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4 These authors contributed equally.
5 Currently working at Dipartimento di Ingegneria dell’Informazione ed Elettrica e Matematica applicata/DIEM, Universit̀a degli studi
di Salerno.
∗ Author to whom any correspondence should be addressed.

E-mail: annamaria.bianchi@polimi.it

Keywords: nonlinearity, Parkinson’s disease, Alzheimer’s disease, EEG, LFP, fractals, entropy

Abstract
Brain-related neuronal recordings, such as local field potential, electroencephalogram and
magnetoencephalogram, offer the opportunity to study the complexity of the human brain at
different spatial and temporal scales. The complex properties of neuronal signals are intrinsically
related to the concept of ‘scale-free’ behavior and irregular dynamic, which cannot be fully
described through standard linear methods, but can be measured by nonlinear indexes. A
remarkable application of these analysis methods on electrophysiological recordings is the deep
comprehension of the pathophysiology of neurodegenerative diseases, that has been shown to be
associated to changes in brain activity complexity. In particular, a decrease of global complexity has
been associated to Alzheimer’s disease, while a local increase of brain signals complexity
characterizes Parkinson’s disease. Despite the recent proliferation of studies using fractal and
entropy-based analysis, the application of these techniques is still far from clinical practice, due to
the lack of an agreement about their correct estimation and a conclusive and shared interpretation.
Along with the aim of helping towards the realization of a multidisciplinary audience to approach
nonlinear methods based on the concepts of fractality and irregularity, this survey describes the
implementation and proper employment of the mostly known and applied indexes in the context
of Alzheimer’s and Parkinson’s diseases.

1. Introduction

Cognitive and motor functions of the human brain
are the result of complex dynamics generated and
maintained at different spatial and temporal scales
[1], characterized by nonlinear properties. Nonlinear
behaviors can be approached in terms of fractality,
which is associated with a scale-invariant (i.e. ‘scale-
free’) and ‘self-similar’ behavior; and in terms of
unpredictability, also called ‘entropy’ [2, 3].

Indeed, theoretical (ideal) fractals are objects
showing scale-invariant behavior [4], that, in the spa-
tial domain, are ‘self-similar’ geometric items with

features on an infinite number of scales and their hall-
mark is a power-law scaling. In a real scenario, as
for natural (statistical) fractals, scale-invariance holds
only for a limited range of scales related to a particular
scaling range [5]. Such scale-invariant behavior can
also occur in the temporal domain. In fact, these tem-
poral fractals exhibit fractally correlated events over
different time scales. In time-series, scale-invariant
behavior is a representation of a hierarchy of both
temporal and spatial scales that may cover the wide
range between coarse-scale long-term and short-term
fine-scale fluctuations [6]. The self-similarity prop-
erty of time-series can be evaluated by analyzing the
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presence of a power law relationship between fre-
quency (f ) and the size of the process variation in a
log–log scale plot. Specifically, the 1/f ∧β character-
istic means that the power of the process is inversely
proportional to its frequency, where β is known as
the power or spectral exponent [7]. This concept
is usually employed synonymously with long-range
temporal correlation (LRTC) and as such represents
a correlated phenomenon. LRTC can be measured
in several ways. Popular methods include the Hurst
exponent (HE), detrended fluctuation analysis (DFA)
and multifractal analysis (e.g. MF-DFA) [8, 9]. Of
note, multifractal time series are fractal time series
that require more than one scaling exponent to be
effectively described [10] andmay reveal higher order
correlations.

On the other hand, the complexity of a system can
be represented by the unpredictability of the gener-
ated time series, which can be easily quantified eval-
uating its ‘Entropy’ [11, 12]. Several measures exist
to estimate the entropy or irregularity of a process,
with the common interpretation that an irregular and
complex process is less predictable than a regular one,
leading to a higher entropy value [13]. In the time
domain, popular entropy indexes, such as the approx-
imate entropy (ApEn) [14] and the sample entropy
(SampEn) [15], have been introduced specifically for
the study of biological time series and have also been
widely used to study brain behavior.

In neuroscience, fractal and entropy indexes have
been used to quantify the dynamical activity of the
brain in different conscious states [16] and men-
tal disorders [17]. In particular, alterations of some
fractal and entropic properties have been suggested to
underlie neurodegenerative disorders and may have
important clinical implications for diagnosis and pre-
diction of patients’ outcomes [18, 19]. Particular
attention has been paid to Alzheimer’s (AD) and
Parkinson’s (PD) diseases as they are two of the most
prevalent neurodegenerative diseases in the world
[20]. Although AD and PD may exhibit numerous
shared clinical and pathological features, they are
characterized by distinct etiological mechanisms and
involvement of different brain regions which can be
analyzed through electrophysiological recordings and
can result in altered complexity of brain signals [21].
Interestingly, in the literature, fractal and entropy
measures have been used to characterize the complex-
ity of brain activities in these neurodegenerative dis-
eases leading to results that are consistent with known
structural brain changes due to the pathologies.

Nonetheless, nonlinear methods for time series
analysis in the neurological domain remain scarcely
implemented and poorly understood due to their
nontrivial physiological and clinical interpretation.

Moreover, attention should be paid to the identific-
ation of the most appropriate techniques and the cor-
rect parameters to be applied for different types of
data. Thus, the characterization of each type of sig-
nal should guide the choice of the processing method
and of the parameters to be used.

The present survey aims at helping the reader to
understand the basic implementation and applica-
tion of most diffused nonlinear methods for evalu-
ating the dynamic characteristics of electrophysiolo-
gical signals. At the same time, the ability of such
methods to evaluate changes in complexity induced
by AD and PD is reviewed.

For this survey, we performed a search in PubMed
and Web of Science databases using as keywords
‘Entropy’, ‘fractal analysis’ for the analysis methods,
‘Alzheimer’s disease’ ‘AD’ and ‘Parkinson’s disease’
for the pathology and electroencephalogram ‘EEG’,
local field potential ‘LFP’ and magnetoencephalo-
gram ‘MEG’ for the brain signals. We further con-
sidered works between 2005 and 2022, published in
peer-reviewed journals. To focalize the review, we
selected fractal and entropic parameters that were
mainly represented in the bibliographic outputs,
applied in a univariate fashion (i.e. papers dealing
with complexity of functional connectivity measures
were excluded). Within the selected papers, relevant
references matching our criteria were also included.
We summarize the reviewed papers in table 1, which
is complemented by table 2 reporting a brief descrip-
tion of the neurophysiological signals considered and
their main characteristics. The selected papers iden-
tified the most used indices for the non-linear ana-
lysis of the neurological signals, while theoretical and
methodological papers were also included.

The selected methods are here described in detail
and grouped in two sections: (a) 1/f power-law expo-
nent, HE, Higuchi fractal dimension (HFD) and DFA
grouped in the section named Fractal analysis and (b)
Shannon entropy (H), ApEn, SampEn, permutation
entropy (PeEn) and multiscale entropy (MSE) in the
section named Entropy analysis.

The most important results, together with their
proposed clinical interpretation devoted to the com-
prehension of the pathophysiology of these diseases
are finally summarized in table 3.

2. Fractal analysis

Fractals are complex systems which are characterized
by fractional dimensions, a concept that goes bey-
ond the classical geometry, meaning that a complex
signal could be represented by non-integer dimen-
sion: for example more than a line (characterized by
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Table 1. Summary of the reference dealing with the application of fractal and entropy analysis in Alzheimer’s and Parkinson’s diseases
literature.

Alzheimer’s disease Parkinson’s disease

References Signal Fractal Entropy References Signal Fractal Entropy

Abásolo et al [22] EEG ApEn
Stam et al [23] EEG DFA Lim et al [24] Spike trains ApEn
Escudero et al [25] EEG MSE

(SampEn)
Hohlefeld et al [26] LFP DFA

Park et al [27] EEG MSE
(SampEn)

Chung et al [28] EEG MSE
(SampEn)

Hornero et al [29, 30] MEG ApEn Herrojo Ruiz et al [31] LFP DFA
Abásolo et al [32] EEG DFA ApEn Huang et al [33] LFP β exp

(IRASA)
Montez et al [34] MEG DFA Hohlefeld et al [35] LFP DFA
Gomez et al [36] MEG ApEn,

SampEn
Alam et al [37] Spike trains ApEn

Mizuno et al [38] EEG MSE
(SampEn)

West et al [39] LFP DFA

Poza et al [40] MEG SampEn,
others

Yuvaraj and Murugappan
[41]

EEG HFD

Yang et al [42] EEG MSE Syrkin-Nikolau et al [43] LFP SampEn
Zorick and
Mandelkern [44]

EEG MF-DFA Liu et al [45] EEG SampEn

Labate et al [46] EEG MSE
(SampEn,
PeEn)

Yi et al [47] EEG PeEn

Vysata et al [48] EEG β exp Martin et al [49] LFP β exp
Deng et al [50] EEG PeEn Mostile et al [51] EEG β exp
Smiths et al [52] EEG HFD Belova et al [53] LFP β exp
Coronel et al [54] EEG H, MSE

(SampEn)
Pappalettera et al [55] EEG ApEn

Tylová et al [56] PeEn
Nimmy John et al [57] EEG HE
Nobukawa et al [58] EEG HFD
Amezquita et al [59] EEG HFD, HE
Echegoyen et al [60] MEG PeEn
Zorick et al [9] EEG MF-DFA
Seker et al [61] EEG PeEn
Ando et al [8] EEG MF-DFA MSE

a dimension = 1) and less than an area (character-
ized by dimension = 2) and can be described by a
dimension value between 1 and 2 (fractional dimen-
sion) [62]. One of the main properties of fractal sys-
tems, and then of fractal time series, are scale invari-
ance and self-similarity [7].

Fractal time series are characterized by a ‘fractal
dimension’ (FD) which statistically represents how
much a pattern changes as a function of the obser-
vation scale. The FD can be computed according to
several definitions [63], but this procedure can be eas-
ily described through the ‘box counting’ algorithm
by starting to count the number of ‘boxes’ of a given
size necessary to cover the analyzed time series, as
represented in figures 1(a) and (b). The procedure
is repeated many times changing the box size, l. The
FD, which can take non-integer values, is defined as
the negative of the slope in the bi-logarithmic plot of
the number of boxes in function of their size l, (see
figures 1(c) and (d) for details). In general, the more
complex the signal, the higher the FD.

Although methods for measuring the fractal
behavior of a time series may differ in their oper-
ational domain and produce measures of self-
similarity in different ways, they share some prop-
erties; among them the already mentioned power-
law behavior which can be quantified and described
through different analysis and parameters. For this
reason, in this section we grouped together the 1/f
power-law exponent (β), HE, DFA and the HFD
techniques under the single category ‘Fractal ana-
lysis’. Before describing the equations linking these
analyses, an important step is to identify the class to
which the analyzed time series belongs. Generally,
as basic references, one should consider two classes
of fractal signals, fractional Gaussian noises, fGn,
and fractional Brownian motions, fBm. Ideally, a
long memory process signal should be categorized
as either stationary (fGn) or non-stationary (fBm)
according to this definition [64]. Moreover, only fBm
signals are characterized by a fractal structure hav-
ing self-similar behavior, while fGn, signals have a
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Table 3. Summary of main results and their clinical interpretation of Alzheimer’s and Parkinson’s- related nonlinear analysis literature.

Main results Clinical interpretation

Alzheimer’s disease

Fractal

Overall EEG frontal-occipital decrease of
power-law exponent. Greater variance of
β-values respect to controls [48].
Larger values of Hurst exponent in temporal
lobes with respect to subjects with no cognitive
decline. High variation of values in the right
hemisphere of patients [57].
Aberrant autocorrelation structure of
temporo-parietal alpha oscillation and medial
prefrontal theta in early-stage AD [9, 34].

Lower β-values were associated to changes of
neuronal connectivity compromised by
presence of brain atrophy [48].
Larger values of Hurst exponent associated to
difficulty in memorizing while variation
suggested damages with consequent difficulty
in motor skills [57].
Both DFA exponent and MF-DFA correlated to
severity of disease [9, 34]. Combined use of
DFA and spectral analysis in AD patients
improved diagnostic [110].

Entropy
Exclusively applied to EEG and MEG signals.
The most recurring result reports a decreased
entropy with respect to age-matched controls.

Lower entropy in AD patients is interpreted as
the result of a loss of structural complexity and
functional connectivity [25].

Parkinson’s disease

Fractal

Flatter PSD-slope in fronto-temporal sites with
respect to healthy controls [51].
Steeper PSD-slope under the effect of general
anesthesia [33].
Presence of LRTC in the high-frequency
gamma range increased by Levodopa and
positive correlation between cortex and basal
ganglia across multiple time scales [26, 35].
Emergence of LRTC with DBS On [31].

Flatter slope linked to higher irregularity, while
steeper to decrease of complexity [51]. Changes
in PSD-slope considered highly related to the
balance excitation/inhibition [33].
LRTC is a potential biomarker of pathological
processes in PD [26, 35]. Positive correlation
between DFA-PS exponent and motor
impairments [3].

Entropy

Local higher entropy in brain activity with
respect to controls [28, 37] and the modulation
of the LFP and neuronal signal irregularity in
relation to PD’s symptoms.

Higher entropy of the basal ganglia activity
associated to a more error-prone and less
efficient motor information transfer. Increase
of beta entropy during FOG events interpreted
as a compensatory attempt to correct the
abnormal activity [43].

self-similar appearance only when their amplitude is
rescaled by the HE [5].

fBm, fGn, β and HE are then linked by the
relations [5, 65, 66]:

βfBm = 1+ 2HEfBm

βfGn = 2HEfGn − 1

while the fluctuation exponent α, resulting from the
DFA method (see section detrended fluctuation ana-
lysis (DFA)), can be related to HE according to the
formulas [5, 65, 66]:

αfBm = 1+HEfBm

from which we obtain:

βfBm = 2αfBm − 1

αfGn = (βfGn + 1)/2.

It is worth noting that, despite fBm and fGn
are intrinsically characterized by the same HE expo-
nent, fBms represent non-stationary signals with time
dependent variance, while fGns are stationary pro-
cesses with constant mean and constant variance over
time.

Distinguishing between fGn and fBm series is
possible, in principle, from the evaluation of their β,
as fGn corresponds to β exponents ranging from 1 to
+1 (α [0:1]), and fBm to β exponents from+1 to+3
(α [1:2]) [64, 65].

2.1. Power-law exponent
Fractals can be measured using a power-law relation-
ship. In mathematical terms, a power-law is a form
of scale-invariance where one quantity varies propor-
tionally to a power of the other. Application of power-
law behavior in time-series usually comes with a log–
log plot, where the axes represent the power spectrum
density (PSD) function of the signal and its frequency.
The PSD of a signal describes the linear distribution
of the spectral power over the frequency components
(figure 2) and the focus of the analysis is usually on the

5
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Figure 1. Application of the box counting procedure to a portion of a local field potential (LFP) signal. The signal, or curve, is
divided in elements (boxes) of different size l and the number of elements needed to cover the curve is counted for each l. (a)
l= 75 sample and (b) l= 25 samples. (c) To derive Fractal dimension (FD) of the curve, from the box counting algorithm
(box-counting dimension), the number of boxes N is plotted against the size l in log–log scale and the negative of the slope of the
obtained curve is taken. (d) Semi-log plot of the local slope of the curve in (b) as a function of the size. If the slope is constant in a
range of different sizes, this slope is a good estimation of the FD of the curve. The LFP signal in (a) was acquired from a
Parkinsonian patient.

oscillatory components figure 2(b) which, to be non-
linearly evaluated, need the application of complex
methods, such as higher order spectral analysis [67,
68]. The power-law decay of the spectrum as a func-
tion of frequency is also called ‘1/f noise’ and char-
acterizes the non-oscillatory and fractal-behavior of
signals [69, 70].

When considering the PSD in log–log coordin-
ates (figure 2(c)), obtained through estimation
approaches (i.e.Welch’smethod [49, 51, 53, 71] or the
multi-taper spectrogram method [33]), it is possible
to extract information about the 1/f behavior [71].
In details, the log–log plot shows how the log(PSD)
linearly changes with respect to log(frequencies);
then, an operation of linear regression on the spectral
power is performed to estimate a straight line that
represents the statistical ‘self-similarity’ (which is a
typical property of statistical fractals) of the signal.
The slope of the line is used to estimate the scaling
exponent β, also called power-law exponent. The
fractal component tends to be analytically character-
ized by 1

fβ , where β is a constant that defines the kind
of dynamic behavior of the signal [5]. For example,
β = 0 characterizes white noise-like systems, which

are uncorrelated time series and have a power spec-
trum that is independent of the frequency. Time series
with β = 1, are called flicker or 1/f noise systems,
which are moderately correlated, while Brownian
noise-like systems are represented by β = 2, which
are strongly correlated. Nevertheless, it is important
to point out that it is impractical to use the spectral
exponent β as an indirect means of quantifying the
fractal dimension FD (as this latter is only defined for
fBm type signals [5]) although these methods exist in
literature [72, 73], due to the several steps of approx-
imation required to fit the spectral decomposition of
a time series. Critical aspects in the estimation of the
power-law exponent are: (i) the frequency ranges on
which to estimate the linear slope; (ii) the frequency
resolution (and then the signal length) needed for
a robust linear slope estimation, also taking into
consideration that at the lower frequencies in the
log scale, the spectral points available for the linear
regression are less than at the higher frequencies, and
then the estimation has a higher uncertainty.

Moreover, it is important to remark that neuro-
physiological signals are highly characterized by oscil-
latory components. To prevent that the estimation
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Figure 2. (a) 10 s of an EEG signal from a healthy volunteer acquired at rest with a sampling rate of 256 Hz. (b) Power spectral
density (PSD) obtained with the Welch’s method averaging 2 s windows. In linear scale, the oscillatory component associated to
the alpha rhythm is clearly visible. (c) The same PSD is plotted in log–log scale to enhance the 1/f background component. Two
regression lines are fitted and plotted considering two different frequency ranges (i.e. 1–20 Hz and 20–40 Hz) and the
correspondent power-law exponents β are estimated.

of β might be compromised by the rhythmic oscil-
latory components, several methods have been pro-
posed, in addition to the simpler peak suppression
[74, 75]. The first one is the coarse graining spec-
tral analysis [76]. It separates the harmonic and the
scale-free components of the power spectrum using
the self-similarity property of the fractal time series:
indeed, in fractal time series the statistical distribu-
tion does not change when data are sampled at dif-
ferent frequencies, and this is not valid for harmonic
time series. The method is based on modifying the
sampling frequency of the time-series by a factor λ,
in order to obtain the ‘coarse grained series’, and on
computing the cross-power spectrum from this series
and the original one (Sxxλ (f)); if this tends to 0, the
signal is simply periodic or oscillatory, while, if it fol-
lows a power-law distribution, the signal is fractal [71,
77]. Another technique is called irregular-resampling
auto-spectral analysis (IRASA) and is based on res-
ampling the original signals by a couple of factors
(positive numbers and their reciprocals) and on com-
puting the mean of the auto-power spectra of each
pair of the resampled signals. As a result, the power
associated to the rhythmic components are redistrib-
uted in the resulting spectrum, while the power of
the component 1/f, extracted taking the median of
the mean auto-power spectra, remains independent
from h factors [77]. An alternative approach, known
as the ‘fitting oscillations & one over f ’ (FOOOF)

method, is designed to model periodic components
of the spectrum [69]. The FOOOF method iterat-
ively applies Gaussian fits to all the oscillatory com-
ponents, resulting in a model of the periodic part. By
subtracting this periodic model from the spectrum,
a potentially pure aperiodic component, suitable for
fitting β is obtained.

2.2. Hurst exponent (HE)
The HE measures the self-similarity and the correl-
ation properties of the fractal time series, indicating
the level of persistence (i.e. the property according
to which the value of the variable at a certain time
is closely related to the previous value) of the series
[63, 78]. It can be used to evaluate the smoothness of
a time series; indeed, it is related to the fractal dimen-
sion (FD). Such relationship is defined through:

FD= 2−HE

with 0⩽HE⩽ 1 [79]. The fact that the exponent can
assume only values within the range [0,1] implies that
(i) for HE = 0.5 the series under analysis is com-
pletely random; (ii) for HE > 0.5 it shows low self-
similarities (a persistent behavior) which corresponds
to a smoother trend, (iii) HE⩽ 0.5 indicates that the
temporal series have a high self-similarity (an anti-
persistent behavior), indicating a rougher graph [63,
78, 79]. In order to account for the different classes
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Figure 3. Schematic representation of the Hurst exponent (HE) and DFA estimation procedure applied to the same signal of
figure 2. (a) Rescaled range method: the time series is divided into segments of l samples each from which the integrated series
X(t,l) is obtained. The range R is computed from X(t,l) and divided by the segment standard deviation to obtain the rescaled
range Q. (b) Log–log plot of Q in function of the segment size l. The slope of the fitting line is the estimated HE. (c) To perform
the DFA the integrated series X(t) is divided in non-overlapping segments of size l on which the data are fitted with a least-square
line representing the trend. (d) Log–log representation of the size of the fluctuation F(l) in function of the segment size. The α
index is estimated as the slope of the regression line fitting the data in the double logarithmic plot. The represented signal is the
same from figure 2.

of signals (i.e. fGn and fBm) an extend version of
the HE was developed, by defining 0 < HE < 1 for
fGn and 1 < HE < 2 for fBm [80]. The HE, like the
entropy, provides a measure of the complexity of the
signal: increase of the value of HE indicates less com-
plexity and higher synchronization [81]. There are
several algorithms that can be used to estimate HE
parameter [63]. One of these is based on the rescaled
range (figure 3(a)), which measures how the variab-
ility of the time series changes with the length of the
period.

The HE is estimated dividing the signal into seg-
ments of length l and computing on each segment its
range R

R (l) =max
t

X(t, l)−min
t

X(t, l)

with 1⩽ t⩽ l while X(t,l) are the integrated series
defined as the cumulative sum

X(t, l) =
t∑

k=1

[x(k)− x̄] ,

where x is the mean of the considered segment.
To obtain the rescaled range Q(l), R(l) is divided

by the standard deviation SD of the original signal

within the segment. Q(l) is computed for each seg-
ment of length l and then averaged to obtain Q̄(l).
This procedure is repeated for all the possible segment
of size l. Thus, it is possible to estimate the HE as

HE=
log(Q̄(l))

log(l)
.

That is the slope of log(Q̄(l)) in function of log(l)
as in figure 3(b), obtained by an operation of linear
regression [65]:

Q̄∝ lHE.

2.3. Detrended fluctuation analysis (DFA)
DFA was first proposed by Peng et al [82] in order to
estimates long-range correlations in DNA sequences
but it found applicability in many other contexts,
such as measures of long-time weather records [83],
hearth rate dynamics [84, 85] as well as sea clutter
radar data [86]. A signal is said to exhibit long-range
dependencies if non-zero correlation exists between
its samples even when separated by long time inter-
vals. Nowadays, it is a widely used method to estim-
ate the extent of so-called ‘long-range temporal cor-
relations (LRTCs)’ present in a signal [87, 88]. It is
aimed at assessing the level of self-similarity in a time
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series by representing the relationship between the
variability of the signal and the length of the inter-
vals overwhich such variability is computed. TheDFA
algorithm can be implemented by following three
steps (as schematized in figure 3):

(i) A temporal series x(t) of length L (t ∈ L) is first
integrated as follows:

X(t) =
t∑

k=1

(x(k)− x̄)

where X(t) is the cumulative sum and x̄ is the
mean of the time series x(t).

(ii) X(t) is then divided into k non-overlapping
intervals of length l and within each inter-
val, a least-squares straight line is fitted to the
data, representing the trend in that window
(figure 3(c)), that is denoted by XTh

j . Thus,
for a given interval length l, the size of fluctu-
ation for the integrated and detrended series is
calculated as:

F(l) =

√√√√1

L

l∑
j=1

(
Xj −XTh

j

)2
.

(iii) This computation is finally repeated over all
time scales (window sizes l) to obtain the rela-
tionship between F(l) and the window size
(figure 3(d)). Typically, F(l) increases with win-
dow size. The statistical self-similarity of the sig-
nal is represented by a straight line in the log–
log graph of F(l) versus l and the fractal scaling
exponentα from the slope of the line. Indicating
the self-similarity with F(l)∝ lα, the fluctu-
ation exponent α characterizes signals that can
exhibit either correlated (in the form of LRTCs
with α > 0.5) or uncorrelated (α < 0.5) pro-
cesses.

Themultifractal DFA (MF-DFA)method is a gen-
eralized method of DFA that allows a characteriza-
tion of multifractal (higher order) scaling behavior
of time series [89]. While DFA uses only the second
order moment (i.e. q = 2), MF-DFA is based on the
scaling of the qth order moments, thus providing the
following qth order fluctuation function:

Fq (l) =

1

L

l∑
j=1

[F(l)]
q/2


1/q

.

The scaling exponent α(q), which for q = 2 is
identical to HE, is determined by analyzing log–log

plots Fq (l) versus l for each value of q. Thus, when
long-term correlation occurs in the data, a behavior
like Fq (l)∝ lα(q) appears on Fq (l) [89].

2.4. Higuchi fractal dimension (HFD)
The HFD of a time series, HFD, is a measure of irreg-
ularity and is calculated directly in the time domain
[62]. For electrophysiological signals the HFD usually
returns a value between 1 and 2 where, the higher the
HFDvalue, the higher the signal complexity and, con-
sequently, the lower its fractal properties. As repor-
ted in [62] if the power-law exponent 1 ⩽ β ⩽ 3,
then the fractal dimension FD= (5−β)/2, thus for
β → 1 then FD → 2 which corresponds to uncorrel-
ated white noise while for β → 3 then FD→ 1 which
corresponds to the highest level of self-similarity in
the time series.

Multiple time series at a variety of different time
scales are first generated by subsampling the signal
repeatedly:

Xi
k;X(i) , X(i + k) , X(i + 2k) , . . .

×X

(
i +

[
N− i

k

]
k

)
(i = 1,2, . . . ,k) .

Being X is the original signal, i the starting time, k
the interval time and N the number data points, the
algorithm then calculates the average length L(k) of
the curve across all the k intervals as:

Li (k) =
1

k

[ N−i
k ]∑

j=1

(X(i + jk)−X(i +(j − 1)k))


×

(
N− 1[
N−i
k

]
k

)

where the term N−1

[ N−i
k ]k

is a normalization factor. If

L(k) follows a power law, then curve is fractal with
dimension D:

L(k)∝ k−D.

HFD is represented by the slope of the lined
formed by the double logarithmic graph of L(k) of
each k.

3. Entropy-based analysis

The term entropy in information theory is com-
monly referred to the amount of ‘uncertainty’ in the
information content of a system generating the pro-
cess explained by a time series. Shannon [11] and
Kolmogorov–Sinai [12] proposed different formula-
tion of ‘Entropy’, to estimate the predictability of the
analyzed signal.

In the biomedical field, these approaches are prin-
cipally known for their large application and con-
sensus for the study of the heart rate variability (HRV)
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signal [63, 90], but they have also been applied in
the study of brain functions and dysfunction [16,
17]. Besides the classical Shannon entropy (H), the
most frequently used approaches are the ApEn, the
SampEn, the PeEn, and the MSE.

The Shannon entropy [11] quantifies the amount
of information carried by a time series x(t) as a func-
tion of the probability of occurrence of each sample
p(x(t)). Such a probability could be estimated from
a large amount of signal values, ideally infinite (N→
∞). The Shannon entropy (H) is then defined as the
negative summation over the time sample t of such
probability multiplied by its logarithmic value,

H=−
∑
t

p(x(t)) · log(p(x(t))) .

Since the biological systems, generating the pro-
cess we are measuring, are dynamical systems, the
carried information varies over time. To capture this
property, the Kolmogorov–Sinai entropy was intro-
duced to express ameasure of ‘entropy rate’, that is the
average rate at which a system produces information.
For a random process {x(t)} at a time t, it is defined
as H(x) = limt→∞H(x1,x2, . . . ,xt). This concept is
derived from the Conditional Entropy defined as
CE(x) = limt→∞H(xt|xt−1,xt−2, . . .), which meas-
ures the amount of predictability of future values in
a time series given its past values, meaning that if the
past information produced by a system can accurately
explain its current state, the system is predictable (the
CE(x) is low), if not, it is said unpredictable (the
CE(x) is high) [63, 91].

3.1. Approximate entropy (ApEn)
The ApEn, introduced by Pincus [92], based on the
concept of CE(x), measures the regularity and pat-
terns repeatability in time series, even if of finite
length and noisy. Briefly, ApEn of a signal of N
points is defined as the average of the negative nat-
ural logarithm of the conditional probability that two
sequences (or templates) in the signal contain sim-
ilar patterns of m and m + 1 points, with a toler-
ance r. The parameter m is called embedding dimen-
sion. Operatively, five main steps are needed to com-
pute the ApEn of a given time series of N time points
{x(t) |1⩽ t⩽ N|}, here described and represented in
figure 4(a) for an exemplificative embedding dimen-
sionm= 2:

(1) A series of N − m − 1 templates of size m,
Tm (j) = {x(j + k) , withk= 0, . . . ,m− 1} , is
defined for 1⩽ j ⩽ N−m+ 1;

(2) The distance between two templates Tm (j)
and Tm (i) is than taken as the maximum
difference of their samples d(Tm (j) , Tm (i)) =
max

0⩽k⩽m−1
|x(j + k)− x(i + k)| ; with1⩽ i ⩽ N−

m+ 1
(3) We then call Zm

j the number of Tm (i) tem-
plates in the signal for which d(Tm (j) , Tm (i))⩽

r, i.e. the number of patterns of m time points
which are similar to the given template Tm (j)
with tolerance r. The regularity of the pattern
in the time series is measured by the probability
expressed as Cm

j (r) = Zm
j /(N−m+ 1) that any

template Tm (i) is similar to Tm (j) with toler-
ance r. Tolerance is represented by the distance
between horizontal solid lines in figure 4(a).

(4) Now it is possible to define the function
Φm (r) =

∑N−m+1
j=1 logCm

j (r)/(N−m+ 1) as
the average of the natural logarithms of the prob-
abilities Cm

j (r) over j;
(5) We than repeat step 1 to step 4 for m + 1 and

finally obtain the estimation of the statistics for
finite time series of lengthN as ApEn(m, r,N) =
Φm (r)−Φm+1 (r) .

It is evident that ApEn is dependent on the
length N of the time series, meaning that for
short recording duration the estimated value will be
lower than for longer ones. Therefore, to be com-
parable among different conditions, N should be
fixed.

3.2. Sample entropy (SampEn)
SampEn was conceived by Richman and Moorman
[15] to evaluate the randomness of the HRV sig-
nals. With the same objective of the ApEn, SampEn
has being developed to reduce the dependency from
the recording duration affecting ApEn. Therefore,
SampEn can provide reliable results also with shorter
N in comparison to ApEn, but still a bias can be intro-
duced if a very short length is considered. Moreover,
by eliminating the self-matches, the computation of
SampEn has a computational cost reduced by one-
half with respect to ApEn [15].

Indeed, to calculate the SampEn, we define W as
the number of templates pairs of sizem+ 1 for which
d(Tm+1 (j) , Tm+1 (i))⩽ r, with i ̸= j and V the total
number ofmatches between templates of sizem, again
with i ̸= j (i.e. excluding self-matching).

Their ratio (W/V), which represent the condi-
tional probability, that the distance between two tem-
plates of sizem is within a tolerance r and will remain
within r at the next sample, is used in the final com-
putation SampEn=−log(W/V).

Both ApEn(m,r) and SampEn(m,r) were intro-
duced to be applied on short and continuous time
series with respect to previous entropy measures, but
still, parameters m and r should be properly set and
N also considered. In both cases, there is not a ‘per-
fect’ rule for the selection of parameters, m and r.
In the field of HRV, Pincus suggested that for a reli-
able ApEn estimation m should be set to 2 and r
in the range between 0.1 and 0.25 times the stand-
ard deviation of the data, and N larger than 10m or,
better, at least 30m samples [14]. In line with these
suggestions, also for the SampEn it was proposed
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Figure 4. (a) For a given signal x(t), the computation of both ApEn and SampEn is based on the probability of matching the
template ofm+ 1 points (black–green–blue dots) if the template ofm points (black-green dots) matched with a distance
d(Tm (j) , Tm (i)) ⩽ r. (b) Example of the encoding procedure for the calculation of the PeEn withm= 3 and d= 1. (i) Given the
embedding dimensionm= 3, the possible permutations (or amplitude rankings) πk of orderm− 1 are 6 and are represented by
the rank values in sequences. (ii) The timeseries is divided in sequences ofm samples, with a delay d. The amplitude value of each
sample is replaced by its rank so that a series of permutations is encoded. Thus, a probability distribution of the permutations is
obtained. (c) MSE calculation example. The entropy measure is computed at different temporal scales obtained with a
coarse-graining procedure, i.e. averaging the values of τ samples at each scale from 2 to T, where T is the maximum value of scale
factor. The value of the entropy index is plotted in function of the time scale and the MSE curve is obtained. All the images were
built on signals constructed for representative purposes only as random signals with superimposed identifiable patterns (a) and
(b) or simply random signals (c).

to set m = 1 or 2 and r in the range between 0.1
and 0.25 times the standard deviation of the data,
but a much shorter signal length, still of at least 10m

samples, is considered sufficient as demonstrate in
[15]. These parameter values are often taken as appro-
priate also for neurophysiological signals, but, as dis-
cussed in section 4, such an approach could be a
limitation.

Both ApEn and SampEn describe the signal reg-
ularity at a fixed time scale and ignore its variabil-
ity structure that could arise at different time scales
(i.e. different frequency ranges). In the context of bio-
medical signals, M/EEG in particular, the time scale,
or frequency range, at which the analysis is performed
has great importance, since it may reflect specific
underlying processes [93].

3.3. Permutation entropy (PeEn)
A noteworthy alternative to the aforementioned
entropy indexes, is the PeEn [94, 95], based on the
concept of Shannon Entropy. Introduced to deal with
the non-stationarity of the signals, PeEn works by
applying an embedding procedure to the analyzed sig-
nal, with embedding dimensionm, and time-lag d. An
example of this embedding procedure is represented
in figure 4(b) for an embedding dimensionm= 3 and
a lag d = 1.

Briefly, the time series is cut into segments of
dimension m delayed by d samples. The samples
of the segments are arranged in increasing order
and converted in ordinal patterns of order m − 1.
Thus, instead of creating templates based on the
amplitude values, patterns are created considering the
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rank of each sample (i.e. if the amplitude pattern is
{6, 3, 7}, this is converted to a sequence of ranks
{1, 0, 2} for a pattern of order m = 3), making it
robust to noise. For an embedding dimension m, the
possible order of patterns, or permutations π, will be
m!.Considering the resulting symbolic series inwhich
each symbol corresponds to a permutation, PeEn is
obtained estimating the Shannon Entropy of the rel-
ative frequencies for each possible permutation of
orderm> 2

PeEn=−
m!∑
i=1

p(π i) · log(p(π i)) .

Higher the PeEn value, higher the signal
irregularity [94]. The algorithm to obtain the PeEn
is very fast and works with short time series. As
the ApEn and the SampEn, also the PeEn has been
employed in the MSE framework [46].

3.4. Multiscale entropy (MSE)
The MSE was proposed as an extension of the
SampEn algorithm to capture the information of a
system at different time scales [96]. The computation
of the MSE is built on two steps: (i) the construc-
tion of a set of coarse-grained time series, and (ii)
the estimation of a measure of entropy (e.g. ApEn,
SampEn, etc) at each time scale. Given a time series of
N points x(t), the coarse-grained time series {yn (τ)},
determined by the scale factor τ , are constructed
replacing τ samples by their average (figure 4(c)),
thus it corresponds to the application of a low pass
filter followed by sub-sampling.

The calculated entropy measure is then plotted as
a function of the coarse-graining scale factor, τ . This
approach allows the assessment of the dynamic evol-
ution of the signal structure and can be related to
its frequency content. In fact, as shown by Courtiol
et al [93], the down sampling operation of the coarse-
graining framework, has the effect of removing the
fast oscillations so that, at increasing time scales, we
measure the entropy of the slower oscillations. To
obtain a concise complexity index, the area under the
MSE curve is often computed [63].

4. Confounding factors

All the methods described share the drawback of
being dependent on factors and parameters that are
not always directly under the control of the exper-
imenter. In this section, the principal confounding
factors influencing the reliability of the fractal and
entropy analysis are introduced.

The common factors that induce misinterpreta-
tion of fractal and entropy analysis derive from the
typical compromise that must be reached between a
sufficient large length of the recording, that should be
enough to reach statistically significant results, and
the possible presence of non-stationarities, due to

the characteristic weak stationarity (or a ‘wide-sense’
stationarity) of brain signals. As reported by several
studies the use of series of 29 or 210 data points is
considered as an acceptable compromise to satisfy
the requirements of nonlinear methods (stationar-
ity and sufficient amount of data points) and, at the
same time to correctly perform experiments involving
brain signals (e.g. in order to optimize the spectral
analyses for neuronal signals) [5, 65, 97]. Therefore, it
is evident that fractal and entropymeasures cannot be
applied when the experimental paradigm comprises
the analysis of short, discontinuous, and transient
responses, such as evoked or event-related potential.

In Fractal Analysis, the specific ‘class’ of the time
series (i.e. determined by their distinction into fGn
and fBm) is another factor that may influence the
result interpretation. Several authors [5, 64, 65, 98,
99] claim that the scaling exponent can be properly
assessed using a method relevant for the identified
class. Despite a proper preprocessing of the ‘raw’ data
prior to analysis might minimize the effects of non-
stationarities on the scaling properties of the data
[100], it is certainly not trivial establishing the cor-
rect class of a neurophysiological signal. Moreover,
even if PSD and DFA algorithm seem very reliable to
estimate the fractal exponent of a fGn, on the other
hand they are negatively biased and produce high
variability of results when applied to a fBm [65]. The
preliminary classification of series as fGn or fBm is
indeed a crucial step for correctly approaching fractal
analysis. Furthermore, brain-related signals are typ-
ically ‘noisy’, and exhibit different types of non-
stationarities (such as the presence of discontinuities
as well as spikes that are independent on the fluctu-
ation of the signal), which might be removed before
running fractal analysis [100]. The different nature of
the signals can also affect the value, and interpretation
of the estimated feature, as shown in [101] regarding
the difference between the power-spectral exponent
computed on EEG and MEG signals.

The selection of the fitting range boundaries for
analyzing the power-law exponent also requires care-
ful consideration, as it may introduce biases in the
estimation, potentially leading to incorrect interpret-
ation of the outcomes [102]. In general, there is not a
universal fitting range that suits all types of PSDs. For
example, if the fitting range is too narrow, it may not
fully cover the entire span of aperiodic activity, res-
ulting in an inaccurate estimation of β. Conversely, if
the fitting range is too wide, it might include oscillat-
ory components or other non-1/f -like fluctuations,
introducing biases in the estimation. Therefore, it
is recommended to carefully examine the PSDs of
interest and choose a fitting range that effectively cap-
ture the 1/f characteristic.

A prominent confounding factor of Entropy-
basedmeasures is their parametric nature [63].While
the Shannon Entropy needs the definition of the
probability distribution of the data, that cannot be
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known in advance, Approximate, Sample and PeEn
need the definition of the embedding dimension
parameter m and, in the first two cases, the tolerance
r, time-lag d, in the latter case. To the best of our
knowledge, no studies provide rules for tuning them
on neural signals, therefore guidelines proposed for
HRV analysis are often applied. This lack of know-
ledge represents a real barrier to the correct applic-
ation, meaningful interpretation and repeatability of
entropy indexes extraction from brain related signals
in different contexts and studies.

The introduction of the MSE has improved the
application of entropy measures to non-stationary
neurophysiological signals by allowing a more
detailed observation of the signal complexity at dif-
ferent time scales. Nevertheless, the analysis of MSE
stability and the few guidelines for its application to
real brain signals proposed by Kuntzelman et al [103]
and by Courtiol et al [93] should be deepened and
properly considered.

4.1. Assessing the statistical significance of the
estimation
Due to the natural variability of neurophysiological
signals an appropriate statistical test with the aim of
establishing the reliability of estimation methods is
needed. One method to test the accuracy and pre-
cision of the nonlinear analysis is given by the use
of surrogate data [63, 104]. Several surrogate gen-
eration algorithms, each of them addressing a par-
ticular null hypothesis, have been proposed in lit-
erature. These include for example random shuffled
surrogates, phase-randomized surrogates (based on
the Fourier transform) [104] or amplitude adjus-
ted Fourier transform surrogates, but many other
additional algorithms have also been proposed (see
[105] for a recent review). The idea behind such an
approach is to determine if the value of the nonlin-
ear measures obtained on real data is not obtained
by chance. To this aim these algorithms consider a
large number of surrogate time series that are derived
from real signals with different time domain beha-
vior but same linear properties (such as mean, vari-
ance and autocorrelation function) [105]. Thus, such
generation of a distribution of data, composed by
copies of the original signals with the same stat-
istical properties, but disrupted nonlinear proper-
ties, allows to test for significance the outcomes of
both fractal and entropic algorithms ensuring their
validity.

5. Application of nonlinear methods in
neurodegenerative diseases

Understanding brain complexity is crucial for unrav-
eling the mechanisms underlying neurological dis-
orders such as Alzheimer’s and Parkinson’s disease.

Although AD and PD are related to different func-
tional domains (i.e. cognitive and motor, respect-
ively), both diseases generally lead to neurodegen-
erative dementia, which includes a range of symp-
toms such as cognitive decline, that have been related
to changes in the structural and functional com-
plexity of the brain. Brain-related neurophysiological
signals from patients with neurodegenerative dis-
eases are typically evaluated analyzing their oscillat-
ory components in the frequency domain [106–109].
However, the complexity of brain signals is thought
to reflect the degree of abnormality as well as the
pathological features of the aforementioned diseases
(table 1), and therefore Fractal or Entropy methods
have been widely used to characterize them. In this
section, we reviewed works using Fractal or Entropy
analysis for the characterization of Alzheimer’s and
Parkinson’s diseases.

5.1. Fractal analysis application
5.1.1. Power-law exponent
The possible role of the β exponent as an EEG-
based biomarker to discriminate PD patients from
healthy controls (HCs) was tested by Mostile et al
[51]. The authors extracted β in a broad frequency
range, without controlling for the presence of high
frequency noise. They found significantly lowerβ val-
ues at the left fronto-temporal sites in PD patients
when compared to HC. Such a result was interpreted
as the presence of a higher level of local fractality
and self-similar behavior in PD patients than in HCs.
It is worth noting that the power-law exponent has
been shown to be modulated by aging, therefore is
not clear whether the observed changes are related to
a physiological alteration due to aging or to patho-
logy. Further studies, comparing elderly subjects with
and without Parkinson’s disease, could help to under-
stand the real effects of the disease on the power-law
component.

The modulation of the power-law component by
pharmacological intervention in PD patients, such
as during the administration of propofol, has also
been studied. Huang et al found [33] a steeper PSD
slope (calculated in the range [2–80] Hz and extrac-
ted with the IRASA method from LFP recordings
in the subthalamic nucleus (STN)) during the loss
of responsiveness after propofol injection compared
to the awake state [33]. This variation was inter-
preted by the authors as a decrease of the excita-
tion/inhibition (E/I) balance causing a steeper power-
law in the STN activity. However, it is not clear
whether these results reflect the symptoms of the
pathology: in fact, even if the study was conducted
on a group of PD patients, it must be taken into
account that they were treated during the recordings;
therefore, Huang et al [33] hypothesized that sim-
ilar results could be obtained by conducting similar
analysis in the anesthetized healthy brain [33]. The
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claim that the β slope is related to the E/I ratio in
the STN of PD patients was also supported in [53],
since β was found to be modulated by movements
in a population of 22 PD patients undergoing DBS
implantation.

Vysata et al [48] compared the power exponent
values in resting EEGs of AD patients and HCs. The
authors found lower β in frontal and temporal EEG
sites and a greater variance in patients, similarly to
the results reported by Mostile for PD subjects. Such
results were interpreted as reflecting the presence of
a neuroanatomical connectivity impairment related
to the brain atrophy. Based on previous work, the
authors hypothesized that there is a link between the
physiological mechanism that dissipates energy in the
brain and its connectivity. Therefore, the presence of
brain atrophy, which occurs in AD, would affect the
dissipation of energy, affecting the 1/f component
[48].

5.1.2. Hurst exponent (HE)
Few studies used the HE to analyze EEG in
patients affected by the neurodegenerative disorders.
Nimmy John et al [57] compared the EEG between
Alzheimer’s patients and normal subjects at rest and
during cognitive tasks. Larger HE values were found
in the temporal lobes of patients with mild cognit-
ive impairment (MCI)-AD compared with controls,
which means that the decrease in randomness cor-
relates with the difficulty in memorizing visual and
verbal information. Moreover, a large variation of
HE in the right hemisphere of the patients’ brains
was also found. This change suggests a damage
reflected in the reduction of non-verbal thinking
and difficulty in controlling motor skills. All these
aspects were in line with results obtained from beha-
vioral tests, such as The Mini Mental Status Exam
(MMSE), the Rey Auditory Verbal Learning Test
and Addenbrooke’s Cognitive Examinations used
to determine the cognitive impairment, memory
problems and the level of progression of the disease,
respectively.

EEG signals were analyzed by Amezquita-Sanchez
et al [59] combining the nonlinear HE with the
integrated multiple signal classification and empir-
ical wavelet transform to distinguish AD patients
from MCI patients. The HEs estimated for AD
patients resulted lower than those for MCI; this
outcome was attributed to the presence of less
self-similarities, that means greater complexity, for
Alzheimer’s patients with respect to theMCI patients.
The cited studies suggest that patients with AD
and MCI have a reduced complexity compared to
healthy subjects, but at the same time patients with
MCI show greater self-similarity with respect to AD
patients.

Our survey did not find any relevant literature
reporting HE analysis on Parkinson’s disease.

5.1.3. Detrended fluctuation analysis (DFA)
A relatively small number of studies have investigated
the role of LRTCs measured by DFA in neurode-
generative diseases, providing new insights into their
pathophysiology and suggesting novel markers for
disease monitoring.

The combined use of DFA and spectral ana-
lysis on EEG signals of AD patients was shown to
improve the diagnostic accuracy thus complement-
ing the classification based on spectral analysis [110].
Stam et al in 2005 used the DFA algorithm to determ-
ine changes in the synchronization level in EEG dif-
ferent frequency bands of Alzheimer’s patients. They
found that spontaneous changes of synchronization
of EEG signals were lower in AD in upper alpha
and beta bands compared to non-AD patients and
that DFA exponents were correlated to the severity
of the disease [23]. In [34], Montez et al measured
brain activity with whole-scalp magnetoencephalo-
graphy (MEG) in patients with early-stage AD and
in age-matched control subjects. They used DFA to
characterize the autocorrelation structure of amp-
litude fluctuations in neuronal oscillations on long
time scales (1–25 s), discovering an aberrant auto-
correlation structure of temporo-parietal alpha oscil-
lation and of medial prefrontal theta activity, which
may prove this index a useful biomarker of early-stage
AD [34]. Multifractality (MF-DFA) has been also
employed to predict the degree of cognitive impair-
ment in AD. Zorick and Mandelkern, demonstrated
that human EEG signalsmay bemodeled as an under-
lying multifractal process [44] and that MF-DFA on
EEG is a very promising method to accurately estim-
ate the severity of disease in terms of MMSE score, as
it was both sensitive and specific for clinical staging of
both mild AD and MCI [9].

DFA has also been used in Parkinson’s disease
to assess for LRTCs in patients implanted with DBS
electrodes in the STNs. Hohlefeld et al [26] showed
the presence of prominent LRTC in the very high-
frequency gamma range (>200 Hz) of STN, espe-
cially when treated with the dopamine-precursor
drug Levodopa. In [35] the same authors reported
a positive correlation between neural dynamics of
the most dominant rhythms in the cortex (alpha, 8–
13Hz) and basal ganglia (beta, 10–20Hz) acrossmul-
tiple time scales and suggested a further model of
cortical–subcortical interaction [35]. Another study
proved the clinical relevance of LRTC in a single
patient with idiopathic PD and right-handed tremor
[31]. The patient was asked to play piano pieces with
and without active DBS, demonstrating the onset
of long-range correlations of isochronous inter-onset
interval (i.e. the time between the onsets of two
successive piano notes) only when DBS was active,
together with an overall motor improvement in the
tremor-affected hand. In addition, another study on a
group of PD patients undergoing DBS surgery found
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the presence of LRTC in the dynamics of the bilat-
eral STN, bothON andOFF levodopa administration
using an adaptation of DFA to study synchronization
[39], called DFA-PS initially proposed in [111]. Also,
in this study, authors found a positive correlation
between the DFA-PS exponent and motor impair-
ments in patients during OFF condition.

5.1.4. Higuchi fractal dimension (HFD)
Not many studies have measured the complexity of
brain activity through the HFD in the context of
Parkinson’s and ADs. In one study [41], Yuvaray
and Murugappan have used HFD and other non-
linear features to build two different classifiers aimed
at recognizing the emotional states of both left-
and right-side affected PD patients. They found that
patients mainly suffering from right-hemisphere dys-
function were more impaired in emotional com-
munication compared to left-hemisphere pathology
suggesting an asymmetric neuronal degeneration
involved into the impairment of emotional commu-
nication of PD.

In Alzheimer disease, HFD has been demon-
strated to be a sensitive indicator of neuronal changes
in comparison to healthy aging. In particular, Smiths
et al [52] found that HFD is reduced in AD and this
reduction was associated to the decreased cognitive
capacity of the patients, thus highlighting the abil-
ity of this measure to quantify the loss of neural effi-
ciency and reduced cortical communication in AD.
In another study, Nobukawa et al investigated the
temporal-scale-specific fractal properties of EEG sig-
nals recorded from both AD and healthy subjects.
Consistently with the hypothesis that that EEG sig-
nals in AD exhibit less complexity [112], the authors
found a reduced fractality at both slow and fast tem-
poral scales for the AD group which correlated with
the cognitive decline [58].

5.2. Entropy analysis application
The ‘Entropy Hypothesis’ proposed in [113, 114] for
the basal ganglia pathology suggests that an increased
irregularity in the LFP signals and complex, non-
linear temporal pattern in firing activity character-
ize the dynamics of the basal ganglia in patients
affected by Parkinson’s disease. On the other hand,
different entropy and complexity measures have been
employed to analyze the background activity of AD
and PD patients’ EEG orMEG at the scalp level to test
the hypothesis of a loss of complexity due to neurode-
generation. In the following sections, we report res-
ults obtained using each of the described entropy
indexes to analyze brain related activity in PD and AD
patients.

5.2.1. Approximate entropy (ApEn)
In human subjects, spike trains acquired during DBS
surgery were analyzed using ApEn to identify non-
linear characteristics of firing activity in the internal

Globus Pallidus (GPi) and in the STN [24, 37]. Lim
et al [24], applied the ApEn(2, 0.15) to interspike-
intervals (ISI) sequences of surgical data acquired in
GPi, external Globus Pallidus (GPe) and STN of 20
PD patients receiving DBS and compared the ApEn
extracted from the data to the ApEn computed on
shuffled ISIs series. Their results suggested the pres-
ence of nonlinear temporal organization of the firing,
but the study lacked a control group. Using the same
approach, Alam et al [37] reproduced those results in
the GPi of 29 PD patients and provided a comparison
to a control group composed of 13 patients affected by
Dystonia receiving DBS under the same conditions.
Their work confirmed an abnormal irregularity or
entropy in the GPi neuronal activity in Parkinsonism.
At the scalp level, the recent EEG study of Pappalettera
[55] reported a not area-specific higher ApEn(2, 0.2),
thus a higher complexity, in a group of PD patients
with respect to age- and gender-matched controls.

ApEn has also been used to study the loss of
complexity in AD affected brain. In their prelim-
inary study, Abásolo et al [22] found a reduced
ApEn (m = 1, r = 0.2) at the parietal region in AD
patients respect to age matched controls and, simul-
taneously, a slower EEG activity was also observed.
On MEG data, complementary studies employing
SampEn, ApEn, Lempel-Ziv complexity and HFD,
further confirmed the complexity reduction in a large
cohort of AD and control subjects [29, 36, 40].

5.2.2. Sample entropy (SampEn)
In line with the ‘Entropy hypothesis’, Syrkin-Nikolau
[43] related the increase of signal irregularity to the
freezing of gait (FOG) in 14 freelymoving PDpatients
by estimating the SampEn(m = 2, r = 0.2) of band-
pass filtered LFP signals recorded with DBS elec-
trodes. The study suggested that higher entropy in
beta filtered LFP signals indicates a less efficient and
more error prone transfer of information in the basal
ganglia, but alternative hypothesis cannot be excluded
yet [43]. The SampEn of the EEG signal at rest was
also shown to perform well in the discrimination
of PD subjects in a classification approach, support-
ing the usefulness of the entropy approach to further
study parkinsonism [45].

Concerning the AD, SampEn is largely applied in
a multi scale approach as reported in section 5.2.4.

5.2.3. Permutation entropy (PeEn)
In contrast with results obtained with SampEn and
ApEn indexes, PeEn computed in EEG resting state
recordings of 18 PD patients was found reduced in
the beta and gamma frequency bands, with respect to
matched controls [47]. The authors interpreted their
findings as a generalized reduction of brain complex-
ity due to central nervous system impairment and
suggested that such a result can also be associated to
the presence of dementia in elderly-patients affected
by Parkinson.
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The reduction of complexity in AD was con-
firmed in [50] by computing the PeEn on EEG and
exploring the effect of the used embedding dimen-
sion and time-lag. Recently, this result was confirmed
and used to discriminate AD patients from healthy
condition [61]. A novel approach for the computa-
tion of the PeEnwas proposed in [56], studying, at the
same time, the influence of the sampling frequency on
the measure.

5.2.4. Multi scale entropy
Up to now only one relevant study applied MSE
analysis to PD brain activity, while numerous stud-
ies applied this approach to EEG and MEG signals
acquired on AD patients. Indeed, Chung et al [28]
analyzed the sleep EEG data of 9 PD patients and
11 controls with the MSE approach and identified
a higher complexity in the Parkinson group during
non-REM sleep at higher time scales, in line with pre-
viously cited works employing entropy measures at
the single scale.

On the same dataset analyzed in their earlier stud-
ies, Abásolo and colleagues applied theMSE approach
based on the SampEn (m = 1, r = 0.25) and con-
firmed the previous findings supporting the conclu-
sion that the brain activity of AD patients is less com-
plex than in control subjects [25, 32]. More recently
these results were confirmed in larger datasets [38, 54]
and in MEG studies [29, 30, 36, 40]. Both Mizuno
and Coronel appliedMSE to resting state EEG signals
and beyond the comparison with a control group,
they tried to correlate the complexity measure with
the severity score of the disease. In particular, Mizuno
found that the complexity at higher time scales cor-
relates with a measure of cognitive impairment [38],
while Coronel obtained a good model to predict
the severity score using MSE, Shannon Entropy and
other complexity indexes [54]. Abnormal EEG com-
plexity across short- and long-time scales was also
reported in [42] where the consistency of the MSE
was tested on different signal epochs and paramet-
ers (m = 2, r = 0.15) were optimized across 108
AD patients. MSE was found to particularly correl-
ate with severity of cognitive and neuropsychiatric
symptoms. Recently, the combination of MSE and
MF-DFA was found to improve the accuracy of AD
classifiers based on each if these metrics alone [8].
Moreover, the possibility to use entropy measures
for predicting and characterizing the transition from
MCI condition to AD has been foreseen by Park using
MSE [27] and Labate [46] applying SampEn, Lempel-
Ziv complexity and PeEn in a multiscale and mul-
tivariate approach.

Despite the highly concordant results, the patho-
physiological implications are not completely clear
yet. Taken together, these studies suggest that the
loss of complexity in the EEG and MEG signal may

reflect an actual loss of cortical functional organiza-
tion and a less complex brain structurewhich result in
a reduction of information processing [25, 40], par-
ticularly at lower temporal scales (higher frequency).
It should be noticed, in fact, that Mizuno et al [38]
observed an increased complexity in AD patients
at larger temporal scales (lower frequency), prob-
ably reflecting long-range abnormal synchrony in the
brain [17]. Therefore, as pointed out by the recent
work of Echegoyen [60] applying PeEn on MEG data
in three groups of subjects (i.e. Alzheimer patients,
MCI and controls), there is not a trivial interpreta-
tion of the results, which are indeed heterogeneous at
different frequency ranges and cortical regions.

6. Conclusions and perspectives

In the last two decades we have witnessed a growing
interest in the use of Fractal and Entropy indexes for a
better quantification and characterization of neuro-
physiological signals and for brain function monit-
oring in degenerative pathologies such as Alzheimer’s
(AD) and Parkinson’s (PD) diseases. This reflects the
need for tools that can complement the informa-
tion provided by the current clinical standards and to
provide better insight into pathologies that affect an
ever-increasing number of people every day.

Nonlinear features can complement the informa-
tion provided by linear indexes and are thus extremely
valuable for amore complete characterization of these
pathologies. On the other hand, their correct applic-
ation to neurophysiological signals and their physio-
pathological interpretation remains controversial in
several regards. The reasons could be mainly found
in the intrinsic characteristics of the signals and in
the difficulty to meet the required hypothesis for the
correct application of the estimation procedures. As
a matter of fact, many physical and biological sig-
nals, and in particular EEG, MEG and LFP are noisy,
heterogeneous, and exhibit different types of non-
stationarities, which can affect their long-term cor-
relation and regularity properties. Moreover, all these
indexes are based on different assumptions and hypo-
thesis and have different properties leading to poten-
tially controversial interpretations. A methodological
effort is thus still required aimed at improving the
reliability of these methods by defining strategies for
the correct calculation and interpretation and for
application to different biological time series.

The literature reviewed provides evidence that
both fractal and entropy measures are sensitive to
the change of functional and structural complexity in
AD, resulting in a higher signal regularity (table 3).
Indeed, several works have tried to exploit differ-
ent non-linear indexes, including fractal and entropy
measure, to discriminate AD patients from HCs and
to classify the severity of the disease [8, 9, 40, 59]. The
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systematic review by Tzimourta et al is recommended
to interested readers [115].

Furthermore, the reviewed studies describe the
subthalamic signals of PD patients as highly irreg-
ular, with a higher level of complexity if compared
to control conditions, but results are less conclusive
with respect to the AD research. Future studies are
needed to assess the signal requirements (e.g. station-
arity, length, noise level) and to identify the neces-
sary parameters for the correct estimation of non-
linear indices. This step is necessary for the potential
use of fractality and entropy measures as reliable bio-
markers of neurodegenerative diseases.
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