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Abstract 

This study introduces an innovative approach for predicting stress responses in steel bridges, specifically focusing on a railway 
bridge in Vänersborg, Sweden. Four deep learning models have been evaluated: Multilayer Perceptron (MLP), Long Short-Term 
Memory (LSTM), Temporal Convolutional Network (TCN), and a hybrid LSTM-TCN. Training on stress history data from a 
multiscale Finite Element (FE) model and a validation with real-world data from a bridge monitoring system revealed high 
prediction accuracy near sensor locations, surpassing an R-squared score of 0.9, comparable to the polynomial local response 
function method. 
The comparative analysis provides critical insights into the great potential of deep learning-based sequence models for 
identifying intricate, temporally dependent stress patterns across the bridge, including predictions at points distant from direct 
sensor measurements. These models demonstrate a notable capability for capturing highly non-linear relationships between stress 
histories. While sequence models (LSTM, TCN, and hybrid LSTM-TCN) tended to provide conservative estimates impacting 
fatigue life predictions, the MLP model occasionally underestimated critical stress cycles. 
This research emphasizes the potential of deep learning techniques for time series to enhance bridge monitoring systems, 
improve virtual sensing, and enable real-time monitoring capabilities. Our proposed methodology provides a comprehensive 
understanding of stress data in steel bridges, which is crucial for ensuring their maintenance and safety. 
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1. Introduction 

The safety and structural integrity of aged metallic bridges demand heightened attention due to escalating fatigue 
risks. These risks stem from repetitive and variable loads that bridges endure over time. Fatigue can lead to the 
development of cracks, degradation of load-carrying capacity, and, in extreme cases, catastrophic outcomes such as 
the collapse of the Sungsoo Grand Bridge in Seoul in 1994, which resulted in thirty-two fatalities (Cho et al., 2001). 
Such incidents underscore the need to develop effective monitoring and maintenance strategies for these bridges. 

Bridge fatigue assessment has traditionally relied on manual visual inspections and nondestructive testing 
methods. Sensor-based health monitoring systems increasingly complement these assessment approaches. However, 
applying monitoring systems to large-scale bridges brings challenges related to hardware costs, maintenance, and 
operational demands. To overcome these, 'virtual sensing' has emerged as a promising alternative. This concept 
involves integrating computational models and algorithms to estimate a structure's state using indirect or sparse 
sensor data. For example, Hajializadeh et al. (2017) demonstrated this concept by using a calibrated finite element 
(FE) model, combined with weigh-in-motion (WIM) data, to estimate stress ranges and predict cumulative fatigue 
damages in a steel bridge without strain sensors. Iliopoulos et al. (2017) applied similar virtual sensing techniques in 
Offshore Wind Turbines (OWTs), addressing sensor installation challenges in hard-to-reach locations. Integrating 
finite sensor data with calibrated FE models enables stress estimations in physically inaccessible areas. 

Despite these advancements, accurately determining loading conditions for each simulation remains a prerequisite 
for effective stress range calculation using FE models. The substantial computational demands of these simulations 
also limit their feasibility for real-time monitoring applications. With the advent of machine learning, integrating 
machine learning methods with FE models for stress prediction has gained significant attention in structural health 
monitoring. For instance, Leander (2018) utilized theoretical influence lines and artificial neural networks (ANN) to 
predict stress responses from train passages. The study demonstrates the potential of ANNs in stress predictions, 
provided the input variables exhibit similar time variance. Akintunde et al. (2023) introduced a data-driven method 
based on Singular Value Decomposition (SVD) and unsupervised machine learning for strain estimation in 
operational railroad bridges. However, these studies have not fully explored the temporal dependencies of stress 
signals, which is critical for accurate stress prediction. 

This paper addresses this gap by introducing deep learning techniques for time-series analysis in stress prediction, 
a novel application in bridge monitoring. The objective is to efficiently predict stresses in specific areas of steel 
bridges where direct data measurement is challenging, and actual loading conditions are unknown. Building on 
previous work by Menghini et al. (2023), a multilayer perceptron model (MLP) was initially trained and compared 
with the local response function method. Subsequently, two machine learning architectures for time-series problems, 
including Long Short-Term Memory (LSTM) and Temporal Convolutional Networks (TCN), are introduced to 
develop models trained with stress data from a multiscale FE model. The accuracy of these models is examined 
against actual bridge stress responses, with a case study conducted on a railway bridge in Vänersborg, Sweden, to 
validate the proposed methods. 

2. Methodology 

Fatigue analysis in bridge engineering, particularly using methods based on the S-N curve and Linear Elastic 
Fracture Mechanics (LEFM), depends heavily on accurately determining the stress range spectrum. Such precision is 
pivotal for the trustworthy prediction of fatigue life. In response, the subsequent sections will detail methods 
designed to infer structural information at unmonitored locations, aiming to refine stress range estimation accuracy. 
These methods incorporate the use of calibrated Finite Element Models (FEMs) in conjunction with direct on-site 
empirical measurements. 

2.1. Local response function method  

Rather than depending solely on numerical models for computing stress ranges under variable loading conditions, 
a local response function approach was employed to examine stress correlations and predict stress variations. This 
approach facilitates the prediction of stress histories across various elements of a bridge (Menghini et al., 2023). To 
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1. Introduction 

The safety and structural integrity of aged metallic bridges demand heightened attention due to escalating fatigue 
risks. These risks stem from repetitive and variable loads that bridges endure over time. Fatigue can lead to the 
development of cracks, degradation of load-carrying capacity, and, in extreme cases, catastrophic outcomes such as 
the collapse of the Sungsoo Grand Bridge in Seoul in 1994, which resulted in thirty-two fatalities (Cho et al., 2001). 
Such incidents underscore the need to develop effective monitoring and maintenance strategies for these bridges. 

Bridge fatigue assessment has traditionally relied on manual visual inspections and nondestructive testing 
methods. Sensor-based health monitoring systems increasingly complement these assessment approaches. However, 
applying monitoring systems to large-scale bridges brings challenges related to hardware costs, maintenance, and 
operational demands. To overcome these, 'virtual sensing' has emerged as a promising alternative. This concept 
involves integrating computational models and algorithms to estimate a structure's state using indirect or sparse 
sensor data. For example, Hajializadeh et al. (2017) demonstrated this concept by using a calibrated finite element 
(FE) model, combined with weigh-in-motion (WIM) data, to estimate stress ranges and predict cumulative fatigue 
damages in a steel bridge without strain sensors. Iliopoulos et al. (2017) applied similar virtual sensing techniques in 
Offshore Wind Turbines (OWTs), addressing sensor installation challenges in hard-to-reach locations. Integrating 
finite sensor data with calibrated FE models enables stress estimations in physically inaccessible areas. 

Despite these advancements, accurately determining loading conditions for each simulation remains a prerequisite 
for effective stress range calculation using FE models. The substantial computational demands of these simulations 
also limit their feasibility for real-time monitoring applications. With the advent of machine learning, integrating 
machine learning methods with FE models for stress prediction has gained significant attention in structural health 
monitoring. For instance, Leander (2018) utilized theoretical influence lines and artificial neural networks (ANN) to 
predict stress responses from train passages. The study demonstrates the potential of ANNs in stress predictions, 
provided the input variables exhibit similar time variance. Akintunde et al. (2023) introduced a data-driven method 
based on Singular Value Decomposition (SVD) and unsupervised machine learning for strain estimation in 
operational railroad bridges. However, these studies have not fully explored the temporal dependencies of stress 
signals, which is critical for accurate stress prediction. 

This paper addresses this gap by introducing deep learning techniques for time-series analysis in stress prediction, 
a novel application in bridge monitoring. The objective is to efficiently predict stresses in specific areas of steel 
bridges where direct data measurement is challenging, and actual loading conditions are unknown. Building on 
previous work by Menghini et al. (2023), a multilayer perceptron model (MLP) was initially trained and compared 
with the local response function method. Subsequently, two machine learning architectures for time-series problems, 
including Long Short-Term Memory (LSTM) and Temporal Convolutional Networks (TCN), are introduced to 
develop models trained with stress data from a multiscale FE model. The accuracy of these models is examined 
against actual bridge stress responses, with a case study conducted on a railway bridge in Vänersborg, Sweden, to 
validate the proposed methods. 

2. Methodology 

Fatigue analysis in bridge engineering, particularly using methods based on the S-N curve and Linear Elastic 
Fracture Mechanics (LEFM), depends heavily on accurately determining the stress range spectrum. Such precision is 
pivotal for the trustworthy prediction of fatigue life. In response, the subsequent sections will detail methods 
designed to infer structural information at unmonitored locations, aiming to refine stress range estimation accuracy. 
These methods incorporate the use of calibrated Finite Element Models (FEMs) in conjunction with direct on-site 
empirical measurements. 

2.1. Local response function method  

Rather than depending solely on numerical models for computing stress ranges under variable loading conditions, 
a local response function approach was employed to examine stress correlations and predict stress variations. This 
approach facilitates the prediction of stress histories across various elements of a bridge (Menghini et al., 2023). To 
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achieve this, a third-order cubic polynomial function was applied to model the stress correlations. The function is 
refined using the least-squares regression estimator, incorporating stress data derived from a calibrated FE model. 

The resulting correlation function, denoted as 𝑓𝑓, along with a stochastic error component 𝜖𝜖, forms the foundation 
for predicting stress responses. The predicted stress response at a given bridge element 𝑆𝑆ĵ  is estimated from 
experimental measurements at location 𝑆𝑆𝑖𝑖 as expressed by Eq (1). 

ˆ ( ) ( )j i iS S f S = +     (1) 

The details of the methodology, including the specifics of the function's application and the calibration process of 
the FEM model, are thoroughly described in Menghini et al. (2023). 

2.2. Deep learning architectures 

Though the local response function method has proven effective for stress predictions near the sensor locations, it 
has presented challenges.to predict the stress responses at distant locations where structural behavior significantly 
differs. By accounting for temporary dependencies of signals, deep learning models were developed and compared 
to further investigate the complex and implicit stress correlations among different locations. These models include a 
Multilayer Perceptron (MLP), a Long Short-Term Memory Network (LSTM), a Temporal Convolution Network 
(TCN), and a hybrid LSTM-TCN model, each featuring distinct architectures and characteristics. 

The Multilayer Perceptron, a fundamental form of artificial neural networks, is designed to approximate complex 
functions using multiple layers of neurons (Rumelhart et al., 1986). Building on the encouraging findings from 
previous studies, this research explored the MLP's potential to replace the local response function method. 
Specifically, this study employed an MLP model configured with two hidden layers to approximate stress 
correlations. 

Rather than approaching the prediction of the stress response as a nonlinear regression problem, two sequence 
modeling architectures were introduced to account for the temporal dependency in stress correlations. Firstly, Long 
Short-Term Memory Networks (LSTMs) were integrated into the model. LSTMs, as a specialized form of recurrent 
neural networks (RNNs), are designed to bridge the gap between the need for long sequential processing and 
memory retention. By leveraging a gated mechanism, LSTMs excel at tasks requiring the preservation of 
information over time, such as language processing (Sutskever et al., 2014) and time-series prediction (Greff et al., 
2017; Kong et al., 2019). 

The applied model consists of a two-layer stacked LSTM network. As shown in Fig. 1 (a), the model inputs 
segmented strain signals, each a sequence of 30 data points, and processes them through a first LSTM layer of 16 
cells. A dropout layer is included to prevent overfitting and enhance the model's generalizability. The second LSTM 
layer, with 16 cells, further processes the temporal features. Finally, a dense layer compiles the outputs from the 
LSTM layers, producing a single predictive value, �̂�𝑦𝑛𝑛+29, which predicts the strain based on the previous thirty data 
points. A detailed description of the model’s configuration and the training procedure will be provided in a later 
chapter. 

To compare with the LSTM model, a Temporal Convolution Network (TCN)-based model with a similar level of 
parameters was established. As depicted in Fig. 1 (b), the model has two TCN layers, followed by a dense layer that 
outputs the final prediction. 

The Temporal Convolution Network, a tailored convolutional neural network for time series data, was proposed 
by Bai et al. (2018). It has demonstrated superior performance over canonical recurrent architectures such as LSTMs 
and GRUs in various standard sequence modeling benchmarks such as word-level and character-level language 
modeling (Bai et al., 2018). A fundamental aspect of TCNs is the application of causal convolution. This technique 
ensures that the predicted output at any given time (�̂�𝑦t) is influenced only by the current and previous inputs 
(𝑥𝑥0, 𝑥𝑥1, . . . 𝑥𝑥t), and not by future inputs (𝑥𝑥t+1, 𝑥𝑥t+2, . ..). This design is essential to prevent information leakage from 
the future to the past, particularly crucial in time-series analysis of sensor data. 
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Fig. 1. The architecture of the LSTM model and the TCN model. 

Temporal Convolutional Networks (TCNs) leverage dilated convolutions for expanded receptive fields with low 
computational cost and incorporate residual connections for improved gradient flow, offering computational 
efficiency and flexibility over traditional RNNs and LSTMs (He et al., 2016; Yu & Koltun, 2015). For further 
details of mechanisms, see Bai et al. (2018). 

The methodology employed in this study, as illustrated in Fig. 2, involves signal analysis and deep learning 
implementation. Stress histories were extracted from the FE model at points corresponding to the actual locations of 
strain gauges. These historical data were then organized into pairs: one signal at a specific location is used as the 
input, and the other from another position is used as the target for prediction outcomes. A sliding window was 
applied to the input signals to segment the continuous signal into smaller sequences of thirty data points, advancing 
one point at a time (stride of 1). In parallel, the target signal was also segmented, as depicted by the green blocks in 
Fig. 2. Zero-padding was introduced at the beginning of the input signal to align the output sequence length with 
that of the target set. These steps set the stage for deep learning models to learn complex data patterns and predict 
stress responses that closely match the target signal. After training, the models were validated against stress histories 
obtained from on-site measurements, determining their effectiveness in real-world scenarios.  

To prepare the data to validate the trained models, measured strain signals were transformed into stress histories 
by multiplying them by Young's modulus (𝐸𝐸), valued at 210 GPa. Furthermore, the signals were denoised and 
synchronized. Fast Fourier Transform (FFT) analysis was first applied to the signals, allowing for identifying the 
noise frequency range. Then, a low-pass filter with a 5-Hz cutoff frequency was used to mitigate the noisy 
components. The cross-correlation between signal pairs was examined to determine any time lags and ensure proper 
alignment and synchronization of the signals before their subsequent use. 

The subsequent step involves utilizing the preprocessed input stress history to predict stress responses at different 
locations. These predictions were compared with actual on-site measurements. Furthermore, stress range spectra 
were generated using the Rainflow counting algorithm (ASTM, 2017), commonly used in cyclic load analysis. This 
process provides insights into the distribution of stress ranges, serving as a critical metric for evaluating the accuracy 
of models. 
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experimental measurements at location 𝑆𝑆𝑖𝑖 as expressed by Eq (1). 

ˆ ( ) ( )j i iS S f S = +     (1) 

The details of the methodology, including the specifics of the function's application and the calibration process of 
the FEM model, are thoroughly described in Menghini et al. (2023). 

2.2. Deep learning architectures 

Though the local response function method has proven effective for stress predictions near the sensor locations, it 
has presented challenges.to predict the stress responses at distant locations where structural behavior significantly 
differs. By accounting for temporary dependencies of signals, deep learning models were developed and compared 
to further investigate the complex and implicit stress correlations among different locations. These models include a 
Multilayer Perceptron (MLP), a Long Short-Term Memory Network (LSTM), a Temporal Convolution Network 
(TCN), and a hybrid LSTM-TCN model, each featuring distinct architectures and characteristics. 

The Multilayer Perceptron, a fundamental form of artificial neural networks, is designed to approximate complex 
functions using multiple layers of neurons (Rumelhart et al., 1986). Building on the encouraging findings from 
previous studies, this research explored the MLP's potential to replace the local response function method. 
Specifically, this study employed an MLP model configured with two hidden layers to approximate stress 
correlations. 

Rather than approaching the prediction of the stress response as a nonlinear regression problem, two sequence 
modeling architectures were introduced to account for the temporal dependency in stress correlations. Firstly, Long 
Short-Term Memory Networks (LSTMs) were integrated into the model. LSTMs, as a specialized form of recurrent 
neural networks (RNNs), are designed to bridge the gap between the need for long sequential processing and 
memory retention. By leveraging a gated mechanism, LSTMs excel at tasks requiring the preservation of 
information over time, such as language processing (Sutskever et al., 2014) and time-series prediction (Greff et al., 
2017; Kong et al., 2019). 

The applied model consists of a two-layer stacked LSTM network. As shown in Fig. 1 (a), the model inputs 
segmented strain signals, each a sequence of 30 data points, and processes them through a first LSTM layer of 16 
cells. A dropout layer is included to prevent overfitting and enhance the model's generalizability. The second LSTM 
layer, with 16 cells, further processes the temporal features. Finally, a dense layer compiles the outputs from the 
LSTM layers, producing a single predictive value, �̂�𝑦𝑛𝑛+29, which predicts the strain based on the previous thirty data 
points. A detailed description of the model’s configuration and the training procedure will be provided in a later 
chapter. 

To compare with the LSTM model, a Temporal Convolution Network (TCN)-based model with a similar level of 
parameters was established. As depicted in Fig. 1 (b), the model has two TCN layers, followed by a dense layer that 
outputs the final prediction. 

The Temporal Convolution Network, a tailored convolutional neural network for time series data, was proposed 
by Bai et al. (2018). It has demonstrated superior performance over canonical recurrent architectures such as LSTMs 
and GRUs in various standard sequence modeling benchmarks such as word-level and character-level language 
modeling (Bai et al., 2018). A fundamental aspect of TCNs is the application of causal convolution. This technique 
ensures that the predicted output at any given time (�̂�𝑦t) is influenced only by the current and previous inputs 
(𝑥𝑥0, 𝑥𝑥1, . . . 𝑥𝑥t), and not by future inputs (𝑥𝑥t+1, 𝑥𝑥t+2, . ..). This design is essential to prevent information leakage from 
the future to the past, particularly crucial in time-series analysis of sensor data. 

4 Author name / Structural Integrity Procedia  00 (2019) 000–000 

Fig. 1. The architecture of the LSTM model and the TCN model. 

Temporal Convolutional Networks (TCNs) leverage dilated convolutions for expanded receptive fields with low 
computational cost and incorporate residual connections for improved gradient flow, offering computational 
efficiency and flexibility over traditional RNNs and LSTMs (He et al., 2016; Yu & Koltun, 2015). For further 
details of mechanisms, see Bai et al. (2018). 

The methodology employed in this study, as illustrated in Fig. 2, involves signal analysis and deep learning 
implementation. Stress histories were extracted from the FE model at points corresponding to the actual locations of 
strain gauges. These historical data were then organized into pairs: one signal at a specific location is used as the 
input, and the other from another position is used as the target for prediction outcomes. A sliding window was 
applied to the input signals to segment the continuous signal into smaller sequences of thirty data points, advancing 
one point at a time (stride of 1). In parallel, the target signal was also segmented, as depicted by the green blocks in 
Fig. 2. Zero-padding was introduced at the beginning of the input signal to align the output sequence length with 
that of the target set. These steps set the stage for deep learning models to learn complex data patterns and predict 
stress responses that closely match the target signal. After training, the models were validated against stress histories 
obtained from on-site measurements, determining their effectiveness in real-world scenarios.  

To prepare the data to validate the trained models, measured strain signals were transformed into stress histories 
by multiplying them by Young's modulus (𝐸𝐸), valued at 210 GPa. Furthermore, the signals were denoised and 
synchronized. Fast Fourier Transform (FFT) analysis was first applied to the signals, allowing for identifying the 
noise frequency range. Then, a low-pass filter with a 5-Hz cutoff frequency was used to mitigate the noisy 
components. The cross-correlation between signal pairs was examined to determine any time lags and ensure proper 
alignment and synchronization of the signals before their subsequent use. 

The subsequent step involves utilizing the preprocessed input stress history to predict stress responses at different 
locations. These predictions were compared with actual on-site measurements. Furthermore, stress range spectra 
were generated using the Rainflow counting algorithm (ASTM, 2017), commonly used in cyclic load analysis. This 
process provides insights into the distribution of stress ranges, serving as a critical metric for evaluating the accuracy 
of models. 
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Fig. 2. Illustration of the applied methodology 

3. Case Study of the Vänersborg Bridge 

3.1. The Vänersborg Bridge and monitoring campaign 

The Vänersborg Bridge, situated in the southwest of Sweden over the Trollhätte Canal, is an exemplary model of 
early 20th-century engineering. In the autumn of 2021, a monitoring campaign was initiated with a set of sensors, 
including 16 uniaxial strain gauges (SG), 5 uniaxial accelerometers, and an inclinometer for movement tracking of 
the bascule truss. The strain gauges were strategically positioned to avoid areas susceptible to stress concentrations 
and provide nominal stress data of the truss elements. The first eight, shown in Fig. 3, were welded to key structural 
members: SG1 and SG2 on the lower crossbeams, SG3 and SG4 on the adjacent crossbeams, SG5 and SG6 on the 
truss diagonals, and SG7 and SG8 on the upper chord. The rest of the strain gauges (SG9-SG16) were placed on the 
counterweight truss. This arrangement was optimized through rigorous visual inspections and preliminary 
computational evaluations. Together with the strain measurements, five accelerometers are installed at different 
locations. For instance, A3 recorded vertical acceleration in the first crossbeam. More detailed information on 
installed sensors, such as sensor types and layout, can be found in Leander et al. (2023). 

Fig. 3. The sensor layout of the health monitoring system 

The collected data, with a sample frequency of 200 Hz and 10-minute events, is systematically archived. From 
the achieved data, a signal-day strain record containing passages of two different types of trains was used to 
examine the performance of the trained deep-learning models. 
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3.2. Numerical modelling procedures  

To prepare the training datasets for deep learning models, stress histories must be extracted from a multiscale FE 
model that encompasses a global model and several local models. The global model uses beam and shell elements 
for various bridge components. The material properties of steel S275 are assumed for key structural elements. As 
shown in Fig. 4, the counter-weight system is intentionally excluded from the model, being treated as an 
independent, statically determined structure (Menghini et al., 2023). Loading conditions were simulated to represent 
an X55 Regina train transit, employing triangular pulse loads for axle loads and a 10 km/h passing velocity. 

Fig. 4. Global numerical model and local model of the crossbeam (lower). 

Once the displacements are obtained from the global model, connections between the local submodels are 
established through primary nodes according to the procedure in Menghini et al. (2023). A screenshot of the local 
model for crossbeams is displayed in Fig. 4. The red dots represent the locations of sensors (SG1, SG2, SG3, and 
SG4). Detailed time-history stress responses were extracted from these locations with the same sample frequency, 
and these stress histories form the foundation for the subsequent correlation analysis. 

3.3. Stress Correlation Exploration 

Stress histories of strain gauges SG2, SG5, and SG7 from the FE model were used to train four deep-learning 
models. To visualize the relationship between each pair of stress values after synchronization, two scatter plots 
representing correlations of stress responses are shown in Fig. 5. 

Fig. 5(a), illustrating the correlation between SG5 and SG7, features a more confined pattern than SG2 and SG7. 
The former pattern suggests a tighter, more direct association of stresses at two locations. In contrast, Fig. 5(b), 
depicting SG2 and SG7, displays a less dense, more elongated looping structure, indicating a highly non-linear 
nature of dependency. The nuanced complexity revealed in the plot is impossible to model with polynomial 
functions from previous research (Menghini et al., 2023). 

Adding time as another dimension, Fig. 6(a) depicts the temporal evolution of two signals, SG2 and SG7, in a 
three-dimensional space. The color gradient along the data points, ranging from violet to yellow, correlates to the 
magnitude of SG2. It provides an intuitive visualization of stress variation over time. Furthermore, semi-transparent 
planes, distinguished by varying hues, divide clusters of data points across different time intervals. These visual aids 
facilitate the identification of periodic or cyclical patterns in the data with respect to time. As seen in Fig. 6(b), 
during the specified time intervals of 20.3-29 seconds and 29-38 seconds, the correlation patterns between SG2 and 
SG7 are remarkably consistent, indicating a non-linear and time-influenced relationship between the two stress 
measurements. Such insights highlight the potential benefits of employing sequence modeling techniques within 
deep learning frameworks to capture complex, temporal correlations adeptly. The regularity and predictability 
implied by these patterns suggest that sequence models, such as LSTMs and TCNs, could be particularly effective in 
modeling these dynamic relations for predictive analyses. 
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3.2. Numerical modelling procedures  

To prepare the training datasets for deep learning models, stress histories must be extracted from a multiscale FE 
model that encompasses a global model and several local models. The global model uses beam and shell elements 
for various bridge components. The material properties of steel S275 are assumed for key structural elements. As 
shown in Fig. 4, the counter-weight system is intentionally excluded from the model, being treated as an 
independent, statically determined structure (Menghini et al., 2023). Loading conditions were simulated to represent 
an X55 Regina train transit, employing triangular pulse loads for axle loads and a 10 km/h passing velocity. 

Fig. 4. Global numerical model and local model of the crossbeam (lower). 

Once the displacements are obtained from the global model, connections between the local submodels are 
established through primary nodes according to the procedure in Menghini et al. (2023). A screenshot of the local 
model for crossbeams is displayed in Fig. 4. The red dots represent the locations of sensors (SG1, SG2, SG3, and 
SG4). Detailed time-history stress responses were extracted from these locations with the same sample frequency, 
and these stress histories form the foundation for the subsequent correlation analysis. 

3.3. Stress Correlation Exploration 

Stress histories of strain gauges SG2, SG5, and SG7 from the FE model were used to train four deep-learning 
models. To visualize the relationship between each pair of stress values after synchronization, two scatter plots 
representing correlations of stress responses are shown in Fig. 5. 

Fig. 5(a), illustrating the correlation between SG5 and SG7, features a more confined pattern than SG2 and SG7. 
The former pattern suggests a tighter, more direct association of stresses at two locations. In contrast, Fig. 5(b), 
depicting SG2 and SG7, displays a less dense, more elongated looping structure, indicating a highly non-linear 
nature of dependency. The nuanced complexity revealed in the plot is impossible to model with polynomial 
functions from previous research (Menghini et al., 2023). 

Adding time as another dimension, Fig. 6(a) depicts the temporal evolution of two signals, SG2 and SG7, in a 
three-dimensional space. The color gradient along the data points, ranging from violet to yellow, correlates to the 
magnitude of SG2. It provides an intuitive visualization of stress variation over time. Furthermore, semi-transparent 
planes, distinguished by varying hues, divide clusters of data points across different time intervals. These visual aids 
facilitate the identification of periodic or cyclical patterns in the data with respect to time. As seen in Fig. 6(b), 
during the specified time intervals of 20.3-29 seconds and 29-38 seconds, the correlation patterns between SG2 and 
SG7 are remarkably consistent, indicating a non-linear and time-influenced relationship between the two stress 
measurements. Such insights highlight the potential benefits of employing sequence modeling techniques within 
deep learning frameworks to capture complex, temporal correlations adeptly. The regularity and predictability 
implied by these patterns suggest that sequence models, such as LSTMs and TCNs, could be particularly effective in 
modeling these dynamic relations for predictive analyses. 
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Fig. 5. Stress correlation between SG5 &SG7; and SG2 & SG7. 

Fig. 6. (a) Temporal dynamics and correlation of stress SG2 and SG7 in three-dimensional space; (b) Stress correlations in time intervals. 

3.4. Prediction of stress response 

The efficacy of four deep-learning models, including a Multilayer Perceptron, a Long Short-Term Memory 
network, a Temporal Convolutional Network, and an LSTM-TCN hybrid model, in capturing complex correlations 
of stress histories was investigated. The configurations and parameters of each model are detailed in Table 1. All 
models were trained using the Adam optimizer (Kingma & Ba, 2014) and the mean squared error loss function. 

Table 1. Configurations of each model with its number of parameters 

Model Input layer Layer 2 Layer 3 Output layer Parameters 

MLP 1 neuron 64 neurons 64 neurons 1 neuron 4353 

LSTM 16 LSTM cells Dropout 0.1 16 LSTM cells 1 neuron 3281 

TCN TCN 10 filters TCN 10 filters N/A 1 neuron 3481 

LSTM-TCN 16 LSTM cells TCN 10 filters N/A 1 neuron 3993 

These models are considered "lightweights" due to their small number of parameters, which are determined 
through extensive experimental trials. It was observed that the models' performance noticeably declined with a 
reduced number of layers or cells. Moreover, the dropout layer was omitted in the MLP, LSTM-TCN, and TCN 
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models. This decision was based on the observation that including the dropout layer adversely affects the predictive 
accuracy of these models. 

For training, 90% of the total signal data derived from the FE model was utilized, reserving 10% for validation. 
This validation aids in determining the appropriate number of training epochs and monitoring overfitting. Once the 
models are trained, on-site strain signal measurements were employed to evaluate each model's performance. 
Specifically, two typical trains with distinct stress histories during the passages were selected to test the models' 
generality. The results are shown in Fig. 7. 

On the left column of Fig. 7, the predicted stress response 𝑆𝑆�̂�𝑆7 using 𝑆𝑆𝑆𝑆5 from each model is depicted for two 
different train passages. The measured stress response of 𝑆𝑆𝑆𝑆7 is represented by blue lines, while the yellow lines 
denote the output from the local response function method. All deep learning models exhibit comparable accuracy, 
with R-squared scores exceeding 0.9, to the local response function method for the three train signals. However, for 
train type 2 in Fig. 7(b), the local response function method and MLP model tend to underestimate stress 
fluctuations caused by train passage. In contrast, LSTM, TCN, and the hybrid models slightly overestimate the peak 
and trough magnitudes. 

Fig. 7. Predicted stress response of 𝑆𝑆�̂�𝑆7 derived from 𝑆𝑆𝑆𝑆5(left column) and 𝑆𝑆𝑆𝑆2 (right column). 

Fig. 7(c) and Fig. 7(d) contrast the predictions of 𝑆𝑆�̂�𝑆7 using 𝑆𝑆𝑆𝑆2 from deep learning models. Given the challenges 
in approximating the time-dependent correlation with the local response function method, only the results from the 
deep learning models are presented. All models successfully captured the overall trend of signal variations compared 
to the true stress response in blue. Except for the MLP model, the other models generally provided amplitudes close 
to or slightly above the actual measurements. However, the results for train type 1, reveal deviations from the actual 
response, including two unexpected signal peaks and troughs. Potential causes may include discrepancies in the 
modeled versus actual axle distance of trains, variations in train speed, and measurement errors from the strain 
gauges. In fact, the imperfect FEM model can hardly replicate the behaviors of the bridge and thus cause deviations 
in stress correlations. Furthermore, the axle distance of the train and train speed will influence the time-dependency 
of stress variations. The trained model with inconsistent loading conditions and biased mapping between stress 
histories will not give precise predictions. Currently, the FEM model only employs a simple loading condition 

(a) 

(b) 

(c) 

(d) 
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models. This decision was based on the observation that including the dropout layer adversely affects the predictive 
accuracy of these models. 

For training, 90% of the total signal data derived from the FE model was utilized, reserving 10% for validation. 
This validation aids in determining the appropriate number of training epochs and monitoring overfitting. Once the 
models are trained, on-site strain signal measurements were employed to evaluate each model's performance. 
Specifically, two typical trains with distinct stress histories during the passages were selected to test the models' 
generality. The results are shown in Fig. 7. 

On the left column of Fig. 7, the predicted stress response 𝑆𝑆�̂�𝑆7 using 𝑆𝑆𝑆𝑆5 from each model is depicted for two 
different train passages. The measured stress response of 𝑆𝑆𝑆𝑆7 is represented by blue lines, while the yellow lines 
denote the output from the local response function method. All deep learning models exhibit comparable accuracy, 
with R-squared scores exceeding 0.9, to the local response function method for the three train signals. However, for 
train type 2 in Fig. 7(b), the local response function method and MLP model tend to underestimate stress 
fluctuations caused by train passage. In contrast, LSTM, TCN, and the hybrid models slightly overestimate the peak 
and trough magnitudes. 

Fig. 7. Predicted stress response of 𝑆𝑆�̂�𝑆7 derived from 𝑆𝑆𝑆𝑆5(left column) and 𝑆𝑆𝑆𝑆2 (right column). 

Fig. 7(c) and Fig. 7(d) contrast the predictions of 𝑆𝑆�̂�𝑆7 using 𝑆𝑆𝑆𝑆2 from deep learning models. Given the challenges 
in approximating the time-dependent correlation with the local response function method, only the results from the 
deep learning models are presented. All models successfully captured the overall trend of signal variations compared 
to the true stress response in blue. Except for the MLP model, the other models generally provided amplitudes close 
to or slightly above the actual measurements. However, the results for train type 1, reveal deviations from the actual 
response, including two unexpected signal peaks and troughs. Potential causes may include discrepancies in the 
modeled versus actual axle distance of trains, variations in train speed, and measurement errors from the strain 
gauges. In fact, the imperfect FEM model can hardly replicate the behaviors of the bridge and thus cause deviations 
in stress correlations. Furthermore, the axle distance of the train and train speed will influence the time-dependency 
of stress variations. The trained model with inconsistent loading conditions and biased mapping between stress 
histories will not give precise predictions. Currently, the FEM model only employs a simple loading condition 
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(Regina X55 train) as a representative load scenario; expanding the training dataset to include various train 
configurations could enhance prediction accuracy. 

3.5. Stress range spectrum 

For fatigue analysis and accurately predicting the remaining life of steel bridges, precise determination of stress 
range and corresponding cycle count is important. In this pursuit, a rainflow counting algorithm was employed on 
predicted stress responses from deep learning models to extract stress ranges and cycle counts. To minimize the 
impact of minor stress fluctuations in the historical data on cycle counting, a threshold of 5 MPa was applied. As a 
result, stress ranges below this threshold are excluded from the final analysis. 

As demonstrated in Fig. 8, a comparative visualization of stress range cycle counts for predicted 𝑆𝑆�̂�𝑆7, obtained 
based on stress history 𝑆𝑆𝑆𝑆5 and 𝑆𝑆𝑆𝑆2, is presented in a three-dimensional representation. Each bar, distinguished by 
color, represents a predictive model, with the blue bars indicating the actual stress response at the location of strain 
gauge 7 (𝑆𝑆𝑆𝑆7). It is observed that, for most stress ranges, deep learning models overestimate the cycle counts, thus 
yielding conservative estimates for fatigue life. The MLP model consistently fails to predict cycle counts for stress 
ranges exceeding 25 MPa. As the studied maximum stress range is below the endurance limit of the material, 
predictions from MLP will not influence the prediction of bridge fatigue life. However, the results underlined the 
potential superiority of sequence-based models that incorporate the temporal dependencies of signals for accurate 
prediction of stress responses. 

Fig. 8 Comparative analysis of cycle counts: sensor data versus predictive models with 𝑆𝑆7 derived from 𝑆𝑆5 (a) and 𝑆𝑆2(b). 

4. Conclusion 

In this research, four deep-learning models were developed and compared. Based on the calibrated FE model, all 
deep learning models demonstrated high prediction accuracy of stress responses for adjacent bridge elements, with 
R-squared scores exceeding 0.9. This consistency in performance highlights the models' capability to accurately 
approximate the stress responses in the vicinity of sensors, particularly in comparison to the traditional polynomial 
local response function method (Menghini et al., 2023). Notably, the deep learning sequence modeling architectures 
could capture the time-dependent, non-linear stress correlations at more distant locations where structural behavior 
significantly differs, which is impossible with the local response function method. 

It was observed that the LSTM, TCN, and the hybrid model tended to overestimate stress variations, leading to 
conservative fatigue life predictions. In contrast, the MLP model, due to its inherent structural limitations and lack 
of temporal dimension in stress correlation modeling, tended to underestimate predictions. Such underestimation 
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poses a significant concern in fatigue analysis, as it could overlook critical stress cycles, leading to an 
underestimation of accumulated damage over time. 

Interestingly, the study revealed no significant differences in the performance among sequence models, each 
equipped with roughly 3,500 parameters. This finding suggests that the duration of stress responses elicited by a 
single train passage does not suffice to highlight the limitations associated with LSTM-based models, specifically 
their diminished efficacy in handling long-term sequences. Additionally, the TCN model demonstrated remarkable 
computational efficiency during training, thanks to its parallelized convolutional operations, making it a viable 
choice when extensive training data is available. 

However, it is important to note that this study focused on nominal stress at locations without stress 
concentrations. Future research should explore the applicability of these models to local stresses around complex 
geometries. Expanding the training data to include different train configurations is crucial to refine prediction 
accuracy and ensure more reliable stress responses under various load conditions. 

Overall, this study contributes a novel and impactful methodology to bridge virtual sensing, offering a more 
comprehensive understanding of stress response prediction of steel truss bridges, which is crucial for the long-term 
maintenance and safety of infrastructures. 
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(Regina X55 train) as a representative load scenario; expanding the training dataset to include various train 
configurations could enhance prediction accuracy. 

3.5. Stress range spectrum 

For fatigue analysis and accurately predicting the remaining life of steel bridges, precise determination of stress 
range and corresponding cycle count is important. In this pursuit, a rainflow counting algorithm was employed on 
predicted stress responses from deep learning models to extract stress ranges and cycle counts. To minimize the 
impact of minor stress fluctuations in the historical data on cycle counting, a threshold of 5 MPa was applied. As a 
result, stress ranges below this threshold are excluded from the final analysis. 

As demonstrated in Fig. 8, a comparative visualization of stress range cycle counts for predicted 𝑆𝑆�̂�𝑆7, obtained 
based on stress history 𝑆𝑆𝑆𝑆5 and 𝑆𝑆𝑆𝑆2, is presented in a three-dimensional representation. Each bar, distinguished by 
color, represents a predictive model, with the blue bars indicating the actual stress response at the location of strain 
gauge 7 (𝑆𝑆𝑆𝑆7). It is observed that, for most stress ranges, deep learning models overestimate the cycle counts, thus 
yielding conservative estimates for fatigue life. The MLP model consistently fails to predict cycle counts for stress 
ranges exceeding 25 MPa. As the studied maximum stress range is below the endurance limit of the material, 
predictions from MLP will not influence the prediction of bridge fatigue life. However, the results underlined the 
potential superiority of sequence-based models that incorporate the temporal dependencies of signals for accurate 
prediction of stress responses. 

Fig. 8 Comparative analysis of cycle counts: sensor data versus predictive models with �̂�𝑆7 derived from 𝑆𝑆5 (a) and 𝑆𝑆2(b). 

4. Conclusion 

In this research, four deep-learning models were developed and compared. Based on the calibrated FE model, all 
deep learning models demonstrated high prediction accuracy of stress responses for adjacent bridge elements, with 
R-squared scores exceeding 0.9. This consistency in performance highlights the models' capability to accurately 
approximate the stress responses in the vicinity of sensors, particularly in comparison to the traditional polynomial 
local response function method (Menghini et al., 2023). Notably, the deep learning sequence modeling architectures 
could capture the time-dependent, non-linear stress correlations at more distant locations where structural behavior 
significantly differs, which is impossible with the local response function method. 

It was observed that the LSTM, TCN, and the hybrid model tended to overestimate stress variations, leading to 
conservative fatigue life predictions. In contrast, the MLP model, due to its inherent structural limitations and lack 
of temporal dimension in stress correlation modeling, tended to underestimate predictions. Such underestimation 

(a) (b) 
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poses a significant concern in fatigue analysis, as it could overlook critical stress cycles, leading to an 
underestimation of accumulated damage over time. 

Interestingly, the study revealed no significant differences in the performance among sequence models, each 
equipped with roughly 3,500 parameters. This finding suggests that the duration of stress responses elicited by a 
single train passage does not suffice to highlight the limitations associated with LSTM-based models, specifically 
their diminished efficacy in handling long-term sequences. Additionally, the TCN model demonstrated remarkable 
computational efficiency during training, thanks to its parallelized convolutional operations, making it a viable 
choice when extensive training data is available. 

However, it is important to note that this study focused on nominal stress at locations without stress 
concentrations. Future research should explore the applicability of these models to local stresses around complex 
geometries. Expanding the training data to include different train configurations is crucial to refine prediction 
accuracy and ensure more reliable stress responses under various load conditions. 

Overall, this study contributes a novel and impactful methodology to bridge virtual sensing, offering a more 
comprehensive understanding of stress response prediction of steel truss bridges, which is crucial for the long-term 
maintenance and safety of infrastructures. 

Declaration of interests 

No known competing financial interests or personal relationships could have appeared to influence the work 
reported in this paper. 

References 

Akintunde, E., Azam, S. E., & Linzell, D. G. (2023). Singular value decomposition and unsupervised machine learning for virtual strain sensing: 
Application to an operational railway bridge. Structures, 58, 105417. https://doi.org/10.1016/J.ISTRUC.2023.105417 

ASTM. (2017). E1049 Standard Practices for Cycle Counting in Fatigue Analysis. https://doi.org/10.1520/E1049-85R17 
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. 

https://arxiv.org/abs/1803.01271v2 
Cho, H. N., Lim, J. K., & Choi, H. H. (2001). Reliability-based fatigue failure analysis for causes assessment of a collapsed steel truss bridge. 

Engineering Failure Analysis, 8(4), 311–324. https://doi.org/10.1016/S1350-6307(00)00020-0 
Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on 

Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924 
Hajializadeh, D., OBrien, E. J., & O’Connor, A. J. (2017). Virtual structural health monitoring and remaining life prediction  of steel bridges. 

Canadian Journal of Civil Engineering, 44(4), 264–273. https://doi.org/10.1139/CJCE-2016-0286/ASSET/IMAGES/LARGE/CJCE-
2016-0286F10.JPEG 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/10.1109/CVPR.2016.90 

Iliopoulos, A., Weijtjens, W., Van Hemelrijck, D., & Devriendt, C. (2017). Fatigue assessment of offshore wind turbines on monopile 
foundations using multi-band modal expansion. Wind Energy, 20(8), 1463–1479. https://doi.org/10.1002/WE.2104 

Kingma, D. P., & Ba, J. L. (2014). Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, 
ICLR 2015 - Conference Track Proceedings. https://arxiv.org/abs/1412.6980v9 

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2019). Short-Term Residential Load Forecasting Based on LSTM Recurrent 
Neural Network. IEEE Transactions on Smart Grid, 10(1), 841–851. https://doi.org/10.1109/TSG.2017.2753802 

Leander, J. (2018). Fatigue life prediction of steel bridges using a small scale monitoring system. 
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238718 

Leander, J., Nyman, J., Karoumi, R., Rosengren, P., & Johansson, G. (2023). Dataset for damage detection retrieved from a monitored bridge pre 
and post verified damage. Data in Brief, 51. https://doi.org/10.1016/J.DIB.2023.109729 

Menghini, A., Leander, J., & Castiglioni, C. A. (2023). A local response function approach for the stress investigation of a centenarian steel 
railway bridge. Engineering Structures, 286, 116116. https://doi.org/10.1016/J.ENGSTRUCT.2023.116116 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature 1986 323:6088, 
323(6088), 533–536. https://doi.org/10.1038/323533a0 

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. Advances in Neural Information 
Processing Systems, 4(January), 3104–3112. https://arxiv.org/abs/1409.3215v3 

Yu, F., & Koltun, V. (2015). Multi-Scale Context Aggregation by Dilated Convolutions. 4th International Conference on Learning 
Representations, ICLR 2016 - Conference Track Proceedings. https://arxiv.org/abs/1511.07122v3 

 


