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Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple
cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (Al)
approaches allow exploitation of high-dimension oncological data in research and development of precision
immuno-oncology.

Materials and methods: We conducted a systematic literature review of peer-reviewed original articles studying the ICI
efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and
epigenomics), radiomics, digital pathology (pathomics), and real-world and multimodality data.

Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them,
37 studies included genomic, 20 radiomic, 8 pathomic, 20 real-world, and 5 multimodal data. Standard machine
learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most
frequently studied cancer type was non-small-cell lung cancer (36%), followed by melanoma (16%), while 25%
included pan-cancer studies. No prospective study design incorporated Al-based methodologies from the outset;
rather, all implemented Al as a post hoc analysis. Novel biomarkers for ICl in radiomics and pathomics were
identified using Al approaches, and molecular biomarkers have expanded past genomics into transcriptomics and
epigenomics. Finally, complex algorithms and new types of Al-based markers, such as meta-biomarkers, are
emerging by integrating multimodal/multi-omics data.

Conclusion: Al-based methods have expanded the horizon for biomarker discovery, demonstrating the power of
integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included
studies showed promise for Al-based prediction of benefit from immunotherapy, none provided high-level evidence
for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of
these software biomarkers, from development and validation to integration into clinical practice.
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The advent of immunotherapy (I0), more specifically im-
mune checkpoint inhibitors (ICls), has transformed man-
agement of many patients with cancer, including
melanoma,’ head and neck cancer (HNC),? bladder,** kid-
ney,” and advanced non-small-cell lung cancer (NSCLC).%?
However, there are limitations with this approach; clinical
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benefit is only achieved in a subgroup of patients, many
challenges for clinical practice adoption and indications
have been reported by experienced physicians, and treat-
ment efficacy differs according to tumour type.’® Accurate
patient selection for specific therapies remains a crucial
unmet clinical need. Few biomarkers are validated for
clinical use and most applicable only to certain cancers such
as programmed death-ligand 1 (PD-L1)*" and microsatellite
instability (MSI)*? in lung and colorectal cancers, respec-
tively. Instead, in other cancers patients currently qualify for
ICI without biomarkers to predict response, meaning many
patients suffer toxicity without deriving benefit. Given the
complexity of the tumour microenvironment (TME) and
immune system (innate and adaptive), it is unlikely that a
single biomarker will be identified to robustly profile
prognosis and prediction alone.'® Instead, artificial intelli-
gence (Al)-based methods promise an approach to define
novel meta-biomarkers by integrating the multi-omics
datasets now available in oncology [genomics, pathomics,
radiomics, TME heterogeneity, and from more real-world
data (RWD) generation], which are too large and complex
for standard analytical tools.* We systematically reviewed
published studies that leverage Al to predict efficacy of ICI
therapies in different cancer types, focusing on genomics,
transcriptomics and epigenomics, radiomics, pathomics,
RWD, and multimodal data. We aim to provide practising
oncologists and clinical investigators a description of prin-
ciples on Al uses and a landscape view of Al-based predic-
tive biomarkers for benefit from immunotherapy based on a
systematic literature review, thus empowering an improved
understanding of this rapidly evolving field. We also sought
to highlight new potential meta-biomarkers for clinical
consideration.

Important Al terminology used in this manuscript are
presented in Table 1.

A subset of Al, machine learning (ML) is the array of
techniques that learn from data and improve their perfor-
mance iteratively to solve a specific task, using the available
data about a phenomenon or a process. If the data consist
of images, a standard ML models take as input a set of pre-
defined features (e.g. tumour shape, tumour size) extracted
from the data, not the data itself. In this case, feature
extraction is not part of the learning process and is thus
dependent on human expertise. However, the requirement
of having a set of pre-defined hand-crafted features rep-
resents a significant limitation of standard ML techniques.
To overcome such an issue, if a large enough amount of
data are available, it is possible to use deep learning (DL),
the branch of ML that instead exploits data in its raw format
(i.e. DL can work directly with unstructured datasets, see
Table 1) to discover and recognise patterns. DL makes
predictions using multilayered neural network algorithms
inspired by the neurological architecture of the brain. It has
been shown also in other applicative fields that the use of
DL techniques allows to achieve super-human performances
in problems in which the hand-crafted features were not
able to provide satisfactory results.”® The most used DL
method in analysing medical images is convolutional neural
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network (CNN) (see Table 1). Recently, vision transformers
(ViT),*® models that use self-attention mechanisms to pro-
cess images, emerged as an alternative to CNN and are
gaining increasing attention for the classification tasks in
oncology.*%*

Al methodologies (standard ML and DL) can be broadly
divided into (i) supervised, (ii) semi-supervised, and (iii)
unsupervised learning. In supervised learning, the model
learns from the labelled data, i.e. data with a known
outcome. The two main types of supervised learning are
classification and regression. Classification is used to predict
categorical variables (e.g. whether the patient will respond
to the treatment or not), while regression is used to esti-
mate continuous variables, such as progression-free survival
(PFS). Commonly used ML-supervised algorithms for both
classification and regression in cancer research are random
forest (RF)*? and support vector machines (SVM).>* Semi-
supervised learning models deal with partially labelled
datasets and thus are useful in situations where acquiring
labelled data is time-consuming (for example, annotating a
high number of medical images). The most common semi-
supervised methods include multiple-instance learning
(MIL)** and graph convolutional networks (GCNs).?> Unsu-
pervised learning is useful for discovering new patterns
from the data, and it shifts to clustering and dimensionality
reduction using algorithms such as principal component
analysis (PCA) and k-means clustering. In oncology, survival
analysis using the Cox proportional hazard model®® is
commonly used to identify the prognostic factors that have
an impact on patients’ recurrence or survival. Recently,
several Al techniques, capable of accounting for interaction
effects between features, have been adapted for this
task.””?® The main advantage of these models is their
success in handling censored data, frequently present in
oncology. A frequently used Al algorithm for survival anal-
ysis is random survival forest (RSF).*

Despite the recent popularity of DL methods in cancer
research, standard ML methods are used preferentially,
especially in the context of structured data (see Table 1).
Their main advantage is simplicity, which entails easier
interpretability and transparency. Comparatively, DL model
architectures are complex, comprising hundreds of layers
and millions of parameters. The internal mechanisms of
such architectures are not easily interpreted by a human,
hence the training and prediction phases, and are often
referred to as ‘black box’ approaches.’’ Explaining model
decision-making strategy offers biological insight and has
scientific discovery potential. Importantly it establishes
trustworthiness of the models which is critical for efficient
deployment to end-users—the clinicians and patients
themselves.?® The Al techniques used for explaining Al
models and their predictions are known as explainable Al
(XAl) methods.”’ Briefly, XAl methods can be divided into
two broad categories: model-based and post hoc.*’**
Model-based interpretability algorithms provide insights
into the relationships between model parameters and the
outcomes that they have learned (e.g. logistic regression),
for example using mathematical approaches. Post hoc
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Table 1. Glossary of terms

Artificial intelligence (Al)

Al defines the ability of a computer to carry out tasks normally requiring human intelligence, such as image
processing and decision making.

Machine learning (ML)

Artificial neural networks (ANN)

Deep learning (DL)
Convolutional

neural network (CNN)
Vision transformer (ViT)
Structured data
Unstructured data

Area under the receiver
operating characteristic
curve (AUC-ROC)
Sensitivity (or recall)
Specificity

Precision

F1 score

Accuracy

Concordance-index (C-index)

eXplainable artificial intelligence (XAl)

Multimodal data
Supervised learning

Unsupervised learning
Semi-supervised learning

High-dimensional data
Meta-biomarker

ML is a subset of Al, based on algorithms that can learn from data, find patterns, and make interventions with minimal
or without human intervention.

ANN are a subset of ML structurally and conceptually inspired by the human brain. They consist of input, hidden, and
output layers with connected neurons (nodes). Although each node in a network can only carry out very simple
computations, the network in total can solve complex pattern recognition tasks.

DL is a class of ML based on ANN having many hidden layers. DL can process data in their raw format (i.e. DL can work
directly with unstructured datasets) to discover and recognise patterns.’”

CNNs are a form of DL architectures, deep ANNs, mainly used to analyse images.

The ViT is a form of a visual model with architecture based on a transformer originally designed for natural language
processing (NLP). ViT uses a self-attention mechanism to process images.*®

Data that are in a standardised format for organising and storing data, for example, a tabular data in an Excel file.
Data that have no pre-defined data model and are not organised. Examples are images and videos as well as free text.
Performance metric used in classification that represents the ability of a model to discriminate between two classes
(e.g. responders versus non-responders). The higher the AUC-ROC (or AUROC) the better the model is at discriminating
between classes. A score of 1 indicates perfect classification performance.

Evaluation metric used for classification: it answers the question of how sensitive the classifier is in detecting positive
instances i.e. the true positive rate (true positive/true positive + false negative). It is considered as one of the most
important in the medical field, since the goal is often to detect all positive instances.

A metric that reflects the ability of a model to correctly identify negative instances i.e. the true negative rate (true
negative/false positive + true negative).

Describes the fraction of true positives among all the samples predicted to be positive i.e. the positive predictive
value = true positive/true positive + false positive.

It is often referred to as the harmonic mean between precision and sensitivity, since it penalises extreme values in both
cases. The higher the F1 score the model performs better.

An evaluation metric used for classification reflecting the ratio between the correctly classified samples and the total
number of samples. In case of an imbalanced dataset it can be misleading, and in this case it is recommended to use
other metrics, such as F1 score, sensitivity, and specificity. The higher the accuracy the better the model performs.
Performance metric used in survival analysis, which measures the ability of a model to separate censored data.
Similar to AUC-ROC, the higher C-index the better the model is. A C-index of 1 indicates perfect predictive accuracy.
XAl aims at explaining, justifying, and understanding the decisions that are made by Al models."’

Multimodal data refers to datasets that include different modalities, e.g. structured data and images.™

In supervised learning the algorithm is trained on a set of data that includes both the input data (e.g. gene expressions,
real-world data) and the desired output (e.g. whether a tumour is benign or malignant). The algorithm learns to
identify patterns in the data that are associated with the set of observed output, becoming a prediction tool.
Supervised learning includes classification and regression algorithms.

In unsupervised learning, the model is trained to find patterns in an unlabelled dataset. Unsupervised learning includes
clustering and dimensionality reduction approaches.

Semi-supervised approaches work on both labelled and unlabelled data to train a model. It is often used when there is
not enough labelled data available to train a standard supervised model.

High-dimensional data in which the number of features is larger than the number of included instances (e.g. patients).
Novel biomarkers derived from Al integration of multimodal data, i.e. new fused biomarkers different from individual
unimodal biomarkers.

explainability targets more complex models that are not
interpretable by their design and attempt to extract from
the model implementation, e.g. through examples, the
relationship provided by the model between input data and
final outputs (e.g. saliency mapping®?).

In this review, we focus on the application of Al meth-
odologies to predict the incidence of positive outcomes in
patients undergoing ICI therapies, following prior training of
the model on accumulated big data. Figure 1 presents the
main steps for the development of such a system, and il-
lustrates an end-to-end pipeline operating on different data
types for ICI modelling.

MATERIALS AND METHODS

This is a systematic review conducted following the PRISMA
guidelines (Supplementary Information 1, available at
https://doi.org/10.1016/j.annonc.2023.10.125).3
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Search methods

A systematic search was done (EA) in October 2022 in the
following bibliographic electronic databases: PubMed, Sco-
pus, Web of Science, and Cochrane Library using the key-
words listed in Supplementary Information 2, Table S1,
available at https://doi.org/10.1016/j.annonc.2023.10.125.
Keywords are subdivided into four categories: (i) data type,
(ii) treatment, (iii) condition, and (iv) methodology used for
the analysis. The keywords were combined using the Bool-
ean operators (AND/OR) as follows: (1 OR 2 OR ... 13) AND
(14 OR 15 OR ... 26) AND (27 OR 28 OR ... 31) AND (32 OR
33 OR ... 37). We restricted the research to those papers
published between 1991 and 1 October 2022 and in the
English language.

Data selection and analysis

All identified studies were managed by using Mendeley
Reference Management and Excel (Supplementary
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Internal evaluation

Explainable Al Performance

Model-based Accuracy Model learning ®
post hoc Sensitivity/specificity

F1score

AUC Machine learning Deep learning
Calibration

C-index

Structured data Unstructured data
eg, genomic/RWD eg, medical images

Patient data collection

AAl External validation

External dataset Developed model Real world data Genomics/
transcriptomics

O, O,

Overfitting control

Radiomics
Explainable Al Performance
g Hierarchical feature
. selection
=
t-SNE1
® Multimodal data integration? l
Model training
1o Low risk
- s
Data processing and curation e et
Lot
Data curation Exploratory Time Output

data analysis
)& 4
—
N
R S

Figure 1. General steps in developing a model to predict 10 treatment effectiveness, showing commonly used methodologies for different data types.

The workflow comprises three main steps. Step 1: Data processing and curation—omics data and/or clinical data and/or images are appropriately collected and stored
integrated (when applicable) and pre-processed. The processed data are divided into a training and a testing dataset. Step 2: Model learning: Different techniques can
be applied for the model to learn from the training dataset. Standard ML is a suitable choice if the data types are structured (for instance, RW and genomic data), while
deep learning is used mainly for images (digital pathology and radiomics). The learning approach (supervised, semi-supervised, unsupervised) is steered by the end goals
and the availability of labelled data. Steps 4 and 5: Internal and external validation: The trained model’s performance is evaluated on the test dataset, which holds the
“ground truth’. Parallelly, how the model yields the prediction is explained. The predictive power and explainability of the model are validated on external datasets to
assess its robustness and generalizability on unseen data (e.g. data from a different medical centre). Depending on the results of internal and external evaluation, new
hypotheses can be formulated to refine data collection and train improved models.

®Multimodal data integration can be carried out in different stages of the pipeline.

Al, artificial intelligence; AUC, area under the curve; ML, machine learning; RWD, real-world data.

Test data

Training data

Information 3, available at https://doi.org/10.1016/j. using the Mendeley software. Two independent in-
annonc.2023.10.125). Duplicated studies were removed, vestigators (AP, VM) assessed the records after removing
and the full text of the articles was searched manually and the duplicates at the level of title and abstract, and finally at
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Annals of Oncology

1281 records identified through
PubMed search

1306 records identified through
Scopus search

Retrievals

1056 records identified through
Web of Science search

85 records identified through
Cochrane search

Screening

2245 records sceened by type

1491 records sceened at title and
abstract level screening 1

199 full articles assessed for
eligibility

90 articles included
37 genomics
8 pathomics
20 radiomics
25 RW/multimodal

Inclusion

1483 duplicates removed

754 records removed using criteria 1

1127 records removed using criteria 2

111 records removed using criteria 3

54 records removed using criteria 4

109 records removed (69 ex+ 40 supp)
1 preclinical
25+9 hybrid, LASSO and Cox
6+7 ML or DL for feature selection
12+2no 10 cohort
2 mixed cohorts
10 +14 <100 pts radiomics and genomics
10+ 8 no prediction of 10 efficacy
1 preview
1study design
1n0 access

40 articles included in the supplementary
16 genomics
7 pathomics
14 radiomics
3 RW/multimodal

Figure 2. PRISMA flow diagram for study. In total, 3728 records were identified from a database search.
After removal of the duplicates and screening the records by types, we completed the screening of titles and abstracts for 1491 records and full-text screening for 199
records, 110 of which did not meet our inclusion criteria. 90 studies were included in the main text; 37 (41%) relate to genomics, 8 (9%) to pathomics, 20 (22%) to

radiomics, and 25 (28%) to real-world and multimodal data.
DL, deep learning; 10, immunotherapy; ML, machine learning; RW, real-world.
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the level of the full text, according to the inclusion and

exclusion criteria. A detailed explanation of inclusion and

exclusion criteria is provided in Supplementary Information

2, Table S2, available at https://doi.org/10.1016/j.annonc.

2023.10.125. In short, the review included the following:

e Original peer-reviewed research published in journals

e Studies using ML and DL algorithms for the prediction of
ICI efficacy in cancer patients

e Studies with an 10 cohort as training and/or testing and/
or validation set

e For genomics and radiomics data, studies with more
than 100 patients

If any disagreement occurred, a third investigator (FT)
with expertise in the field was contacted.

Data extraction

Data were extracted by two independent investigators (one
with clinical and another one with technical background) for
each data modality based on the division of the selected
studies on (i) genomics and transcriptomics and epigenomic
(GV, LP), (ii) radiomics (SER and MF), (iii) pathomics (CG,
MG), and (iv) real-world and multimodal data (LM, MZ).
Finally, two other independent investigators (AP, VM)
revised all extracted data. We considered multimodal data
to integrate three or more data modalities, while any
studies with two modalities where one is RWD were not
considered as multimodal. To provide a comprehensive
summary of the identified studies, we investigated the
following segments of the included studies: (i) type of the
study (retrospective/prospective), (ii) data sources (public
databases/clinical trials/institutions), (iii) cancer type, (iv)
number of patients, (v) type of therapy, (vi) significant
biomarkers, (vii) feature selection methodology (if appli-
cable), (viii) developed model, and (xi) achieved results.
Results for each section are presented in the form of tables.
If the study included cohorts other than ICI cohorts, the
tables report results related to just the ICI cohort.

Objectives

Firstly, we aimed to identify and appraise state-of-the-art Al
methodologies used to predict response to ICI treatment in
studies across four major data modalities: genomics/tran-
scriptomics/epigenomics, radiological, histopathological
images, and RWD/multimodal data. Secondly, we aimed to
analyse the added value of Al methods in order to identify
biomarkers or meta-biomarkers as predictors of ICl efficacy
across different types of cancers.

RESULTS

Identified studies

Figure 2 summarises the study selection process. In total, 90
studies were eligible for final analysis: However, 40 other
studies (due to their quality, even they did not meet the
final criteria) were selected (Supplementary Information 4,

34 https://doi.org/10.1016/j.annonc.2023.10.125

A. Prelaj et al.

Table S3, available at https://doi.org/10.1016/j.annonc.

2023.10.125) for the following reasons:

e Reason 1: studies that according to authors are using
hybrid methodologies between ML methods and clas-
sical statistics, e.g. studies that are using just least abso-
lute shrinkage and selection operator (LASSO) or Cox
analysis (n = 9) and not using classical ML;

e Reason 2: radiomics or genomics studies that include
<100 patients (n = 14);

e Reason 3: studies with no ICI cohort (n = 2);

e Reason 4: studies that are not predicting ICI efficacy but
the correlation of two different models created from two
different data modalities, i.e. radiomic signature predict-
ing tumour-infiltrating lymphocytes (TILS) (n = 8); and

e Reason 5: studies that used ML or DL for feature selec-
tion but not for efficacy prediction (n = 7).

Almost all (98%) identified Al analyses are retrospective
on the data retrieved from both retrospective or prospec-
tive observational study cohorts and randomised clinical
trials patients’ cohorts. Generally, the data were not
collected and designed a priori to be analysed using Al
methodologies.

Biomarkers across different data types

A large amount of biomarkers related to 10’s efficacy can be
extracted with Al techniques across a wide variety of
different cancer types, demonstrating the general applica-
bility of the models. Biomarkers can be grouped based on
the data from which they are extracted, as described in
Figure 3.

Genetics. An overview of the 37 identified studies using
genomics, transcriptomics, and epigenomics data is pro-
vided in Table 2. Among them, 24% (n = 9) are using ge-
nomics, 60% (n = 22) transcriptomics and 16% (n = 6)
epigenomics data, and 65% (n = 24) of selected articles
were published in 2022. In Supplementary Information 4,
Table S3, available at https://doi.org/10.1016/j.annonc.
2023.10.125, we included 16 studies that used genomics
and transcriptomics data but did not comply with the in-
clusion criteria. The most studied single type of cancer was
NSCLC (22%, n = 8), followed by melanoma (11%, n = 4)
and bladder cancer (8%, n = 3). However, most studies
(35%, n = 13) used multiple cancer cohorts. We identified
two scenarios to build predictive Al models in the selected
studies: (i) standard ML or DL models to directly predict
patient outcome (48%), (ii) standard ML or DL models to
create a genomic signature validated by statistical analysis
to stratify patients into low- and high-risk groups (52%).
Seventy-three percent (n = 27) of the studies used datasets
from publicly available data platforms such as The Cancer
Genome Atlas Program (TCGA),”* Gene Expression Omnibus
(GEO),”? and cbioportal.”*”*

Genomics. To generate large volumes of data, crucial for the
successful implementation of Al methods, 35% (n = 13) of
all genetic studies used multiple cancer types for the model
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Figure 3. Relevant biomarkers emerged from Al-based predictive algorithms.

Biomarkers identified in the selected studies are grouped in layers organised on the criterion of the multiple data sources analysed using ML methods. In the most
external layer of the sphere, features from RWD are clustered in patient-, cancer-, and treatment-related. The ‘genomics’ layer includes biomarkers from genomics,
epigenomics, and transcriptomics; the ‘radiomics’ layer encompasses first-order and shape-based statistics, matrices, and delta-radiomics. The core of the sphere, lastly,
contains biomarkers from pathomics and microbiota. BMI, body mass index; CNS, central nervous system; CRP, C-reactive protein; CT, chemotherapy; GLCM, gray-level
co-occurrence matrix; GLSZM, gray-level size zone matrix; HLA, human leukocyte antigen; 10, immunotherapy; ITH, intratumour heterogeneity; LDH, lactate dehy-
drogenase; IncRNA, long non-coding RNA; LOH, loss of heterozygosity; miRNA, microRNA; MSI, microsatellite instability; NLR, neutrophils-to-lymphocyte ratio; PD-L1,
programmed death-ligand 1; PRO, patient reported outcome; PS, performance status; RWD, real-world data; TILs, tumour-infiltrating lymphocytes; TMB, tumour

mutational burden.

development. For example, Chowell et al.>* developed an
RF classifier using 16 genomic features across 16 cancer
types to predict response to 10. The developed model
discriminated responders (R) from non-responders with an
area under the curve (AUC) of 0.79, significantly out-
performing tumour mutational burden (TMB), a Food and
Drug Administration-approved biomarker for this purpose,’®
in predicting overall survival (OS) (P < 0.0001) and PFS (P <
0.0001). There were different approaches to handle high-
dimensional data (see Table 1). Most studies (92%, n =
34) used feature selection methods, divided mainly into

Volume 35 m Issue T m 2024

clinician-driven hypothesis (clinical expertise, available
literature, 18%, n = 6), classical statistics (feature correla-
tion, univariate analysis 15%, n = 5), and automatic and
data-driven feature selection ML techniques [Gene Set
Enrichment Analysis (GSEA), LASSO, univariate Cox analysis,
RF, SVM, minimum redundancy maximum relevance, and
other ML models, 68%, n = 23]. Additionally, the network-
based computational approach’® showed potential in solv-
ing this problem.”” For example, Kong et al.>* used it to
create an ICl treatment biomarker in combination with lo-
gistic regression (LR) achieving robust prediction in
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Table 2. Studies using genetics features and artificial intelligence to predict immunotherapy response in cancers

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Genomics
Chowell et al., Retrospective Institutional (MSKCC) NSCLC (37%), 1479 (total) Anti-PD-1/PD-L1 + TMB, chemo, prior ICI, Literature, clinical ML; classification; Test set, pan-cancer
2022% melanoma (13%), 1184 (train) anti-CTLA-4 albumin, NLR, age, RF (with (RF16/RF11)
renal, bladder, head 295 (test) platelets, FCN, BMI, different Responders versus
and neck, sarcoma, HED, Hb, cancer type, number of non-responders
endometrial, gastric LOH, sex, drug class, features 11 AUC 0.79/0.71
tumour and 16) oS
stage, MSI status Survival analysis; C-index 0.68/0.62
Statistics; HR = 0.29, P < 0.0001
K-M and CPH PFS
C-index 0.67/0.62
HR = 0.34, P < 0.0001
Kong et al., Retrospective TCGA, IMvigor210, Melanoma, gastric and 729 (total) Anti-PD-1 Network-based SelectKBest, network- ML; classification; 12 LR best model:
2022%° other bladder 605 (10 test) /PD-L1 and biomarkers based approach regularised LR model; responders versus non-
datasets cancer (T); melanoma 37 (10 vall) Jor anti- and TMB SVM, RF, DNN responders: ex.vall
(V) 25 (10 val2) CTLA-4 Survival analysis AUC 0.79 ex.val2
49 (10 val3) (statistics); K-M, AUC 0.72 ex.val3
stratification using ML AUC 0.69
output
Peng et al., Retrospective Institutional (DFCI, NSCLC 248 (total) Anti-PD-1 15-gene somatic LASSO ML; classification; Test set
20223 MSKCC), 83 (train), 165 (test) /PD-L1 mutations SVM, for development BOR:
other =+ anti- (SMS); TP53 mutation, for SMS signature AUC 0.841; Sen.
datasets CTLA-4 PD-L1, TMB Survival analysis, 91.27%; Spec. 61.67%
(statistics): K-M, PFS:
stratification between HR 3.89, P < 0.001
low and high SMS 0s:
HR 2.82, P < 0.001
Fang et al., Retrospective FHFM-NSCLC database NSCLC 1937 (total) anti-PD-1/PD-L1 21-clinical Literature, clinical DL: deep patient graph OS:
2021 monotherapy or genomic convolutional network P = 2.2 x 10 **
combined therapy features; high ‘DeePaN’, for DeePaN
and signature creation
low blood Survival analysis,
monocyte (statistics): K-M,
count, KRAS stratification between
mut low and high DeePaN
Ahn et al., Retrospective Institutional (YCH) NSCLC 192 (total) 142 (train), Anti-PD-1 NLR, PD-L1, Literature, clinical and ML; classification; Responders versus
2021 50 (test) /PD-L1 TMB and correlation XGBoost non-responders:

number of metastases

LightGBM, MNN, SVM,
LDA, QDA, ridge
regression and LASSO
Survival analysis
(statistics) K-M

Test set:
LightGBM (best model)
AUC 0.788
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Table 2. Contin

ued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Wang et al., Retrospective IMvigor210; TCGA- Bladder cancer 272 (for signature ICI TLS SVM-RFE ML; for TLS signature OS:
2020 BLCA (development) development and development: Validation:
validation in survival classification; ADA, k- HR 0.55, P < 0.0001
analysis); NN, LASSO, MARS: Ex validation:
163 (train) NN, RF, SVMLinear,  HR 0.70, P = 0.031
109 (test)) SVM Radical,
406 (10 external XGBDART
validation) Survival analysis
Statistics: K-M;
satisfaction based on
TLS score to low versus
high TLS group
Peng et al., Retrospective cbioPortal; Lung adenocarcinoma 405 (total) Anti-PD-1/PD-L1 + Somatic mutations; DNN during training  DL; classification; DCB versus NDB
2020%° MSKCC, Van Allen 179 (cbioPortal) anti-CTLA-4 STK11, EGFR and DNN—input layer, two Testl: AUC 0.918, Sen.
database 143 (train) (cbioPortal); anti-PD-1 KMT2D mutations. hidden layers, a 89.47%, Spec. 94.12%.
36 (test) (Van Allen) Two mutational dropout layer, and an Ex. val: AUC 0.910, Sen.
47 (ex. validation) signatures (C1 and C2) output layer 93.33%, Spec. 90.63%.
Survival analysis Test: OS HR = 0.335,
(statistics); K-M; P = 0.039; PFS HR =
stratification based on 0.215, P < 0.0001
model output DCB Ex. val: OS HR = 0.128,
versus NDB P = 0.00; PFS HR =
0.240, P < 0.0001
Xie et al., Retrospective TCGA(T) others Solid tumours (T) 8818 (total) Ipilimumab Four genomic classes Literature (i.e. TMB, DL for model 10 vall:
2022 dataset(V1,V2) Melanoma(lO 8646 (training) model MSI, SCNA) generation (clustering): OS P = 0.009;
validation) 108 (10 validation1), DBN to extract ORR P = 0.003
64 (10 validation2) features of 10 combined:
multifactorial OS P < 0.0001
inputs; DAE for ORR P = 0.0002
clustering/stratification
analysis)
Wang et al., Retrospective Institutional (TMUGH), NSCLC 162 (total); ICIs multi-feature model Cross-validated ML; classification; k- DCB versus NDB.
2022 other datasets 69 (training), based on genomic recursive feature NN, LR, SVM_rbf, SVM_poly.
72 (testl), markers; TMB, ITH, and Elimination SVM_ linear, Test 1 AUC 0.77
21 (test2) HLA LOH SVM_poly, RF, GBC,  Test 2 AUC 0.78
DTC, ETC, and GPC Test 1 OS HR = 2.16,
Survival analysis P = 0.0095; PFS
(statistics); K-M; HR =1.97, P = 0.086
stratification based on Test 2 PFS
model output DCB HR 11.25, P = 0.0046
versus NDB
Transcriptomics
Wiesweg Retrospective Institutional (WGCCES, NSCLC 122 (total) Anti-PD-1 RNA LASSO ML; regression and TTF (continues and
et al., 2020** HKEBHB) 55 (train); 36 (test); /PD-L1 expression classification; SVM, RF, categorised in two/
31 (ex. validation) + cell type LR, GB three categories):

Test

HR 0.46, P = 0.035
Ex. val. and test
combined:

HR 0.4, P = 0.033

Continued

‘e 38 eaud "y


https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125

8€

Gzl oL 'zogououue(/9101°0L/bi010p//sdny

| anss| M GE SWN|OA

ycoc

Table 2. Continued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Charoentong Retrospective TCGA; other datasets 20 solid 8243 (total) Anti-PD-1/PD-L1 and  Immunophenoscore RF ML for creating 10 val 1:
et al., 2017* tumours 42 (10 validation1) anti-CTLA-4 (panel of immune Immunophenoscore RF AUC 1 (0.99-1)
28 (10 validation2) gene) Survival analysis 10 val 2:
(statistics); K-M; CPH ~ AUC 1 (0.99-1)
Ren et al., Retrospective TCGA, Lung adenocarcinoma 1906 (total) Not specified TIME Clustering ML: Unsupervised 0s
2022%° GEO 298 (10 ex validation 1) -multi-omics clustering PAM for Ex validation 1:
70 (10 ex. validation 2) score signature creation P < 0.001
Survival analysis Ex validation 2:
(statistics) K-M, P < 0.001
stratification on low
and high time-score
subgroups
Xu et al., Retrospective GEO Melanoma 1447 (total) anti-PD1 and anti- ICS score VIMP, ML: for ICS score Train:
2021%° (GSE91061 dataset-10 10 cohort number not CTLA-4 therapy RF, CPH development Responders versus
cohort) specified ML: Classification non-responders
XGBoost AUC = 0.926
Survival analysis OS: HR 2.28, P =
(statistics) K-M, 0.0389
stratifications on low
and high ICS group
Chen et al.,  Retrospective TCGA(T), CGGA(V1), Diffuse NA(train) anti-PD-L1 antibody 29-gene expression Clustering, elastic net ML for signature OS: stratification on
2022% IMvigor210 glioma NA (test) atezolizumab signature; regression, creation: elastic low- versus high-risk
(10 cohort) NA (IO validation) IDH1, CIC, TP53, EGFR, Cox regression analysis and score based on
XHACSU- (V2) 105 (validation 2) ATRX PCA signature
Model prediction: P = 0.0022
nomogram, and
univariate and
multivariate regression
Survival analysis, CPH
and K-M log-rank test
Zhang et al., Retrospective NCCJ NSCLC 213 (total; fivefold Nivolumab 45-miRNA expression ANOVA (responders ML; classification; RF  Exceptional responders
2022 cross-validation) and 3 clinical features- versus non- (three classes) versus others
based model responders) AUC 0.764-0.830; Sen
0.63-0.71;
Recall 0.4-0.81
F1 0.49-0.76
Ma et al,, Retrospective TCGA, GC (Train) 414 (total) Atezolizumab 36 AGR, significant SVM, LASSO, RFB, ML for AGR score Responders versus
2022 GEO, clinical trial GC, Bladder carcinoma 331 (train) mutation of FGFR4 and XGBoost generation: MLR non-responders
(IMvigor210) (test) 83 (test) HER2 Survival analysis P = 0.051
348 (10 validation) (statistics): K-M, 0sS:
stratifications on low P = 0.014
and high AGR
Zhang et al.; Retrospective GEO (train) Melanoma (training) 921 (total) Anti-PD-(L)1, anti- Cancer stemness, Correlation ML; classification SVM, NB best model (results
2022°° TCGA(V1), TISCH Mixed solid tumours 618 (train) CTLA-4 Stem.Sig (RNA- NB, RF, k-NN, on independent test

10 others dataset (V2) (validation)

154 (validation)
149 (independent test)

expression-based
signature)

AdaBoost, LogitBoost,
Cancerclass

Survival analysis; K-M
stratification on high-
and low-risk groups

set)
Responders versus
non-responders

AUC = 0.71
0S:
P = 2e-04
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Table 2. Continued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Liu et al., Retrospective TCGA, GEO, CRC(T) 1048 (total) Atezolizumab Nine stemness-related LASSO, SVM, RF, XGB ML: LR: for stemness Responders to ICls in
2022°* Institutional (FAHZ) CRC, Bladder 616 (train) gene expression cluster predictor two clusters
carcinoma (V) 72 (validation) signature: Statistical analysis for 10 val 1
56 (10 validation setl) GFPT1, PTMAPY, comparing responders P = 0.01
298 (10 validation set1) MOGAT3, DPM3, in two clusters 10 val 1
S100A12, PGMS5, FUTS, P < 0.0001
SEMA3C, ADAM33
Chen et al.,  Retrospective Cbioportal (train, NSCLC 226 (total) Anti-PD-(L)1, anti- Six-gene genomic LR, RF ML, classification, RF, DCB versus NDB
2021°2 validation) 179 (train) CTLA-4 model ERBB4, ATRX, SVM, GLM RF (best model)
47 (ex. validation) FAT1, KDM5C, ASXL1, Survival analysis for AUC 0.90
and AR OS—CPH 0OS: P = 0.00019
Classification for
DCB—LR
Li et al., Retrospective TCGA(T) NSCLC (training, 1771 (total) Anti-PD-1 15 independent Literature (CRGs list), DL: ANN risk model,  OS difference between
2022%3 GEO(V1) validation 1) 492 (train) radiotherapy-related  GSEA (gene selection) stratification on high- high- and low-risk
GEO, clinical trial Bladder, NSCLC 925 + NA (validation CRGs expression; and low-risk groups groups (IO validation)
(IMvigor210- V2) (validation 2) 1) MRPS16, EGFR, KSR1, TIDE analysis P < 0.0001
325 (10 validation 2) LSM5, PES1, SAE1, Survival analysis
29 (patient with single- SLBP, USP1; PTGES3, (statistics); K-M
cell sequencing data) PRM1, SEMA3A,
RAD51, ABCE1,
COL4A6, TOMM40
Prelaj et al.,  Retrospective Institutional (APOLLO NSCLC 164 (total; fivefold Nivolumab, ECOG, NLR Correlation ML: classification: Responders versus
2022°4 trial) cross-validation) pembrolizumab, value, 10 line, LR, FFNN, k-NN, SVM, non-responders
atezolizumab and MSC test RF Best-performing LR
level, PD-L1 AIC = 132.5; Acc. =
0.756; F1 0.722; AUC
0.83
Zheng et al., Retrospective Bi’s dataset, Au’s ccRCC 182 (total) PD-1/PD-L1 ccRCC signature, 47 GSVA ML for validation Responders versus
2022>° dataset, 10 (development) genes; developed ccRCC non-responders
GEO 172 (10 validation) Proliferative CD4+ T signature: AUC between 0.85 and
cells and Regulatory T classification: 1
cells and a subtype of SVM, NB, KNN
antigen-presenting
monocytes
Huang et al., Retrospective GEO, TCGA, clinical trial HNSCC; NSCLC; 566 (total; 10 set) anti-PD-1/PDL-1 Chemokines GSVA scoring, DL: Responders versus
2022°° (IMvigor210) melanoma; 501 (training) expression (CXCL9, correlation, statistical Classification non-responders:
gastrointestinal cancer; 65 (test) CXCL10; CXCL11; CCL5) analysis, PCA and four-layer Training set
urothelial carcinoma immune cells Umap for dimension  neural network model AUC 95%
(macrophages M1, CD8 reduction Test set
CD4 T cells) AUC 75%
Vathiotis Retrospective Institutional (YCC) Melanoma 59 (total) Nivolumab, mRNA and spatially Elastic net ML: classification; BOR;
et al., 2021°7 80% (training) pembrolizumab, defined protein regularisation, elastic net regularised AUC 0.97; Sen. 0.96;
20% (test set) ipilimumab univariate LR, regression Spec. 0.93; PPV 0.91;

univariate R-squared

Survival analysis
(statistics):
Stratification

in low- and

high-risk groups using
score

NPV 0.96

Low- versus high-risk
groups:

Median PFS HR 0.2, P
< 0.0001

Median OS HR 0.16, P
< 0.0001
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Table 2. Continued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Xu et al., Retrospective TCGA, clinical trial Bladder 1216 (total) Not specified 30 robust OS-related  LASSO, stepwise ML for AIGS score Responders versus
2022°% (IMvigor210 - 10 298 (10 test 1) genes XIAP, RPAIN, Cox, generation: RSF, Enet, non-responders
cohort), 39 (IO test 2) ARHGEF6, PRKAA1 CoxBoost, LASSO, Ridge, stepwise Test 1 P < 0.001
GEO (IO cohort) LY6GS5C, UBE2NL and RSF Cox, CoxBoost, Test 2 P < 0.001
SLC6A13, RCOR1, plsRcox, SuperPC,
NKAIN4, DCAF4, GBM, and survival-
GPSM2, KLK10, SFTPD, SVM
DSC2, DSG3 Statistical analysis, t-
DSG1, DSC3, SCEL, test responders versus
IMPA2, S100A7 non-responders based
SPRR2G, CDCA7L on ML-generated
SRP68, SPRR1B, KRT4, signature
LGALS7B
ANXA2, IGFL, LGALS7,
KRT6A
Kim et al., Retrospective Six cohorts from other NSCLC, melanoma 529 (total) Anti-PD(L)-1 ICIs HLA-A, HLA-B, immune Literature (immune DL: CNN: for prediction OS:
2022°° datasets; 1 Lung: (NSCLC cohorts), system, signalling by  epitope database), of neoantigen load Lung cancer
institutional (SMC) 122 (institutional nivolumab/ipilimumab EGFR in cancer, RF ML: classification: RF  Inst. Val P = 0.034
cohort) (melanoma cohorts)  signalling (predictions of Ex vall P = 0.001
75 (ex. cohort 1) by EGFR, resistance to Ex val2 P 0.014
34 (ex cohort 2) cytokine checkpoint blockade) Melanoma:
Melanoma: signalling Survival analysis: K-M, Ex val3 P = 0.047
110 (ex cohort 3) in immune neoantigen load Ex val4 P 0.002
64 (ex cohort 4) system, adaptive correlation with clinical AUC:
56 (ex cohort 5) immune system. benefit Lung:
68 (ex cohort 6) Inst. Val 0.814
Ex vall 0.843
Ex val2 0.846
Melanoma:
Ex val3 0.785
Ex val4 0.758
Ex val5 0.954
Ex val6 0.829
Liu et al., Retrospective TCGA; GEO Melanoma 1290 (total) Anti-PD-1, anti-CTLA-4, MLPS based on LASSO, stepwise Cox, ML for signature Ratio of responders in
2022°° 454 (train) anti-MAGE-A3 expression of 40 RSAGs CoxBoost, RSF creation: MLPS: the high MLP group
561 (test) stepwise Cox, versus low MLPS

275 (10 validation)

CoxBoost, ridge
regression, RSF, GBM,
SVM, LASSO, SuperPC,
plsRcox, Enet

Survival analysis
(statistics): K-M, log-
rank

group:
59.03 versus 20.7%;
P <22e — 16
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Table 2. Continued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Hu et al., Retrospective TCGA; GEO Gastric cancer (TGCA; 1564 (total) Anti-PD-1, anti-CTLA-4 nine eRNA pairs; three Clinical, univariant cox ML for eRNA signature 10 validaion2
2022%* (validation), GEO (I0  GEO); NSCLC, HNSCC, 349 (TCGA); 964 subtypes analysis, GO creation: PCA PFS
validation- GSE93157) melanoma (GSE93157) (validation); with distinct enrichment analysis ML for model P = 0.0072
65 (10 validation1) eRNA expression generation: RF Improved response
186 (IOvalidation2) patterns Statistics: TIDE high eRNA versus low
algorithm, K-M, log-  eRNA
rank, Fisher’s exact P < 0.05
test, stratification on 10 validaion2
high and low eRNA PFS
score P < 0.0001
Improved response
high eRNA versus low
eRNA
P = 0.0082
Wang et al., Retrospective TCGA; CGGA; Glioblastoma 906 (total) Anti-PD-1, anti-CTLA-4 Seven critical LASSO, SVM, RFB, XGB ML for creation of Responders in the
2021%° institutional PUMCH 518 (train); genes selected predictive model stemness subtype |
(validation) 350 (validation) by all algorithms: LTF, ‘stemness subtype group versus the
38 (validation) TAGLN, predictor’; multivariant stemness subtype I
C5AR1, RAB33A, LR group P < 0.001
CFl, CH24H, Statistics: K-M, log-
RNASE2 rank test
Zhang et al., Retrospective TCGA (test and Mixed solid tumours 9564 (total) (training); Anti-PD-1/PD-L1 or ML-TEX gene signature Correlation, deep ML for TEX score Responders versus
2022% training); GEO others (TCGA); melanoma, 273 (10 validation) anti-CTLA-4 score: neural network generation (TEXprog, non-responders in
dataset (validation) RCC, GBM, UC TNF, 12, TEXint1 and TEXint2, TEX™?2 versus other
(validation) IFN-y, CTL, TEXint3 and TEXterm) four TEX groups:

TGF-, IL-10, glycolysis,
chemokines, CYT,
CD8+ T cell,

CD4+ T cell, Th, Th2,
Th17, TCF1, T-bet, TOX,
TCR, BCR

TEX-related cancer
driver genes in the 10
cohort:

LTB, TLL1, HLA-B,
SFMBT2, LOX, IKZF3,
TCF4, PDGFRB,
ZNF521, PRF1, ZEB1,
IRF4, CDH11, MET,
MYH11, AXN2, B2M,
JAK1, NFKBIE, P2RY8S,
DCC, SP140, LATS2,
CD79B, CR1, HLA_A,
EML4, IL7R, BTK, CCR7,
PSDH17, RBM10, ERG,
MSI2, CBL, DDB2,
PRKD2, WAS, STATS6,
IRF1

XGBoost, multi-logistic,
RF, SVM, FFNN
Survival analysis
(statistics): K-M, log-
rank, stratification on
responders and non-
responders using TEX

P < 0.001

0S:

P < 0.05 in all different
10 cohorts

Continued

‘e 38 eaud "y


https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125

(474

Gzl oL 'zogououue(/9101°0L/bi010p//sdny

| anss| M GE SWN|OA

ycoc

Table 2. Continued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Liu et al., Retrospective GEO PDAC, BCC, Melanoma 62 (total), Anti-PD-1 MHC expression, CD8+ Clinical ML Responder/no
2022° 19 (PDAC) cells Classification: MLP responder:
11 (BCC) neural network Test set
32 (melanoma) BCC: Acc. 96.7%
32 Melanoma: Acc. 60.7%
80% (training)
20% (test)
Epigenomics
Zhang et al., Retrospective TCGA, CGGA, GEO, 20 LGG, 932 (total) Not specified ICls TIICIncRNA-based 101 combination of 10 ML; for TIICIncRNA Responders versus
2022%° datasets (e.g. Mixed solid tumours  In total 10 |0 signature ML algorithms (e.g. score generation; RSF  non-responders or OS
IMvigor210), validation cohorts, LASSO, RSF, CoxBoost, and CoxBoost P < 0.05 for all 10
institutional (XHACSU) number not specified GBM) Survival analysis validation cohorts
(statistics) K-M,
stratification on low
TIICIncRNA versus high
TIICIncRNA
Filipski et al., Retrospective TCGA (model building); Melanoma 531 (total) ICls CpG sites, specific for MeDeCom algorithm  ML: Clustering and OS (cluster 1 versus
2021°° institutional validation, 470 (TGCA); LMC Classification: LASSO  cluster 2)
(GUF, CUB, UHW) 61 (10 cohort) Significant: Survival analysis: K-M P = 0.042
Tregs, CD56+, (statistics) Good versus poor
fibroblasts survival
AUC 0.9664
Acc. 89.5%
Xu et al., Retrospective TCGA (model building); 32 tumour types 7209 (total) Anti-PD-1/PD-L1 DNA methylation Based on prior ML for model SVM (best model)
2021°7 other datasets (TCGA); NSCLC 7131 (TCGA); profile knowledge (creation of generation: k-NN, RF, Responders versus
(validation) (validation) 78 (10 validation) two clusters based on LR, SVM non-responders
immune infiltration Survival analysis, log- (validation)
analysis) rank test F1 0.4255; MCC
0.18993; AUC 0.6742
PFS
P = 0.06
Zhou et al., Retrospective GEO, TCGA Bladder cancer, ccRCC 403 (total) Anti-PD-1 nivolumab  TILBIncSig GSEA, Cox regression  ML: for TIL-B-derived OS:
2021% (10 validation) 202 (training) models and a forward IncRNA signature P = 0.098
201 (validation) and backward variable creation: multivariate AUC 0.719

151 (ex validation)
16 (IO ex. validation)

selection

Cox regression models
and a forward and
backward variable
selection

Survival analysis
(statistics), K-M, log-
rank test, stratification
on high- and low-risk
groups
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Table 2. Continued

Authors Type of Data Type No. of patients Therapy Biomarkers Feature selection Developed Outcomes results
and analysis source of cancer model
years
Liu et al., Retrospective TCGA; GEO; more CRC 816 (total) Pembrolizumab IRLS signature (43 GSEA, PAC ML: Survival LASSO + stepCox (best
2022%° public dataset; 584 (training) IncRNAs) analysis for IRLS model)
Institutional (FAHZ - 10 232 (10 validation signature 0OS: P < 0.0001
cohort) cohort) development: 101 RFS: P < 0.0001
prediction models, Time-dependent AUC:

combination of: RSF,  1-year 0.840
Enet, LASSO, Ridge, 3-year 0.776
stepwise COX, 5-year 0.818
CoxBoost, plsRcox, C-index 0.765
SuperPC, GBM, SVM

Survival analysis

(statistics): K-M; log-

rank
Pan et al., Retrospective TCGA (development); Lung adenocarcinoma 1225 (total) anti-PD-1 Epigenome signature; mRMR ML: for creating NDB versus DCB
20227° and GEO-GSE and NSCLC (IO cohort) 437 (train) /PD-L1 iDMCs signature iPMS; RF 10 val. 1
(validation) 60 (10 validation1) Survival analysis, Cox AUC = 0.752
18 (10 validation2) regression, K-M, log- 10 val. 2
rank AUC = 0.653

Acc, accuracy; AdaBoost, adaptive boosting; AGR, angiogenesis-related gene expression signature; AIC, Akaike information criterion; AIGS, artificial intelligence-derived gene signature; ANN, artificial neural network; ANOVA, analysis of variance;
ATRX, alpha thalassemia/mental retardation X-linked; AUC-ROC, area under the receiver operating characteristic curve; BLCA, bladder cancer; BMI, body mass index; BOR, best overall survival; C1, consensus clusters 1; ccRCC, clear cell renal
cancer carcinoma; CD56+, cluster of differentiation56; CGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas, TMB, tumour mutational burden; CGGA, Chinese Glioma Genome Atlas; CIC, Capicua Transcriptional Repressor; CNN,
convolutional neural network; CPH, Cox proportional hazard; CRC, colorectal carcinoma; CRGs, cuproptosis-related genes; CRP, C-reactive protein; CTLA-4, cytotoxic T-lymphocyte antigen 4; CUB, Charité Universitatsmedizin- Berlin; DAE, deep
autoencoders; DBN, deep belief networks; DCB, durable clinical outcome; DFCI, Dana-Farber Cancer Institute; DL, deep learning; DLS, deep learning score; dNLR, derived neutrophil-to-lymphocyte ratio; DNN, deep neural network; DTC, decision
tree classifier; Enet, elastic network; eRNA, enhancer RNA; ETC, Extra Trees Classifier; Ex. Val, external validation; FAHZ, First Affiliated Hospital Zhengzhou; FCNA, fraction of copy number alteration; FFNN, feedforward neural network; FHFM,
Flatiron Health and Foundation Medicine; GB, gradient boosting; GBC, gradient boosting classifier; GC, gastric cancer; GEO, gene expression omnibus; GLM, generalised linear models; GO, Gene Ontology; GPC, Gaussian process classifier; GSEA,
gene set enrichment analysis; GSVA, gene set variation analysis; GUF, Goethe University-Frankfurt; Hb, haemoglobin; HED, human leukocyte antigen -I evolutionary divergence; HKEBHB, Helios Klinikum Emil von Behring Hospital Berlin; HLA LOH,
loss of heterozygosity status in human leukocyte antigen —I; HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; ICI, immune checkpoint inhibitors; ICS score, immune cell signature score; IDH1, isocitrate dehydrogenase; iDMCs,
immunophenotype-specific differentially methylated CpG sites; 10, immunotherapy; iPMS, immunophenotype-related methylation signature; IRLS, immune-related IncRNA signature; ITH, intratumoural heterogeneity; K-M, Kaplan—Meier; k-NN, k-
nearest neighbours; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis; LDH, lactate dehydrogenase; LGG, low-grade glioma; LightGBM, light gradient boosting machine; LMC, latent methylation components;
IncRNAs, long non-coding RNAs; LR, logistic regression; MAGE-A3, melanoma-associated antigen 3; MARS, multivariate adaptive regression splines; MCC, Matthew’s correlation coefficient; MeDeCom, reference-free computational framework
that allows the decomposition of complex DNA methylomes into latent methylation components and their proportions in each sample; ML, machine learning; MLPS, machine learning-based prognostic signature; MLR, multivariate logistic
regression; MNN, morphogenic neural networks; mRMR, minimum redundancy maximum relevance; MSC, blood microRNA signature classifier; MSI, microsatellite instability; MSKCC, Memorial Sloan—Kettering Cancer Center; NB, naive Bayes;
NCCJ, National Cancer Center Japan; NDB, no durable benefit; NDB-LS, long-term survival with no durable clinical benefit; NLR, neutrophil-to-lymphocyte ratio; NN, neural network; NPV, negative predictive value; NSCLC, non-small-cell lung
cancer; ORR, objective response rate; OS, overall survival; PAC, proportion of ambiguous clustering; PAM, partition around medoids; PCA, principal component analysis; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1;
PFS, progression-free survival; plsRcox, partial least squares regression for Cox; plsRcox, partial least squares regression for Cox; PPV, positive predictive value; PS, performance status; PUMCH, Peking Union Medical College Hospital; QDA,
quadratic discriminant analysis; rbf, radial basis function; RCC, renal cancer cell; RF, random forest; RF11, random forest classifier with 11 input features; RF16, random forest classifier with 16 input features; RFB, random forest and Boruta; RFS,
relapse-free survival; RSAGs, robust survival-associated genes; RSF, random survival forest; SCNA, somatic copy number alteration; SelectkBest, selects the features according to the k highest score; Sen, sensitivity; SMC, Samsung Medical Center;
SMS, somatic mutation signature; Spec, specificity; SuperPC, supervised principal components; SVM, support vector machine; SVM-RFE, support vector machine-recursive and feature elimination; T, training; TEX, T-cell exhaustion; TIDE, tumour
immune dysfunction and exclusion; TIICIncRNA, tumour-infiltrating immune cell-associated IncRNA; TILBIncSig, IncRNA signature of TIL-Bs; TIL-Bs, tumour-infiltrating B lymphocytes; TILs, tumour-infiltrating lymphocytes; TISCH, Tumour Immune
Single-cell Hub 2; TLS, tumour mutational burden-related LASSO score; TMUGH, Tianjin Medical University General Hospital; Tregs, T regulatory cells; TTF, time to treatment failure; UC, urothelial carcinoma; UHW, University Hospital Wirzburg; V,
Testing; VIMP, variable importance; WBC, white blood cell; WGCCES, West German Cancer Center Essen Heckeshorn; XGBDART, XGBoost Dropouts meet Multiple Additive Regression Trees; XGBoost, eXtreme Gradient Boosting; XHACSU, Xiangya
Hospital Affiliated to Central South University; YCH, Yonsei Cancer Hospital.
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Table 3. Studies using radiomics features and artificial intelligence to predict immunotherapy response in cancers

Authors  Type Data Type No. of patients Therapy Biomarkers Feature selection Developed model Outcomes results
and years of study source of cancer
Dercle Retrospective Clinical trials NSCLC 188 (total) Nivolumab Delta-volume, Coarse selection ML: classification; RF Sensitive® versus non-
et al., analysis of (CheckMate017, 92 (IO total) delta-GLCM IMC1, (reproducibility Survival analysis sensitive to
20207% prospective trials Check-Mate063, 72 (training) delta-DWT1, and analysis, redundancy (statistics) nivolumab
CheckMate017) 20 (test) delta-sigmoid slope analysis, and feature CPH, Kaplan—Meier AUC = 0.77;
50 (chemo total) ranking) analysis; stratification Sensitivity 0.80;
46 (TKI total) Fine selection between with and Specificity 0.53;
(forward search, without high-risk PFS
feature combination) nivolumab signature P < 10~*
He et al., Retrospective Institutional (SPH) NSCLC 327 (total) Anti-PD-(L)1 1688 pre-defined NA DL (for creating a Low- versus high-risk
20207° 236 (training) radiomics features score TMBRB); group:
26 (test) 1020 DL features Feature extraction Best results achieved
65 (test) TMB radiomics and classification; using TMBRB and
123 (I0 biomarker and Densenet with a 3D ECOG PS
validation) ECOG PS convolution kernel 0S: P = 0.007;
(3D densenet) PFS: P = 0.003
Survival analysis
(statistics)
K-M curves for
evaluating TMIBRB
risk stratification
Khorrami  Retrospective Institutional (CCF, NSCLC 139 (total) Anti-PD-(L)1 8 Del-RADx Intraclass correlation ML Responders versus
et al., UPHS) 50 (training) features coefficient; Classification: LDA;  non-responders
2020%° 62 (validation1) WLCXfeature DelRADX risk score  Validation1
27 (ex. selection Survival analysis AUC 0.85
validation) (statistics): Validation2
DelRADx risk score  AUC 0.81
Kaplan—Meier, log-  Validationl c-index
rank statistical tests 0.69
Validation2
C-index 0.68
0S
P = 00056
Mu et al., Retrospective/ Institution (SPH, NSCLC 697 (total) Anti-PD-(L)1 Deep learned score NA DL DCB
20215 prospective MCC) 284 (training) Clinical features: ECOG, SResCNN to develop a Retrospective
116 (testing) histology deep learned score  validation

85 (ex
validation)
128 (10
validation)
49 (10 pros.
validation)
35 (IO ex.
validation)

Survival analysis:
(statistics) K-M
method, stratification
between low versus
high deep learned
score

Cox proportional
hazards model; and
multivariable LR

AUC 0.70 P < 0.001,
Prospective validation
AUC 0.72 P = 0.014
Ex. Val

AUC 0.70 P = 0.040
Retrospective val
PFS P < 0.001

0S P < 0.001
Prospective val

PFS P < 0.001

0S P = 0.003

Ex. val

PFS P = 0.038

0S P = 0.007
Retrospective Val
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Table 3. Continued

Authors  Type
and years of study

Data Type

source of cancer

No. of patients Therapy

Biomarkers

Feature selection

Developed model

Outcomes results

Tian et al., Retrospective
2021%

Tunali Retrospective
et al, analysis of
2019% prospective trials

Tunali Retrospective

et al., analysis of
2021% prospective trials
Vaidya Retrospective

et al.,

2020%

Institutional (WCHSU) NSCLC

Clinical trials at MCC NSCLC
(not specified)

Institutional (MCC, NSCLC
JAHVHT)

Institutional (CCO) NSCLC

939 (total for
sig. creation)
750 (training)
93 (test)

96 (validation)
94 (10 validation
set)

228 (total)

332 (total)
180 (training)
90 (test)

62 (validation)

109 (total)
30 (training)
79 (testing)

Pembrolizumab +
chemotherapy

Anti-PD-(L)1

Anti-PD-(L)1 + anti-
CTLA-4

Anti-PD-(L)1

Deep learning features,
radiomics features (shape,
texture, first-order),
clinical characteristics

Radiomics features: Radial LR
gradient border SD-2D, 3D

Laws ESL5ES, border 3D Laws
ESESLS and border quartile
coefficient of dispersion,

border NGTDM strength

Clinical features lines of

therapy, hepatic and bone
metastasis, NLR, RMH

prognostic score

Clinical features: serum albumin, Concordance
correlation coefficient

metastatic sites

Radiomic features: GLCM
inverse difference

Avg 3D RLN normalised, GLCM
inverse variance, Avg 3D SRE,
Avg 3D RP, GLSZM Zone
percentage, Avg 3D LRE,

Avg 3D RLV, peritumoral
quartile coefficient of
dispersion, peritumoral
coefficient of variance

One peritumoral texture and
two QVT features (mean
curvature of branches

Mann—Whitney U
test; DL network

Unsupervised
clustering on the
radiomics features,
surrounding the tumour, MRMR

DL: classification;
network: deep
learning feature
extraction module
(densenet121), a
conventional
radiomic feature
extraction, a fully
connected
classification layer;
creation of PD-L1 ES
signature

Survival analysis
(statistics): Kaplan
—Meier curves and
log-rank test,
stratification using
PD-L1ES score

ML

CART;

Survival analysis: K-M
analysis

ML: a survival CART
Survival analysis: K-
M, Cox regression,
log-rank test

ML Classifiers:

RF, linear
discriminant analysis,
diagonal linear
discriminant analysis,

DCR C-index 0.87
PFS C-index 0.73
OS C-index 0.0.77
Prospective Val
DCR C-index 0.82
PFS C-index 0.74
OS C-index 0.0.70
PFS

C-index 0.66, 95% CI
0.48~0.83

HR 2.57, 95% ClI
1.22~5.44; P =
0.010

TTP

AUC 0.804; Spec.
83.46% Sen. 63.43%;
Acc. 73.41%

HPD

AUC 0.865, Spec.
74.02%; Sen. 90.55%;
Acc. 82.28%

PFS

AUROC = 0.717

0S; time-dependent
AUC:

6 months = 0.729,
95% Cl 65.2-83.8;
12 months = 0.773,
95% Cl 71.7-83.7;
24 months = 0.709,
95% Cl 72.5-87.5;
36 months = 0.868,
95% Cl 77.0-93.4

Responders and non-
responders versus
hyperprogression
Random forest: AUC
0.96; Acc. 0.83; Sen.

Continued
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Table 3. Continued

Authors  Type Data Type No. of patients Therapy Biomarkers Feature selection Developed model Outcomes results
and years of study source of cancer
curvature values associated quadratic 1.0; Spec 0.8
with vasculature) discriminant analysis, OS
SVM. HR = 2.66, 95% Cl
Survival analysis 1.27-5.55; P = 0.009
(statistics): K-M;
stratification between
classifier prediction
Deng Retrospective Institutional (SPH, NSCLC 699 (total) ICls NA DL classifier: ESBP;  PFS
et al., GPPH, WCH, 386 (training) Survival analysis: HR = 0.36, 95% CI
2022%° FAHUSTC, LCHHI) 92 (test) (statistics) Kaplan 0.19-0.68, P <
92 (ex. —Meier, log-rank test, 0.0001)
validation) stratification using Survival benefit
129 (10 ESBP score high HR = 0.33, 95% Cl
validation) versus low score 0.18-0.55, P < 0.0001
Gong Retrospective Institutional (SPH, NSCLC 224 (total) Anti-PD-(L)1 Radiomic features: original Feature ranking with ML Responders versus
et al., FUSCC) 93 (training) shape_ maximum 2D diameter  RFE Classification: SVM non-responders
2022% 68 (test1) row, original_girlm_ Survival analysis: K-M Test1:
63 (test2) LongRunHighGrayLevelEmphasis, AUC 0.82
LoG- Acc. 76.47%
glszm_SizeZoneNonUniformity, Sen. 66.67%
wavelet-LHH_glszm_Large Spec. 79.25%
ArealowGrayLevel F1 0.56
Emphasis, wavelet- Test2
HLL_glcm_MCC, AUC 0.87
wavelet- Acc. 80.25 %
HHH_firstorder_Skewness, Sen. 79.17%
wavelet-LLL glcm _MCC; Spec.82.05%
Delta-radiomic features: wavelet- F10.76
LLH Survival analysis
first-order range, wavelet-LLH Test 1
firstorder_RootMeanSquared, PFS, HR = 6.10, 95%
wavelet-LLH glszm Cl 2.12-17.56, P <
SmallAreaEmphasis, 0.001
wavelet-HHH 0S, HR = 3.17, 95%
firstorder_TotalEnergy Cl 1.19-8.41, P <
0 .05
Test 2
PFS, HR = 4.55, 95%
Cl 1.89-10.92, P <
0.001
0OS, HR = 2.95, 95%
Cl 1.11-7.84, P < 0.05
He et al., Retrospective Institutional (SPH) NSCLC 236 (total) Anti-PD-(L)1 Deep learning NA DL: survival network Stratification using
2022% 188 (train) features with two modules: ~ OS:
48 (test) convolutional module C-index 0.75

and classification
module; dual-task
network for PDS and
PRS; (for OS and PFS
risk factors
computation)
Survival analysis: K-M

HR = 4.54, 95% CI
1.21-16.94, log-rank
P =0.014

PFS

C-index 0.7

HR = 6.64, 95% CI

Continued

‘e 38 feaud Y


https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125
https://doi.org/10.1016/j.annonc.2023.10.125

#C0C W | oNss| M GE SWIN|OA

S0l €gogououuRl/9 101 0L /bio10p//sdny

Ly

Table 3. Continued

Authors  Type
and years of study

Data Type
source of cancer

No. of patients

Therapy

Biomarkers

Feature selection

Developed model

Outcomes results

Ren et al., Retrospective
2022%°

Dercle Retrospective

et al., analysis of
2022%° prospective trials
Basler Retrospective

et al.,

2020™

Brendlin  Retrospective

et al.,

20217

Peisen Retrospective

et al.,

2022%

George Retrospective—post
et al., hoc analysis
20227

Institutional (UHTMC) NSCLC

Clinical trials Melanoma
(Keynote-002,

Keynote-006)

Institutional (UHZ) Melanoma
Database from Melanoma
institution

ISC

CMMR Melanoma
Clinical trial GBM
(NCT02336165)

157

575 (total)
288 (training)
287 (test)

112 (total: 10-
fold cross-
validation)

140 (total)
70 (train)
70 (test)

262 (total;
fivefold cross-
validation)

113 (total)

Nivolumab,
pembrolizumab

Pembrolizumab

Anti-PD-1 + anti-
CTLA-4

Anti-PD-1 anti-CTLA-
4, Anti-PD-1 + anti-
CTLA-4

Anti-PD-1/CTLA-4
monotherapy/

combination therapy

Durvalumab

Radiomics features: GLCM,
GLSZM, GLRLM, NGTDM,
GLDM

Deep learning features

Volumetric growth
(absolute tumour volume
difference), tumour volume,
quantitative representation
of tumour spatial
heterogeneity, quantitative
representation

of tumour edge phenotype

Blood radiomics features: LDH
level at TP1 and the relative

change of CT coarseness
between TP1 and TPO

DECT: Mean iodine, iodine
concentration total, mean
mixed, min. brightness,
textural coarseness, mean
absolute voxel intensity
deviation

Clinical and radiomic
features

Addition of radiomic feature
did not improve the prediction

Clinical features

Radiomic features: Spherical

disproportion, GLCM
autocorrelation, GLSZM
SZHGE, Histogram variance,
GLCM sum average, GLCM

CHSQ, RELF,
MIM, FSCR,
MIFS, GINI,
ICAP, IMI,
CIFE, CMIM,
DISR, MRMR,
TSCR

PCA

Pearson correlation
coefficient

Univariate supervised
feature selection (F-
test)

LR model regularised
with elastic net
Univariate statistic
with determination
coefficient (R?),
mutual information,
Bonferroni correction
for multiple
comparisons,
minimum redundancy
Maximum relevance
algorithm, stepwise
forward selection
FCBF

Spearman correlation

curve and log-rank
test; stratification
using risk score from
DL

ML: LR, k-NN, QDA,
SVM with linear and
radial basis function
kernels, XGBoost,
multilayer
perceptrons,
Gaussian processes,
decision trees,
nBayes, RF, AdaBoost
ML: classification, RF
Survival analysis: K-M

ML: classification: LR
and regularised with
L2 penalty

Survival analysis
(statistics): K-M,
Mann—Whitney U
test

ML: classification: RF

ML: classification, RF

ML: Survival analysis;
RSF

2.89-15.29, log-rank P
< 0.001

InceptionV3_RELF_ k-
NN (best model): AUC
0.96; Acc. 95.24%;
Sen. 95%; Spec.
95.5%; Pre. 1.67%; F1
95.30%

0s
AUC = 0.92 (95%Cl
0.89-0.95)

PP versus TDP;

AUC 0.82; Sen. 0.81;
Spec 0.73

PPV 0.54; NPV 0.91

Responders versus
non-responders
Best model trained
on DECT:

AUC 0.85

Sen. 74.63%

Spec. 75.90%

Acc. 75.26%

PFS (3 months):
AUC 0.641

0OS (6 months):
AUC 0.664

OS (12 months):
AUC 0.600

0s

C-index = 0.692-
0.750

PFS

C-index = 0.680-
0.715
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Table 3. Continued

Authors  Type Data Type No. of patients Therapy Biomarkers Feature selection Developed model Outcomes results

and years of study source of cancer

correlation, maximum axial
diameter, GLSZM GLN, GLSZM
SZLGE, maximum axial
diameter, assign (treatment
regimen), histogram root

mean squared, histogram
variance, histogram kurtosis,
histogram percentile 50, GLSZM
LGZE, histogram SD, GLRLM
LRLGE

Trebeschi Retrospective Institutional (NKI, Melanoma, NSCLC 203 (total) Anti-PD-1 Radiomics features Feature selectors: ML: Genetic LR: AUC = 0.62 +
et al., MCC) 133 (train) 70 unsupervised algorithms, RF, LR 0.01
2019% (test) resulting from PCA,  Survival analysis RF: AUC = 0.64 +
supervised resulting  (statistics): K-M for ~ 0.02
from WFS oS
Sun et al., Retrospective Institutional (GRI), Multiple cancer types 385 (total) Anti-PD-(L)1 Radiomic features (texture, Linear elastic net ML: Elastic net AUC of the radiomic
2019%° clinical trial 135 (train) histogram, volume), peak model regularised regression signature = 0.67,
(MOSCATO), TCGA, 119 (validation) Kilovoltage, VOI location method for creation 95% Cl 0.57-0.77
TCIA 137 (ex 10 of radiomics-based  Responders versus
validation) CD8 cell score non-responders
Survival analysis: K-M P = 0.013
Method, stratification OS:
using radiomics- HR 0-58, 95% Cl 0.39-
based score on high 0.87, P = 0.0081
and low, Wilcoxon
and log-rank
Cox’s proportional
hazards model
Ligero Retrospective Database from Multiple cancer 178 (total) Anti-PD-(L)1 Clinical features: baseline Elastic net model ML: Regression model AUC = 0.74, 95% ClI
et al., institution and clinical types, breast, cervix, 85 (training) albumin level, lymphocyte Survival analysis: 0.63-0.84;
2021%7 trials gastrointestinal 46 (testl) count; Kaplan—Meier Sensitivity = 77%;
47 (test2) Radiomic features: histogram, Specificity = 59%

shape
Local-regional texture features

3D, three-dimensional,; Acc, accuracy; AdaBoost, adaptive boosting; AUC, area under the curve; AUC-ROC, area under the receiver operating characteristic curve; CART, classification and regression tree; CCF, Cleveland Clinic Foundation; CCO,
Cleveland Clinic Ohio; CHSQ, chi-square score; Cl, confidence interval; CIFE, conditional infomax feature extraction; CMIM, conditional mutual information maximisation; CMMR, Central Malignant Melanoma Registry; CPH, Cox proportional
hazard; CT, computed tomography; CTLA-4, cytotoxic T-lymphocyte antigen 4; DCB, durable clinical benefit; DCR, disease control rates; DECT, dual-energy specific radiomic features; DelRADx, delta in the radiomic texture; DISR, double input
symmetric relevance; DL, deep learning; DWT1, discrete wavelet transform 1; ECOG PS, Eastern Cooperative Oncology Group performance status; ESBP, EfficientNetV2-based survival benefit prognosis; Ex. Val, external validation; Exp, exploratory
analysis cohort; FAHUSTC, The First Affiliated Hospital of University of Science and Technology of China; FCBF, fast correlation-based filter; FSCR, Fisher score; FUSCC, Fudan University Shanghai Cancer Center; GBM, glioblastoma; GINI, gini index;
GLCM, gray-level co-occurrence matrix; GLCM IMC1, gray-level co-occurrence matrix informal measure of correlation1; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; GPPH,
Guangdong Provincial People’s Hospital; GRI, Gustave Roussy Institute; HPD, hyperprogressive disease; HR, hazard ratio; ICAP, interaction capping; ICl, immune checkpoint inhibitor; IMC, immunochemistry; 10, immunotherapy; ISC, Imaging
Science Center, Department of Diagnostic and Interventional Radiology, Universitatsklinikum Tubingen, Tubingen, Germany; IT, immunotherapy cohort; JAHVHT, James A. Haley Veterans’ Hospital—Tampa; JMI, joint mutual information; K-M,
Kaplan—Meier; k-NN, k-nearest neighbours; LCHHI, Liaoning Cancer Hospital and Institute; LDA, linear discriminant analysis; LDH, lactate dehydrogenase; LGZE, low gray-level zone emphasis; LR, logistic regression; LRLGE, long run low gray-level
run emphasis; MCC, Moffitt Cancer Center; MIFS, mutual information feature selection; MIM, mutual information maximization; ML, machine learning; MRMR, minimum redundancy maximum relevance; NA, not applicable; NGTDM, neigh-
bourhood gray-tone difference matrix; NGTDM, neighbourhood gray-tone difference matrix; NKI, Netherlands Cancer Institute; NLR, neutrophil-to-lymphocyte ratio; NPV, negative predictive value; NSCLC, non-small-cell lung cancer; OS, overall
survival; PCA, principal component analysis; PD-(L)1, programmed death-ligand 1 (PD-L1)/programmed death protein 1 (PD-1) PD-L1ES- PD-L1 expression signature; PDS, progressive disease score; PET, positron emission tomography; PFS,
progression-free survival; PP, pseudoprogression; PPV, positive predictive value; Pre, precision; PRS, partial response score; QDA, quadratic discriminant analysis; QVT, quantitative vessel tortuosity; RELF, ReliefF; RF, random forest; RFE, recursive
feature elimination; RLV, run-length variance; RMH, Royal Marsden Hospital; RP, run percentage; RSF, random survival forest; Sen, sensitivity; Spec, specificity; SPH, Shanghai Pulmonary Hospital; SRE, short runs emphasis; SResCNN, small residual
convolutional network; SVM, support vector machine; SZHGE, short-zone high gray-level emphasis; SZLGE, short-zone low gray-level emphasis; T, training cohort; TCGA, The Cancer Genome Atlas; TCIA, The Cancer Imaging Archive; Te, test cohort;
TMB, tumour mutational burden; TMBRB, tumour mutational burden radiomic biomarker; TPO, baseline; TP1, timepoints 1-3 months; TPD, true progressive disease; TSCR, test score; TTP, time to progression; UHTMC, Union Hospital—Tongji
Medical College; UHZ, University Hospital Zurich; UPHS, University of Pennsylvania Health System; V, validation cohort; VOI, volumes of interest; WCH, West China Hospital; WCHSU, West China Hospital of Sichuan University; WFS, wrapper feature
selection; WLCX, Wilcoxon rank sum; XGBoost, eXtreme Gradient Boosting.

®Any early tumour changes reflecting a possible improvement of the response.
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classifying responders and non-responders (AUC 0.69-0.79)
across three different external datasets. Only 14% (n = 5) of
included studies used DL techniques. Fang et al.*” devel-
oped a deep patient graph convolutional network (DeePaN),
integrating 100 electronic health records (EHR) and genomic
data features to divide patients into five subgroups that
showed significant OS differences (P value < 0.0001). Codes
are publicly available for 35% (n = 13) of the included
studies.

Several of the reviewed studies have used Al tools
showing a better performance compared to standard ICl
biomarkers. Results confirmed TMB, KRAS, TP53, STK11, and
MSI as the most relevant on predictive Al algorithms when
integrated with additional biomarkers [e.g. clinical charac-
teristics, neutrophil-to-lymphocyte ratio (NLR), lactate de-
hydrogenase (LDH), albumin, disease burden, PD-L1]. Again,
a TMB related LASSO score (TLS) was used to stratify uro-
thelial carcinoma patients, between responders and non
responders to ICI.>° Finally, new candidate biomarkers have
been discovered with such Al tools e.g. loss of heterozy-
gosity status in human leukocyte antigen (HLA LOH) and
genomic intra-tumour heterogeneity (ITH).

Transcriptomics. Studies that used transcriptomics data
manly reported gene signature-based models which
outperform conventional biomarkers such as PD-L1 in
different cancer types.*®49>2

Moreover, the use of Al tools has allowed for the dis-
covery of previously unknown biomarkers. For instance,
Charoentong et al.**used ML to identify determinants of
tumour immunogenicity, resulting in the development of the
immunophenoscore. Zheng et al.>®> developed a predictive
model incorporating biomarkers to achieve an AUC of 93% in
clear cell renal cancer carcinoma treatment, indicating that
Al algorithms can identify more precise and effective bio-
markers. At length, new RNA-based biosignatures have been
generated with Al transcriptomics such as the signature of
cancer stemness, cuproptosis, AGR (angiogenesis), HLA pre-
sentation, T-cell exhaustion, and chemokine signalling.

Epigenomics. Al has shown significant potential in the dis-
covery of epigenomics biomarkers. Firstly, many long non-
coding (Inc) RNA-based signatures have been discovered:
a tumour-infiltrating immune cell-associated IncRNA
(TIICIncRNA), immune-related IncRNA signature (IRLS),
tumour-infiltrating B lymphocytes Inc signature (TILBIncSig),
and ML models in low-grade gliomas, colorectal carcinoma
and different type of cancers, respectively, for predicting ICI
efficacy or as an independent risk factor.

Additionally, Al-driven approaches have been applied to
the analysis of DNA methylation data. Filipski et al.®®
revealed that latent methylation components-based signa-
tures were predictive for IClI in metastatic melanoma pa-
tients. Xu et al.°” demonstrated the potential of DNA
methylation profiles in predicting ICl response across can-
cers, using a high-performing SVM model. Pan et al.”®
identified five CpG sites in an immunophenotype-related
methylation  signature, which  provided immune

Volume 35 m Issue 1 m 2024

heterogeneity information and potential clinical treatment
guidance for lung adenocarcinoma.

Radiomics

Our inclusion criteria identified 20 studies using radiomics
features (Table 3). Since many papers used a small number
of patients (<100 patients), in Supplementary Information
3, Table S3, available at https://doi.org/10.1016/j.annonc.
2023.10.125, we included 11 studies that were initially
excluded using that criterion. Most of the studies (60%, n =
12) are done on NSCLC patients, followed by studies done
on melanoma (20%, n = 4). Codes are publicly available
only for three studies (15%). Broadly, two typical workflows
are present in the selected studies. The first includes
manual or semi-automated image segmentation followed
by feature extraction that is not part of the learning pro-
cess, feature selection, and finally ML prediction (75% of
the studies, n = 15). The second approach includes the use
of DL models (25% of the studies, n = 5), mainly CNN
models, where segmentation can be incorporated into the
DL architecture, features are not manually defined and
selected, and the model learns from raw data.

One of the largest and most recent studies that used the
first, ML-based approach was an analysis on 575 melanoma
patients treated with ICl in the prospective KEYNOTE-002
and KEYNOTE-006 trials, conducted by Dercle et al.’®. Us-
ing an RF algorithm, a radiomic signature combining four
imaging features (two related to tumour size and two
reflecting changes in tumour imaging phenotype) was
identified and showed a higher performance in estimating
OS compared to the standard method (RECIST criteria) (AUC
0.92 versus 0.80). Among studies using the second, DL-
based approach, a study conducted by Tian et al.** where
DL CNN for extracting DL features and a fully connected
network that combines DL features, pre-defined radiomic
features, and clinical features was used to create a PD-L1
expression signature. This signature was further validated
to predict PFS using Kaplan—Meier group stratification on
high and low risk (P = 0.01).

Related to meta-biomarker discovery, the importance of
different features is reflected directly within the developed
algorithm and therefore it is difficult to always draw con-
clusions on a single biomarker value and on one which is
giving weight to the ICl prediction. Some notable bio-
markers discovered include predictive signatures for NSCLC
treatment sensitivity to nivolumab, docetaxel, and gefiti-
nib’%; a TMB radiomic-based biomarker’’; and a deeply
learned score (DLS) for predicting programmed death-ligand
1 (PD-L1) expression.** Moreover, studies have identified
potential radiomics markers for rapid PD,*** survival out-
comes prediction,®”°° and immunotherapy response pre-
diction in NSCLC and melanoma patients.®>?* Furthermore,
radiomic signatures have been developed to predict tumour
immune phenotype and clinical outcomes for patients
treated with IC1.°°°7 Interestingly, some papers (10%) have
also been focused on peritumoral texture®***> by exploring
the TME. Finally, interestingly, some radiomic features
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Table 4. Studies using digital pathology features and artificial intelligence to predict immunotherapy response

Authors Type of Data source Type of cancer No. of patients Therapy Biomarkers Feature selection Developed model Outcomes results
and years study
Harder Retrospective Clinical trial (MISIPI study), Melanoma 31 (total; cross- Ipilimumab  Pathomics: Monte Carlo cross- ML: Best model: decision tree
et al., institutional (INT-Pascale) validation) CD3, CD8, and FoxP3 validation Cell-free segmentation and model based on relative
2019 cell-free densities of CD8+ TILs in
classification—learning-  the intratumoural
based annotation-free infiltration region.
approach and ANOVA for CNN accuracy: 98.2%
model comparison
DL:
Region classification for
accurate differentiation
between melanin and IHC
marker-positive immune
cells —CNN
Park et al., Retrospective TCGA; institutional (SMC, NSCLC 3017 (total) Immune Pathomics: NA ML: classification; Lunit PFS (months; Kaplan
2022%° SNUBH) 2389 (Al algorithm checkpoint IP assessed by spatial SCOPE 10 —Meier): 4.1 with
development) inhibitors  distribution of TiLs; Survival analysis inflamed IP, 2.2 with
518 (patients Al-powered spatial TIL (statistics): K-M immune-excluded IP, 2.4
evaluated for survival) analyser (Lunit SCOPE 10) with immune-desert IP
110 (external P=9.6x10""and 4.1x 10
validation cohort) —4
0OS (months; Kaplan
—Meier): 24.8 with
inflamed IP, 14.0 with
immune-excluded IP, and
10.6 with immune-desert
IP.
P = 0.023 and 0.002
Baxi et al., Retrospective Clinical trials (CheckMate Urothelial 4248 (total slides) Nivolumab; Pathomics: PD-L1 Clinical (based on DL: CNN High correlation in PD-L1
2022'%° 275, CheckMate 026, carcinoma, 1960 (training set Nivolumab expression pathologists’ expertise) assessment between DL

CheckMate 057,
CheckMate238,
CheckMate 141,
CheckMate 067)

Althammer Retrospective Clinical trial (Study 1108/

et al., NCT0169356)

2019'*

Johannet  Retrospective Institutional (NYUPCCC,
et al., VUICC)

2021'

melanoma, NSCLC,
HNSCC

NSCLC

Melanoma

slides)
2288 (test set slides)

362 (163 treated with
immunotherapy and
199 not treated with
immunotherapy)

151 (total)

121 (training set)
30 (independent
validation set)

plus
ipilimumab

Durvalumab Pathomics: PD-L1 and
CD8 expression

Clinical (based on
pathologists’ expertise)

Anti-PD-1  Multivariable classifier
and/or anti- including DL and clinical
CTLA-4 data; cell nuclei

Backward stepwise
selection

DL (not specified)

DL: Segmentation and
response classification:
DCNN

model and pathologists (r-
score ranging from 0.73 to
0.85);

Similar prediction of ORR
with manual and Al-
powered PD-L1 evaluation
(respectively, AUC = 0.596
and AUC = 0.602)

OS (by multivariate Cox
regression analysis) was
significantly longer for
signature-positive patients
(PD-L1 and CD8+)
compared with signature-
negative patients
(21.0versus 7.8 months;

P = 0.00002)

The multivariate model
was able to predict ORR
with AUC = 0.8 and to
categorise patients in high
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Table 4. Continued

Bundang Hospital)

Among them 430 used
as 10 test

Survival analysis (statistics)
for stratification based on
TPS score

Authors Type of Data source Type of cancer No. of patients Therapy Biomarkers Feature selection Developed model Outcomes results
and years study
important for the Inception v3 as foundation versus low risk of
prediction architecture progression (P = 0.003)
Hu et al.,  Retrospective TCGA-SKCM, institutional Melanoma 299 (total) Anti-PD-1  Prediction of response to PCA DL: Xception (neural Prediction of response to
202102 (PUCH, GPCH) (training and 190 (training set) anti-PD-1 network with ImageNet  anti-PD-1 (melanoma):
validation) and 109 (ex. validation set) pre-trained parameters) AUC = 0.778
lung cancer (only Prediction of response to
validation) anti-PD-1 (lung cancer):
AUC = 0.645
Chen et al., Retrospective Institutional (PUCH); Gastric cancer 80 (total enrolled Anti-PD-1  Pathomics: Threefold cross-validation Image analysis system Higher levels of specific
2022 clinical trials patients) or anti-PD- Density and spatial and multiple repetitions of (inForm) tumour-infiltrating T-cell
(NCT03472365, 59 (patients treated L1 patterns of tumour- the whole prediction ML: classification: ETC, subsets are associated
NCT03713905). with immunotherapy) infiltrating immune cells process (due to some ABC, GBC, and MLP with shorter OS in the
44 (training cohort classifiers having random global population.
—treated with starting points) Univariate Cox
immunotherapy) proportional hazard
15 (validation regression model was used
cohort—treated with for calculating HR of each
immunotherapy) indicator in survival
analysis
Choi et al., Retrospective Multiple institutions (SMC, NSCLC 802 (development) ICl Pathomics: TPS NA DL: CNN (faster R-CNN) for Two groups:
2022'0° Seoul National University 479 (ex. Validation) TPS score creation PFS

HR = 0.62, P = 0.002
(oY)
HR = 0.61 P = 0.013

ABC, AdaBoost classifier; Al, artificial Intelligence; ANOVA, analysis of variance; AUC, area under the curve; CD3, cluster of differentiation 3; CD8, cluster of differentiation 8; CNN, convolutional neural networks; CTLA-4, cytotoxic T-lymphocyte
antigen 4; DCNNs, deep convolutional neural networks; ETC, extra tree classifier; FOXP3, forkhead box P3; GBC, gradient boosting classifier; GPCH, Guangdong Province Cancer Hospital; HNSCC, head and neck squamous cell carcinoma; HR, hazard
ratio; ICI, immune checkpoint inhibitor; IHC, immunohistochemistry; INT, Istituto Nazionale Tumori; 10, immunotherapy; IP, immunophenotype; K-M, Kaplan—Meier; L, deep learning; MISIPI, Melanoma ImmunoScore evaluation in patients treated
with ipilimumab; ML, machine learning; MLP, multilayer perceptron; NSCLC, non-small-cell lung cancer; NYUPCCC, New York University Perlmutter Comprehensive Cancer Center; ORR, objective response rate; OS, overall survival; PD-1, pro-
grammed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PUCH, Peking University Cancer Hospital; SKCM, skin cutaneous melanoma; SMC, Samsung Medical Center; SMC, Samsung Medical Center; SNUBH,
Seoul National University Bundang Hospital; TCGA, The Cancer Genome Atlas; TILs, tumour-infiltrating lymphocyte; TPS, tumour proportion score; VUICC, Vanderbilt University Ingram Cancer Center.
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Table 5. Studies using real-world features and artificial intelligence to predict immunotherapy response in cancers

Authors  Type Data Type No. of Therapy Biomarkers Feature selection Developed model Outcomes results
and years of study source of cancer patients
Real-world data
Benzekry Retrospective Institutional (CRCM, AP-HM, NSCLC 298 (total; anti-PD-L1, PS, Hb, NLR RF ML, classification DCR:
et al., GRI) Cross- anti-PD-1, Multiple classifiers, Acc. 0.68
202108 validation)  anti-CTLA-4 best-performing: AUC-ROC 0.74
RF PPV 0.70
NPV 0.68
Sensitivity 0.58
Specificity 0.78
Hellwig Retrospective CheckRad-CD8 trial HNSCC 22 (total; Tremelimumab; DCE Sequential ML, classification Response versus non-
et al, analysis on cross- durvalumab backward selection RF response: sensitivity
2021'%°  prospective validation) based on parallel 78.7%; specificity 78.6%;
cohort random forests AUC 0.866
Weber Retrospective Clinical trial (NCT01176461, Melanoma 289 (total)  Nivolumab, Serum k-NN ML for creating signature  Results on test set:
etal., analysis on NCT01176461) + 119 (training pembrolizumab, protein signature Survival analysis: k-NN 0OS: P < 0.001
20171 prospective institutional (YSPORE-SC, set) ipilimumab —PSEA combined via LR PFS: P = 0.236
data INT—Pascale, MSCC) 170 (total
test sets
from five
different
sets)
Lui et al., Retrospective Institutional (CDARS) HCC 436 (total) Ipilimumab, nivolumab, Shapley Forward and ML, classification; OS 1 year; best-
20221 316 pembrolizumab method: AFP, backward stepwise LR, LASSO, XGB, RF, GBM, performing RF
(training) bilirubin, and selection of the LR NN Internal validation;
79 (test) alkaline Survival analysis; AUC-ROC 0.92; sensitivity
43 (ex. phosphatase XGB time-to-event model  0.84; specificity 0.85; PPV
validation) 0.88; NPV 0.80; PLR 5.74;
NLR 0.18;
External validation
cohort;
RF AUC-ROC 0.91
Arbour Retrospective Institutional (MSK-MGH) NSCLC 543 (total) Anti-PD-(L)1 Scan reports for RECIST Not Fully Test set:
et al., 361 (training reads reported connected DL; classification BOR (three classes):
20212 set)) Sen. class 1 = 84%
92 (test set) Spec. class 1 = 96%
97 external Sen. class 2 = 80%
validation Spec. class 2 = 88%
set) Sen. class 3 = 89%

Spec. class 3 = 93%
PFS (two classes): Acc.
85%

Progression date: Acc.
73%

2 months progression:
Acc. 80%

External set:

BOR (three classes):
Sen. class 1 = 69%
Spec. class 1 = 94%
Sen. class 2 = 43%
Spec. class 2 = 72%
Sen. class 3 = 70%
Spec. class 3 = 75%
PFS (two classes): Acc.
82%
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Table 5. Continued

Authors  Type Data Type No. of Therapy Biomarkers Feature selection Developed model Outcomes results
and years of study source of cancer patients
Progression date: Acc.
59%
2 months progression:
Acc. 82%
Wu et al.,, Retrospective Clinical trials (NCT0184641, NSCLC, bladder 2538 Atezolizumab CRP, PD-L1, cancer type, LASSO ML; Death risk (Y/N);
2022 NCT01903993, transitional cell  (total) Liver metastasis, dNLR, Classification; Best-performing RF;
NCT02031458, carcinoma, RCC 1776 alkaline phosphatase, XGB, RF, LR, LASSO, SVM Test set:
NCT02008227, (Training) albumin, Hb, WBC, number and k-NN AUC-ROC 0.79
NCT02951767, 762 (test of metastasis sites, pulse Acc. 0.72
NCT02108652, NCT0230280, set) rate, PS Sen. 0.78
NCT01984242) Spec. 0.65
PPV 0.73
NPV 0.71
Kappa 0.44
F1 0.76
Brier 0.27
Li et al., Retrospective TCGA, GEO, Imvigor210 NSCLC 428 (total) Anti-PD-1 CD8 + T cells and Univariate COX COX LASSO Test/external validation
2022 117 macrophages Wilcoxon for creating signature set:
(training), 78 test PPS used Adaboost:
(test) LASSO in ML Acc. Cluster 1 0.96/0.84
116 (ex. models Acc. Cluster 2 0.96/0.8
validation) ML: Classification; SVM, RF, Acc. Cluster 3 1/0.96
XGB, AUC Cluster 1 0.96/0.75
Adaboost AUC Cluster 2 0.94/0.79
Survival analysis AUC Cluster 3 1/0.9
DL: Classification; NN F1 Cluster 1 0.96/0.90
F1 Cluster 2 0.93/0.76
F1 Cluster 3 1/0.97
Pre. Cluster 1 0.92/0.89
Pre. Cluster 2 1/0.82
Pre. Cluster 3 1/0.94
Rec. Cluster 1 1/0.91
Rec. Cluster 2 0.87/0.7
Rec. Cluster 3 1/1
Liang Retrospective Clinical trials (NCT0177200, Melanoma 167 (total) 10 Gut Multivariate selbal ML: classification; LASSO,  Responder versus non-
et al., NCT0251739, NCT02496208, 88 (training) microbiome analysis RT, RF, responder
2022'"° NCT000015086, 40 (test set) NN, SVM, SL Test set SVM: AUC 0.73
NCT02471352) 39 (external Ex. Val 1: AUC 0.67
validation 1) Ex Val 2: AUC 0.72
27 (external Ex val combined: 0.63
validation 2)
Muller Retrospective Institutional (NKI, VUMCc, NSCLC 289 (total)  Nivolumab Serum-derived Deep matrix- ML and DL from: diagnostic Stratification between:
et al., EMC), clinical trial 116 protein assisted laser Cortex™? Resistant versus non-
2020"° (NCT00989690) (training) desorption/ data analysis platform: resistant (OS)
98 (ex. ionization (MALDI), Multiple classifiers Ex. val 1 P = 0.037
validation 1) GSEA Ex. val 2 P = 0.007
75 (ex. Sensitive versus non-
validation 2) sensitive (OS)
Ex. val 1 P = 0.038
Ex. val 2 P = 0.179
livanainen Retrospective KISS trial NSCLC, melanoma, 31 (total) Anti-PD-(L)1 Patient-reported Clinical ML ORR:
et al, analysis on genitourinary (cross- data Classification Acc. 75%; AUC 0.71; F1
20227 validation) XGBoost
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Table 5. Continued

Authors  Type Data Type No. of Therapy Biomarkers Feature selection Developed model Outcomes results
and years of study source of cancer patients
prospective cancers, head and score 0.58; MCC 0.4; Sen.
data neck cancer 0.58; Spec. 0.82
Wei et al., Retrospective Institutional (ATHZU) NSCLC, RCC, EESC, 120 (total Camrelizumab PBIMs ASR, LASSO ML classification NDB versus NDB_LS&
202218 GAC, other with 10) Nivolumab regression SVM-RFE, DCB:
91 (training) Pembrolizumab Univariate Cox RFB, and Test set:
29 (test) Sintilimab regression elastic net models. SVM-RFE
40 (without Others ICI Survival analysis AUC-ROC 0.73
10) Acc. ~0.75
Kappa ~ 0.3
Sun et al., Retrospective TCGA, GEO, IMvigor210 Lung 1328 (total) Atezolizumab FRRS (top Random survival ML: Score creation: 10 test set
2021 adenocarcinoma 500 three genes CISD1, forest and PCA RSF and PCA AUC 2-year 0.686
(training) FANCD2, Survival analysis (statistics) AUC 3-year 0.699
348 (10 test) and SLC3A2) K-M AUC 5-year 0.694
Abuhelwa Retrospective Clinical trials (IMvigor210, Urothelial cancer 896 (total) Atezolizumab More clinical-pathological  Clinical ML: OS (GBM):
et al., IMvigor211) 429 factors (curated list). Survival analysis; Ex. Val C-index = 0.71
trainin urated top features: ), ) all):
2021%%° (training) C d top fi CRP, GBM PFS (all)
467 (ex. alkaline phosphatase, NLR, RF-SRC, Ex. Val C-index = 0.62
validation) LDH, tumour sites Cox-boosted, GLM
Gupta Retrospective Clinical trial (CheckMate RCC 2955 (total) Nivolumab More clinical-pathological ~ Bayesian networks ML: 10-fold cross-validation
et al, analysis on 025), IMDC 803 factors Classifiers (BNM/RF):
2021"*  prospective (training) All group OS variables: BNM 0S 12 months: AUC 0.74/
data (cross- MSKCC risk individual-level predictor;  0.77
validation) group, IMDC/Heng LASSO, SVM, and RF AE 3 years: AUC 0.71/0.72
2152 (ex. risk score, TRAE 2 years: AUC 0.72/
validation) Karnofsky PS 0.75
Ex. val (BNM)
0S 12 months: AUC 0.71
Sidhom Retrospective Clinical trial (CheckMate- Melanoma 43 (total) Anti-PD-1 or Tumour-specific TCR featurisation; DL; Responder versus non-
et al., 038) (cross- anti-PD-1 plus TCRs DL model Classification; responder:
2022%%? validation)  anti-CTLA-4 Deep TCR's repertoire Cross-val AUC 0.86
11 (ex. classifier Ex. Val 1 AUC 0.82
validation1) Survival analysis (statistics) Ex. Val 2 AUC 0.61
19 (ex. stratification in low and high Ex. Val combined AUC
validation1) likelihood of response 0.71
groups using model Low versus high likelihood
prediction of response (training)
PFS P = 0.005
Rounis Prospective Institutional (UGHH) NSCLC 66 (total) Anti-PD-1/PD-L1 More clinicopathological LASSO ML Partial response or stable
et al., -fol information. assification; multiple isease versus
| (10-fold inf i Classificati Itipl di
2021 cross- Best: prolonged antibiotics classifiers; best-performing progression disease
validation) administration SVM AUC 0.806
Applied using: JADBio®
Madonna Retrospective Institutional (INT—Pascale) Melanoma 578 (total) Ipilimumab, nivolumab, More clinical variables: Cox ML; survival analysis Time-dependent AUC-
et al., 80% pembrolizumab CLICAL signature model RSF ROC at 36 month 0.81
2021%4 (training set) Survival analysis (statistics) Comparison between five
20% (test stratification in five risk risk groups:
set) groups P = 0.001
117 (ex.
validation)
Liu et al., Retrospective Post-marketing surveillance Gynaecological 117 (total) Camrelizumab, 15 clinica RFE ML Death (simple-XGB) Acc.
2021'%° dataset cancer 70% sintilimab, toripalimab  features Classification; ensemble 0.9706; Rec. 1; Prec. 0.75;

method kNN-stacker

F1 0.8571

Continued
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Table 5. Continued

Clustering analysis
was carried out
following Z-score
normalisation

Authors  Type Data Type No. of Therapy Biomarkers Feature selection Developed model Outcomes results
and years of study source of cancer patients
(training) XGB General AE (GAIN-
30% (test) CB Blender) Acc. 0.7353; Rec.
Ensemble method GAIN- 0.7273; Prec. 0.5714, F1
blender 0.64
Organ AE (kNN-CB)
Acc. 0.6176; Rec. 0.7222,
Prec. 0.619 F1 0.6667
Binary RECIST (KNN-
Stacker) Acc. 0.7059; Prec.
0.8947; Rec. 0.68; F1
0.7727
Wu et al., Prospective Institutional (TAHSYUG) HCC 35 (total) Anti-PD-1 18 key microbial biomarkers; Boruta algorithm ML Responders versus non-
2022%%¢ 70% (train) Phascolarcto Classification: RF responders
30% (test) bacterium AUC 0.837
Odoribacter
Megasphaera
Aggregatibacter
Escherichia
Shigella
Gemmiger
Cloacibacillus
Ruminococcus
Klebsiella
Haemophilus
Coprococcus
Parabacteroides
Faecalibacterium
Barnesiella
Parasutterella
Dorea
Lactobacillus
Harel Retrospective Biobank (Indivumed, NSCLC 143 (total) Immunotherapy (anti-  Gender, age, Limit of detection ML: classification ORR
et al., Germany), Institutional 72 + 36 PD-1 or anti-PD-L1 alone CXCL10, CXCL8 according to XGB algorithm for prediction AUC = 0.79; sen. = 0.78,
2022"% (ISMC) (training)  or in combination with  (from an ELISA RayBiotech of response to spec. = 0.65, PPV = 0.70
35 (test) chemotherapy) -based array definitions. immunotherapy and NPV = 0.73
including 840 proteins) Features with FDR
<0.15 were
selected to
generate the
predictor.

Acc, accuracy; AE, adverse event; AFP, alpha-fetoprotein; AP-HM, Assistance Publique-Hopitaux de Marseille; AUC-ROC, area under the receiver operating characteristic curve; BNM, Bayesian network mode; BOR, best overall survival; CLICAL,
clinical categorisation algorithm; CRCM, Cancer Research Center of Marseille; CRP, C-reactive protein; CTLA-4, cytotoxic T-lymphocyte antigen 4; CXCL10, C-X-C motif chemokine ligand 10; CXCL8, C-X-C motif chemokine ligand 8; CXCL9, C-X-C motif
chemokine ligand 9; DCE, dynamic contrast-enhanced; DCR, disease control rates; DL, deep learning; dNLR, derived neutrophil-to-lymphocyte ratio; EESC, esophageal squamous cell carcinoma; Ex. Val, external validation; GAC, gastric
adenocarcinoma; GBM, gradient boosting machine; GEO, Gene Expression Omnibus; GLM, generalised linear models; GRI, Gustave Roussy Institute; GSEA, gene set enrichment analysis; Hb, haemoglobin; HCC, hepatocellular carcinoma; HNSCC,
head and neck squamous cell carcinoma; 10, immunotherapy; k-NN, k-nearest neighbours; LASSO, least absolute shrinkage and selection operator; LDH, lactate dehydrogenase; LR, logistic regression; MALDI, deep matrix-assisted laser desorption/
ionization; ML, machine learning; MSKCC, Memorial Sloan—Kettering Cancer Center; nlr, negative likelihood ratio; NN, neural network; NPV, negative predictive value; NSCLC, non-small-cell lung cancer; OS, overall survival; PCA, principal
component analysis; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PLR, positive likelihood ratio; PPV, positive predictive value; PS, performance status; PSEA, protein set enrichment
analysis; RCC, renal cell carcinoma; RF, random forest; RT, regression tree; SL, SuperLearner; SVM, support vector machine; TCGA, The Cancer Genome Atlas; TCR, T-cell receptor; TRAE, treatment-related adverse events; WBC, white blood cell;
XGB, eXtreme Gradient Boosting.
?Diagnostic Cortex™ - a platform that employs modern machine learning techniques to design deep learning clinical trials for lung cancer (https://www.biodesix.com/newsroom/press-releases/biodesixs-diagnostic-cortex-platform-used-three-

studies-presented-sitc)

®JADBio (Just Add Data Bio)- a fully automated machine learning (AutoML) system (https://jadbio.com/)
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appeared to be recurrent to most of the algorithms e.g.:
texture, shape, volume, kurtosis, heterogeneity, brightness,
dynamics, gray-level co-occurrence matrix and gray-level
size zone matrix (Figure 2).

Pathomics

Table 4 summarises eight retrospective studies that use
pathomics data, 50% (n = 4) of which were published in
2022. In the Supplementary Table S3, available at https://
doi.org/10.1016/j.annonc.2023.10.125, we report seven
further pathomic studies that use Al to predict molecular
features with therapeutic impact. Eighty-seven percent of
the studies have been conducted on NSCLC (n = 3), mela-
noma (n = 2), or including both cohorts with other cancer
types cohort (n = 2). Seventy-five percent (n = 6) used DL
methods, mainly CNN. Codes are available for 38% (n = 3)
of studies. In pathomics, standard ML methods were used
to (i) carry out segmentation and classification, (ii) create a
prognostic score, or (iii) validate a developed signature. As
an example, Johannet et al.’®? utilised a two-stage Incep-
tion-V3 CNN for segmentation and multivariable classifica-
tion, integrating CNN predictions and clinical data to predict
objective response rate in melanoma patients (AUC = 0.8)
and categorise patients into high versus low risk of pro-
gression (P = 0.003). As for the third approach, Chen
et al.’® used an image analysis system (inForm) to create a
multidimensional tumour-infiltrating immune cells (TIICs)
signature for gastric cancer. The developed signature was
used in different ML models to identify responders to ICl,
and the best-performing model (AdaBoost) achieved an
AUC of 0.85 revealing the inadequacy of a single biomarker.
Table 4 and Figure 3 summarise the most frequent bio-
markers constructed from histological images. Among
these, PD-L1 and TILs were the most explored with a DL
approach (Table 4). In particular, Harder et al.’® identified
image-based signatures in malignant melanoma that may
serve as diagnostic tools for ipilimumab, using a decision
tree model based on CD8+ tumour-infiltrating lympho-
cytes. Park et al.”” revealed three immune phenotypes
(inflamed, immune-excluded, and immune-desert) as po-
tential biomarkers for predicting response to ICl in
advanced NSCLC. Related to PD-L1, Hu et al.'®® demon-
strated the potential of CNN in predicting anti-PD-1
response in melanoma and lung cancer patients. Choi
et al.'® showcased the efficacy of an Al-powered tumour
proportion score (TPS) analyser to decrease interobserver
variation among pathologists and increase accuracy in
therapeutic response prediction for NSCLC. Finally, in a
subset of studies, digital pathology datasets with matched
molecular data have permitted exploratory work in pre-
dicting molecular biomarkers (e.g. driver gene muta-
tion°®*%7) from haematoxylin and eosin (H&E) images.

Real-world data

This group includes standard ML methods applied to the
analysis of RWD, found in 20 studies (see Table 5).
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Thirty percent (n = 6) of included studies are conducted
on NSCLC patients, followed by melanoma (20%, n = 4) and
multicancer (15%, n = 3) cohorts. Most of the studies (16
out of 20, 80%) from Table 5 used supervised classification
(75%, n = 12 standard ML; 12.5%, n = 2 DL; and 12.5%, n =
2 both standard ML and DL) to predict responders versus
non-responders. Two (10%) studies used ML survival anal-
ysis exploiting continuous outcomes (OS and PFS). The main
goal of implementing ML methods was to valorise these
data by capturing nonlinear interactions between used
features, to achieve an improved prediction of ICI efficacy
by using easily accessible and cost-efficient data. For
example, Gupta et al."*' developed a Bayesian network
model using sociodemographic characteristics, tumour
characteristics, and prior treatment types to predict OS in
RCC patients who received nivolumab therapy. Their model
outperformed the International Metastatic Renal Cell Car-
cinoma Database Consortium (IMDC) risk score,**® a wide-
spread prognostic model for targeted therapy in RCC in the
external validation cohort, achieving a mean AUC for OS at
12 months of 0.76, compared to IMDC’s AUC of 0.69. For
example,'** one study used radiology text reports to esti-
mate RECIST-defined outcomes and PFS using a fully con-
nected DL. The developed model, using only the text
reporting the data as input, correctly predicted RECIST PFS
data in 82% of cases within 2 months. They further
compared the model’s prediction to the manual review of
trained medical oncologists and achieved similar results.
Biomarkers identified for RWD Al-based algorithms
(Figure 2) can be divided into three groups: (i) patient, (ii)
treatment, and (iii) cancer-related. Among patient-related
RW biomarkers: NLR, LDH, haemoglobin, C-reactive pro-
tein, performance status (PS), platelets, body mass index,
patient reported outcome, antibiotics, steroids, age, sex,
and gut microbiome were identified. Treatment information
[e.g. ICI class type, line and type of 10-based therapy
(combined or not with CT)] have been used to feed the
algorithm. Finally, the most frequent cancer-related bio-
markers were tumour location, histotype, stage, tumour
burden, liver, and central nervous system metastasis.

Multimodal data

Lastly, we identified five retrospective studies that inte-
grated multimodal data (minimum three modalities) to
predict ICI efficacy, Table 6. They all used a two-step algo-
rithm development: firstly, they created a signature based
on different data combinations and, subsequently, they
provided a method to predict the patients’ survival.

Four out of five (80%, n = 4) used DL to integrate the
data. The NSCLC study'?® demonstrates the value of
multimodal integration in predicting ICI efficacy. The model
with multimodal data, integrated using the intermediate
fusion,”*° outperformed all unimodal models including
TMB, radiomics, and pathomics on the same dataset,
achieving an AUC of 0.80 even when data were unavailable
for some patients. Similarly, the integrated DL model pro-
posed by Yang et al.**" which incorporates serial radiomics,
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laboratory data, and clinical information of patients with
advanced NSCLC, demonstrates an impressively high pre-
diction capability, surpassing traditional RECIST evaluations.
Moreover, Al-driven discovery tools have further helped
identify novel immune phenotypes, such as the LAG-
34CD8+ T-cell population described by Shen et al.**?
from immune checkpoint blockade-treated patients. This
distinct phenotype serves as a prognostic marker for poorer
outcomes in patients with melanoma and urothelial
carcinoma.

Sophisticated Al models leveraging on medical imaging
data were developed by Park et al.,** which used quanti-
tative flow cytometry and RNA-seq immune profiles derived
from [*®F]2-fluoro-2-deoxy-D-glucose positron emission to-
mography (FDG-PET) for predicting CytAct scores in lung
adenocarcinoma effectively. Similarly, Mu et al.™* com-
bined genomics with PET radiomics and clinical data in
different cohorts, validating the algorithm in an IClI cohort
of 149 patients. However, all the selected studies featured
small-volume datasets (<900 patients) despite high-
dimensionality, and critically only one validated results us-
ing an external dataset. The code is available for two studies
(40%).

DISCUSSION

This review critically appraises state-of-the-art Al ap-
proaches (ML and DL) that strive to discover data-driven
biomarkers predicting ICI treatment efficacy in pan-cancer
settings. To the best of our knowledge, this is the first sys-
tematic review of Al methodologies applied to immuno-
oncology that includes different data modalities across all
cancer types. We appraised 90 identified studies across four
major data modalities in cancer: genomics (including tran-
scriptomics and epigenomics), histopathology (pathomics),
radiology (radiomics), real-world and multimodal data
describing the datasets, methodologies, biomarkers, and
results. We report that new Al methodology use for ICI
efficacy prediction is rising, with 80% (n = 72) of included
articles published between 2021 and 2022, most (85% n =
84) being retrospective. Biomarker discovery traditionally
involves analysis of potentially informative qualitative (such
as tissue morphology) or quantitative features (such as
genomics, blood exams) and their association with clinical
outcomes.**> Al/ML/DL methodologies permit exploration
of high-throughput data, with nonlinear relationships
among variables to better select features that indepen-
dently impact prognosis (e.g. LASSO analysis); this could
lead to the creation of models that can reconsider previ-
ously discarded biomarkers. In this review we identified the
potential of these ‘new’ technologies in all data categories.

Identifying genes associated with ICI response is chal-
lenging because of the increasingly high-dimensionality of
multi-omics datasets owing to improvements in sequencing
technologies. ML offers solutions to handle high-
dimensional data, including supervised ML-based gene se-
lection, unsupervised clustering, and DL models. Some
studies developed signatures using non-ICl therapies and
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validated them with ICl-treated patient cohorts, implying a
prognostic rather than predictive nature. Moreover, for the
development and validation of Al, structured public data
storage is needed. Existing public platforms such as The
Cancer Imaging Archive (TCIA),*® TCGA,”* and GEO’? are
good examples of cancer open data storages, where re-
searchers can access large pools of data needed for
research, while Cbioportal’>’“offers an open-source
resource for the interactive exploration of genomics data-
sets. Actually, many papers on genomics (Table 2) were
based on these public platforms. Despite their strengths,
these platforms usually contain only small patient cohorts
with multiple data modalities and without complete
outcome information and hence high-dimensional censored
data. Finally, geometric network analysis can be used to
utilise gene pathway information instead of the aforemen-
tioned apporaches.™®’

Radiomics is one of the most represented fields in pre-
diction of cancer efficacy to ICI enabled by the use of
radiological images to feed emerging Al technologies. Two
systematic reviews/meta-analyses****° have been con-
ducted on radiomic biomarkers: one focused on NSCLC
patients treated with anti-PD-(L)-1"*®* and the other
included all cancer types but excluded studies using DL
methods.**’

Advancements in digitalisation of histological glass slides
into whole slide images (WSI) have enabled pathomics to
rapidly develop. Computational analysis of digitalised his-
tology slides can extract valuable information for improving
clinical decision making in cancer immunotherapy (i.e. his-
tology, PD-L1 TPS images). However, immune-pathology is
relatively unexplored, with most studies focusing on diag-
nosis or identification of biomarkers that could be associ-
ated with benefit to ICI (e.g. MSI,**° PD-L1 status,** and
inflammatory genes**?). DL shows great potential to extract
biomarkers directly from slides and allows for predictive
biomarker discovery; however, validation and implementa-
tion of these models in clinical practice is challenging due to
the rarity of digitalised datasets. Digital capacity building
and introducing them into routine histopathological work-
flows is therefore necessary.

In the real-world environment, ML models can be used to
process vast amounts of information that usually remain
unprocessed,**? e.g. EHR. Compared to other data modal-
ities, RWD is easy to access, routinely collected, and is
easier to handle because it does not require complex
preparations such as specific annotation from experts or
image pre-processing. In addition, neural language pro-
cessing or text mining can be used to extract more infor-
mation from EHRs, but data accuracy control is necessary to
fully trust the results from automated processes, such as
the use of ChatGPT. RWD curation is crucial for algorithm
validation and extensive use as it has a higher risk of being
originally inaccurate compared to other data types.

Al biomarkers from RWD showed consistent results with
conventional statistical methods, confirming the signifi-
cance of factors such as Eastern Cooperative Oncology
Group PS, NLR, and LDH (Table 5). This strengthens the trust
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Table 6. Studies using multimodal features and artificial intelligence to predict immunotherapy response in cancers

Multimodal data

stratification in low- and high-

risk groups using model pred.

Park et al., Retrospective TCIA, GEO, Lung 211 (total) Nivolumab, CytAct DNN DL; creation of a Partial response (Y/N):
2020"%* Institutional (SNUH), TCGA  adenocarcinoma 93 (training), pembrolizumab, score—CytAct AUC 0.88
59 (ex. atezolizumab Survival analysis (statistics); PFS: HR = 0.25, P =
validation1), univariant LR 0.001
59 (ex. validation and K-M; stratification of 0S: HR = 0.18, P = 0.004
2 10 set) patient using
score
Mu et al., Retrospective Institutional NSCLC 897 (total) Anti- EGFR mutation status score  DNN DL: creation of EGFR-DLS PFS: HR = 2.33, P <
202034 (SPH, HBMU, 429 (training) PD-L1, mutation status score 0.001
HMU, HLM) 187 (test) anti-PD-1 Survival analysis: (statistics):
65 (ex. validation) K-M; stratification of patient
149 (10 validation using EGFR-DLS score
set)
67 (TKI validation
set)
Vanguri Retrospective Institutional NSCLC 247 (total; 10- Anti-PD-(L)1 +/- DyAM risk, dNLR, albumin,  Based on ML and DL multimodal BOR:
et al, (MSK) fold cross- CTLA-4 combination brain metastases, combined expertise, L- dynamic attention with 10-fold cross-validation
2022"%° validation) treatment regularisation masking AUC = 0.80 (95% Cl 0.74-
52 (pathology DyAM model 0.86)
validation) Survival analysis: PFS:
46 (radiology Cox proportional hazard C-index 0.74
validation) (using DyAM score as an
input)
K-M: stratification between
low- and high-risk score
Shen et al., Retrospective Clinical trials (NCT0102423, Melanoma, 282 (total) Anti-PD-1, LAG-3 ML: unsupervised clustering: Test cohort
2022'% NCT01295827, NCT01621490, urothelial 188 (training) anti-CTLA-4 expression, survClust for LAG 3 signature OS: P < 0.001
NCT01844505, NCT01927419, carcinoma 94 (test) PD-L1, TMB creation Test subset
NCT01928394, NCT02083484, Survival analysis (statistics), (Imonotherapy)
NCT02553642, stratification P < 0.001
NCT03122522) PFS: P = 0.004
Yang et al., Retrospective Clinical trials (CheckMate- NSCLC 200 (total) Anti-PD-1 Multidimensional serial Clinical DL Responders and non-
20211 870, CheckMate-078, OAK), (fivefold cross-  /PD-L1 information: Classification; responders AUC 60 days
institutional (SLCC) validation) Radiomics, clinical, laboratory SimTA 0.77
data Survival analysis (statistics): AUC 90 days 0.80

Low- versus high-risk

groups:

Median PFS: P < 0.01
Median OS: P < 0.01

Acc, accuracy; AdaBoost, Adaptive Boosting; AE, adverse event; AFP, alpha-fetoprotein; AP-HM, Assistance Publique-Hopitaux de Marseille; ASR, all-subsets regression; ATHZU, Affiliated Tumor Hospital of Zhengzhou University; AUC-ROC, area
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under the receiver operating characteristic curve; BCC, basal cell carcinoma; BNM, Bayesian network model; BOR, best overall survival; CB, CatBoost; CCL5, (C-C Motif chemokine ligand 5); CD4, cluster of differentiation 4; CD8, cluster of
differentiation 8; CDARS, clinical data analysis and reporting system; CRCM, Cancer Research Center of Marseille; CRP, C-reactive protein; CTLA-4, cytotoxic T-lymphocyte antigen 4; CXCL10, C-X-C motif chemokine ligand 10; CXCL8, C-X-C motif
chemokine ligand 8; CXCL9, C-X-C motif chemokine ligand 9; CytAct, cytolytic activity score; DCB, durable clinical outcome; DCE, dynamic contrast-enhanced; DCR, disease control rates; DL, deep learning; DLS, deep learning score; dNLR, derived
neutrophil-to-lymphocyte ratio; DyAM, deep attention-based multiple-instance learning model with masking; EGFR, epidermal growth factor receptor; ELISA, enzyme-linked immunosorbent assay; ESCC, esophageal squamous cell carcinoma; Ex.
Val, external validation; FDR, false discovery rate; FRRS, ferroptosis-related risk score; GAC, gastric adenocarcinoma; GAIN, generative adversarial imputation nets; GBM, gradient boosting machine; GEO, Gene Expression Omnibus; GLM,
generalised linear models; GRI, Gustave Roussy Institute; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; Hb, haemoglobin; HBMU, Fourth Hospital of Hebei Medical University; HCC, hepatocellular carcinoma; HLM, Lee
Moffitt Cancer Center and Research Institute; HMU, Fourth Hospital of Harbin Medical University; HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; ICl, immune checkpoint inhibitor; IMDC, International Metastatic Renal Cell
Carcinoma Database Consortium; INT, Istituto Nazionale Tumori; 10, immunotherapy; ISMC, Israel Sheba Medical Center; K-M, Kaplan—Meier; k-NN, k-nearest neighbours; LAG-3, lymphocyte-activation gene 3; LASSO, least absolute shrinkage and
selection operator; LDH, lactate dehydrogenase; LR, logistic regression ; MALDI, deep matrix-assisted laser desorption/ionisation; MCC, Matthew’s correlation coefficient; MGH, Massachusetts General Hospital; MHC, major histocompatibility
complex; ML, machine learning; MLP, multilayer perceptron; MSCC, Mass General Cancer Center; MSKCC, Memorial Sloan—Kettering Cancer Center; NDB, no durable benefit; NDB-LS, long-term survival with no durable clinical benefit; NKI,
Netherlands Cancer Institute; nlr, negative likelihood ratio; NLR, neutrophil-to-lymphocyte ratio; NN, neural network; NPV, negative predictive value; NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PBIMs,
peripheral blood mononuclear cells; PCA, principal component analysis; PD-1, programmed cell death protein 1; PDAC, pancreatic ductal adenocarcinoma; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PLR, positive likelihood
ratio; PPS, poor prognosis signature; PPV, positive predictive value; Pre, precision; PS, performance status; PSEA, protein set enrichment analysis; RCC, renal cell carcinoma; Rec, recall; RECIST, Response Evaluation Criteria in Solid Tumors; RF,
random forest; RFB, random forest and Boruta; RFE, recursive and feature elimination; RF-SRC, fast unified random forests for survival, regression, and classification; RSF, random survival forest; RW, real world; Sen, sensitivity; SimTA, simple
temporal attention; SLCC, Shanghai Lung Cancer Center; SNUH, Seoul National University Hospital; Spec, specificity; SPH, Shanghai Pulmonary Hospital; SVM, support vector machine; SVM-RFE, support vector machine-recursive and feature
elimination; TAHSYUG, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; TCGA, The Cancer Genome Atlas; TCIA, The Cancer Imaging Archive; TCR, T-cell receptor; TKI, tyrosine kinase inhibitor; TMB, tumour mutational burden;
TRAE, treatment-related adverse events; UGHH, University General Hospital of Heraklion; Umap, Uniform Manifold Approximation and Projection; VUMc, Vrije University Medical Center; EMC, Erasmus University Medical Center, WBC, white
blood cell; XGBoost, eXtreme Gradient Boosting; Y/N, yes/no; YCC, Yale Cancer Center; YSPORE-SC, Yale SPORE in Skin Cancer.
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in Al algorithms when appropriately developed, validated,
and explained.*** Integrating multimodal data remains the
‘cherry on top’ and Al has been recognised for its ability to
extract and combine complementary contextual informa-
tion across different modalities to improve decision making
in oncology.13'13°'135’144

Recently, three different multimodal data integrations
have been reported: (i) early fusion—the creation of a joint
representation from raw data or features at the input level
before feeding it to the model, (ii) late fusion—training a
separate model for each modality and aggregating the
predictions from individual models at the decision level, and
(iii) intermediate fusion—unimodal features are initially
processed separately before a fusion step and subsequent
analysis of the fused representation.”*° Compared to
traditional statistical methods and unimodal models, inte-
grating multimodal data enables the creation of meta-
biomarkers by merging known single/original biomarkers
and discovering new ones from diverse sources. Multimodal
models have shown potential to improve performance, with
an increase in AUC from 0.65 to 0.80 when compared to
unimodal models on the same dataset.*?® Data integration
also offers several advantages, the opportunity to develop
personalised medicine by considering the phenotype, the
genotype and exposome (e.g. behavioural data with new
types of monitoring using wearable devices); future studies
will lead to a more in-depth Al phenotyping.

To ensure that multimodal models can ultimately be
translated to clinic, it is essential that such models are
trained on data available in the clinical setting—clinical
features, imaging and simple molecular tests. It is important
that the field does not generate multimodal models that are
reliant on expensive and technically difficult data sources
(e.g. whole-genome sequencing) that are unlikely to be
available to make predictions in the clinic. Building multi-
modal models reliant on simple data types increases the
possibilities for clinical deployment in the clinical setting,
permitting wide-scale delivery of precision medicine.

Despite its systematic design, our study has limitations
such as excluding methodologically important studies not
directly related to IClI treatment, small sample size publi-
cations (<100), and studies that only used Al for feature
selection. To address this, Supplementary Table S3, available
at  https://doi.org/10.1016/j.annonc.2023.10.125, was
added to include some of the excluded publications
meeting these criteria.

In spite of its promise and potential, there are ongoing
challenges to be solved before Al can be integrated into
biomarker discovery and implementation in immuno-
oncology clinical practice:

Data scarcity and structure: One major limitation to
develop ML methodologies is the requirement of large
amounts of high-quality data. Oncological datasets are
inherently complex, often high-dimensional, incomplete,
biased, heterogeneous, and noisy.*** To achieve good
algorithmic performance, large volumes of high-quality data
are essential necessitating time-consuming curation and
heavy pre-processing.

Volume 35 m Issue 1 m 2024

Models’ heterogeneity: Currently, numerous different
ML-based models are available causing difficulties for re-
searchers to decide which methodology to use. When
choosing the model, researchers should consider the
available data (in volume and diversity), and be aware that
in case of low-volume structured data classical ML meth-
odologies are sufficient.***

Standardisation, protocols, and guidelines in conducting
the research and results reporting: Medical Al systems must
undergo evaluation via randomised controlled trials, the
current gold standard.**® Reporting guidelines like CON-
SORT-AI"*" and SPIRIT-AI**® now include Al-specific recom-
mendations, and the ML-CLAIM**® checklist aims to
improve transparent reporting. However, still many studies
lack clear documentation on training, test and validation
cohort selection, methodological development, validation,
comparison with standard methods, and its plan for clinical
integration. Initiatives like ESMO-GROW may offer updated
guidance for RW evidence studies in oncology, including
novel ML methods. As the field advances, and more ML
methods are tested in clinical trials, following these guide-
lines is mandatory.

Biomarkers undergo approval procedures from regulatory
agencies, an important step but in need of standardisation.
Similarly, to integrate Al models and the tools built upon
them as medical software devices, it is necessary to develop a
generalised process for their certification. This is essential for
responsible deployment of Al in the clinic and is a require-
ment to meet the standards of good medical practice.

Models’ interpretability and prediction explainability:
Finally, @ major hurdle for ML adoption in medicine is the
lack of trust in the models. *>**®*>° Algorithmic complexity
can be illuminated with XAl methods, which show results in
an intuitive way making them easy for clinicians and pa-
tients without Al experience to understand. XAl also allows
us to interrogate model design and predictive decision-
making strategies to enhance biological discovery, e.g.
revealing molecular mechanisms underlying primary resis-
tance to immunotherapy. Most of the current studies, as
well as studies included in this review, do not include an
interpretation or explanation of the models and their pre-
diction in their work. This critically important step, XAl,
should be necessary in any ML pipeline. XAl in DL models,
e.g biomarker prediction from images, is more challenging
but ongoing methodological innovations, for example with
saliency mapping techniques,>” offer a solution and must be
supported if such tools are to be clinically implemented.

Models’ generalisability and robustness: ML models for
clinical practice need exposure to diverse data sources from
multiple medical centres to prevent algorithm bias caused
by differences in data structure, staining intensity, patient
demographics, sex, etc. External validation of models is
being increasingly reported in studies (50% of the studies
included in this review), mainly for the studies that are
using data from publicly available data sources, i.e. geno-
mics studies.

Study design: The studies reviewed lacked clearly pre-
defined endpoints and pipelines for immediate
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incorporation of predictive algorithms into clinical practice.
To advance, future studies should be designed as prospec-
tive clinical trials with accurate pre-planned Al methodol-
ogy, such as the I13LUNG trial (NCT05537922). More data-
driven observational studies are needed, particularly for
biomarker-based discovery, like the APOLLO 11 trial
(NCT0555096).

CONCLUSIONS

In this systematic review, we confirmed an increasing use of
Al in order to discover predictive biomarkers for the efficacy
of ICls in various cancers, an approach that can be expanded
to other fields such as the efficiency of chemotherapy or
targeted therapies. Al methodologies have provided new
insights from complex data, but developing Al-based ‘soft-
ware biomarkers’ is hindered by retrospective datasets,
diverse Al methodologies, and opaque decision making.
While these studies provide some hypothesis-generating
insights, direct clinical implementation is limited. To create
an interpretable and responsible Al tool, large-scale pro-
spective validation studies are necessary. Such tools are
critical for 10, where new meta-biomarkers are needed to
predict response.
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