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A B S T R A C T

The paper outlines and analyzes the conditions for optimizing a catapult mechanism that emerges in a soft
rod, initially completely adhered to a rigid lubricated substrate, as a result of oil absorption. Oil diffusion
causes differential swelling across the rod thickness, inducing rod bending that is counteracted by adhesion
to the substrate. The effect culminates in a gradual detachment of the rod from the substrate, followed by a
rapid shooting phase when one end detaches. To elucidate this intricate phenomenon, we employ a modified
Euler elastica model that incorporates two additional parameters: the spontaneous stretching 𝜆, that quantifies
the relative elongation of the material with respect to its dry, unstressed configuration, and the spontaneous
curvature, 𝑐𝑜, that captures the rod tendency to deflect due to diffusion-induced non-uniform stretching through
the thickness. The interrelated parameters, 𝜆 and 𝑐𝑜, which evolve over time as they are influenced by the
diffusion process are then calculated numerically with a FEM code that combines the finite elasticity model
with the Flory–Rehner diffusion model. Finally, we present a comprehensive optimization study of the catapult
based on its geometric and material properties, providing insights for the design and control of this novel
mechanism.
1. Introduction

Catapults are mechanisms that are used both in biology and in
technology to launch a payload by storing elastic energy through
deformation. In technology, the primary energy storage mechanisms
are tension, torsion, and gravity, which have been used since ancient
times. Catapults can be composed of rigid and compliant elements [1].
In biology, elastic energy is stored as a result of deformation, which can
be caused by a variety of factors, including changes in air conditions
and other atmospheric agents. Biological catapults produce a shooting
mechanism that is used for a variety of purposes, including prey capture
and defense [2].

Traditionally, man-made catapults were equipped with a crossbar to
halt the motion and make the catapult effective. In biology, the energy-
storing process is halted by a breaking mechanism that also facilitates
the rapid release of stored energy, thus initiating the firing mechanism.
In the well-known example of fern sporangia, the catapult serves to
disperse spores, and the breaking mechanism is water cavitation within
the cells of the spherical capsule enclosing the spores [3,4].

As noted in Ref. [1], the shift from conventional to soft robotics
necessitates the design of soft devices for cutting-edge applications. Soft
catapults may represent a frontier and demand appropriate nonlinear
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mechanical models to be characterized. In Ref. [1], gravity is utilized
to initiate the deformation process and induce snap instability, thereby
creating an elastic catapult. In contrast, our study employs swelling
and adhesion as the two key mechanisms to initiate deformation and
achieve an elastic catapult through mechanical instability. In particular,
the swelling of a rod adhered to a substrate by capillarity, and its sub-
sequent detachment from that substrate, are the physical processes that
generate the catapult mechanism. The diffusion of hexane oil, spread
across the rigid substrate supporting the rod, permeates the thickness of
the rod, creating a differential swelling effect. This differential swelling
causes the rod to lose its straight and fully adherent configuration,
inducing it to bend and partially detach from the substrate. The bending
progresses, resulting in the detachment of an increasing portion of
the rod’s lower surface. Elastic energy is stored within the rod until
the detachment of one end from the substrate triggers the catapult
configuration.

Therefore, the utilization of a vinyl-polysiloxane rod in conjunction
with solvent diffusion exemplifies a novel approach to harnessing high
power output in a controlled manner. This mechanism has the potential
for diverse applications demanding rapid and precise movements, such
as micro-robotics, actuation systems, and biomedical devices. Rigorous
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research and optimization of this system could lead to significant
advancements in power delivery and controlled motion, paving the way
for groundbreaking technological developments.

Experiments conducted by one of the authors at the Moss Lab,
Boston University, have provided valuable insights into the complex-
ities of the physical processes involved in both the catapult and sub-
sequent relaxation mechanisms. Drawing inspiration from studies on
growth-induced blisters in beams adhered to flat substrates, as pre-
sented in Refs. [5–7], we have investigated our problem through a
modified Euler elastica model. This model offers a good qualitative
description of the phenomenon, highlighting the critical interplay be-
tween bending and adhesion energies — the fundamental mechanism
underpinning the catapult effect.

Our modified elastica model hinges on elastocapillary length, which
arises from the ratio of bending stiffness to adhesion energy [8], and
the spontaneous stretching and curvature of the rod, which trigger the
onset of the catapult mechanism. These spontaneous stretching and
curvature correspond to the swelling-induced deformations in a three-
dimensional rod under no external loads or constraints. While explicit,
albeit approximate, formulas exist for bilayer beams, where swelling
represents the steady-state configuration [9]; they can be considered
generalizations of the well-known Timoshenko formula for bi-metal
strip bending [10]. However, to our knowledge, comparable formulas
for the time-dependent deformations caused by differential swelling
across the thickness of a homogeneous rod or plate are only available
for small deformations (see [11] for rods and [12] for plates).

However, incorporating the finite bending induced by swelling
within the transient regime remains an open question for future in-
vestigations. In this work, we address a catapult mechanism described
by: (i) a fully three-dimensional mechanochemical coupling theory that
captures the time-dependent stretching and bending caused by swelling
in a homogeneous, unconstrained rod, and (ii) the elastica model,
which utilizes the intrinsic stretching and bending identified in step (i).

Our analysis begins with a rod initially straight and uniformly
expanded compared to its dry state. A key parameter is the chemical
potential 𝜇𝑜 of the liquid within the rod, along with the dry thickness ℎ
of the rod. Differential swelling is triggered by oil diffusing across the
rod’s thickness. This oil is assumed to be uniformly distributed on the
bottom face, where it contacts the wet substrate. The control parameter
is the external chemical potential at the bottom face, which transitions
from an initial value 𝜇𝑜, representing the initial equilibrium state, to a
final state 𝜇𝑒 according to a specified time-dependent profile.

A fully three-dimensional, non-linear finite element method (FEM)
based model numerically captures the rod’s stretching and bending
behaviour for various thicknesses and initial conditions. These values
are subsequently incorporated into the modified elastica model, where
they represent the spontaneous stretching and curvature of the rod. By
leveraging the interplay between these two models, we can investigate
the conditions that optimize the catapult mechanism, which is the
primary focus of this study.

The paper is structured as follows: Section 2 presents a prototyp-
ical experiment, selected from those conducted in the Lab. Section 3
provides an initial, rudimentary interpretation of the experiment based
on the elastica model. Section 4 briefly outlines the modelling of the
mechano-diffusion coupling and the differential swelling of a rod that
is free to deform according to the swelling process. In Section 5, the
findings derived from combining the two models are presented, and
the optimal conditions for creating a soft catapult are discussed.

2. Insight into the catapult from experiments

A catapult mechanism is constructed using a vinyl-polysiloxane
rod securely fastened to an acrylic substrate at its right end with a
strong adhesive. Dry length 𝐿, width 𝑏 and thickness ℎ of the rod are
0.05 × 0.01 × 0.0015 m. A payload of 0.4 g is encased within a small
acrylic hollow cube situated on the beam’s left side (see Fig. 1). Liquid
2

hexane is applied to the acrylic substrate’s surface using a syringe to
facilitate wetting.

The catapult mechanism is initiated by the diffusion of liquid
through the rod’s thickness. This differential swelling subsequently dic-
tates the rod’s bending, overcoming the adhesive forces that maintain
its adherence to the substrate. The design hinges on a critical balance
between two opposing effects. Adhesive forces act to maintain the rod’s
attachment to the substrate, while the elastic energy stored within the
bent rod counteracts this adhesion, ultimately driving detachment. This
interplay between forces leads to a progressive bending distortion that
culminates in the rapid and complete release of the rod.

Upon the evaporation of the hexane, the rod returns to its dry,
straight form. The entire process, from the initial wetting stage to
the complete drying of the rod, takes approximately twenty minutes.
This extended duration reflects the gradual diffusion and subsequent
evaporation of the hexane solvent. This allows the rod to undergo the
desired bending and then return to its original configuration once the
solvent has fully dissipated.

Fig. 1 illustrates the complete dynamic behaviour of the vinyl-
polysiloxane rod catapult. Two distinct phases are evident. The first
phase, lasting from 0 to 230 s, encompasses the slow initial dynamics
associated with the absorption of liquid hexane. This absorption leads
to buckling of the vinyl-polysiloxane rod, which accumulates elastic
energy that is subsequently converted into kinetic energy upon detach-
ment of the left end of the beam. The second phase comprises the slow
relaxation process that returns the rod to its initial configuration.

3. An elastica model for the catapult

The key interpretation of the experiment relies on the following
concepts. Initially, the rod is straight and in contact with hexane at
its bottom face and air at its top face. As hexane diffuses through
the rod from the bottom face, it induces a longitudinal stretch and,
owing to the differential swelling across the thickness, a curvature.
This longitudinal stretch is impeded, causing the beam to experience
compression with a non-zero curvature. This compression is eventually
released by relinquishing the straight configuration.

Through a modified Euler elastica, we can assess the total energy 
associated with the partially buckled configuration of the rod. As the
rod releases its compression energy during buckling, we can postulate
that the rod is inextensible and unshareable with assigned length 𝐿,
implying that the stored energy is primarily attributed to bending and
adhesion.

We assume that there is no deformation in 𝑧 direction, so that the
longitudinal profile of the rod can be regarded as an unstretchable
and flexible strip belonging to the (𝑥, 𝑦)-plane. This is represented by

parametric curve 𝐫(𝑠) (see Fig. 2), with 𝑠 ∈ [−𝐿∕2, 𝐿∕2], where 𝐿
denotes the length of the strip and 𝑠 is the arc-length. Assuming the
rod exhibits mirror symmetry about the 𝑦-axis, we denote with �̄� and �̄�
he arc-length and the abscissa of the detachment point, respectively.

In the plane of the curve, we introduce a Cartesian frame of refer-
nce (𝑂; 𝐞𝑥, 𝐞𝑦), where 𝑂 is the origin and 𝐞𝑥, 𝐞𝑦 are the unit vectors

along, respectively, the 𝑥 and the 𝑦 axes. We parameterize the tangent
and the normal unit vectors by

𝐭(𝑠) = cos 𝜃(𝑠)𝐞𝑥 + sin 𝜃(𝑠)𝐞𝑦, 𝐧(𝑠) = − sin 𝜃(𝑠)𝐞𝑥 + cos 𝜃(𝑠)𝐞𝑦

and, hence, 𝐞𝑧 = 𝐭 × 𝐧. The end points of the curve are placed at (−𝑎, 0)
and (𝑎, 0), so that the stretching, possibly due to swelling,

𝜆 = 𝐿
2𝑎

, (3.1)

easures the rod excess-length with respect to the dry length.
The energy functional consists of two terms:  = 𝑓 +𝑎. The first

contribution 𝑓 comes from the energy of the buckled region and it is
only due to bending

𝑓 =
�̄�
𝑘(𝜃′ − 𝑐𝑜)2d𝑠, (3.2)
∫0



International Journal of Non-Linear Mechanics 162 (2024) 104727M. Curatolo et al.
Fig. 1. Dynamics of a vinyl-polisiloxane catapult during absorption of liquid hexane.
Fig. 2. Schematic representation of swelling-induced deformation of a rod with a clamped right end and a weight on the left end. During deformation, the distance between the
two ends of the rod remains constant at 2𝑎. (a) Dry (reference) configuration: The rod has a length of 𝐿 = 2𝑎. (b) Partially and symmetrically detached configuration: The rod has
two separate, adhered parts of finite length. (c) Limit configuration before shooting: Only the two ends of the rod remain in contact with the substrate.
where 𝑘 is the bending stiffness and 𝑐𝑜 is the constant spontaneous
curvature, possibly induced by swelling. The second term 𝑎 is related
to the adhered region, where we have to consider the contribution
of the rod-substrate adhesion energy, of constant density 𝑤, which is
assumed to be proportional to the length of the adhered curve. Thus,
we posit the following energy for the adhered region

𝑎 = ∫

𝐿∕2

�̄�
(𝑘𝑐2𝑜 − 2𝑤)d𝑠. (3.3)

The presence of adhesion introduces a further characteristic length,
namely the elasto-capillary length, that relates the bending stiffness and
the adhesion energy

𝓁𝑒𝑐 ∶=
√

𝑘
𝑤
. (3.4)

Standard methods in the calculus of variations allow us to derive
the equilibrium equation for the free part of the beam [5,6]

𝑘𝜃′′−𝑁 sin 𝜃 = 0, 𝑠 ∈ [0, �̄�) (3.5)
3

𝑥 𝑠
where 𝑁𝑥 is the unknown horizontal component of the internal force.
The boundary conditions are (see Ref. [6]) 𝜃(0) = 0, 𝜃(�̄�) = 0, and the
transversality condition [13] is

𝑘[𝜃′(�̄�)]2 = 2𝑤. (3.6)

Under the assumption of negligible gravity and symmetric solution,
it can be shown that the vertical internal force, 𝑁𝑦, is zero throughout
the rod. Consequently, it does not contribute to Eq. (3.5). Also the con-
stant spontaneous curvature 𝑐𝑜 does not explicitly appear in Eqs. (3.5),
(3.6). The variational procedure, detailed in [14], shows that a constant
curvature does not appear in both the Euler–Lagrange equation and the
boundary conditions. However, 𝑐𝑜 contributes in an essential way to the
evaluation of the energy.

A last additional condition is derived from the geometric identity
that links �̄� to �̄�: 𝑎 = �̄� + 𝐿∕2 − �̄�, that is

̄ = �̄� + (𝜆 − 1)𝑎. (3.7)
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This identity can be equivalently written in terms of the function 𝜃(𝑠),

̄ = ∫

�̄�

0
cos 𝜃 d𝑠 + (𝜆 − 1)𝑎. (3.8)

verall, our problem has one unknown function, 𝜃(𝑠), and two un-
nown constants, 𝑁𝑥 and �̄�.

.1. Analytic solution and stored elastic energy

It is well known that the elastica Eq. (3.5) can be solved in terms of
lliptic functions. To this end, let us rewrite Eq. (3.5) as follows
′′ + 𝜏 sin 𝜃 = 0, (3.9)

where 𝜏 ∶= −𝑁𝑥∕𝑘. A first integral is

𝜃′)2 = 2𝜏(cos 𝜃 − cos 𝜃0), (3.10)

where 𝜃0 ∶= 𝜃(𝑠0) is the minimum value of 𝜃 in the range [0, �̄�], that is
= 𝑠0 is the right inflection point of the rod (see Fig. 2). Thus, we can
se the transversality condition (3.6) together with (3.10) to eliminate
in favour of 𝜃0

= 𝓁−2
𝑒𝑐

(

1 − cos 𝜃0
)−1 . (3.11)

Eq. (3.10) reduces to

𝜃′ = ±𝓁−1
𝑒𝑐

√

2(cos 𝜃 − cos 𝜃0)
1 − cos 𝜃0

, (3.12)

where the sign − (respectively, +) is to be used in the interval 𝑠 ∈ (0, 𝑠0)
(respectively, 𝑠 ∈ (𝑠0, �̄�)). Eq. (3.12) is an ordinary differential equation
that can be solved by separation of variables. The solution is

̄ = −2
√

2𝓁𝑒𝑐F
(

𝜃0∕2; csc2(𝜃0∕2)
)

, (3.13)

where F denotes the incomplete elliptic integral of first kind [15].
Similarly, we can exploit Eq. (3.12) to compute �̄�, the abscissa of

the detachment point �̄� ∶= ∫ �̄�
0 cos 𝜃 d𝑠. With the help of Eqs. (3.12) and

(3.13), we obtain

�̄� = �̄� cos 𝜃0 − 2
√

2𝓁𝑒𝑐 (1 − cos 𝜃0)E
(

𝜃0∕2; csc2(𝜃0∕2)
)

, (3.14)

where E represents the incomplete elliptic integral of second kind [15].
Finally, Eq. (3.7) yields a third identity that involves both �̄� and �̄�.

Hence, we have a systems of three nonlinear transcendental equations,
namely Eqs. (3.13), (3.7) and (3.14), whose solutions provide the
values at equilibrium of �̄�, �̄� and 𝜃0, as functions of 𝓁𝑒𝑐 and 𝜆.

Also the total stored energy can be written in terms of �̄�, �̄� and 𝜃0.
ndeed, it can be shown that, through skilful use of the first integral
3.12), we arrive at

= 2𝑘
𝓁2
𝑒𝑐

( �̄� − �̄� cos 𝜃0
1 − cos 𝜃0

+ �̄� − 𝜆 𝑎
)

+ 𝑘𝑐2𝑜 𝜆 𝑎. (3.15)

3.2. Shooting condition

The limiting configuration immediately prior to launch, depicted in
Fig. 2(c), occurs when the rod maintains contact with the platform only
at its two endpoints, so that �̄� = 𝑎. Upon release, the left end detaches,
launching the weight, while the right end remains clamped.

The effectiveness of the catapult depends on the interplay between
its length, elasticity, and surface tension. This interplay is quantified by
the ratio between the elastocapillary length, 𝓁𝑒𝑐 , and 𝑎. When 𝓁𝑒𝑐 ≫ 𝑎,
the adhesion forces are weak so that the beam undergoes an Euler-type
instability as soon 𝐿 > 2𝑎 and the beam globally detaches from the
urface with only the end-points attached. In such a case, not enough
lastic energy is stored and the catapult cannot develop. By contrast,
hen 𝓁𝑒𝑐 ≪ 𝑎, the adhesion is so strong that the beam may never fully

detach from the surface and the limiting situation �̄� = 𝑎 may never be
reached.
4

n

The previous analysis shows that the optimal catapult must occur
in an intermediate regime of adhesion, in which the contact point
̄ gradually moves towards 𝑥 = 𝑎 as 𝜆 increases. We assume quasi-
static conditions, so that the dynamics of the beam is described by
a sequence of equilibrium states. In this regime, the transition to a
completely detached circular configuration with radius 1∕𝑐𝑜, and thus
the development of a shooting phase, can be assumed to occur when the
buckled solution is no longer favoured by adherence with the substrate,
i.e. when �̄� = 𝑎.

In this case, the three Eqs. (3.13),(3.14), and (3.7), with �̄� = 𝑎, can
be used to derive �̄�, 𝜃0 and 𝜆 at the moment of shooting. After some
algebra, these read

𝜆 + 2
√

2
𝓁𝑒𝑐
𝑎

F
(

𝜃0∕2; csc2(𝜃0∕2)
)

= 0, (3.16a)

1 + 2
√

2
𝓁𝑒𝑐
𝑎

(1 − cos 𝜃0)E
(

𝜃0∕2; csc2(𝜃0∕2)
)

− 𝜆 cos 𝜃0 = 0, (3.16b)

̄∕𝑎 − 𝜆 = 0, (3.16c)

where we see that �̄�∕𝑎, 𝜃0 and 𝜆 only depend on the ratio 𝜂 ∶= 𝓁𝑒𝑐∕𝑎.
he energy stored at the moment of shooting, calculated as given in
q. (3.15),
s
𝑘∕𝑎

= 2 𝑎2

𝓁2
𝑒𝑐

( 1 − 𝜆 cos 𝜃0
1 − cos 𝜃0

)

+ 𝜆(𝑐𝑜𝑎)2, (3.17)

epends only on two dimensionless groups, 𝜂 ∶= 𝓁𝑒𝑐∕𝑎 and 𝛾 ∶= 𝑐𝑜𝑎.
We notice that, by Eqs. (3.16), �̄�∕𝑎, 𝜃0 and 𝜆 do not depend on 𝛾, but
re only functions of 𝜂.

In agreement with our initial intuition, it is not possible to find
solution to the Eqs. (3.16) if the adhesion is too strong. Indeed, if
e derive 𝜆 from (3.16a) and substitute it into (3.16b), we can easily
btain 𝜂 as a function of 𝜃0. Similarly, by obtaining 𝜂 from (3.16a), we
et 𝜆 = 𝜆(𝜃0) from (3.16b). The functions 𝜂 = 𝜂(𝜃0) and 𝜆 = 𝜆(𝜃0) are
xplicitly given by

𝜂 = 1

2
√

2

[

(cos(𝜃0∕2) − 1)E
(

𝜃0∕2; csc2(𝜃0∕2)
)

− cos(𝜃0∕2)F
(

𝜃0∕2; csc2(𝜃0∕2)
)]−1, (3.18)

𝜆 =

(

cos(𝜃0∕2) −
(cos(𝜃0∕2) − 1)E

(

𝜃0∕2; csc2(𝜃0∕2)
)

F
(

𝜃0∕2; csc2(𝜃0∕2)
)

)−1

, (3.19)

and are plotted in Fig. 3.
We note that there are generally two distinct equilibrium solutions,

corresponding to two distinct values of 𝜃0, for 𝜂 > 𝜂min, and there are no
solutions when 𝜂 < 𝜂min, with 𝜂min ≈ 0.5427. This sets a lower bound
for the elasto-capillary length (and an upper bound for the adhesion
strength) so that it must be 𝓁𝑒𝑐 ⪆ 0.5427 𝑎. Among the two possible
solutions for 𝜃0, we select the one with the smaller absolute value of
the inflection angle, |𝜃0|. As shown in Fig. 3, this solution corresponds
o smaller values of the stretching parameter 𝜆. Intuitively, we imagine

that during a growth process driven by absorption from the dry state,
the solution with less stretching is the one that physically manifests
first.

When 𝜂 and 𝛾 are taken to be independent parameters, 𝑠(𝜂, 𝛾)
epends quadratically on 𝛾 so that the maximum 𝑠(𝜂, 𝛾)∕(𝑘∕𝑎) is
chieved when 𝜂 is minimum, namely 𝜂 ≈ 0.5427, and 𝛾 is the largest

possible (see Fig. 4). However, in a more realistic model, when we
consider the absorption of a solvent from the bottom surface, and the
corresponding diffusion across the thickness, it is no longer possible to
choose 𝜂 (and thus 𝜆) and 𝛾 independently, and 𝛾 cannot be arbitrarily
arge.

This observation highlights the need to identify an alternative
ource for this information, as it establishes the coupling between 𝜆 and
. Consequently, we can then evaluate the energy stored at the moment
f launch by a swelling-driven catapult mechanism. Before proceeding
ith the following sections, let us discuss the most suitable method for
on-dimensionalizing the stored energy,  .
𝑠



International Journal of Non-Linear Mechanics 162 (2024) 104727M. Curatolo et al.

a
T

R

a
p
p

e
r
e
t
i
f
c

𝚍

𝐒

𝐒

𝜇

Fig. 3. Plot of the functions 𝜂 = 𝜂(𝜃0) and 𝜆 = 𝜆(𝜃0) as given in Eqs. (3.18), (3.19).
The green line shows the limit value 𝜂 ≈ 0.5427.

Fig. 4. Profile of the stored energy at the moment of shooting (defined by �̄� = 𝑎), as
function of 𝜂 = 𝓁𝑒𝑐∕𝑎, for different values of 𝛾 = 0; 0.5; 1; 1.5, as given in Eq. (3.17).

he limit value 𝜂 ≈ 0.5427 is clearly shown by the steep profile of the energy.

emark. The ratio of the stored elastic energy s with 𝑘∕𝑎, as
provided in Eq. (3.17), is valuable for comparing different scenarios
where the rod bending modulus 𝑘 remains constant but, for instance,
the adhesion strength 𝑤 varies. By contrast, if we aim to compare
situations where 𝑤 is fixed but, for example, the thickness of the rod,
and consequently, the bending modulus, is modified, a more suitable
metric is the ratio of s to the interface energy, 2𝑎𝑤. This is because
the interface energy depends only on the adhesion strength and on the
length of the interface, whereas is independent of the bending modulus.
In this last scenario, Eq. (3.17) rewrites as
s
2𝑎𝑤

=
1 − 𝜆 cos 𝜃0
1 − cos 𝜃0

+ 1
2
𝜆𝛾2𝜂2. (3.20)

4. Determining the spontaneous curvature and stretching of the
rod

We assume that 𝑐𝑜 and 𝜆 in the modified elastica model are deter-
mined by the swelling-induced curvature and stretching obtained in the
FEM simulations of a three-dimensional rod under no external forces
or constraints. This relationship forms the foundation of the two-level
elastic catapult model. First, a three-dimensional rod stress-diffusion
model is simulated numerically to obtain thickness-dependent values
for swelling-induced bending and stretching. These values then serve
5

as inputs to a one-dimensional elastica model, which determines the
rod’s shape and characterizes its energy state relevant to the catapult
mechanism.

4.1. The equations of the stress-diffusion model

The stress-diffusion model employed for our analysis has been previ-
ously introduced in various publications by some of the Authors [9,16,
17]. Here, we provide a concise overview of the model’s application to a
soft rod on a wet substrate. As established in the literature, diffusion of
a fluid across the rod’s thickness induces differential swelling, leading
to rod bending [18,19]. However, unlike typical scenarios reported
in the literature, our rod is fabricated from a homogeneous material,
resulting in transient bending. Ultimately, the rod reverts to its straight
configuration, albeit with a permanent increase in length.

To better understand the influence of curvature and stretching, we
disregard the laboratory setup’s clamp and the adhesive interaction
between the rod and the wet substrate. We consider the rod to be free to
adopt its deformed configuration, with longitudinal axis stretching and
curvature denoted by 𝜆 and 𝑐𝑜, respectively. No additional constraints
re imposed, and the values of (𝜆, 𝑐𝑜) at any point during the swelling
rocess are determined by solving the corresponding stress-diffusion
roblem.

The dynamics of the swelling process is governed by the balance
quations for forces and solvent, the thermodynamic inequalities that
estrict the class of admissible constitutive prescriptions, and a free
nergy that encompasses both elastic and mixing contributions. All
hese elements define a set of equations (see [9,16,17] for details)
n the state variables 𝑐𝑑 and 𝐮, which are the solvent concentration
ield per unit dry volume and the displacement from the reference dry
onfiguration , which is also the domain of computation:

𝚒𝚟𝐒 = 0 and �̇�𝑑 = −𝚍𝚒𝚟𝐡 , on  ×  , (4.21)

𝐦 = 𝐬 and − 𝐡 ⋅𝐦 = 𝑞 , on 𝜕 ×  , (4.22)

= 𝐺 𝐅𝑑 − 𝑝𝐅⋆
𝑑 with 𝐅𝑑 = 𝐈 + ∇𝐮 and 𝐽𝑑 = det 𝐅𝑑 , (4.23)

=  𝑇
(

log
𝐽𝑑 − 1
𝐽𝑑

+ 1
𝐽𝑑

+
𝜒
𝐽 2
𝑑

)

+ 𝑝𝛺 , (4.24)

𝐡 = −𝐌(𝐅𝑑 , 𝑐𝑑 )∇𝜇 with 𝐌(𝐅𝑑 , 𝑐𝑑 ) =
𝐷
𝑇

𝑐𝑑𝐂−1
𝑑 . (4.25)

Therein, 𝐒 represents the reference stress and 𝐡 the solvent flux per
unit reference volume; 𝐬 denotes the boundary traction and 𝑞 the rate
of solvent transported into  across its boundary 𝜕; 𝐂𝑑 = 𝐅𝑇

𝑑 𝐅𝑑
represents the strain tensor, 𝛺 the molar volume of the water,  the
gas constant, 𝑇 the ambient temperature, 𝐺 the shear modulus and 𝐷
the liquid diffusivity within the gel. Finally, 𝑝 the is the reactive stress
field which enforces the incompressibility constraint between the state
variables:

𝐽𝑑 = det 𝐅𝑑 = 𝐽𝑑 (𝑐𝑑 ) = 1 +𝛺𝑐𝑑 . (4.26)

4.2. The free and bent rod

To solve the problem, we assume that the entire rod boundary is
impermeable except for the bottom face. Here, a chemical equilibrium
condition is assumed to prevail at all times. Specifically, the chemical
potential 𝜇 of the solvent in the gel rod is equal to the chemical
potential of the pure solvent, which is zero. We further assume that the
chemical boundary condition on the bottom face persists throughout
the process. This applies before the onset of diffusion due to contact
with the wet substrate, and even after the rod detaches from the sub-
strate, as the bottom face remains wet (see Fig. 5, panel d). Therefore,
we write:

𝑞 = 0 on 𝜕∕𝑏 and 𝜇 = 0 on 𝑏 , (4.27)
where 𝑏 identifies the bottom face of the rod.
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Fig. 5. (a) Curvature 𝑐𝑜 and stretch 𝜆∕𝜆𝑜 for a sample with 𝜆𝑜 ≈ 1 and 𝜇𝑜 = −10500 J/mol and different rod thicknesses. (b) Curvature 𝑐𝑜 and stretch 𝜆∕𝜆𝑜 for a sample with
ℎ = 1.5 mm and different initial stretch and chemical potential pairs 𝜆𝑜, 𝜇𝑜. (c) Maximum curvature 𝑐𝑚𝑎𝑥 for 𝜇𝑜 = −10500 J/mol and different values of ℎ. Insets show the deformed
configuration corresponding to different thicknesses. (d) Initial straight (light brown) and intermediate bent configuration of the free rod during absorption of liquid hexane (cyan
layer); the solid blue and red line represent the rod axis before diffusion starts and in the bent configuration.
We assume that the initial configuration of the rod corresponds to a
straight, homogeneous, and freely slightly swollen state. Therefore, the
initial free-swelling stretch, denoted by 𝜆𝑜, is governed by the equation:

log

(

1 − 1
𝜆3𝑜

)

+ 1
𝜆3𝑜

+
𝜒
𝜆6𝑜

+ 𝑚
𝜆𝑜

=
𝜇𝑜
𝑇

, (4.28)

with 𝑚 ∶= 𝐺𝛺∕𝑅𝑇 . Then, the length 𝐿 of the bent rod axis is given by
𝐿 = (𝜆∕𝜆𝑜) 2𝑎.

To give an example, if we fix 𝐺 = 2 ⋅ 106 Pa and 𝜒 = 0.4,
for 𝜇𝑜 = −10500, −1800, −815, −415, −220 J/mol, we obtain 𝜆𝑜 =
1.001, 1.05, 1.10, 1.15, 1.20.

Furthermore, by fixing the diffusivity, 𝐷, and the initial conditions,
we can investigate the swelling dynamics. In particular, let 𝑢 and 𝑤
represent the longitudinal and transverse components of the displace-
ment vector 𝐮, respectively. Then, for any given time 𝑡, the curvature
𝑐𝑜 and the stretching 𝜆 achieved by the rod can be evaluated using the
following expressions:

𝑐𝑜 =
𝑤′′(1 + 𝑢′) −𝑤′𝑢′′

((1 + 𝑢′)2 +𝑤′2)3∕2
and 𝜆 = (𝐶11(𝑥1, 0, 0))1∕2 , (4.29)

respectively, being 𝑢(𝑥1) = 𝐮(𝑥1, 0, 0) ⋅ 𝐞1, 𝑤(𝑥1) = 𝐮(𝑥1, 0, 0) ⋅ 𝐞2.
We now fix the material parameters 𝐺 = 2 ⋅ 106 Pa, 𝜒 = 0.4 and

𝐷 = 10−8 m2∕s. Fig. 5 presents the solution of the 3D model in terms of
the rod’s curvature. The top left panel shows the relationship between
natural curvature 𝑐𝑜 and stretching 𝜆∕𝜆𝑜 for various rod thicknesses
ranging from ℎ = 1.0 mm to ℎ = 5.0 mm, considering an initial state
approaching dryness, namely 𝜇𝑜 = −10500 J/mol and 𝜆𝑜 ≈ 1. The
top right panel displays the same relationship under various initial
conditions, specifically for different 𝜆 or, equivalently, 𝜇 at a fixed
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𝑜 𝑜
thickness ℎ = 1.5 mm. As expected, the curvature increases with
decreasing thickness (left, progressing from the violet to the orange
curve), that is, thinner rods exhibit higher curvatures; it also increases
as the initial state becomes drier (right, progressing from the bottom
dashed curve to the solid one). Finally, the bottom-left panel of Fig. 5
shows the relationship between the maximum curvature 𝑐𝑚𝑎𝑥 attained
by the rod and the rod thickness ℎ, under fixed initial conditions 𝜇𝑜 =
−10500 J/mol.

It is worth noting that the same study could be extended to inves-
tigate different material parameters. However, the current lack of an
explicit formula for the swelling-driven transient bending forces hinders
the efficient solution within a finite element code, making a parametric
analysis computationally expensive.

5. Towards an effective catapult: results and discussion

We define an optimal catapult mechanism as one that maximizes the
elastic energy stored within the rod just before detachment. This energy
should be effectively released during the launch phase to optimize
payload projection. To achieve this, we will investigate how stored
elastic energy varies with respect to rod thickness, ℎ, and adhesion
energy per unit length, 𝑤. We use the expression for elastic energy
provided by the elastica model (Eq. (3.17)). Therein, 𝑐𝑜 corresponds
to the spontaneous curvature calculated within the three-dimensional
mechano-chemical problem.

Let us illustrate the results using a specific example based on the
rod described in Section 2. Thus, we consider a material with a shear
modulus 𝐺 = 2 ⋅ 106 Pa, dry length 2𝑎 = 0.05 m, and rod width 𝑏 = 0.01
m. The swelling-induced length of the rod is denoted by 𝐿 = (𝜆∕𝜆𝑜) 2𝑎;
we assume 𝜆 = 1 corresponding to the dry case.
𝑜
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Fig. 6. Stored energy and dimensionless spontaneous curvature as a function of the rod thickness, for different values of the adhesion energy per unit length, 𝑤, respectively (a)
and (b). The material constants are chosen to reproduce the experimental values, namely, 𝐺 = 2 ⋅ 106 Pa, 𝑏 = 0.01 m, 2𝑎 = 0.05 m.
Fig. 7. Stretching value 𝜆∗ corresponding at maximum spontaneous curvature 𝑐𝑚𝑎𝑥
versus 𝐺 for different values of the thickness ℎ going from 1.5 mm to 3 mm.

About the parameter ℎ of our study, we have the experimental value
ℎ = 0.0015 m. This value leads to a bending stiffness 𝑘 = 𝐸𝐼 = 3𝐺

12 𝑏ℎ
3 ≈

16.9 ⋅ 10−6 Jm, where 𝐸 is the Young’s modulus (assumed related to
the shear modulus 𝐺). The precise determination of the parameter 𝑤
can be quite challenging. It hinges on a multitude of factors, including
the nature of the contacting materials, surface treatments, temperature,
and other variables that often lie beyond our direct control. Based on
literature values, we consider a reasonable estimate of 𝑤 ≈ 0.1 J/m2,
which corresponds to a characteristic length 𝓁𝑒𝑐 ≈ 0.01 m as suggested
in Refs. [5,20].

As illustrated in Fig. 6, for a given adhesion value 𝑤, a specific rod
thickness exists that maximizes the stored elastic energy at the point
of launch. This observation highlights the importance of careful con-
sideration of the rod’s geometrical characteristics beyond the material
properties, when designing an effective catapult. Even small deviations
in rod thickness can significantly impact the catapult’s efficiency in
certain cases. By comparing the stored energy in Fig. 6(a) with the
calculated spontaneous curvature in Fig. 6(b), we observe that the
optimal rod thickness is primarily dictated by the maximum curvature
induced by diffusion. This is evident as the peaks of both curves roughly
coincide. Therefore, it is critical to determine the solvent diffusion-
induced curvature. This can be achieved, either experimentally or
numerically, using a sample rod free from external loads or constraints,
as detailed in Section 4.

Interestingly, Fig. 5(a) indicates that the maximum energy and
maximum spontaneous curvature are achieved at approximately con-
stant stretching values around 𝜆 ≈ 1.1, with minimal dependence
on the rod thickness ℎ. In general, the stretching value 𝜆∗ at which
7

the maximum spontaneous curvature occurs (it is important to note
that this maximum curvature is confined to a limited stretching range,
as verified numerically) depends on the material’s stiffness 𝐺: softer
materials exhibit a larger 𝜆∗, whereas for stiff materials (high 𝐺), 𝜆∗
approaches 1. Fig. 7 illustrates the variation of 𝜆∗ across a wide range
of 𝐺 values.

Finally, we note that since the stretching, 𝜆, depends solely on
the parameter 𝜂, as determined by Eq. (3.16), we can leverage the
asymptotic analysis of [6] to obtain an approximate formula for 𝜆 as a
function of 𝜂 (and vice versa).

𝜆 ∼ 1 + 1
2𝜋2𝜂2

+ 21
32𝜋4𝜂4

, (5.30)

𝜂 ∼ 1
√

2𝜋
√

𝜆 − 1
+

21
√

𝜆 − 1

16
√

2𝜋
. (5.31)

Therefore, the following formula defines a simple criterion for an
effective catapult
√

𝐺 𝑏ℎ3
4𝑤

≈ 𝜂∗ 𝑎 , (5.32)

where 𝜂∗ is obtained from (5.31) after the substitution of 𝜆 with 𝜆∗. In
our specific experiment, where 𝐺 = 2 ⋅106 Pa, Eq. (5.31) yields 𝜂∗ ≈ 0.8
when 𝜆∗ = 1.1.

Eqs. (5.30)–(5.32) drive the design of the catapult mechanism,
within the limits of the present model. In particular, Eq. (5.32) delivers
a combination of different parameters which can be directly used to
define the optimal catapult. The shear modulus 𝐺 and, in a weaker
way, the thickness ℎ affect the stretching value 𝜆⋆ at which the max-
imum spontaneous curvature occurs (from Fig. 6). On the other hand,
Eq. (5.31) delivers the value of 𝜂⋆ to be used in (5.32), together with
a fixed 𝑏, to get the optimal adhesion 𝑤, that is, the adhesion which
makes the catapult effective.

In conclusion, deeper insights could be obtained through an explicit
asymptotic analysis of diffusion-induced bending, which would take the
place of the numerical analysis and would enable a more comprehen-
sive the parameters-dependent study. However, the explicit analysis of
the diffusion-induced bending in rods and plates is still lacking, apart
from a few attempts recently developed within the context of a linear
mechanical theory [12].

In our opinion, this study establishes a foundational understanding
of a new catapult mechanism, which can drive the development of
future explicit analyses. We leave this issue for future studies.
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