 
MGM found in previous literature (e.g. Buitenhek et al. 2000; Jia and Heragu 2009; 
Tappia et al. 2019), and can be considered acceptable for the initial design phase.

6  Design insights

This section presents a computational study to develop insights on the design of a 
VRSRS-based part feeding system to supermarkets, thus answering the RQs using 
the model proposed in Sect.  4 to estimate the system performance. We consider 
the same data and real case-based setting used for the validation. The scenarios we 
investigate were selected in close collaboration with the tier-1 automotive supplier 
already mentioned in Sect. 5, which is evaluating the adoption of the VRSRS tech-
nology. Such scenarios differ in the request arrival rate (λ = 100, 110, 120 requests/
hour), the number of supermarkets (NS = 3, 5, 7), and the supermarket size (SS = 0.5-, 
1-, 2-shift demand of the assembly stations; therefore, the supermarket storage 
capacity ranges between 58 and 640 totes). With refer to λ and NS, the intermediate 
values (i.e., 110 requests/hour and 5 supermarkets) are the real values taken from 
the automotive company, while the other values are set in order to study how system 
performance varies following both a positive and negative deviation from the real 
values. Moreover, the number of robots circulating in the system (NR = 5, 6, 7, 8, 9, 
10) is varied in order to cover a wide range of values of the robots utilization, from 
35 to 95%. As system performance measures, we consider: expected queue length at 
the external buffer, QB1

 , expected queue length at the idle robot buffer, QB2
 , expected 

robot utilisation, UR, throughput time for the first network (i.e. waiting time and ser-
vice time at the CW and travel time from the CW to the assigned supermarket), 
E
[

LTA
]

 , throughput time for the second network (i.e. waiting time and service time 
at the supermarket and travel time from the supermarket to the CW), E

[

LTB
]

 , and 
expected supermarkets replenishment lead-time, E[LT] . All the results are reported 
in “Appendix 3”.

6.1  Relationship between number of robots and replenishment lead‑time

In this section, we investigate the relationship between the number of robots and the 
expected replenishment lead-time to supermarkets. In all scenarios, the replenish-
ment lead-time decreases with the number of robots NR. This happens because the 

Table 5  Summary of average 
absolute and range percentage 
errors

Performance 
measure

Average abso-
lute error (%)

Min error (%) Max error (%)

UR 3.1 − 3.5 − 2.6
E[LT] 2.2 − 3.3 0.5
QB1

13.5 5.7 19.8
QB2

4.9 2.6 9.5
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positive impact on the waiting time at the external queue is stronger than the nega-
tive impact on the waiting time at the supermarkets due to congestion.

The marginal benefits of adding more robots decrease with the number of robots 
and increase with the arrival rate. Figure 6 shows this trend considering a setting 
with few big supermarkets (i.e. NS = 3 and SS = 2-shift demand). The reduction in the 
replenishment lead-time is up to 16% in the case of λ = 120 requests/hour by using 
7 robots instead of 6, while it becomes lower and lower when adding more robots. 
Indeed, when the system capacity, function of the number of robots, is too aligned 
with the arrival rate, adding robots leads to a reduction in the response time. Con-
versely, when there are enough robots to meet the arrival rate without long waiting 
time outside the system, there is no reason to invest more in robots.

We observe the same behaviour considering all the other settings defined by the 
combination of the number and size of supermarkets. However, as shown in Fig. 7, 
the maximum reduction in the replenishment lead-time decreases from 16% in the 
configuration with few big supermarkets to 10% in the configuration with multiple 
small supermarkets (i.e. NS = 7 and SS = 0.5-shift demand). We can conclude that 

Fig. 6  Expected replenishment lead-time varying NR and λ with NS = 3 and SS = 2-shift demand

Fig. 7  Expected replenishment lead-time varying NR, NS, and SS with λ = 120 requests/hour
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adding robots is less beneficial in the case of multiple small supermarkets, which 
require a lower number of robots, fixing the required replenishment lead-time, com-
pared to few big supermarkets.

6.2  Impact of supermarket design on replenishment lead‑time

In this section, we deepen the relationship between the replenishment lead-time to 
supermarkets and the supermarket-related design variables (i.e. size and number). 
First, we discuss the effect of each variable keeping the other one fixed, then we 
draw conclusions on their combined effect.

Keeping fixed the number of supermarkets, the expected replenishment lead-time 
improves by decreasing the supermarkets size in all the settings. For instance, Fig. 8 
shows this behaviour in the case of NR = 6 and � = 120 requests/hour. The reason 
lies in the reduction of the throughput time for the second network: the smaller the 
supermarket size, the shorter the travel distances inside it, and, in turn, the shorter 
the time to perform the retrieval and storage operations and the waiting time for the 
supermarket availability. Moreover, the waiting time at the external queue decreases 
consequently.

Looking at the effect of the number of supermarkets, we observe that the replen-
ishment lead-time decreases with it, keeping fixed the supermarket size (Fig. 8). This 
is valid for any number of robots and arrival rate. To understand this effect, we need 
to consider the different behaviour of the throughput time for the first ( E

[

LTA
]

 ) and 
second ( E

[

LTB
]

 ) networks when varying the number of supermarkets. The higher 
the number of supermarkets, the lower the throughput time for the second network 
and the higher the throughput time for the first network. The effect on the through-
put time for the second network is explained by the shorter travel distances inside 
the supermarkets and by the lower arrival rate at each supermarket (since the total 
demand is split among a higher number of delivery points), that further reduces the 
waiting time for the supermarket availability. This implies an increase in the service 

Fig. 8  Expected replenishment lead-time varying SS and NS with λ = 120 requests/hour and NR = 6
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rate of the second network, resulting in a higher number of robots at the CW and 
therefore in a higher waiting time to access the CW storage aisles.

The benefit in the replenishment lead-time with the number of supermarkets 
decreases with a low arrival rate. The lower the arrival rate, the lower the reduc-
tion in the waiting time for the supermarket availability, until the decrease in the 
throughput time of the second network does not balance the increase in the through-
put time of the first network anymore. The benefit in the replenishment lead-time 
with the number of supermarkets also decreases with a small supermarkets size as 
the waiting time at the supermarkets is already low.

In summary, a configuration with multiple small supermarkets improves the 
efficiency (i.e. lower number of robots and shorter lead-time) of the replenishment 
process. This result enriches the findings of previous literature, that, consider-
ing the transportation of unit loads from supermarkets to assembly lines, suggests 
to increase the number of supermarkets until an optimal value beyond which the 
additional costs of installation and inventory overcome the cost savings in trans-
portation (Battini et  al. 2010; Emde and Boysen 2012b). In light of our results, 
we can conclude that the optimisation of the entire part feeding system (including 
both replenishment to supermarkets and transportation to assembly stations) could 
lead to a higher optimal number of supermarkets, compared to previous findings, 
when VRSRS technology is adopted. Moreover, our results show that, once fixed 
the number of supermarkets, their replenishment lead time improves if supermar-
kets are smaller. Therefore, the adoption of VRSRS may allow saving space on the 
shop floor while, at the same time, improving the performance of the replenishment 
system.

7  Conclusions

This paper studies a part feeding system based on the VRSRS technology, focusing 
on the replenishment process to supermarkets in assembly plants. It addresses a two-
fold literature gap, namely the design of the supermarkets replenishment system and 
the analysis of new material handling technologies in a factory environment.

We develop an accurate analytical model, based on the queuing network approach, 
to analyse the system performance, and we validate it through simulation. Then, we 
carry out numerical experiments to evaluate the design trade-offs of the analysed sys-
tem and we study the impact of the system design variables (i.e. number of robots, 
supermarkets number and size) on the replenishment lead-time. Results show that an 
increase in the number of robots always leads to better performance since the reduc-
tion of the replenishment lead-time is stronger than the negative impact on the waiting 
times. Moreover, a configuration with multiple small supermarkets improves the effi-
ciency (i.e. lower number of robots and shorter lead-time) of the replenishment process, 
allowing to conclude that, when the VRSRS technology is adopted, the optimisation of 
the entire part feeding system could result in a higher optimal number of supermarkets 
compared to previous literature findings. The developed model, as well as the design 
insights stemming from its application, are valid for any factory in which the logistics 
system consists of a number of warehouses located on the shop floor and replenished 
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with totes from a CW. Therefore, the possible application domains may include both 
assembly and manufacturing systems, with stations organised either in a line, in a job 
shop, or in fixed-position assembly islands.

As this is a first attempt to address the adoption of automation for supermarket 
replenishment, we see several potential areas for further research. The model can easily 
incorporate changing layout (e.g., dimensions, distances, and supermarket design) and 
could be extended by considering also the replenishment of the CW and the transporta-
tion of unit loads to assembly stations, so as to develop insights on the design of the 
entire part feeding process. Future works could also address the design trade-offs from 
a cost perspective, considering for instance the supermarket location problem, already 
tackled by Emde and Boysen (2012b) with reference to a manual part feeding system.

Appendix 1

Appendix 1 reports the sub-matrices that compose the generator matrix Q (Eq. 8). All 
the matrices are square matrices of size (K + 1) x (K + 1).
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Appendix 2

The simulation model of the VRSRS-based part feeding system to supermarkets is 
described in Fig. 9.
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Fig. 9  Detailed simulation flowchart for the first (a) and second (b) sub-system of the VRSRS-based part 
feeding system
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Appendix 3

Appendix 3 reports the detailed results of the numerical experiments for � = 100 
requests/h (Table 6), � = 110 requests/h (Table 7), and � = 120 requests/h (Table 8).

(b)

Fig. 9  (continued)
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Table 6  Results varying NS, SS, and NR with λ = 100 requests/hour

Ns SS [#shift-
demand]

NR QB1 QB2 UR E[LTA] E[LTB] E[LT]

3 0.5 5 0.824 1.418 0.716 71.341 57.606 158.617
6 0.247 2.409 0.599 71.543 57.750 138.194
7 0.083 3.403 0.514 71.666 57.832 132.469
8 0.028 4.400 0.450 71.733 57.876 130.611
9 0.009 5.398 0.400 71.766 57.897 129.993

10 0.003 6.398 0.360 71.781 57.906 129.792
1 5 0.995 1.313 0.737 71.322 61.411 168.571

6 0.297 2.301 0.617 71.527 61.637 143.846
7 0.101 3.294 0.529 71.654 61.772 137.048
8 0.035 4.290 0.464 71.726 61.845 134.824
9 0.012 5.288 0.412 71.762 61.882 134.071

10 0.004 6.287 0.371 71.779 61.900 133.819
2 5 1.315 1.162 0.768 71.297 66.878 185.497

6 0.385 2.145 0.642 71.505 67.262 152.642
7 0.134 3.135 0.552 71.637 67.503 143.946
8 0.048 4.129 0.484 71.714 67.642 141.081
9 0.017 5.126 0.430 71.756 67.716 140.086

10 0.006 6.124 0.388 71.776 67.752 139.741
5 0.5 5 0.818 1.418 0.716 72.662 56.281 158.387

6 0.243 2.411 0.598 72.866 56.334 137.930
7 0.080 3.407 0.513 72.989 56.362 132.226
8 0.026 4.405 0.449 73.056 56.376 130.386
9 0.009 5.404 0.400 73.089 56.383 129.780

10 0.003 6.403 0.360 73.104 56.385 129.585
1 5 0.930 1.345 0.731 72.648 58.917 165.034

6 0.274 2.338 0.610 72.855 58.992 141.699
7 0.091 3.333 0.524 72.981 59.033 135.282
8 0.031 4.330 0.459 73.052 59.054 133.203
9 0.010 5.329 0.408 73.087 59.063 132.510

10 0.003 6.329 0.367 73.103 59.067 132.284
2 5 1.121 1.241 0.752 72.628 62.706 175.687

6 0.325 2.232 0.628 72.838 62.821 147.372
7 0.109 3.226 0.539 72.970 62.887 139.778
8 0.037 4.223 0.472 73.044 62.921 137.308
9 0.013 5.222 0.420 73.083 62.938 136.471

10 0.004 6.221 0.378 73.101 62.945 136.192
7 0.5 5 0.813 1.421 0.716 73.047 55.806 158.115

6 0.240 2.414 0.598 73.251 55.837 137.743
7 0.079 3.410 0.513 73.374 55.854 132.069
8 0.026 4.408 0.449 73.441 55.862 130.242
9 0.008 5.407 0.399 73.474 55.865 129.641

10 0.003 6.407 0.359 73.489 55.867 129.449
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Table 6  (continued)

Ns SS [#shift-
demand]

NR QB1 QB2 UR E[LTA] E[LTB] E[LT]

1 5 0.897 1.365 0.727 73.036 57.841 163.159
6 0.264 2.358 0.607 73.243 57.882 140.616
7 0.087 3.354 0.521 73.368 57.904 134.403
8 0.029 4.351 0.456 73.438 57.915 132.397
9 0.009 5.350 0.406 73.473 57.920 131.732

10 0.003 6.350 0.365 73.488 57.922 131.516
2 5 1.037 1.282 0.744 73.020 60.812 171.152

6 0.301 2.275 0.621 73.229 60.872 144.953
7 0.100 3.270 0.533 73.359 60.905 137.867
8 0.034 4.268 0.467 73.432 60.922 135.570
9 0.011 5.267 0.415 73.470 60.929 134.800

10 0.004 6.266 0.373 73.487 60.932 134.547
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Table 7  Results varying NS, SS, and NR with λ = 110 requests/hour

Ns SS [#shift-
demand]

NR QB1 QB2 UR E[LTA] E[LTB] E[LT]

3 0.5 5 1.651 1.034 0.793 71.525 58.257 183.826
6 0.460 2.021 0.663 71.770 58.449 145.283
7 0.157 3.013 0.570 71.928 58.568 135.633
8 0.056 4.008 0.499 72.023 58.636 132.486
9 0.020 5.005 0.444 72.074 58.671 131.391

10 0.007 6.004 0.400 72.100 58.688 131.010
1 5 2.083 0.915 0.817 71.503 62.174 201.854

6 0.560 1.899 0.684 71.749 62.473 152.562
7 0.193 2.888 0.587 71.912 62.665 140.881
8 0.070 3.881 0.515 72.012 62.778 137.083
9 0.025 4.878 0.458 72.067 62.841 135.742

10 0.009 5.876 0.412 72.096 62.872 135.265
2 5 3.061 0.733 0.853 71.473 68.166 239.810

6 0.760 1.710 0.715 71.720 68.684 165.283
7 0.264 2.694 0.615 71.888 69.034 149.548
8 0.099 3.684 0.539 71.994 69.254 144.492
9 0.038 4.678 0.480 72.056 69.382 142.674

10 0.014 5.675 0.432 72.089 69.451 142.005
5 0.5 5 1.613 1.043 0.791 72.846 56.645 182.284

6 0.445 2.034 0.661 73.093 56.713 144.374
7 0.150 3.028 0.567 73.253 56.752 134.902
8 0.052 4.024 0.497 73.347 56.774 131.832
9 0.018 5.022 0.442 73.398 56.784 130.773

10 0.006 6.021 0.398 73.423 56.789 130.409
1 5 1.895 0.959 0.808 72.829 59.433 194.296

6 0.509 1.948 0.675 73.078 59.531 149.266
7 0.171 2.941 0.580 73.241 59.589 138.442
8 0.061 3.937 0.508 73.340 59.621 134.942
9 0.021 4.935 0.452 73.394 59.637 133.725

10 0.007 5.934 0.407 73.421 59.644 133.301
2 5 2.419 0.837 0.833 72.805 63.450 215.428

6 0.618 1.824 0.696 73.056 63.603 156.879
7 0.208 2.816 0.598 73.225 63.696 143.738
8 0.075 3.812 0.524 73.328 63.748 139.521
9 0.027 4.809 0.466 73.387 63.776 138.038

10 0.009 5.808 0.419 73.417 63.789 137.511
7 0.5 5 1.573 1.056 0.789 73.232 55.839 180.542

6 0.434 2.047 0.659 73.480 55.878 143.573
7 0.146 3.042 0.565 73.640 55.900 134.301
8 0.051 4.039 0.495 73.733 55.911 131.300
9 0.017 5.037 0.440 73.784 55.917 130.268

10 0.006 6.036 0.396 73.808 55.919 129.915
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Table 7  (continued)

Ns SS [#shift-
demand]

NR QB1 QB2 UR E[LTA] E[LTB] E[LT]

1 5 1.793 0.987 0.803 73.218 58.132 190.023
6 0.484 1.977 0.670 73.467 58.185 147.502
7 0.162 2.971 0.576 73.630 58.216 137.162
8 0.057 3.968 0.504 73.727 58.232 133.822
9 0.020 4.966 0.448 73.780 58.240 132.666

10 0.007 5.965 0.403 73.806 58.243 132.267
2 5 2.177 0.887 0.823 73.198 61.409 205.858

6 0.566 1.877 0.687 73.449 61.487 153.457
7 0.190 2.870 0.590 73.616 61.534 141.363
8 0.067 3.867 0.517 73.718 61.559 137.477
9 0.024 4.864 0.460 73.775 61.571 136.122

10 0.008 5.863 0.414 73.803 61.577 135.646
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Table 8  Results varying NS, SS, and NR with λ = 120 requests/hour

Ns SS [#shift-
demand]

NR QB1 QB2 UR E[LTA] E[LTB] E[LT]

3 0.5 5 3.625 0.655 0.869 71.702 58.638 239.081
6 0.835 1.638 0.727 71.989 58.877 155.923
7 0.282 2.626 0.625 72.186 59.035 139.681
8 0.104 3.619 0.548 72.311 59.131 134.558
9 0.039 4.614 0.487 72.384 59.186 132.731

10 0.014 5.612 0.439 72.424 59.214 132.064
1 5 5.194 0.513 0.897 71.676 62.920 290.403

6 1.056 1.491 0.751 71.963 63.301 166.943
7 0.355 2.476 0.646 72.164 63.562 146.364
8 0.133 3.466 0.567 72.294 63.728 140.012
9 0.051 4.460 0.504 72.373 63.827 137.731

10 0.019 5.457 0.454 72.417 63.881 136.880
2 5 10.425 0.302 0.940 71.643 69.296 453.685

6 1.520 1.270 0.788 71.927 69.961 187.480
7 0.501 2.248 0.679 72.131 70.441 157.594
8 0.193 3.232 0.596 72.268 70.763 148.807
9 0.077 4.223 0.531 72.355 70.966 145.637

10 0.031 5.217 0.478 72.405 71.085 144.422
5 0.5 5 3.514 0.666 0.867 73.021 56.994 235.448

6 0.805 1.654 0.724 73.311 57.080 154.543
7 0.268 2.645 0.622 73.510 57.133 138.689
8 0.097 3.640 0.545 73.636 57.163 133.709
9 0.035 4.637 0.485 73.709 57.179 131.948

10 0.013 5.636 0.436 73.748 57.187 131.313
1 5 4.448 0.569 0.886 73.001 59.931 266.369

6 0.938 1.555 0.741 73.292 60.055 161.502
7 0.310 2.546 0.636 73.494 60.133 142.942
8 0.113 3.540 0.558 73.625 60.179 137.198
9 0.042 4.536 0.496 73.702 60.203 135.160

10 0.015 5.535 0.447 73.744 60.216 134.415
2 5 6.588 0.429 0.914 72.974 64.170 334.789

6 1.176 1.412 0.765 73.265 64.364 172.919
7 0.383 2.401 0.657 73.472 64.490 149.466
8 0.141 3.394 0.576 73.608 64.566 142.407
9 0.053 4.390 0.512 73.691 64.609 139.894

10 0.020 5.388 0.461 73.737 64.632 138.962
7 0.5 5 3.404 0.680 0.864 73.407 56.205 231.718

6 0.785 1.668 0.722 73.698 56.254 153.501
7 0.261 2.661 0.620 73.897 56.284 138.008
8 0.094 3.656 0.543 74.022 56.300 133.141
9 0.034 4.653 0.483 74.095 56.309 131.425

10 0.012 5.652 0.435 74.133 56.313 130.807
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