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Abstract 9 

The reduction due to soiling of the optical efficiency of the heliostats in the solar field is a significant detrimental factor 10 
in concentrating solar power (CSP) plants. Artificial cleaning is required to maintain acceptable values of optical 11 
efficiency, especially in those areas where CSP tends to be economically viable, i.e. where the yearly available DNI is 12 
high and rain is scarce. The optimization of the cleaning activities is then a fundamental step to properly balance the 13 
operation and maintenance (O&M) costs of the plant with the revenue losses due to soiled heliostats. In this work the best 14 
cleaning schedule for a given solar field is computed through a mixed integer linear programming (MILP) model and 15 
compared with the results of a heuristic approach. The optical efficiency reduction is assessed for each sector of the solar 16 
field through a physical model. The MILP model accounts for the soiling impact and finds the most economical solution 17 
in terms of cleaning trucks number and number of cleanings. The optimal cleaning schedule for each sector of the solar 18 
field is obtained by minimizing the total cleaning cost (TCC), which is the sum of direct cleaning costs and monetized 19 
losses due to soiling. A few test cases are evaluated to demonstrate the strength and the applicability of the developed 20 
algorithm. The TCC improvements span between 0.7% and 19.6%, depending on the different scenarios and cost 21 
structures considered. For the case studies considered, the savings due to the MILP optimized cleaning strategy were 22 
between 927 kAU$/yr and 4744 kAU$/yr (575 k€/yr and 2941 k€/yr). 23 

24 
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Nomenclature 31 

 32 

 33 

  34 

Aj Area of one sector 

Ahel Heliostat area [m2] 

Asoil Soiling area [m2] 

Ccall Call cleaning cost [$/call] 

Ccl Cleaning cost [$/y] 

Ccl,fix Fixed cleaning cost [$/truck] 

Ccl,rent Rent cleaning cost [$/cleaning] 

Ccl,var Variable cleaning cost [$/cleaning] 

Cd Airborne dust concentration [µg/m3] 

Cdeg Degradation cost [$/y] 

Co&m Operation and maintenance cost (except cleaning) [$/MWh] 

CSP Concentrating Solar Power 

dcl Cleaning interval [days] 

DNI Direct Normal Irradiation [kWh/m2] 

fsoil Soiling factor 

f̃s,ℓ,t Soiling factor scheduling variable 

Fd Flux of Dust [μg/m2/s] 

HP High Price 

HTF Heat Transfer Fluid 

LCOE Levelized Cost of Electricity [$/MWh] 

LP Low Price 

MILP Mixed Integer Linear Programming 

ncl Number of cleanings 

ncall Number of calls 

ntr Number of trucks 

O&M Operation and Maintenance 

Pel Electricity selling price [$/MWh] 

PM Particulate Matter 

PV Photovoltaic 

Qrec Thermal power available at the receiver [MW] 

Qloss Thermal losses at the receiver [MW] 

SA South Australia 

ST Solar Tower 

TCC Total Cleaning Cost [$] 

TP Total Profit [$] 

UAE United Arab Emirates 

vd Deposition velocity [m/s] 

zs,l,t Binary cleaning scheduling variable 

αtilt Tilt angle 

ηopt Optical efficiency 

ηopt,clean Nominal optical efficiency 

ηpb Power block efficiency 

ηth Receiver thermal efficiency 
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1 Introduction 35 

 36 

The exploitation of renewable and sustainable energy sources is one of the most important challenges the world must face 37 

in the coming decades. Among the available technologies, Concentrating Solar Power (CSP) plants have the capacity to 38 

provide reliable and stable power during extended periods due to the implementation of low cost thermal energy storage. 39 

CSP plants harvest solar radiation through large reflecting surfaces that focus the collected power towards a receiver. 40 

Among the different CSP technologies, Solar Tower (ST) plants consist of thousands of heliostats reflecting the solar 41 

beams towards a central receiver, usually deployed at the top of a tall tower. The optical efficiency of the heliostats must 42 

be as high as possible to maximize the solar radiation harvesting. A strongly detrimental factor that influences the optical 43 

efficiency is the soiling of the heliostats, which significantly reduces their reflectance (Kutscher et al., 2010). Lower 44 

optical efficiency results in lower electricity production, as the available collected power on the receiver is reduced, 45 

affecting the economic profitability of the ST plant. The negative effect of heliostat soiling is primarily addressed through 46 

the cleaning of the heliostats (Sarver et al., 2013). According to previous studies (Kutscher et al., 2010), the cost of 47 

heliostat cleaning activities accounts for about 20% of the Operation and Maintenance (O&M) costs related to the solar 48 

field, which in turn account for a 25% share of the total O&M costs for a CSP plant. Therefore, since the total O&M costs 49 

(including personnel and consumables) are ~14-17% of the Levelized Cost of Electricity (IRENA and IEA-ETSAP, 2013; 50 

IRENA Secreteriat et al., 2012), applying efficient cleaning strategies can potentially reduce the Levelized Cost of 51 

Electricity (LCOE) by 1%, without any technology variation nor component replacement. The definition of optimal 52 

cleaning strategies thus provides an important opportunity to reduce the LCOE for ST plants (Pfahl et al., 2017). 53 

In literature, there are several works dealing with the optimization of the heliostat field layout (Sanchez and Romero, 54 

2006), both based on energy analysis (Ortigosa et al., 2018) and techno-economic assessment (Larrayoz et al., 2019). 55 

Similarly, there is large interest in the development of innovative heliostats (Pfahl et al., 2017) as well as proposing 56 

different aiming strategies (Salomé et al., 2013) based on both heuristic approaches (Sánchez-González and Santana, 57 

2015) and deterministic ones (Astolfi et al., 2016) to optimize the solar flux distribution on the receiver. Fewer studies 58 

dealt with the specific issue of the optimal heliostat cleaning schedules, although various methods have been developed 59 

(Fernández-García et al., 2014). Some studies regarding PV technologies dealt with the optimization of cleaning 60 

operations: through the identification of an average soiling threshold (Fathi et al., 2017), expected power generation 61 

threshold based on soiling level and environmental condition (Wang and Xu, 2018), or a rigorous mathematical 62 

calculation assuming soiling production losses to vary as a decreasing exponential function (Jones et al., 2016). Other 63 

studies targeting parabolic trough technologies also considered the issue of identifying the best cleaning frequency: among 64 

the first, at Sandia National Laboratories, Bergeron and Freese (1981) assessed the optimal cleaning frequency based on 65 

a constant soling rate and a predicted daily direct solar energy availability. More recently, Wolferstetter et al. (2018) 66 

realized a study considering a time-dependent soiling rate throughout the year to identify the most suitable cleaning 67 

strategy. Although using experimental data to assess the reduced optical efficiency of the solar collectors, a homogeneous 68 

soling rate was applied on the whole solar field, and the cleaning order of the loops was always kept the same. In a follow-69 

up work, while preserving the assumption of uniform soiling rate for each solar field loop, Terhag et al. (2019) developed 70 

a cleaning strategy optimization based on reinforcement learning, using an enlarged synthetic dataset of soiling rate 71 

measurements collected at the Plataforma Solar de Almeria in Spain over five years. 72 

 73 



4 
1 Conversion rate on 06.09.19 

In the authors’ previous work (Picotti et al., 2019), the impact of different cleaning frequency on the average solar field 74 

optical efficiency was assessed for one month of simulation, considering only direct operational cleaning costs (i.e. no 75 

trucks, personnel). Depending on thechosen cleaning frequency, a fixed percentage of the solar field area was cleaned 76 

each day following a pre-defined order, without investigating the impact of the chosen order. 77 

Although there have been several studies on heliostat soiling and cleaning approaches, only two published papers deal 78 

with the optimization of heliostat cleaning strategies. Truong Ba et al. (2017) proposed a condition-based cleaning policy 79 

based on a finite Markov Decision Process which sought to minimize the total cleaning cost, i.e. the sum of revenue loss 80 

due to soiling and direct cleaning costs. The proposed cleaning strategy was applied to an Australian case study and saved 81 

between 5 and 30% of total cleaning costs compared with a fixed-time strategy. However, the methodology requires 82 

measurement of the field-averaged reflectance and the optimization assumes that the field can be cleaned in a single day, 83 

which is not realistic for large-scale CSP plants. In another study, Ashley et al. (2019) developed a cleaning procedure 84 

based on a heliostat clustering and integer programming to maximize the energy collected. A heuristic method was 85 

subsequently used to refine the solution to minimize the overall cleaning route length among all the clusters. The proposed 86 

methodology resulted in an energy increase of 5% when compared to a simple baseline schedule. Yet, the study uses a 87 

time- and space-constant soiling losses across the field and did not consider the economics, i.e. the balance of the cost of 88 

cleaning activities and revenue. Thus, the provisioning of cleaning resources (e.g. trucks, personnel) was not optimized. 89 

In this paper, new cleaning strategies are developed to optimize the heliostats cleaning schedule. Starting from a physical 90 

model of the soiling process (Picotti et al., 2018, 2017) and measured environmental parameters (i.e. airborne dust 91 

concentration, wind speed, air temperature, DNI), the (inhomogeneous) soiling losses are predicted across the solar field. 92 

Based on these predictions and on the technical capabilities of the available cleaning resources, the sum of revenue loss 93 

due to soiling and direct cleaning costs is minimized, identifying both the optimal provisioning of cleaning resources and 94 

the optimal cleaning schedule of different sectors of the solar field. 95 

With respect to previous studies, the present work has two major contributions. Firstly, the optimization is conducted 96 

using soiling predictions based on a physical model that considers local conditions and inhomogeneous soling across the 97 

solar field, as opposed to the uniform or averaged efficiency losses assumed in previous studies. Secondly, the optimal 98 

cleaning schedule is determined considering the economics of cleaning activities under resource limitations, which 99 

enables the optimization of the cleaning resource provisioning that was neglected in earlier studies. 100 

Two different strategies are developed in this study: a mixed-integer linear program (MILP) and a simplified heuristic. In 101 

either case, the result of the cleaning strategy is the identification of the optimal number of sectors to be cleaned each day 102 

(i.e. the number of trucks to be deployed) and the cleaning order of the different sectors. The proposed cleaning strategies 103 

were numerically tested on two 100MW ST plants located in two different geographical areas with different 104 

environmental conditions. The analyses are performed on yearly basis, to assess the potential of the approach and point 105 

out differences in the cleaning strategies. The currency used in the economic analysis across the whole paper, unless 106 

specifically indicated, is the Australian Dollar (1AUD = 0.62EUR)1. 107 

The paper is organized as follows: Section 2 presents the solar field optical efficiency model considered in the 108 

optimization function focusing on the sectorial division and the soiling rate assessment. Section 3 discusses the heuristic 109 

and deterministic optimization approaches adopted. Section 4 describes the case studies selected for the analysis and 110 

results are reported and analysed in Section 5. Finally, the last section draws some general conclusions on the different 111 

approaches pointing out some possibilities for future studies. 112 
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2 Sectorial optical efficiency assessment 113 

 114 

The cleaning strategy optimization requires the evaluation of the optical efficiency of the different heliostats, depending 115 

on their relative position in the solar field. The optical efficiency is computed as the product of two main terms: the optical 116 

efficiency of clean heliostats 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛 and the soiling factor 𝑓𝑠𝑜𝑖𝑙 . It must be stressed that both terms are time-dependant 117 

and change for each heliostat, depending on its relative position and tracking motion. Therefore, both the optical efficiency 118 

in clean conditions and the soiling factor must be computed on a relatively short time basis (hourly in this work) for the 119 

entire year so that: 120 

 𝜂𝑜𝑝𝑡ℎ
 =  𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛ℎ

 ⋅  𝑓𝑠𝑜𝑖𝑙ℎ
 (1) 

To reduce the computational time required for the assessment of the optical efficiency of each heliostat, the solar field is 121 

divided into sectors with an equal number of heliostats. Each sector is characterized by a representative heliostat that is 122 

located in its geometrical barycentre. The number of sectors depends on the solar field size and cleaning speed in terms 123 

of square meters of heliostats per hour, which eventually determines the number of angular and radial partitions of the 124 

solar field. Further considerations could be required if also considering the computational time and capacity. The soiling 125 

model used in this work to compute the soiling factor was discussed in previous publications (Picotti et al., 2019, 2018) 126 

and only the main outcomes of these studies are described in this paper for brevity. 127 

The amount 𝐹𝑑 of dust that falls on the heliostats is calculated from the airborne dust concentration 𝐶𝑑, which is considered 128 

uniform over the entire solar field, the deposition velocity 𝑣𝑑, and the tilt angle 𝛼𝑡𝑖𝑙𝑡 as (Picotti et al., 2019, 2018): 129 

 𝐹𝑑  =  𝐶𝑑 ⋅ 𝑣𝑑 ⋅ cos(𝛼𝑡𝑖𝑙𝑡) (2) 

The tilt angle must be computed for each time step since it depends on both the position of the heliostat around the solar 130 

field and on the tracking movement. Moreover, it also influences the shading and blocking impact of the particles: the 131 

two effects are considered together to evaluate the area of the heliostat 𝐴𝑠𝑜𝑖𝑙  whose reflection is hindered by the soiling. 132 

A soiling factor representative of soiling-related optical losses is then determined as: 133 

 𝑓𝑠𝑜𝑖𝑙  =  (1 −
𝐴𝑠𝑜𝑖𝑙

𝐴ℎ𝑒𝑙

) (3) 

where 𝐴ℎ𝑒𝑙  is the total surface area of each heliostat. The hourly soiling factor is computed for each sectorial division of 134 

the solar field.  135 

The computed optical and optical ‘as-clean’ efficiencies are then weighted by the DNI to obtain daily values as: 136 

 𝐷𝑁𝐼𝑑𝑎𝑦 = ∑ 𝐷𝑁𝐼ℎ

24

1
 (4) 

 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛
𝑑𝑎𝑦

=
∑ 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛ℎ

⋅ 𝐷𝑁𝐼ℎ
24
1

∑ 𝐷𝑁𝐼ℎ
24
1

 (5) 

 𝜂𝑜𝑝𝑡
𝑑𝑎𝑦

=
∑ 𝜂𝑜𝑝𝑡ℎ

⋅ 𝐷𝑁𝐼ℎ
24
1

∑ 𝐷𝑁𝐼ℎ
24
1

 (6) 

The daily soiling factor 𝑓𝑠𝑜𝑖𝑙
𝑑𝑎𝑦

, which represents the impact of soiling, is then calculated as the ratio between the optical 137 

efficiency and the optical ‘as clean’ efficiency on a daily basis: 138 
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 𝑓𝑠𝑜𝑖𝑙
𝑑𝑎𝑦

=
𝜂𝑜𝑝𝑡

𝑑𝑎𝑦

𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛
𝑑𝑎𝑦  (7) 

The rigorous prediction of the optical efficiency losses due to soiling for each sector represents an extremely valuable 139 

input for the optimization of the solar field cleaning strategy, according to the methodology described in the next section. 140 

 141 

3 Optimization methodology  142 

 143 

An efficient cleaning strategy definition must ultimately aim at maximizing the plant revenues (and thus the profit), 144 

defining the number of trucks to be purchased/hired to perform cleaning activities and the cleaning schedule for each 145 

solar field sector based on the trade-off between plant productivity increases and cleaning O&M costs. The resulting 146 

optimization problem can be stated as follows. Given: 147 

- yearly profiles of incremental heliostat soiling factor for each solar field sector (provided by the model detailed 148 

in Section 2); 149 

- yearly profiles of solar irradiance and heliostat optical ‘as-clean’ efficiencies; 150 

- receiver thermal losses and power block conversion efficiencies; 151 

- variable and fixed costs related to hiring and dispatching each cleaning crew;  152 

- electricity selling prices; 153 

determine: 154 

- the required number of cleaning crews; 155 

- the cleaning schedule of each solar field sector (i.e. the days throughout the year in which the sector is cleaned). 156 

The optimal cleaning schedule must account for limitations on cleaning crew working hours per shift. For the sake of 157 

simplicity (but without loss of generality), the sectorial size is determined so that one crew composed of 4 operators who 158 

operate a single truck can clean one sector in one day (12 working hours) and that all the aforementioned profiles are 159 

sampled with a time-step equal to one day. The optimization aims at maximizing the yearly plant revenue, or equivalently 160 

at minimizing the sum of yearly cleaning O&M cost and costs related to lost energy production with respect to the ideal 161 

perfectly clean solar field. 162 

In all the computations performed in this study, it is assumed that (i) a cleaning event restores the reflectance of the 163 

heliostats to their nominal value, so that 𝑓𝑠𝑜𝑖𝑙 = 1 , hence 𝜂𝑜𝑝𝑡 = 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛 and (ii) the soiling evolution is not modified 164 

by the cleaning operations (i.e. each daily variation of soiling factor Δ𝑓𝑠𝑜𝑖𝑙 is not dependent on the current value of 𝑓𝑠𝑜𝑖𝑙). 165 

Thus, combining 1) the assessment of the soiling factor and optical efficiency performed in Section 2, 2) the definition of 166 

a cleaning schedule for each of the 𝑁𝑠 sectors, and 3) the assumption that the SF solar multiple and the storage are large 167 

enough to avoid defocusing and guarantee a continuous operation, the thermal energy available at the receiver can be 168 

calculated as: 169 

 𝑄𝑟𝑒𝑐
𝑑𝑎𝑦

= 𝐷𝑁𝐼𝑑𝑎𝑦 ⋅ ∑ 𝐴𝑗 ⋅ 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛,𝑗
𝑑𝑎𝑦

⋅ 𝑓𝑠𝑜𝑖𝑙,𝑗
𝑑𝑎𝑦

𝑁𝑠

𝑗=1

 (8) 

Once the thermal energy available at the receiver has been determined, it is possible to evaluate the expected electricity 170 

generation considering the thermal receiver efficiency (𝜂𝑡ℎ) and the power block efficiency (𝜂𝑝𝑏). The daily thermal 171 
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receiver efficiency is computed considering constant heat losses equal to 15% of the design thermal power available at 172 

the receiver during receiver operating hours, while the power block efficiency for simplicity is assumed constant. Thermal 173 

losses and power block efficiency values are retrieved from previous publications (Binotti et al., 2017; Manzolini et al., 174 

2019; Polimeni et al., 2018). The generated electricity is finally multiplied by the electricity price 𝑃𝑒𝑙 to evaluate the total 175 

plant revenues. Costs related to the operation of the plant and routine maintenance 𝐶𝑜&𝑚 in the typical economic approach 176 

(NREL, 2014) are expressed in terms of $/MWh; therefore, they can directly be subtracted from the electricity price for 177 

an accurate assessment of the actual revenues. The cleaning costs (𝐶𝑐𝑙) are considered separately and expressed more in 178 

detail: they comprise the purchase/rent of the cleaning truck(s) and the hiring of the specialized operators that perform 179 

the cleaning activities. The yearly total profit (TP) is eventually calculated as:  180 

 

𝑇𝑃 = ∑ ∑ 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛𝑗𝑖

𝑑𝑎𝑦
⋅ 𝑓𝑠𝑜𝑖𝑙𝑗𝑖

𝑑𝑎𝑦

𝑁𝑠

𝑗=1

⋅ 𝐴𝑗 ⋅ 𝐷𝑁𝐼𝑑𝑎𝑦,𝑖 ⋅ 𝜂𝑡ℎ,𝑖 ⋅ 𝜂𝑝𝑏 ⋅ (𝑃𝑒𝑙 − 𝐶𝑜&𝑚) −

365

𝑖=1

𝐶𝑐𝑙 (9) 

   

Where the index i denotes the current day of the year and the index j denotes the sectors of the solar field. Thus, 181 

𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛𝑑𝑎𝑦,𝑗𝑖
 indicates the average daily optical efficiency of the j-th sector on the i-th day for a perfectly clean solar 182 

field, and 𝑓𝑠𝑜𝑖𝑙𝑑𝑎𝑦,𝑗𝑖
 is the correspondent daily soiling factor (that depends on the cleaning schedule). 183 

Two scenarios are then considered with regards to the cost of cleaning operations: 184 

- “owned trucks”, which considers the trucks to be purchased by the plant operator and the truck operators to be 185 

hired for the whole year; 186 

- “on-call”, which considers the trucks to be rented by the plant operator every time a cleaning is needed, together 187 

with the service of the required truck operators. 188 

In the “owned trucks” scenario, the yearly cleaning costs are expressed as: 189 

 𝐶𝑐𝑙 = 𝐶𝑐𝑙,𝑣𝑎𝑟 ⋅ 𝑛𝑐𝑙 + 𝐶𝑐𝑙,𝑓𝑖𝑥 ⋅ 𝑛𝑡𝑟 (10) 

where 𝐶𝑐𝑙,𝑣𝑎𝑟 represents the variable cleaning costs, 𝑛𝑐𝑙 the number of cleanings per year, 𝐶𝑐𝑙,𝑓𝑖𝑥 the fixed cleaning costs, 190 

and 𝑛𝑡𝑟 the number of purchased trucks. The variable cleaning costs account for the water and fuel usage, while the fixed 191 

cleaning costs account for the trucks purchase and maintenance and the salary of the truck operators. 192 

In the “on-call” scenario, the yearly cleaning costs are expressed as 193 

 𝐶𝑐𝑙 = 𝐶𝑐𝑙,𝑟𝑒𝑛𝑡 ⋅ 𝑛𝑐𝑙 + 𝐶𝑐𝑎𝑙𝑙 ⋅ 𝑛𝑐𝑎𝑙𝑙  (11) 

where 𝐶𝑐𝑙,𝑟𝑒𝑛𝑡 represents the rent cleaning costs, 𝑛𝑐𝑙 the number of cleanings per year, 𝐶𝑐𝑎𝑙𝑙  the cost of each cleaning 194 

truck call, and 𝑛𝑐𝑎𝑙𝑙  the number of truck calls. The rent cleaning costs account for the rental of the trucks, and the payment 195 

of the cleaning shifts performed by the truck operators, while the “call” cost sets a fee that has to be paid every time a 196 

cleaning truck is rented. 197 

Since cleaning costs represent only a limited fraction of total operating costs, the adoption of the overall yearly revenues 198 

as described in Eq. (9) as the problem objective function complicates the convergence to the optimal cleaning schedule 199 

since the sensitivity of the objective function with respect to the optimization variables is limited. It is therefore useful to 200 

define an auxiliary objective function that is more representative of the trade-off between cleaning costs and improved 201 

thermodynamic performance, while still accounting for the effect on yearly power plant revenues. This alternative figure 202 
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of merit is the total cleaning cost (TCC), defined as the sum of the actual operating cleaning cost 𝐶𝑐𝑙 described above in 203 

details and the so-called degradation cost 𝐶𝑑𝑒𝑔, which accounts for the electricity generation losses due to soiling and is 204 

computed as: 205 

 

𝐶𝑑𝑒𝑔 =  ∑ ∑ 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛,𝑗𝑖

𝑑𝑎𝑦
⋅ (1 − 𝑓𝑠𝑜𝑖𝑙,𝑗𝑖

𝑑𝑎𝑦
)

𝑁𝑠

𝑗=1

⋅ 𝐴𝑗 ⋅ 𝐷𝑁𝐼𝑑𝑎𝑦,𝑖 ⋅ 𝜂𝑡ℎ,𝑖 ⋅ 𝜂𝑝𝑏 ⋅ (𝑃𝑒𝑙 − 𝐶𝑜&𝑚)

365

𝑖=1

 (12) 

Consequently, the total cleaning cost, which serves as the optimization objective function, is computed as: 206 

 𝑇𝐶𝐶 = 𝐶𝑐𝑙 + 𝐶𝑑𝑒𝑔 (13) 

Examining Eqs. (9), (12), and (13) it is easy to see that the minimum of TCC corresponds to the maximum of TP. 207 

 208 

3.1 Heuristic approach 209 

The heuristic approach to cleaning scheduling does not rely on the formal mathematical optimization of the described 210 

problem, but consists in the definition of a rule-based strategy which is then tuned by acting on its characteristic operating 211 

parameters: number of cleaning trucks 𝑛𝑡𝑟 involved in cleaning operations, and sectorial cleaning interval 𝑑𝑐𝑙, 212 

representing the number of days after which a solar field sector is cleaned again. Every 𝑑𝑐𝑙 days, all 𝑛𝑡𝑟 cleaning trucks 213 

are deployed, cleaning the maximum number of sectors every day in a pre-defined order until all solar field sectors have 214 

been cleaned.  215 

For a given number of trucks 𝑛𝑡𝑟, there will be a minimum cleaning interval 𝑑𝑚𝑖𝑛
𝑐𝑙   which corresponds to continuously 216 

performing cleaning operations at the maximum rate allowed by the number of deployed trucks. However, cleaning 217 

intervals longer than 𝑑𝑚𝑖𝑛
𝑐𝑙  might be preferable, since the increase in plant production comes at the expense of the direct 218 

costs associated with the cleaning operations. The heuristic algorithm parameters 𝑑𝑐𝑙  and 𝑛𝑡𝑟 are therefore tuned in each 219 

case study by means of a parametric performance assessment: for every admissible combination of 𝑛𝑡𝑟 and 𝑑𝑐𝑙 ∈220 

[𝑑𝑚𝑖𝑛
𝑐𝑙 , 365], the yearly plant performance is evaluated. The optimal combination of cleaning trucks 𝑛𝑡𝑟 (to be purchased 221 

or rented according to the operating scenario) and sectorial cleaning interval 𝑑𝑐𝑙 is then simply the combination that 222 

achieves the lowest total cleaning cost. Figure 1a shows the results of the parametric analysis: for each considered number 223 

of trucks 𝑛𝑡𝑟 the TCC described in Eq. (13) is computed and reported as a function of the annual number of cleanings, 224 

which depends on the cleaning interval 𝑑𝑐𝑙 . The optimal number of cleanings for a given number of trucks is labelled 225 

with a blue asterisk while the best combination of cleaning interval and number of trucks is labelled with a red bigger 226 

asterisk. The maximum allowable number of trucks and cleanings per year is limited to 8 and 60, respectively, for the 227 

sake of better comprehensibility of the picture. In Figure 1b the TP described in Eq. (9) is displayed as a function of the 228 

annual number of cleanings, which depends on the cleaning interval 𝑑𝑐𝑙 . The blue and large red asterisks denote, 229 

respectively, the best number of cleanings for each given number of trucks and the overall optimal. The comparison 230 

between Figure 1a and Figure 1b indicates that the same optimal combination of cleaning interval and number of trucks 231 

corresponds to both the maximum total profit (TP) and the minimum total cleaning cost (TCC), as expected. 232 
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a) b) 

Figure 1. Parametric heuristic algorithm 233 

The performance of the tuned heuristic approach serves as the benchmark to quantify the advantages deriving from the 234 

proposed advanced approach to cleaning scheduling optimization, via the Mixed Integer Linear Programming (MILP) 235 

model presented in the next section.  236 

 237 

3.2 MILP model 238 

Mixed Integer Linear Programming (MILP) denotes a class of optimization problems featuring both integer and 239 

continuous variables and characterized by a linear objective function and linear problem constraints. Many scheduling 240 

optimization problems arising in production planning and logistics are formulated as MILPs because of the following two 241 

substantial advantages: 242 

- Very efficient solvers are available commercially and they are able to tackle large scale real-world problems; 243 

- The convexity of the relaxed problem (a linear program where the integrality condition is relaxed) allows 244 

identifying a rigorous assessment of the global optimality of a solution (optimality gap). 245 

A MILP formulation of the optimal cleaning scheduling problem was therefore developed, to formally identify the global 246 

optimal scheduling solution that minimize the total cleaning cost (Eq. (13)). It is important to note that the optimization 247 

accounts for the trade-off between increasing cleaning costs due to a higher cleaning frequency and increased plant 248 

productivity. Thus, the global optimum identified by the MILP approach might be associated to higher direct cleaning 249 

costs with respect to the heuristic approach, while obtaining higher yearly revenues by virtue of the enhanced plant 250 

productivity. The independent decision variables of the optimization problem are: 251 

− the cleaning schedule for each solar field sector, indicating the days of the year in which each sector is to be 252 

cleaned; 253 

− the number of trucks involved in the cleaning activities (to be purchased/rented). 254 

The constraints defining the mathematical formulation of the cleaning scheduling optimization problem are presented 255 

hereafter. 256 

Let 𝒮 = {1,2, … , 𝑁𝑠} be the set of sectors of the solar field and 𝒯 = {1,2, … ,365} be the set of days in the year. For each 257 

sector 𝑠 ∈ 𝒮, the binary cleaning scheduling variable 𝑧𝑠,ℓ,𝑡 is equal to 1 if, in day 𝑡 ∈ 𝒯, mirrors were last cleaned in day 258 

ℓ ∈ 𝒯. Variable 𝑧𝑠,ℓ,𝑡 is cyclic in time with respect to temporal index 𝑡, representing a periodic cleaning schedule across 259 

consecutive years (i.e., the heliostats’ soiling status on the 31st of December represents the day-ahead condition for the 1st 260 
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of January). The diagonal elements of each bidimensional matrix 𝑧𝑠,ℓ,𝑡 with respect to temporal indexes 𝑡 and ℓ 261 

(henceforth referred to as 𝑍𝑠 ⊆ ℝ365×365), or equivalently all variables 𝑧𝑠,ℓ,𝑡 with 𝑡 = ℓ, assume the value 1 if the sector 262 

was last cleaned that same day. They therefore represent the cleaning schedule of sector 𝑠. In each day 𝑡 ∈ 𝒯 and for each 263 

sector 𝑠 ∈ 𝒮, it is possible to univocally identify a single day in which the sector was last cleaned as: 264 

∑ 𝑧𝑠,ℓ,𝑡

ℓ∈𝒯

= 1 ∀ 𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯 (14) 

On the other hand, if the mirrors were not cleaned on a given day ℓ̂ ∈ 𝒯 (i.e. 𝑧𝑠,ℓ̂,ℓ̂ = 0), all variables 𝑧𝑠,ℓ̂,𝑡 must be equal 265 

to zero since sector 𝑠 was never cleaned during day ℓ̂: 266 

𝑧𝑠,ℓ,ℓ · 365 ≥ ∑ 𝑧𝑠,ℓ,𝑡

𝑡∈𝓣

 ∀ 𝑠 ∈ 𝒮, ℓ ∈ 𝒯 (15) 

With each cleaning scheduling variable 𝑧𝑠,ℓ,𝑡 is associated the parameter 𝑓𝑠,ℓ,𝑡, which indicates the soiling factor for the 267 

mirrors of sector 𝑠 in day 𝑡, in case they were last cleaned in day ℓ. All potential soiling factors 𝑓𝑠,ℓ,𝑡 are computed 268 

according to the soiling model described in (Picotti et al., 2018). The actual sector soiling factor 𝑓𝑠𝑜𝑖𝑙𝑗𝑖

𝑑𝑎𝑦
 associated to the 269 

scheduling plan 𝑧𝑠,ℓ,𝑡 can be therefore calculated, in each day 𝑡 ∈ 𝒯, as: 270 

𝑓𝑠𝑜𝑖𝑙𝑗𝑖

𝑑𝑎𝑦
= ∑ 𝑧𝑠,ℓ,𝑡

ℓ∈𝓣

𝑓𝑠,ℓ,𝑡 ∀ 𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯 (16) 

Constraint (14) already implies that one and only one of all potential soiling factor values 𝑓𝑠,ℓ,𝑡 must be considered in each 271 

day 𝑡, or in other words that for each column 𝑡 only one of the rows 𝑙 can have a non-zero value of 𝑧𝑠,ℓ,𝑡. Optimality of 272 

the solution will imply that, within the pool of “active” rows (non-zero diagonal variable 𝑧𝑠,ℓ,ℓ , constraint (15)) will be 273 

selected the one associated to the lowest  soiling factor 𝑓𝑠,ℓ,𝑡. If the optimal solution features a cleaning operation of the 274 

sector on day ℓ, the active variable will be the diagonal variable 𝑧𝑠,ℓ,ℓ, otherwise it will be the variable 𝑧𝑠,ℓ,𝑡 with the 275 

lowest non-negative difference ℓ − 𝑡 (accounting for the cyclicity of temporal indexes). To speed up convergence (by 276 

tightening the problem formulation) it is useful to introduce an additional constraint which tends to “group” the non-zero 277 

entries in the matrix 𝑍𝑠, and guide the solution algorithm towards the optimal variables configuration: 278 

𝑧𝑠,ℓ,𝑡 ≤ 𝑧𝑠,ℓ,𝑡−1 ∀ 𝑠 ∈ 𝒮, 𝑡, ℓ ∈ 𝒯, 𝑡 ≠ ℓ (17) 

 279 

Figure 2. Cleaning scheduling matrix 𝑍𝑠 for sector 𝑠 ∈ 𝓢 280 

A visual interpretation of matrix 𝑍𝑠 is provided in Figure 2: for a given sector, each column 𝑡 of 𝑍𝑠 is associated to a day 281 

of the year, while each row ℓ represents the last day of the year, from the temporal perspective of 𝑡, in which 𝑠 was 282 

cleaned. The diagonal of 𝑍𝑠 is the cleaning schedule of sector 𝑠, and each of its elements 𝑧𝑠,ℓ,ℓ activates the corresponding 283 

binary variables on the ℓ𝑡ℎ row.  284 
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The sum of diagonal elements of all matrixes 𝑍𝑠 yields a vector whose elements indicate the number of cleaning 285 

operations taking place in a given day, which correspond to the number of trucks (according to the assumption that the 286 

sectors are sized such that one crew operating one truck cleans one sector per day). In the “owned trucks” scenario, the 287 

maximum number of simultaneous cleaning operations determines the requirement in terms of purchased cleaning trucks: 288 

∑ 𝑧𝑠,𝑡,𝑡

𝑠∈𝓢

≤ 𝑛𝑡𝑟 ∀ 𝑡 ∈ 𝒯 (18) 

As for the “on call” scenario, a fixed cost must be paid each time new trucks are called to take part in the cleaning 289 

operations (Eq. (11)). To account for the fixed call cost in the MILP formulation objective function, it is necessary to 290 

introduce the non-negative integer variable 𝑐𝑡, equal to the number of new trucks which were not present the day before 291 

that are performing cleaning duties during day 𝑡 ∈ 𝒯: 292 

𝑐𝑡 ≥ ∑ 𝑧𝑠,𝑡,𝑡

𝑠∈𝓢

− ∑ 𝑧𝑠,𝑡−1,𝑡−1

𝑠∈𝓢

 ∀ 𝑡 ∈ 𝒯 (19) 

The number of yearly truck calls is thus equal to the summation of 𝑐𝑡: 293 

𝑛𝑐𝑎𝑙𝑙 = ∑ 𝑐𝑡

𝑡∈𝓣

  (20) 

The optimization problem is formulated in MATLAB, using the extension YALMIP (Lofberg, 2004), and it is solved 294 

using the commercially available solver GUROBI (Guorobi Optimization, 2018). 295 

 296 

4 Case studies 297 

 298 

The heuristic and deterministic optimization methodologies were applied to two ST plants located in Woomera in South 299 

Australia (31°12′S 136°48′E) and in Abu Dhabi in the United Arab Emirates (24°24′N 54°42′E). The two areas were 300 

selected as they have different characteristics in terms of latitude, climate, and airborne dust concentration. 301 

Two different solar fields were generated using SolarPilot (NREL, 2017) assuming 700 MW as target power on the 302 

receiver on the summer solstice. Receiver geometry, tower height and heliostats size were set according to literature data 303 

for the Crescent Dunes plant (Mehos et al., 2017; SolarReserve), while heliostat total reflected image error was assumed 304 

equal to the SolarPilot default value of 3.07 mrad. The two simulated solar fields, the related sectors, and the representative 305 

heliostat for each sector (red dots) are represented in Figure 3. The characteristics of the two heliostats fields are reported 306 

in Table 1, together with their performance on the summer solstice.  307 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Woomera,_South_Australia&params=31_12_0_S_136_49_0_E_type:city_region:AU-SA
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a) b) 

Figure 3. Solar field a) Woomera ; b) Abu Dhabi 308 

Table 1 – Solar field design assumptions and performances 309 

Design Assumptions 

Direct Normal Irradiation [W/m2] 900 

Location Abu Dhabi Woomera 

Geographical Coordinates 24°24′N 54°42′E 31°12′S 136°48′E 

HTF type  Solar Salts Solar Salts 

Receiver size 
Height [m] 
Diameter [m] 

 
30.5 
15.8 

 
30.5 
15.8 

Tower height [m] 195 195 

Field type Surrounded Surrounded 

Minimum radius of the field [m] 126.7 126.7 

Maximum radius of the field [m] 1626 1626 

Number of heliostats 10328 10336 

Heliostat size [m2] 11.3 x 10.4 11.3 x 10.4 

Heliostat reflectivity 0.95 0.95 

Heliostat total reflected image error [mrad] 3.07 3.07 

Performance 

Sun Position 
Zenith 
Azimuth 

 
0.95 
180 

 
7.75 

0 

Optical efficiency 0.652 0.651 

Power on the receiver [MW] 701.6 701.2 

Receiver thermal losses [MW] 105 105 

Power block efficiency 0.35 0.35 

 310 

The number of sectors considered for the two case studies is 48, with 6 radial and 8 angular partitions in order to have 311 

similar values of optical efficiency within the sectors. This provided sectors made of the same number of heliostats (±1) 312 

such that each could be cleaned in one day (12 working hours) using one truck. The average cleaning speed of 2000 m2/h 313 

has been assumed as a reasonable value within the cleaning speed range reported in Pfahl et al. (2017). Moreover, it is a 314 

good compromise between computational efforts and accuracy of the model. A higher number of sectors would greatly 315 

increase the computational time of the optimization, while a smaller number of them would hinder the effectiveness of 316 

the optimization as the sectors would include heliostats whose soiling factor and optical efficiency could differ 317 
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significantly. A parametric analysis on the influence that different cleaning speeds and sectorizations of the solar field 318 

have on the outcomes of the optimization is discussed in Section 5.1.2. 319 

For each sector, the nominal optical efficiency 𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛 assigned to the sector representative heliostat located in its 320 

geometrical barycentre is computed as the average “as-clean” optical efficiency of all the heliostats composing it. 321 

The cleaning strategy optimizations were performed for the two selected sites on hourly time step to calculate the optical 322 

efficiency and actual thermal energy on the receiver. The time step coincides with the availability of the environmental 323 

conditions measured by the local weather stations. The one located in Woomera provides data regarding DNI, wind speed, 324 

and air temperature. Since data about dust concentration are not locally available for the Australian site, PM10 (particulate 325 

matter whose aerodynamic diameter is smaller than 10µm) measurements are obtained from the location of Moolawatana, 326 

in SA, as the climate and the environmental characteristics are similar to Woomera. The PM10 data are adapted to fit in 327 

the assumed dust size distribution, chosen as ‘rural’ from Seinfeld and Pandis (1998), to be as close as possible to the 328 

simulated environment. Weather data for Abu Dhabi are obtained from the SolarPILOT database while the average 329 

monthly dust concentration measured in Mushrif Park (UAE) is used to scale the hourly dust concentration measured in 330 

Moolawatana. 331 

The main economic parameters are reported in Table 2 for both “owned trucks” and “on call” cost structures. Finally, 332 

given the size of the heliostats, the number of heliostats per sector, and the cleaning speed, it is assumed that a cleaning 333 

operation requires two six-hours-shifts of a team made by two operators who operate a truck. Each cleaning crew 334 

composed by 4 operators and a truck is then able to clean one sector per day. 335 

Table 2. Economic assumptions 336 

 “owned trucks” “on call” 

Truck operator salary [$/yr] 80000 - 

Truck operator hiring [$/day] 

[$/shift] 

- 250 

Truck rent cost [$/day] - 250 

Truck purchase cost [$] 150000 - 

Truck maintenance cost [$/yr] 15000 - 

Water and fuel cost [$/m2] 0.01 - 

Call cost [$/call] - 1000 

Depreciation time [yr] 4 - 

Electricity price [$/MWh] 50 50 

 337 

To further demonstrate the capabilities of the model and assess the scheduling impact of different locations, different 338 

values of airborne dust concentration were used, as well as different economic assumptions regarding the selling price of 339 

electricity: the measured PM10 values have been halved, increased five and ten times, while the electricity price has been 340 

increased and decreased by 50%. The whole set of performed scenarios (including the two base cases) is summarized in 341 

Table 3. 342 

Table 3. Cleaning optimization scenarios 343 

Location Electricity Price [$/MWh] Average PM10 [µg/m3] 

Woomera 50 4.441 

Abu Dhabi 50 126.315 

Woomera x 0.5 50 2.220 

Woomera x 5 50 22.203 

Woomera x 10 50 44.406 
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Woomera LP 25 4.441 

Woomera HP 75 4.441 

 344 

5 Results 345 

 346 

For the base case of Woomera, the reduction of Total Cleaning Cost (TCC) for the MILP compared to the heuristic 347 

approach is 3.75% (62.4k$) for the “owned trucks” scenario and 15.39% (245.1 k$) for the “on call” scenario. Figure 4 348 

illustrates the outcomes of the MILP cleaning optimization for the “owned trucks” case for Woomera. Figure 4a shows 349 

the average yearly optical efficiency (𝜂𝑜𝑝𝑡,𝑐𝑙𝑒𝑎𝑛) of each sector of the field, computed as the average “as-clean” optical 350 

efficiency of all the heliostats composing each sector, while Figure 4b represents the corresponding average yearly soiling 351 

factor without cleanings (𝑓𝑠𝑜𝑖𝑙,𝑛𝑜𝑐𝑙𝑒𝑎𝑛), computed for each sector-representative heliostat and then applied to all the 352 

heliostats belonging to the same sector. Figure 4c finally depicts the results of the MILP optimization. The number of 353 

annual cleanings for each sector is displayed in the sector’s geometrical barycentre. The resulting average yearly soiling 354 

factor (𝑓𝑠𝑜𝑖𝑙,𝑐𝑙𝑒𝑎𝑛) is also illustrated through the colour map. 355 

 356 
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a) b) 

 
c) 

Figure 4. Cleaning summary and impact - Woomera - "owned trucks" ; a) Average yearly optical efficiency ; b) Average yearly soiling 357 
factor without cleanings ; c) Optimization outcomes 358 

It is worth noting that the sectors that are cleaned more frequently have either high yearly average optical efficiency 359 

(especially those sectors that are close to the tower) or low average yearly soiling factors without cleanings 𝑓𝑠𝑜𝑖𝑙,𝑛𝑜𝑐𝑙𝑒𝑎𝑛 360 

(i.e. they are subjected to more soiling). The resulting lower yearly average soiling factor (𝑓𝑠𝑜𝑖𝑙,𝑐𝑙𝑒𝑎𝑛  in Figure 4c) occurs 361 

in the sectors with the lower yearly average optical “as-clean” efficiency, despite the high cleaning frequency, as it may 362 

be noticed looking at the darker tonalities in the upper part of the graph in Figure 4c. This is in agreement with their 363 

smaller contribution in terms of thermal power reflected onto the receiver. It is also possible to recognize that the sectors 364 

with the lower 𝑓𝑠𝑜𝑖𝑙,𝑛𝑜𝑐𝑙𝑒𝑎𝑛 are the ones located further in the northern part of the solar field (in a ST plant located in the 365 

Southern Hemisphere). This can be explained by the lower average tilt angles of these heliostats, leading to higher soiling 366 

rates, in accordance to the model developed in Picotti et al (2018). Besides the annual number of cleanings and trucks 367 

required, the precise cleaning scheduling and timing is the most peculiar aspect of the MILP optimization: Figure 5a 368 
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shows the cleaning events for each sector along the whole year (sector numbers refer to Figure 3). It can be seen the 369 

higher cleaning frequency of either the sectors closer to the tower or the northerner sectors is in accordance to Figure 4c. 370 

It is also interesting to note that the cleaning frequency is higher during summer (December to February in Australia), 371 

when the available DNI, the overall “as-clean” optical efficiency, and the receiver thermal efficiency are higher, and 372 

lower during winter (June to August in Australia), when the available DNI, the overall “as-clean” optical efficiency, and 373 

the receiver thermal efficiency are lower. 374 

 375 

  
a) b) 

Figure 5. Cleaning schedule – Woomera – “owned trucks”: a) MILP ; b) Heuristic 376 

The corresponding cleaning schedule for the heuristic approach is displayed in Figure 5b. It is clearly observable the 377 

cleaning pattern is much more regular, which regardless of the different soiling factor and optical efficiency of the various 378 

sectors suggests cleaning each sector 14 times per year. Although both approaches assess that the optimal number of 379 

cleaning trucks is two, the number of annual cleanings is higher for the MILP optimization (699 vs 672). This results in 380 

higher direct cleaning costs, but the enhanced optical efficiency leads to a higher power generation, lower TCC, and 381 

higher profit. The superiority of the MILP approach resides in the smarter allocation of the cleanings, increasing their 382 

frequency during high-productivity periods for those sectors that are more soiled or with higher “as-clean” optical 383 

efficiency and decreasing their frequency when they are less needed. Overall, for the analysed case, the MILP approach 384 

reduces the TCC by 3.75%. 385 

When considering the “on call” policy for the same case, the economic advantage of the MILP solution over the heuristic 386 

increases, owing to the higher degrees of freedom of this policy. Although the number of calls is increased from 42 to 58, 387 

the number of cleanings is reduced from 672 to 526, and savings on both the degradation cost and the direct cleaning 388 

operations is obtained by allocating the cleanings in the most suitable times. Figure 6a and Figure 6b allow a visual 389 

comparison between the MILP and heuristic optimal cleaning schedules, outlining the more scattered optimal strategy of 390 

the MILP approach which yields a significant 15.39% decrease of the TCC. 391 

Table 4 reports the monthly values of DNI and average airborne dust concentration, together with the related number of 392 

cleanings, to highlight their efficient scheduling obtained with the MILP optimization for both the “owned trucks” and 393 

“on call” scenarios. As the latter has a higher flexibility regarding the deployment of cleaning trucks, the difference 394 

between winter and summer months is much higher. 395 

A summary of the comparison between the MILP and the heuristic cleaning optimization for the two scenarios is reported 396 

in Table 5. 397 
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Table 4. Monthly cleanings summary – Woomera  398 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

“owned trucks” 60 56 62 60 55 51 49 62 60 62 60 62 

“on call” 79 28 49 31 31 30 30 23 43 56 48 78 

DNI [kWh/m2] 328 211 220 171 143 107 166 189 191 240 235 304 

Dust Concentration [µg/m3] 4.0 2.4 3.0 4.7 3.4 1.8 4.2 5.5 2.8 5.4 3.7 11.8 

 399 

  
a) b) 

Figure 6. Cleaning schedule – Woomera – “on call”: a) MILP ; b) Heuristic 400 

Table 5. MILP vs Heuristic comparison summary – Woomera 401 

 “owned trucks” “on call” 

 MILP Heuristic MILP Heuristic 

Trucks/Calls 2 2 58 42 

Cleanings 699 672 526 672 

Ccl [k$/yr] 919.2 912.5 715.1 881.5 

Cdeg [k$/yr] 680.9 750.1 633.0 711.7 

TCC [M$/yr] 1.60 1.66 1.35 1.59 

TP [M$/yr] 21.14 21.07 21.39 21.14 

 402 

The cleaning optimization was also applied to the case study of Abu Dhabi. The TCC improvement (reduction) of the 403 

MILP versus the heuristic approach for the “owned trucks” and “on call” policies is 0.68% (26.3 k$) and 12.15% (477.5 404 

k$), respectively. Figure 7 illustrates the outcomes of the MILP cleaning optimization for the “on call” case. Similar to 405 

the Woomera case, the most frequently cleaned sectors are those whose yearly average optical efficiency is higher (Figure 406 

7a) or whose soiling factor with no cleanings (𝑓𝑠𝑜𝑖𝑙,𝑛𝑜𝑐𝑙𝑒𝑎𝑛) is lower (Figure 7b). However, since Abu Dhabi is in the 407 

Northern Hemisphere, the location of the heliostats with lower average tilt angles (i.e. the most soiled ones) are in the 408 

southern part of the solar field. Due to the much higher average airborne dust concentration in the UAE compared to 409 

South Australia, the number of cleanings per sector is considerably higher (see also the significantly lower average yearly 410 

soiling factor with no cleanings 𝑓𝑠𝑜𝑖𝑙,𝑛𝑜𝑐𝑙𝑒𝑎𝑛).  411 

 412 
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a) b) 

 
c) 

Figure 7. Cleaning summary and impact – Abu Dhabi – “on call”: a) Average yearly optical efficiency ; b) Average yearly soiling 413 
factor without cleanings ; c) Optimization outcomes 414 

As for the optimization performed for the location of Woomera, summer months (June to August in the UAE) experience 415 

the higher cleaning frequency, especially for the “on call” scenario, as reported in Table 6. The increased cleaning 416 

frequency is due to the higher airborne dust concentration measured in Abu Dhabi.  417 

The graphical representation of the detailed cleaning schedules depicted in Figure 8 also confirms the described trend, 418 

emphasizing the more frequent cleaning of the southernmost heliostats and during summer (more clearly visible in Figure 419 

8b). 420 
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Table 6. Monthly cleanings summary – Abu Dhabi 421 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

“owned trucks” 148 138 155 150 155 150 155 155 150 155 147 118 

“on call” 88 75 102 127 186 177 168 129 121 114 78 41 

DNI [kWh/m2] 171 188 160 173 230 225 201 208 206 208 181 162 

Dust concentration [µg/m3] 111 101 103 150 135 145 178 154 140 116 91 90 

 422 

  
a) b) 

Figure 8. Cleaning schedule – Abu Dhabi: a) "owned trucks" ; b) “on call” 423 

Compared to the heuristic approach, the MILP optimization of the “owned trucks” cleaning strategy improves the TCC 424 

by smartly allocating the significantly increased number of cleanings and decreasing the number of trucks. In the “on 425 

call” case, the MILP optimization both creates better ‘clusters’ of continuous cleanings to diminish the number of truck 426 

calls (𝑛𝑐𝑎𝑙𝑙 in Eq. (11)), and also intensify the cleanings when and where they are more needed, thus reducing both the 427 

operational and degradation related cleaning costs, and hence the TCC. Table 7 summarizes the main parameters of the 428 

cleaning optimizations performed for the case of Abu Dhabi. 429 

Table 7. MILP vs Heuristic comparison summary – Abu Dhabi 430 

 “owned trucks" “on call” 

 MILP Heuristic MILP Heuristic 

Trucks/Calls 4 5 92 145 

Cleanings 1446 1824 1406 1392 

Ccl [k$/yr] 1850.0. 2316.7 1848.1 1883.6 

Cdeg [k$/yr] 1970.7 1530.4 1603.7 2045.7 

TCC [M$/yr] 3.82 3.85 3.45 3.93 

TP [M$/yr] 17.90 17.87 18.27 17.79 

 431 

5.1 Sensitivity analysis 432 

The optimization scheme for the two scenarios described in the previous section has been applied to the base case of 433 

Woomera for different dust concentrations and electricity prices (see Table 3), and solar field sectorizations (see Table 434 

10). The outcomes of such sensitivity analyses are described and analysed in the following sub-sections. 435 

5.1.1 Dust concentration and price variations 436 

The airborne dust concentration is a parameter of paramount importance when evaluating the soiling-related optical 437 

efficiency losses of the heliostats since it strongly affects the amount of dust that is deposited on the reflective surfaces. 438 
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The values measured in Moolawatana and adopted for the base case of Woomera have been halved, increased 5 and 10 439 

times, to properly assess the relevance they have on the outcomes of the optimization. 440 

For both “owned trucks” and “on call” scenarios, the share of the TCC on the TP increases as the dust concentration is 441 

increased, as reported in Table 8 and Table 9. This reflects the necessity for more frequent cleanings in dustier 442 

environments. Since the TCC is more relevant for the scenarios that consider higher concentration of dust in air, its 443 

improvement has a more relevant impact on the total profit of the plant: as reported in Table 8, considering the “owned 444 

trucks” scenario, the TCC decrease obtained with the MILP optimization is larger for the lowest-dust case (7.43%) than 445 

for the highest-dust case (4.60%). Nevertheless, the impact on the total profit is 0.43% for the former, and 1.29 % for the 446 

latter, since the impact of the TCC on the TP grows from 5.36% to 26.37%, respectively. The same trend is observed for 447 

the corresponding cases in the “on call” scenario, as summarized in Table 9.  448 

As expected, the higher the dust concentration in air, the higher is the number of trucks purchased or called, as well as 449 

the number of cleanings per year. Concerning the “owned trucks” scenario, Table 8 shows that for the four dust 450 

concentrations analysed, the trucks number grows from just 1 to 6, as the annual cleanings rise from 364 to 2054. 451 

Coherently for the “on call” scenario, Table 9 shows that the number of calls grows for 40 to 194, as the annual cleanings 452 

rise from 379 to 1597. Figure 9a and Figure 9b depict the cleaning schedules for the lowest-dust and highest-dust cases 453 

for the “owned trucks” scenario. It is remarkable to observe  that once again the cleanings are less frequent during winter 454 

(June to August in South Australia), and the northernmost sectors require an higher number of cleanings. 455 

Moving to the sensitivity analysis on the price of electricity, the HP case has a higher number of cleanings and higher 456 

number of trucks purchased/called. This reflects the better convenience of investing more money for cleaning operations 457 

to generate more electricity and more profit. The opposite occurs when the electricity price is lower. Figure 10a and Figure 458 

10b depict the cleaning schedules for the LP and HP cases, clearly showing the higher cleaning frequency in the second 459 

case. A comprehensive summary of the main parameters for all the sensitivity analyses described in this section is reported 460 

in Table 8 and Table 9. The results of these analyses stress the importance of developing optimized cleaning strategies as 461 

they vary from case to case. In addition, the developed optimization algorithm always significantly improves the TCC 462 

and thus the profit of the plant. Finally, Table 8 and Table 9 report the computational time required for each case. The 463 

optimizations were performed on a Windows virtual machine with 16 virtual processors (2.3 GHz of standard frequency) 464 

of an Intel® Xeon® E5-2686 v4 CPU chipset and 122 Gib of RAM. 465 

Table 8. Sensitivity analysis summary - "owned trucks" 466 

 
Owned Trucks 

 
Woomera 

Woomera 
x0.5 

Woomera x5 Woomera x10 Woomera HP Woomera LP 

Tot Profit [M$/y] 21.14 21.58 19.31 17.99 32.99 9.41 

TCC [M$/y] 1.60 1.16 3.43 4.74 1.97 1.11 

Ccl [k$/y] 919.2 463.2 1840.1 2746.8 923.7 463.2 

Cdeg [k$/y] 680.9 694.2 1590.4 1997.2 1040.9 641.9 

Electricity [GWh/y] 474.3 474.0 454.7 446.0 474.4 459.1 

N TRUCKS 2 1 4 6 2 1 

N CLEANS 699 364 1405 2054 717 364 

TP INCREASE 0.30% 0.43% 0.88% 1.29% 0.30% 0.92% 

TCC DECREASE 3.75% 7.43% 4.69% 4.60% 4.82% 7.18% 

TCC share on TP 7.57% 5.36% 17.77% 26.37% 5.95% 11.75% 
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Computational time [s] 793056 3061385 18184 26322 293784 4525604 

 467 

Table 9. Sensitivity analysis summary - "on call" 468 

 
On Call 

 
Woomera 

Woomera 
x0.5 

Woomera x5 Woomera x10 Woomera HP Woomera LP 

Tot Profit [M$/y] 21.39 21.77 19.83 18.72 33.31 9.59 

TCC [M$/y] 1.35 0.96 2.90 4.01 1.65 0.93 

Ccl [k$/y] 715.1 513.4 1567.1 2188.9 882.5 492.0 

Cdeg [k$/y] 633.0 448.7 1334.1 1822.1 770.9 435.4 

Electricity [GWh/y] 475.3 479.3 460.2 449.8 478.2 468.7 

N CALLS 58 40 153 194 83 36 

N CLEANS 526 379 1132 1597 640 365 

TP INCREASE 1.16% 0.94% 3.69% 5.50% 0.98% 1.91% 

TCC DECREASE 15.39% 17.37% 19.55% 19.59% 16.32% 16.20% 

TCC share on TP 6.30% 4.42% 14.63% 21.42% 4.96% 9.67% 

Computational time [s] 425087 619714 44906 8092 130930 383971 

 469 

  
a) b) 

Figure 9. Cleaning schedule – Woomera - "owned trucks": a) lowest dust concentration (x 0.5) ; b) highest dust concentration (x10) 470 

 471 
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a) b) 

Figure 10. Cleaning schedule – Woomera - "on call": a) low electricity price (- 50%) ; b) high electricity price (+ 50%) 472 

5.1.2 Solar field sectorizations 473 

The size and the number of the sectors through which the solar field has been divided to perform the optimization of the 474 

cleaning schedule have been chosen according to the reasons explained in Section 4. However, for the sake of 475 

completeness, it is worth considering that technological and design constraints or the exploitation of different cleaning 476 

technologies could lead to higher or lower cleaning speeds, as well as cleaning patterns that would impose a different 477 

configuration of the sectors. The impact of these aspect on the cleaning optimization is assessed hereafter. 478 

To evaluate the effect of the cleaning speed on the optimal cleaning schedule, the extremes of the range proposed by Pfahl 479 

et al. (2017) have been adopted for the “on call” scenario: the maximum value is 3750 m2/h and the minimum value is 480 

1250 m2/h. The corresponding number of sectors whose area equals one truck daily cleaning capability is about 25 (5 481 

radial and 5 angular partitions) and 80 (10 radial and 8 angular partitions), respectively. Although it is expected that higher 482 

cleaning speeds would incur higher costs per square meter (or lower cleaning effectiveness), the same economic 483 

assumption reported in Table 2 are applied since a detailed modelling of the relationship between cost/cleaning speed and 484 

cleaning effectiveness is outside the scope of this study. As reported in Table 10, the higher cleaning speed results in a 485 

lower TTC since the heliostats can be cleaned more often with low extra cost while a lower cleaning speed sensibly 486 

increases the TTC since an higher number of cleaning shifts is required to maintain the optimal soiling factor. The optimal 487 

cleaning schedule for each of the two considered cleaning speeds is depicted in Figure 11. 488 
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a) b) 

Figure 11. Cleaning schedule – Woomera - "on call": a) high cleaning speed ; b) low cleaning speed 489 

Finally, two additional sectorial configurations are considered, changing the number of radial and angular partitions of 490 

the solar field while keeping the same number of heliostats per sector (and hence total number of sectors). The analysis 491 

is performed only on the “on call” case for the location of Woomera. The variation of the total cleaning cost obtained 492 

through the MILP model for these two configurations with respect to the base case is reported in Table 10. The results 493 

are very similar to the base case, however the TCC slightly increases when adopting unbalanced sectorizations (i.e. much 494 

higher/lower number of radial vs angular partitions). This is due to the higher error made by assuming the whole sector 495 

to behave (in terms of soiling factor and optical efficiency) as its representative heliostat (highlighted by red dots in Figure 496 

12). Finally, the computational time for each case is also reported in Table 10. It can be noted that as the number of sectors 497 

increases, so does the time required to run the optimization. 498 

Table 10. Sectorization analysis outcomes 499 

Sectors 

(Radial x 

Angular) 

Cleaning Speed 

[m2/h] 
TCC [k$] TCC [k$] TCC [%] 

Number of 

Cleanings 

Computational 

time [s] 

6 x 8 (base case) 2000 1348.0 - - 526 425087 

10 x 8 1250 1682.5 334.5 24.82% 698 750911 

5 x 5 3750 1041.1 -306.9 -22.77% 341 53201 

16 x 3 2000 1348.6 0.6 0.04% 519 391880 

2 x 24 2000 1349.2 1.2 0.09% 520 537412 

 500 
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Figure 12. Solar field sectorizations 501 

 502 

6 Conclusions 503 

 504 

The most suitable sites for the deployment of ST plants are usually arid and desert areas, where the available DNI is very 505 

high and precipitations are low, while dust or sand events are frequent. These environmental conditions are likely to cause 506 

significant reduction of the optical efficiency of the heliostats composing the solar field, hence reducing the power 507 

generation. The resulting lower profits in turn would hinder the ST plants competitiveness in the energy market. Artificial 508 

cleaning of the solar field is then mandatory to improve the productivity of a ST plant. The optimization of the cleaning 509 

activities is fundamental to achieve better performance and to lower the Levelized Cost of Electricity. This paper 510 

presented the development of an innovative optimization method of heliostat cleaning strategies through a Mixed Integer 511 

Linear Programming (MILP) model. The optimization relies on a validated physical model for solar collectors soiling 512 

which provides the optical efficiency losses in the different sectors of the solar field: the outcomes of the soiling model 513 

depict a very inhomogeneous optical efficiency loss around the solar field, which further states the relevance of a cleaning 514 

scheduling that properly considers the different and time-varying cleaning frequency for each sector of the solar field. 515 

The developed algorithm maximizes the revenues of a ST plant by minimizing the costs related to cleaning activities and 516 

soiling losses. In addition, a simple heuristic optimization is proposed and compared to the results achieved with the MILP 517 

model.  518 

For the base case of Woomera analysed in this study, the results of the optimization show a significant potential for 519 

reduction of the total cleaning costs up to 15% in the “on call” scenario, which corresponds to 1.35 M$ per year. It is 520 
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important to point out that this cost reduction is achieved without any additional investment but just taking advantage of 521 

the optimized cleaning strategies.  522 

The optimization of the cleaning strategies has been applied to two different plant locations with different environmental 523 

characteristics in terms of dust concentration and radiative power availability. A sensitivity analysis with regards to 524 

airborne dust concentration, electricity price, cleaning speed, and sectorial configuration has finally been performed to 525 

prove the strengths of the MILP model and the importance of the cleaning activities in ST plants, giving a remarkable 526 

insight of their potential optimization and cost reduction. The results also demonstrate that the economic impact of 527 

cleaning is relevant in terms of overall revenues of the plant and hence on the LCOE.  528 

Future studies will focus on the refining of the economic model featuring a comparison between different cleaning 529 

technologies coupled with a more precise description of the actual O&M cost structure, and on the extension of the 530 

optimization algorithm to include the number and the shape of the sectors as variables. 531 
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