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Abstract—Objective: Accurate visual classification of
bladder tissue during Trans-Urethral Resection of Bladder
Tumor (TURBT) procedures is essential to improve early
cancer diagnosis and treatment. During TURBT interven-
tions, White Light Imaging (WLI) and Narrow Band Imag-
ing (NBI) techniques are used for lesion detection. Each
imaging technique provides diverse visual information that
allows clinicians to identify and classify cancerous lesions.
Computer vision methods that use both imaging tech-
niques could improve endoscopic diagnosis. We address
the challenge of tissue classification when annotations are
available only in one domain, in our case WLI, and the
endoscopic images correspond to an unpaired dataset, i.e.
there is no exact equivalent for every image in both NBI
and WLI domains. Method: We propose a semi-surprised
Generative Adversarial Network (GAN)-based method com-
posed of three main components: a teacher network trained
on the labeled WLI data; a cycle-consistency GAN to per-
form unpaired image-to-image translation, and a multi-input
student network. To ensure the quality of the synthetic
images generated by the proposed GAN we perform a de-
tailed quantitative, and qualitative analysis with the help of
specialists. Conclusion: The overall average classification
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accuracy, precision, and recall obtained with the proposed
method for tissue classification are 0.90, 0.88, and 0.89
respectively, while the same metrics obtained in the unla-
beled domain (NBI) are 0.92, 0.64, and 0.94 respectively.
The quality of the generated images is reliable enough to
deceive specialists. Significance: This study shows the po-
tential of using semi-supervised GAN-based bladder tissue
classification when annotations are limited in multi-domain
data.

Index Terms—Bladder cancer, semi-supervised
learning, generative-adversarial networks, image-to-image
translation, tissue classification, multi-domain image
classification.

I. INTRODUCTION

URINARY tract cancer comprises different types of lesions
ranging from benign tumors to aggressive neoplasms with

high mortality. This disease had 164,000 patients reported in
2021 and it is among the top 10 most common cancers world-
wide [1]. Muscle Invasive Bladder Cancer originates on the
inner surface of the bladder and is more likely to metastasize
than Non-Muscle Invasive Bladder Cancer (NMIBC) [2]. The
gold standard for Bladder Cancer (BC) diagnosis is cystoscopy.
In case of finding abnormal tissue, patients should undergo
Trans-Urethral Resection of the Bladder Tumor (TURBT) [3].
This procedure consists of the insertion of an endoscope in the
urinary tract and the removal of visible tumor lesions.

The World Health Organization WHO has defined a stratifi-
cation of urothelial carcinoma accordingly to their propensity of
invasion and it can be generalized into two main classes: High-
Grade Carcinoma (HGC) and Low-Grade Carcinoma (LGC) [4].
Visual classification of BC is a challenging task. The shapes of
lesions either high-grade or low-grade tumors are quite similar in
some cases, and the visual difference between healthy tissue and
non-tumor lesions is not trivial [2]. In fact, definitive diagnosis,
staging, and grading of cancer are only possible after histological
analysis of the resected tissue [5].

The use of different imaging techniques other than White
Light Imaging (WLI), such as Narrow Band Imaging (NBI) can
improve the differentiation of tumorous lesions from normal
tissue [6], [7]. Samples of different bladder tissue in both image
domains are depicted in Fig. 1. In NBI, a white light source is
filtered in two narrow bands of 415 nm and 540 nm. At these
wavelengths, the hemoglobin reflection spectra present a global
and a local maximum respectively [8]. This increases the contrast
between the surface mucosa, the capillaries, and the blood
vessels in the submucosa, therefore improving bladder cancer
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Fig. 1. Sample images of the different classes in the bladder tis-
sue classification dataset. From left to right: High-Grade Carcinoma
(HGC), Low-Grade Carcinoma (LGC), No Tumor Lesion (NTL), and
Non-Suspicious Tissue (NST).

diagnosis by highlighting visual structures that are hard to notice
when using only WLI [9]. Typically during TURBT procedures
an initial inspection using WLI is carried out. Subsequently, in a
second inspection, the anatomical structures deemed suspicious
are examined using NBI to confirm. In some cases, the use of
NBI by itself could be more efficient than WLI in the detection
of NMIBC [9].

Despite the current advances in optical methods and their
implementation in new devices, missing rates are reported to be
between 10 and 20% [10]. The clinical interest in endoscopic tis-
sue classification is related to the actions to be performed during
surgery, as well as the follow-up treatment. The development of
computer-aided diagnosis (CAD) systems for BC classification
could help clinicians reduce current miss-classification rates
which are related to incomplete excision of tumorous tissue,
and cancer recurrence reported to have values of 75% [11]. For
example, identifying a high-grade tumor in real-time could lead
to the resection of a wider and deeper section of the tissue to
avoid future recurrences.

In recent years, Deep-Learning (DL)-based methods have
shown promising results in the analysis of endoscopic images.
Most of the currently available datasets for endoscopic image
analysis focus on colonoscopy [12], [13] and consist mainly of
WLI data. Recently, few studies which include NBI data too
have stressed on the advantage of using multi-domain data in
the colonoscopy scenario [14], [15], [16].

In the case of the urinary system, only a few studies have been
carried out in the task of tissue classification from endoscopic
images [17], [18], [19], [20]. Except for the study presented
in [20] where BL imaging is used, the rest of the studies use
only WLI. Multi-domain image classification implies several
challenges, especially when the data and annotations are not
evenly distributed across the different domains and some of the
classes are under-represented [21].

In the specific case of TURBT some of these challenges
include the fact that visually it is difficult to differentiate between
lesions and the diagnosis is inconclusive [22]. Furthermore, due
to the fact that multi-imaging endoscopes can collect only one
imaging type at the time, it is not possible to have equivalent
pairs of WLI and NBI images. Usually, an initial examination
of the bladder is carried out using WLI and the lesions and
anatomical structures deemed to be potentially cancerous tissue
are examined again with NBI, in case this modality is available
which is not always the case. An additional challenge is related
to the imbalance of data in terms of the different classes and

types of tissue. Non-Suspicious Tissue (NST) usually receives
less attention during interventions, therefore fewer amount of
image data is collected from it than from lesions, either in WLI
or NBI. Furthermore, non-cancerous lesions such as cystitis or
other types of bladder inflammations are less common to appear
in the initial inspection during TURBT. All this contributes to
the fact that most of the datasets (including ours) are imbalanced
not only in terms of different image domains but also in terms
of tissue classes.

In this work, we focus on the task of bladder tissue clas-
sification in multi-domain images from TURBT procedures,
with special emphasis in the fact that annotations only exist
in one of these image domains. Considering that most state-
of-the-art computer vision methods are sensitive to changes in
domain [23], and the specific challenges existing in endoscopic
image classification, we propose a GAN-based semi-supervised
approach which comprises three main components: 1) A teacher
network trained on the labeled WLI images. 2) A cycle consis-
tency GAN to perform the unpaired image-to-image translation
and 3) A multi-input multi-domain image classifier trained in
a semi-supervised way. We show that with our method it is
possible to obtain satisfactory classification results even when
annotations from one domain are not available.

To ensure that the images produced with the proposed transla-
tion network are consistent with the structural and pathological
features of the source domain, we perform a detailed quantitative
and qualitative analysis of the generative models. Additionally,
we validate its quality with help of specialists familiar with the
TURBT procedure. In order to allow future research in the task
of bladder tissue classification, and ease benchmarking of future
methods, we will release the dataset upon publication.

II. RELATED WORK

A. Tissue Classification in Endoscopy

The analysis of endoscopic images has been rapidly develop-
ing in recent years thanks to the recent availability of new public
datasets [13], [24]. In the specific task of tissue classification
different models and techniques have been proposed with a
special focus on the gastrointestinal (GI) tract. The existing
methods range from the proposal of feature extraction mod-
els [25], [26], to the use of transfer learning and pre-trained
CNNs [27], [28] and to more complex methods that focus on
targeting the specific challenges present when working with GI
endoscopic images [29], [30], [31], [32].

In the case of the bladder, Ikeda et al. [19] proposed the use of
2-step transfer learning by first fine-tuning their models on 8728
gastroscopic images, and then re-training the models on 2102
cystoscopy WLI images, using the GoogLeNet model for the
task of binary classification of images with and without NMIBC.
Yang et al. [18] compared the use of 3 different Convolutional
Neural Networks (CNNs) as well as the platform EasyDL.
The models used were LeNet, AlexNet and GoogLeNet. Their
dataset includes 1200 cystoscopy images with cancer and 1150
without. Shkolyar et al. [17] proposed CystoNet, a CNN for
bladder cancer detection and binary classification. In their study,
they used 2335 WLI frames of normal benign bladder mucosa
and 417 histologically confirmed papillary urothelial carcinoma
to train the network. In [33] the use of a Generative Adversarial
Network (GAN) is proposed to perform data augmentation, then
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AlexNet and VGG16 are trained with the real and augmented
data. In total 202 images from a Confocal Laser Endomicroscope
were used in their experiments. In [20] Ali et al. proposed the
use of pre-trained models for the task of cancer malignancy,
grading, and invasiveness classification on BL photodynamic
cystoscopy images. The dataset was composed of 261 BL images
and the pre-trained models used were VGG16, ResNet-50, Mo-
bileNetV2, and InceptionV3. On top of the pre-trained models,
a shallow network was added to perform the classification.

B. Image to Image Translation

Since its introduction, GANs have become an outstanding
method for different tasks in DL applications. GANs have been
used for different purposes on endoscopic images such as the
generation of synthetic images to improve polyp detection, or
the construction of SLAM models to predict depth maps in
colonoscopy [34], [35].

One of the applications of GANs is image-to-image trans-
lation. This task can be resumed as the mapping of an image
in domain A to another domain B. In our case, these domains
correspond to NBI and WLI. These types of models have been
applied in diverse biomedical and endoscopic image tasks such
as the translation between optical colonoscopy images and vir-
tual colonoscopy images [36], the mapping between cadaveric
and live images [37], the adaptation between phantom images
real endoscopic videos among others [38], [39].

Using image-to-image translation with a focus on classifica-
tion has been previously explored in other fields such as emotion
classification, melanoma classification, and breast mass classi-
fication, among others. In this regard, Yoo et al. [40] proposed a
joint learning approach using a mini-batch strategy and adaptive
fade learning to use the generated images in the classifier with
application in visually similar data. Likewise, Zhang et al. [41]
and Mabu et al. [42] proposed the use of cycle consistency for
classification in retinal pathologies identification and opacity
classification in CT scans respectively.

C. Semi-Supervised Image Classification

A common characteristic of medical image datasets is the
lack of large annotated sets [43]. During the last few years
semi-supervised learning methods have progressed as a good
alternative to leverage this large amount of unlabeled data. One
of the most common paradigms of semi-supervised learning is
the use of Teacher-Student Networks (TSN) [44]. In this type
of model, a teacher network is trained on the labeled data, and
a student network is trained on the unlabeled data using the
predictions given by the teacher. Training in semi-supervised
mode allows the student model to learn features from unlabeled
datasets [45].

In the endoscopic scenario, few studies have been carried
out using semi-supervised learning. Du et al. [46] implemented
a semi-supervised contrastive learning method for Esophageal
Disease Classification in a small dataset. Golhar et al. [47]
proposed the use an unsupervised jigsaw learning method for
GI lesion classification obtaining an improvement in accuracy
of 9.8% with respect to supervised methods. Guo et al. [48]
proposed the use of a combination of a discriminative angular
loss and Jensen-Shannon divergence loss for semi-supervised
learning for wireless-capsule endoscopic image classification.

Shi et al. [49] implemented a TSN network for the 3D recon-
struction of stereo endoscopic images.

Recently, semi-supervised GAN-based models have been pro-
posed for image classification in different fields such as natural
images and hyper-spectral image classification [50], [51], [52],
[53]. However, in the field of endoscopic images it remains an
unexplored topic.

Unlike the studies presented in [54], [55], [56], [57], [58]
where cycle-consistency translation has been implemented as
a way of augmenting their datasets, we use image-translation
inside a semi-supervised training loop to improve the classifi-
cation performance of the unlabeled domain. Furthermore, the
methods in which GAN-based semi-supervised methods have
been proposed are mainly focused on the classification of images
of the same domain.

In this work, we propose a synergic semi-supervised GAN-
based method that enables not only the exploitation of unlabeled
data but also performs image translation to alleviate the dataset’s
domain imbalance. This allows the proposed network achieves
a better generalization even in an image domain where labels
are not available.

III. METHODS

Our overall goal is to improve tissue classification of en-
doscopic bladder images when labels are limited to only one
domain, and there is no identical equivalent for every image on
each domain. In our case, the endoscopic images are available
on WLI and NBI domains, and the labels correspond only to the
ones on WLI.

A. Problem Statement

The proposed method consists of three main components; 1) A
cycle-consistency translation network to translate every image in
the dataset and have equivalent paired images in both domains
(NBI and WLI); 2) A teacher network trained on the labeled
WLI data; and 3) A multi-input multi-domain classifier trained
as student network in a TSN semi-supervised way. A schematic
of the proposed model is depicted in Fig. 2.

Let us define a dataset X = XA ∪ XB composed by the
union of two subsets: XA = {(xA1,yA1), . . ., (xAn,yAn)}
composed by n labeled images xi belonging to domain A, and
XB = {xB1,xB2, . . .,xBm} composed bym unlabeled images
xj belonging to domain B. Initially, a classifier C is trained
in a fully supervised fashion on XA. This classifier will work
as a teacher model CT at a later stage. We propose the use of
cycle-consistency image translation to deal with the issue of
an unpaired and imbalanced dataset. For each image in domain
xA ∈ A we will generate an equivalent translation x̂AB ∈ B,
and for every xB ∈ B we will generate an equivalent translation
x̂BA ∈ A. The translated images x̂AB and x̂BA are produced
by the generators GAB and GBA respectively. An advantage of
using cycle-consistency GANs is that an additional image ˆ̂x
is generated, which corresponds to the reconstruction back to
the original image. This can be used as additional data to train
the student classifier. Therefore for every imagexA we have two
extra images x̂AB and ˆ̂xABA and the same forxB where we have
x̂BA and ˆ̂xBAB . Then we train a multi-input classifier CS which
takes as input CS(xA, x̂AB , ˆ̂xABA) or CS(xB , ˆ̂xBA, x̂BAB),
depending on the domain of the input data.
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Fig. 2. Proposed method. The network has two main elements. A). Cycle-Consistency Translation Network that translates the image from NBI to
WLI and vice-versa. B). Teacher network. C). Multi-input network that performs the tissue classification task based on the features from both image
modalities. The classification makes use of backbone networks that extract the features from each of the inputs to the classifier. The features are
processed using Fully Connected (FC) layers which later are concatenated to perform the prediction in the final layer.

B. Cycle-Consistency Translation Network

The unpaired image-to-image translation network is a gen-
erative adversarial network based on the CycleGAN architec-
ture [59]. Two generators GAB and GBA are trained to learn the
mappings between the domains A = WLI and B = NBI, such
that GAB : A → B and GBA : B → A. DA and DB are the two
discriminators trained two distinguish between the real and fake
images of each domain. The proposed model uses three main
losses, the adversarial loss Ladv , the cycle consistency loss Lcyc

and a similarity loss Lsim.
The cycle loss Lcyc is defined as

Lcyc(Gpq,Gpq,xp) = Exp
||xp − Gqp(Gpq(xp))|| (1)

where the indexes p, q represent the domain of the image and
the domain to which is translated. The adversarial loss for each
generator Gpq and discriminator Dp is defined as

Ladv(Gpq,Dp) = Ex̂p
[log(Dp(x̂p))]

+ Exp
[log(1−Dp(Gq(xp)))] (2)

To preserve the fine-grain details, such as the capillaries and
inner blood vessels, that are related to the intrinsic pathology
of each image domain and which are an essential visual cue
for diagnosis assessment, we propose the addition to the cycle-
consistency network a similarity loss Lsim. This is defined as:

Lsim(GAB ,GBA) =

[
1−

N∑
i

F (x̂Ai,GAB(xAi))

]

+

[
1−

N∑
i

F (x̂Bi,GBA(xBi))

]
(3)

where xA ∈ A and xB ∈ B correspond to the images form the
A andB domains and the ith refers index over the a set of images
of N elements. x̂A and x̂B correspond to the translated images
by the generators. F (x, x̂) is the structural similarity (SSIM)
between images x and x̂ proposed in [60] as:

F (x, x̂) =
(2μxμx̂ + c1)(2σxx̂ + c2)

(μ2
x + μ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(4)

Where σx,x̂ is the covariance between x and x̂ :

σx,x̂ =
1

m− 1

∑
(xj − μx)(x̂j − μx̂) (5)

m is the number of pixels; xj and x̂j are the jth pixel of x and
x̂ respectively; μx, μx̂ and σx and σx̂ are the mean intensities
and standard deviations of x and x̂, and c1 and c2 are stabilizing
constants to avoid singularities when μ2

x + μ2
x̂ ≈ 0 and σ2

x +
σ2
x̂ ≈ 0 respectively.
The overall objective function of the generative network is

then defined as

L(GAB ,GBA,DA,DB) = Ladv(GAB ,DA)

+ Ladv(GBA,DB) + λ1Lsim(GAB ,GBA)

+ λ2Lsim(GAB ,GBA) + λ3Lcyc(GAB ,GBA, xA)

+ λ4Lcyc(GBA,GAB , xB) (6)

where λi are the hyper-parameters that balance the impact of
the losses. The generators are trained to minimize the overall
function and the discriminators to maximize it. The proposed
CycleGAN with Similarity loss is termed CSi-GAN in the
remainder of this paper, and the case in which λ1 = λ2 = 0
it reverts to the classical CycleGAN.
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C. Semi Supervised Classification

Initially, the teacher model CT is trained on WLI images in
a fully supervised way. This could be seen as disconnecting
the branch that goes from the input image x to the Cycle-
Consistency Translation Network in Fig. 2, and training the
network to optimize (7) substituting the ŷTi pseudo-labels with
the labels yAi from set XA. Afterward, the student model
CS is trained using the labeled and unlabeled data using the
predictions ŷT obtained from the teacher. The student network
corresponds to a multi-input classifier that takes 3 images as
input CS(x, x̂, ˆ̂x) as depicted in Fig. 2-(C). The first one x is
the original image from either WLI (xA) or NBI (xB) domains,
the other two images correspond to the ones generated by the
generators GAB and GBA respectively. In the case of the branch
that takes as input x, random data augmentation operations
are applied which include random crop, random rotation, and
flipping. Backbone networks b1, b2, and b3, are used to extract
the features of each of the 3 input images. In our case, we used
as backbone ResNet-101 trained on ImageNet. The extracted
features from each of the backbones are processed separately
using a shallow network composed of 3 Fully Connected (FC)
layers. The outputs from these layers are concatenated together,
from which finally the class prediction is performed in the final
layer. The classifier was trained to optimize the categorical
cross-entropy loss defined as:

LC(ŷTi, ŷi) = −
∑
i

ŷTi · log(ŷi) (7)

where ŷi is the predicted output from the student model, ŷTi is
the corresponding pseudo-label provided by the teacher network,
and i refers to the index over the classes.

D. Dataset

For this study, endoscopic videos from 23 patients undergoing
TURBT were collected, as well as the respective histopathologi-
cal analysis from the resected lesions. The matching between the
visual data and the histological results was done with the aid of
an expert surgeon. The matching was performed by analyzing
frame-by-frame the videos. The sections of the bladder from
which lesions were resected during the surgical intervention
were then identified. To avoid ambiguities of having multiple
lesions of multiple types, only the frames in which individual
lesions appeared were used in the dataset. This procedure was
performed on all the WLI video clips as well as 3 patients with
NBI video data. In total 4 classes were defined. Taking into
consideration the general classification of BC as defined in [2] by
the WHO and the International Society of Urological Pathology
(ISUP), two categories were considered for cancerous tissue:
Low-Grade Cancer (LGC) and High-Grade Cancer (HGC). Ad-
ditionally, 2 extra categories were considered for No Tumor Le-
sion (NTL) which comprehends cystitis, caused by infections or
other inflammatory agents, and Non-Suspicious Tissue (NST).
The detailed statistics of the dataset are shown in Table I.

The videos were acquired at the European Institute of On-
cology (IEO) at Milan, Italy. Each patient signed an informed
consent document approved by the IEO and in accordance with
the Helsinki Declaration. No personal data was recorded.

To determine if the use of more data helps to achieve bet-
ter generalization when training the GAN networks, we used

TABLE I
COMPOSITION OF THE DATASET CONSIDERING TWO LIGHT MODALITIES;

WHITE LIGHT IMAGING (WLI) AND NARROW BAND IMAGING (NBI)

TABLE II
DATASET COMPOSITION USED FOR TRAINING THE GAN MODELS

additional data from the datasets presented in [14], [27] which
contains endoscopic images from colonoscopy in NBI and WLI
domains, and [61] which contains unlabeled data from TURBT
as well in NBI and WLI domains.

E. Model Implementation

The model was trained in three steps. First, the cycle consis-
tency GAN was trained for 150 epochs with an initial learning
rate of 2e−4 and batch size of 1. The λ hyperparameters were
set to λ1=λ2=2.0, and λ3=λ4=1.0 The second step consisted
of training the teacher classifier using the labeled dataset XA.
Once the GAN model and the teacher networks were trained, the
multi-input classifier was trained setting the initial learning rate
at 1e−5 using a batch size of 32. The models were implemented
using Tensorflow 2.5 in Python 3.6 and deployed on an Nvidia
GeForce GTX 1080 GPU. The training of the classifiers was
repeated 10 times for each of the different experiments carried
out in this study.

For performance benchmarking of the classifiers, a hold-out
strategy was used, 4 patient cases randomly chosen were held
as test dataset. The rest of the dataset was divided randomly in a
75/25 ratio for training/validation. In the case of the GAN mod-
els, only the train dataset used for supervised classification was
used during the training of the different combinations described
in Table II. For the semi-supervised training apart from using
the labeled WLI images and unlabeled NBI, all NBI cystoscopy
images described in [61] were added to the training dataset. The
test dataset for the semi-supervised task remained the same as
the one used to test the performance of the teacher model.

F. Evaluation Protocol

Each of the different modules that comprise the proposed
method was evaluated separately, and the best components of
each one were chosen.

In contrast with other DL models that are trained to minimize
a loss function, GAN models are trained to converge to an equi-
librium between the generator and the discriminator networks.
For this reason, there is no objective loss function to train this
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type of model, and compare their performance objectively [50].
However, there are some quantitative techniques that have been
proposed to assess the performance of GAN models [62].

1) Quantitative Evaluation of the Generators: Generator
models are usually evaluated based on the quality of the images
they generate. However, this type of evaluation might not fully
show the performance of the models and might be subjective
due to biases of the reviewer [62]. In this regard, some authors
have proposed the use of different metrics such as the Inception
score, to quantitatively evaluate the quality of the generated
images [50]. In our specific case, we have the limitation that
the dataset does not correspond to natural images, such as the
ones on ImageNet dataset, and therefore we can not apply the
Inception score directly. We use instead the FrÃ©chet Inception
Distance (FID) proposed in [63], to quantify the performance of
each generator trained and defined as:

d2 ((m,C), (mω,Cω)) = ‖m−mω‖22
+ Tr

(
C+Cω − 2(CCω)

1/2
)
(8)

were m, C are the mean and covariance obtained from the
last pooling layer of an Inception model using sample images
produced by the generative model respectively, and mω , Cω are
the corresponding ones using images from the original dataset.

We also analyze how the amount of data affects the quality of
the images and the classifiers’ performance. For this purpose, we
use 3 different combinations of datasets coming from 4 different
sources. The datasets composition is shown in Table II.

To measure the sensitivity of the models depending on the
amount of data used, we analyze the sensitivity to noise for
each of the generative models trained on the different datasets as
proposed in [64]. We added zero-mean Gaussian noise N(0, σ)
in a range of σ = [0.025, 0.05, 0.075, 0.1, 0.2] to the translation
result before reconstruction. We compute the Mean Square pixel
Error (MSE) of the reconstructed image with respect to the
original image xi and calculate the sensitivity (SN) using the
equation:

SN =
1

N

N∑
i=1

MSE(Gp(Gq(xi) +N(0, σ)− xi) (9)

We compared the sensitivity for each of the generators in the
proposed Cycle Similarity network (CSi-GAN) and the baseline
CycleGAN.

2) Evaluation by Medical Specialists: Once the different
GAN models were trained, the one with the best FID score was
selected as the one to be used for human evaluation. With this
analysis, we intended to confirm that the quality of the generated
images is good enough to deceive experts, as well as to have a
baseline to compare the classification performance of the models
with respect to the ones from specialists.

To qualitatively evaluate the utility of the images an online
survey was set up where medical experts were asked to complete
two tasks. In the first task, 20 pairs of randomly selected images
were shown to the participants. Each image pair corresponded to
two images from the same domain; one of them was an original
image taken with the endoscope while the other corresponded
to a translated image by the GAN. The participants were asked

to identify which one was the original one, and which one was
the generated one. For this task, NBI and WLI image pairs were
evenly distributed with 10 samples for each case. In the second
task, 40 pairs of images were shown to the participants. The clini-
cians were asked to classify the images according to the 4 classes
explained in Section III-D. Each image pair corresponded to one
of the following options distributed in a 50/50 ratio: 1) A pair
of images that showed the same anatomical region at different
times. In this case, the pair of images could correspond to two
images of the same region and the same domain or two images
of the same region but with a different domain, i.e. (NBI, NBI),
(WLI, WLI) and (NBI, WLI). Each of the possible cases was
evenly distributed. 2) In the second option, again two images
were shown that correspond to the same anatomical region at
different times. However, in this case one of the images was
domain translated. The images used in this task were randomly
chosen, taking into consideration having an even distribution of
the 4 different tissue classes. Image pairs from options 1) and 2)
were randomly ordered across the survey.

3) Evaluation of the Classifiers: Once the GAN models
were trained, we incorporate them into the general workflow
using them as the base backbone to produce the multi-domain
input images to feed the student classifier. The training was
performed first in a fully supervised manner and then in a
semi-supervised way using the previously trained teacher. To
select the teacher model, diverse pre-trained models previously
used in the literature were trained and the one with the best per-
formance metrics was chosen as the teacher. We also performed
ablation studies as well to demonstrate the utility of each of the
elements of the proposed method. In the final stage, we train the
multi-input classifier in a fully supervised way, using each of
the previously trained generative models to determine whether
there is a correlation between the classification performance and
the quality of the generated images.

G. Evaluation Metrics for Classification

To evaluate the classification performance of the proposed
method we used the metrics: accuracy (Acc), precision (Prec),
recall (Rec), and F1-score. Additionally, as proposed in [48] we
also evaluated the model using Matthews correlation coefficient
(MCC) and Cohen’s kappa (CK) statistic which has shown to be
effective to benchmark diagnosis reliability of classifiers [65].
Mann Whitney U-test was used to determine the statistical sig-
nificance. In the case of the user’s experiments, the same metrics
were used to evaluate their performance. Additionally, for the
users’ task of identifying the real images from the fake ones, the
Area Under the Curve of the Receiver Operating Characteristic
curve AUC was used.

IV. RESULTS AND DISCUSSION

This section is divided into two main subsections. First,
we evaluate the performance of the image-translation network
quantitative and qualitatively. Then we proceed to analyze the
results of the classification network and the influence that the
quality of the generated images has on the overall system, as
well as the different components of the system.
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Fig. 3. Samples of the generated images for the 4 classes on the 2 domains using each of the GAN models. For each model trained on the 3
different datasets (D1, D2, D3) two images are shown: 1) the translated image to the complementary domain, and 2) the reversed translation back
to its original domain.

A. Evaluation of the GAN Models

The first set of results corresponds to the qualitative assess-
ment of the synthetically generated images. Samples of ran-
domly chosen generated images by the different GAN models
trained are shown in Fig. 3. A visual comparison shows that
the amount and diversity of training data improve the quality
of the images. We can observe that the addition of data helps
the network learn the existence of other objects which do not
correspond to the anatomical structures in the body, such as
tools or bubbles. This shortcoming where the networks tend to
disappear external structures by coloring them with the same hue
as the rest of the background is more perceptible when models
are trained with small datasets (D1). Furthermore, in these cases,
the network also presents some noticeable flaws since sometimes
the generated images present black dots scattered at diverse
points. Nevertheless, the use of only external data (D2) also alters
the hue of the translation. This could be linked to the fact that
the external data comes mainly from GI images which present
different tints and anatomical formations than the ones present in
the bladder. In general, for both cases cycleGAN and CSi-GAN
the use of the more general dataset (D3) which comprises data
from the same anatomical target and external data produce the
best quality images. However, still some image artifacts such as
specularities, reflections, interlacing, etc. appear in the generated
images without being present in the original one. The most
significant improvement comes from using the Lsim loss to
train the GANs. The fine-grain details, such as small vessels,
are better preserved and highlighted after the translations, and it
also helps to reduce the amount of noise in the image. Similar

TABLE III
FID SCORES AND AUC OF THE SENSITIVITY CURVES FOR EACH OF THE

GAN MODELS TRAINED ON THE DIFFERENT DATASETS

behaviors can be observed in the video material attached to this
manuscript.

1) Quantitative Evaluation of the GAN: To evaluate the
quality of the images generated by the GAN models the FID
score and the AUC of the sensitivity curve were used. The
results obtained for both metrics are shown in Table III. The
model that obtains the best metrics for both cases, i.e. lower
values, is the proposed CSi-GAN when trained on D3. In the
case of FID score there is a clear difference between CycleGAN
and CSi-GAN regardless of the dataset used for training, with
CSi-GAN obtaining in general better results. In the case of the
AUC of the Sensitivity curve, the difference between the two
models is not that obvious. This could be associated with the
fact that neither of the networks is designed from the origin to
be noise-resistant. However, there is a clear tendency that the
addition of data makes CSiGAN more resistant to the addition
of noise than its counterpart CycleGAN. This might be related to
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TABLE IV
AVERAGE RESULTS ± STANDARD DEVIATION FROM THE SPECIALIST

EVALUATION REGARDING THEIR ABILITY TO DISCERN BETWEEN REAL AND
GENERATED IMAGES

the fact that even if the addition of more data helps CycleGAN
to generalize better in domain translation the lack of a structural
loss inhibits it to discern properly between the correct informa-
tion to produce a satisfactory translation, and the information
that seems useful but is just noise. This could also explain the
reason why CycleGAN obtains better metrics when trained on
dataset D2 than on D3 since the quality of the images of D2 is
higher and less noisy.

2) Evaluation by Medical Specialists: In order to perform
a more exhaustive analysis, a protocol was implemented to
acquire feedback from expert clinicians in the field of endoscopy
as described in Section III-F2. A total of 20 physicians from 10
different institutions familiar with TURBT participated in the
study. Of this, 15 corresponded to Expert Surgeons (ES) and 5
to Residents (RE). For this analysis we choose the generative
model which obtained the best FID score and AUC values,
i.e. CSi-GAN trained on dataset D3, to generate the synthetic
images.

The results regarding the ability of surgeons to discern be-
tween real and synthetic images are shown in Table IV. The
results are split in 3 categories to evaluate separately each
translation (WLI → NBI and NBI → WLI) and therefore each
generator independently, as well as the overall performance of
the GAN (ALL). For both groups of participants (ES and RE),
the results show slightly better results in the translation WLI
→ NBI for all metrics. This might be related to the fact that
there are more sample images in the WLI training dataset than
in the NBI and therefore the generator GAB is able to generalize
better and produce better quality images than its counterpart
GBA. The overall AUC for ES is 0.59 and 0.52 for RE, meaning
that their performance is marginally better than what a random
binary classifier could achieve, confirming that the quality of the
generated images is good enough to trick experts in the area.

Concerning the tissue classification task, results are shown in
Fig. 4. In the case of Acc there was an average improvement
of 8% when using a pair of a real image and a synthetic one
than when only 2 real images were shown. In the case of Prec
the improvement was 19%, while no improvement or decrease
was observed in the case of Rec. For the F-1 score and MCC
the improvements were 16% and 17% respectively. However, no
statistical significance was found. This goes in accordance with
the results obtained in the previous analysis, meaning that the
generated images do not affect the specialist’s performance on
tissue classification.

Fig. 4. Box plot comparison of the surgeons performance in the tissue
classification task. Blue boxes correspond to the case in which surgeons
were shown a pair of real images {xi, xj}. Orange boxes correspond to
cases in which a pair consisting of a real image x and its translation x̂
to the opposite domain {xi, x̂j}, are shown.

B. Tissue Classification Evaluation

Results regarding tissue classification are divided into three
parts. First, we show that the use of our proposed GAN method
for image translation improves in general the performance of
tissue classification using different backbones previously used in
the literature as simple fine-tuned classification networks. Next,
we show that the use of semi-supervised learning, in general,
improves further the classification performance. Finally, we
perform an ablation analysis of the proposed model.

1) GAN-Based Tissue Classification: To test the general-
ization of our method, we compare the use of different net-
works (VGG16, VGG19, Inception V3, Desenet, ResNet-50,
and ResNet-101) trained in a fine-tuning fashion against the
implementation of these same networks in our GAN-based
classification method. CSi-GAN trained on D3 was chosen as
the as the translation network. Results in terms of ACC, MCC
and F-1 score are shown in Table V. Overall the use of the
proposed GAN-based method obtains better metrics than the
baseline networks. In the majority of the cases, there is little
improvement or no improvement when the input image is in the
WLI domain. This uneven behavior in terms of the classification
improvement might be related to the fact that WLI images are
more similar to the natural images dataset in which the models
were originally pre-trained (ImageNet). However, there is a no-
ticeable improvement when it comes to the classification of NBI
images where most of the base-line shows poor performances.

2) Semi-Supervised Classification: We compared the use
of GAN-based classification trained in a fully supervised way
against the use of semi-supervised classification. In both cases,
only the Multi-Input classifier weights were trained while the
ones of the Cycle-Consistency Network remained constant. For
these experiments, CSi-GAN pre-trained on each of the Dk

datasets were used. The results of these experiments are shown
in Fig. 5 in terms ofACC, F-1 score, andMCC. On average the
improvement, in terms of ACC, F-1 score, and MCC, of using
CSiGAN trained in a fully supervised way against the training in
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TABLE V
COMPARISON OF USING DIFFERENT PRE-TRAINED MODELS IN THE PROPOSED GAN-BASED MULTI-INPUT CLASSIFIER

Fig. 5. Boxplots comparison of Acc, F − 1 score and MCC of the proposed model trained in fully supervised vs semi-supervised way using
CSi-GAN pre-trained on D1, D2 and D3. The results for each metric are divided in terms of the type of data in the test dataset (WLI and NBI)
and the combination of both of them (ALL). The statistical significance using Mann Whitney U-test is denoted with ∗ : p < 0.05, ∗∗ : p < 0.01,
∗ ∗ ∗ : p < 0.001.

a semi-supervised fashion was of 8%, 6%, and 9% respectively.
This shows the potential of using GAN-based semi-supervised
learning for bladder tissue classification. The confusion matrices
of the best model obtained are shown in Fig. 6.

3) Ablation Results: In this case, we made a comparison
between the base model, the proposed CSiGAN model trained
in a fully supervised way, and in a semi-supervised way (Se-
CSiGAN). We also analyzed the influence that each of the inputs
of the multi-domain classifier model has. For this purpose, we
trained the network with each of the individual branches (b1, b2,
b3) separately. The statistical significance was calculated with
respect to the base-model ResNet-101. Classification results
obtained by medical experts, stratified between specialists and
residents are shown as a reference point. The results of the

ablation experiments are shown in the Tables VI and VII. From
these results, we can see that in general, all the models obtain
better results than the specialists, and the major improvement
comes from the use of a semi-supervised approach. However,
the improvement obtained in the domain for which there are
no labels when using domain translation is also noticeable. As
expected, the integration of both results in the best performance,
and improves considerably the detection of classes that are
underrepresented. This behavior is more clearly noticeable in
the case of the NTL class which in our dataset has the smallest
number of samples and in contrast to NST could be easily
misclassified as a tumorous lesion.

An additional analysis was performed in order to determine if
the quality of the GAN-translated images influence the classifier
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Fig. 6. Confusion matrices of the best model obtained. a) Analysis on the complete test data (WLI + NBI). b) Analysis only on the WLI test data.
c) Analysis on the NBI data. Is important to notice that due to the scarcity of annotated NBI data, the NBI test dataset was composed only of HGC
and LHC images.

TABLE VI
ABLATION RESULTS

TABLE VII
ABLATION RESULTS IN TERMS OF EACH OF THE CLASSES IN THE DATASET
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Fig. 7. Comparison of the different GAN models when used as backbone for training the multi-input classifier. The results are shown in terms of
FID vs :ACC, F-1 score, and MCC.

performance. The metrics Acc, F-1 score, and MCC, obtained
by training the multi-input classifier in a fully supervised using
both CycleGAN and CSi-GAN, are compared against the FID
score for each of the translation networks. The results of this
comparison are shown in Fig. 7. Even though it is easy to notice
the gap in terms of the FID score between the generators from
CycleGAN and CSi-GAN, and the best classification metrics
are obtained when using CSi-GAN with more data (D3), this
improvement is minimum. Furthermore, CycleGAN trained on
D2 obtains similar metrics. The comparison against the classi-
fication metrics does not show a conclusive result and further
research is needed to determine the correlations that could lead
to best practices and parameter choices when training GAN
models.

V. CONCLUSION

In this paper, we propose a novel semi-supervised learning
GAN-based method to address the problem of endoscopic image
classification in NBI and WLI imaging domains. The proposed
method shows to be effective for a scenario where there is
domain and class imbalance and in general, performs better
than specialists and baseline methods. The use of this method
leverages the use of unlabeled data in a domain different than
the one where annotations exist, which is a very common case
in biomedical data where annotated data is limited. This could
ease the transition to clinical practice and its implementation
for computer-aided BC diagnosis. The results obtained also
show that the quality of the synthetic images generated with the
proposed method is good enough to deceive clinical experts.
Nevertheless, additional research needs to be carried out to
find accurate metrics to assess the quality of generated images
objectively and to determine to which point it might be related
to the classification performances.

Future work includes further validation of multi-center data,
as well as the acquisition of data from other imaging do-
mains which could help to assess better the generalization of
the method, and the development of lesion detection methods
that could differentiate specific image regions that correspond
to the lesion and non-lesion tissue. By making available our
dataset we hope to encourage further research in the field that
could motivate the clinical translation of endoscopic image
classification.
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