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Abstract

Constraint Programming is a classical artificial intelligence paradigm characterised by its flexibility for the modelling of complex
problems. In the field of space operations, this approach has been successfully used for mission planning and scheduling. This manuscript
proposes a framework that leverages the strengths of Constraint Programming for the preliminary analysis of space missions, introduc-
ing some modifications to tailor it to the application at hand. Specifically, it uses constraint propagation and search techniques to thor-
oughly explore the configuration space of a mission in an efficient manner. Consequently, it is able to quantify the performance of
precomputed mission choices with respect to the mission requirements, as well as generate new ones that optimise such performance.
The proposed methodology has been particularised for two application cases involving active debris removal missions for large constel-
lations in low Earth orbit, namely, a chaser case and a mothership case. The chaser case considers a servicing satellite that rendezvouses
with the failed satellites of the constellation and directly transports them to a disposal orbit. The mothership case comprises a servicing
satellite that installs deorbiting kits in each of the failed satellites, except for the one removed in the last place. This way, the servicing
satellite will only transport this object, while the deorbiting kits will carry out the disposal of the rest of them. This methodology has been
successfully used to evaluate a preliminary mission analysis of both application cases developed under ESA’s Sunrise project.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The formation of high-density clusters of man-made
spaceborne objects poses a significant risk for the sustain-
ability of future space operations. Specifically, it facilitates
the occurrence of a collisional cascading effect that would
result in an uncontrollable generation of space debris frag-
ments (Kessler and Courpalais, 1978). This is particularly
critical for regions of special operational interest, such as
Low Earth Orbit (LEO) or Geostationary Orbit, because
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it could render them unusable for their future utilization.
Furthermore, even if the space environment does not reach
such critical state, a higher object density entails a potential
increase in mission cost and disruptions due to a more fre-
quent necessity of collision avoidance activities (Gonzalo
et al., 2021). So as to stabilise the population of spaceborne
objects, it is necessary to actively remove several high-
impact pieces of debris per year (Liou and Johnson,
2009; Lewis et al., 2012). Hence, active debris removal mis-
sions must rigorously select the objects to be removed so
that their impact in the space environment is maximised
(Barea et al., 2020). In addition to technical and opera-
tional considerations, the removal of objects in LEO poses
significant legal challenges (Weeden, 2011), including
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questions regarding the authority responsible for authoriz-
ing and executing the removal of specific objects, which can
encompass issues of jurisdiction, ownership, and liability,
thus complicating practical implementation of debris
removal missions.

Currently, several initiatives to deploy large constella-
tions in the LEO region are being carried out, such as Star-
link (Starlink Services LLC, 2022), OneWeb (Network
Access Associates Ltd, 2022) and Kuiper (Kuiper
Systems LLC, 2022). It is expected that the operation of
such constellations will include the end-of-life deorbiting
of its defunct satellites. For instance, the Inter-Agency
Space Debris Coordination Committee recommends that
the objects that terminate their operational phase within
the LEO region should be deorbited or transferred to an
orbit with an expected residual orbital lifetime of 25 years
or shorter (IADC, 2021). More recently, the Federal Com-
munications Commission has officially established a rule
stipulating that satellites in the LEO region must deorbit
within five years after reaching the end of their mission,
as seen in the recent approval of Gen2 Starlink, subject
to this regulation (Federal Communications Commission,
2022). Nevertheless, the failure of said disposal processes
(either because of a premature failure of a satellite or due
to unsuccessful deorbiting manoeuvres) poses a threat,
not only for the space environment, but also for the con-
stellation performance. This, along with the presence of
the legal issues that the general active debris removal mis-
sions face, has motivated the assessment of the feasibility of
constellation-servicing debris removal missions (Larbi
et al., 2017; Forshaw et al., 2019; Brettle et al., 2021). In
particular, the Sunrise project, funded by the European
Space Agency (ESA), intends to identify affordable active
debris removal strategies for large constellations in LEO.
Moreover, this project plans to develop the necessary tech-
nologies to perform these missions so as to, eventually,
provide a competitive service in the international market.
As part of Sunrise, ESA commissioned Phase A studies
to different consortia, including one comprising D-Orbit
SpA and Politecnico di Milano (Huang et al., 2020;
Colombo et al., 2021; Borelli et al., 2021). After the com-
pletion of the Phase A studies, the consortium led by
Astroscale was chosen to proceed with the next phase of
the project (Astroscale, 2022).

As the objects to be removed in constellation-servicing
debris removal missions are not known beforehand, the pre-
liminary design of suchmissions requires an exhaustive anal-
ysis of complex mission configurations, especially when
dealing with the coordination of several servicing satellites.
Constraint programming (Apt, 2003) is a classical artificial
intelligence paradigm, characterised by its flexibility for
the modelling of complex problems (Pesant et al., 1999).
Since its inception, it has proven successful for diverse appli-
cations (Wallace, 1996) such as vehicle routing (Shaw, 1998),
scheduling (Rodriguez, 2007) and resource allocation
(Hladik et al., 2008). In the field of space operations,
constraint-based techniques have been extensively used for
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mission planning and scheduling (Pemberton and Galiber,
2001; Chien et al., 2012), involving applications such as
Earth observation (Pemberton, 2000; Frank et al., 2001)
and deep space exploration missions (Jiang and Xu, 2017).
More specific applications of constraint-based techniques
include NASA’s EUROPA planning tool (Barreiro et al.,
2012), the scientific experiment scheduling of the Rossetta/
Philae mission (Simonin et al., 2012) and the mission plan-
ning of Orbital Express (Knight et al., 2014).

This work leverages the strengths of Constraint Pro-
gramming for the preliminary analysis of space missions,
introducing some modifications to tailor it to the applica-
tion at hand. Specifically, the requirements imposed to
space missions tend to configure complex search spaces.
Consequently, the proposed framework exploits constraint
propagation and search techniques to thoroughly explore
such spaces in an efficient manner. This way, given a set
of predefined mission choices (obtained during a previous
mission analysis), the proposed methodology is able to
readily quantify their performance with respect to the mis-
sion requirements. Then, if a poor performance is shown
(or if a previous mission analysis does not exist), the
methodology will generate appropriate mission choices so
that the desired performance is optimised.

First, Constraint Programming techniques are used to
configure a general framework for preliminary mission
analysis. One particularity of the proposed framework is
that, while Constraint Programming normally focuses on
assessing feasibility, constraint bounds including optimal-
ity considerations are also introduced. To perform the con-
straint propagation, best- and worst-case scenarios are
defined and solved applying different techniques. Then,
that methodology is particularised for the constellation-
servicing debris removal mission considered in a Phase A
study, developed by the D-Orbit SpA and Politecnico di
Milano consortium under ESA’s Sunrise project (Huang
et al., 2020). In particular, two application cases have been
evaluated. Both cases consider a constellation comprising a
set of orbital planes with identical inclination, but shifted
in Right Ascension of Ascending Node (RAAN). In turn,
each of those planes contains a set of satellites that describe
an identical circular orbit, but are shifted in angular posi-
tion within that orbit. Nevertheless, each of the cases uses
a different strategy to remove a set of defunct satellites
located within the constellation. In the first scenario, the
chaser case involves a servicing satellite that rendezvouses
with the failed satellites of the constellation and directly
transports them to a disposal orbit. In the second scenario,
the mothership case comprises a servicing satellite that
installs deorbiting kits on each of the failed satellites,
except for the one removed in the last place which is deor-
bited by the servicing satellite itself. This way, the servicing
satellite will only transport this object, while the deorbiting
kits will carry out the disposal of the rest of them.

The remainder of this manuscript is organized as fol-
lows. Section 2 presents the description and mathematical
statement of the problem at hand, which is developed in
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detail in the next sections. Section 3 provides a general
description of the proposed Constraint Programming
framework. Section 4 particularises the proposed method-
ology for the chaser application case. Section 5 does the
same for the mothership case. Section 6 shows the results
that the proposed framework obtains for both application
cases. Finally, Section 7 summarises the main conclusions
of this work.

2. Problem statement

Let us consider a large satellite constellation in LEO
constituted by multiple satellites distributed among several
orbital planes. The constellation will be characterized by
the inclination and RAAN of each plane, the semimajor
axis and eccentricity of the orbits inside each of these
planes, and the satellite distribution inside each orbit.
For the problem at hand, it is assumed that all the orbital
planes have the same inclination and are uniformly dis-
tributed in RAAN, and that the orbits are circular with
the same semimajor axis and satellites uniformly dis-
tributed. The constellation design also includes the imple-
mentation of end-of-life disposal processes; however, a
certain number of satellites are expected to fail and remain
inoperative in orbit. To address this, an active debris
removal service for the constellation is introduced.

In the most general case, the active debris removal ser-
vice is characterized by a servicing spacecraft that ren-
dezvouses with one or more failed constellation satellites,
taking actions to ensure their direct re-entry or transport-
ing them to a disposal orbit. Two possible configurations
are considered in this work. First, the chaser case, where
the servicing spacecraft docks with each failed satellite
and transports them to the designated disposal orbit. Sec-
ond, the mothership case, where the servicing spacecraft
attaches deorbiting kits to each failed satellite, except the
last one which is deorbited together with the mothership.
These two architectures are defined in detail in Sections 4
and 5, respectively.

For a given set of failed satellites to be serviced and a
constellation-servicing active debris removal mission archi-
tecture, a constrained optimization problem can be formu-
lated to design the mission that removes the largest number
of objects. The optimization problem will be characterized
by a set of constraints, parameters (or uncontrolled vari-
ables), and decision variables (or controlled variables).
For both the architectures considered, the mission will have
constraints on the maximum mission time Dt�, and on the
maximum fuel mass that can be embarked on the servicer,
which will be expressed in terms of maximum DV �:

Dt params; controlledð Þ <¼ Dt�

DV params; controlledð Þ <¼ DV � ð1Þ

Regarding the parameters, in general they will include the
constellation design (which is not conditioned by the active
debris removal service), the number and distribution of the
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failed objects, and the chaser design (maximum wet and
dry mass). Other variables can be treated as parameters
or controlled variables depending on design decisions. In
this work, for the chaser case it is assumed that the defini-
tion of the injection orbit, the transfer orbit between two
constellation planes, and the disposal orbit (expressed in
terms on semimajor axis, inclination and eccentricity) are
fixed by a previous analysis, and the only controlled vari-
able is the sequence of objects to be removed. For the
mothership case, instead, the objects will be removed in
monotonic sequence of their position inside the constella-
tion, removing the object sequence as controlled variable,
but instead adding as controlled the semimajor axes of
the phasing orbits used to transfer between objects within
the same constellation plane as well as the inclinations of
the initial injection orbit and the drifting orbits. The values
for the variables treated as parameter are taken from the
mission analysis in (Huang et al., 2020). Note that this
choice does not limit the applicability of the method, that
can be applied to other values of the fixed parameters. Fur-
thermore, by treating a previously fixed parameter as a
controlled variable, it is possible to achieve potential per-
formance improvement with respect to the reference mis-
sion analysis. Finally, while for the active debris removal
servicing case the number of objects to be visited is typi-
cally low, this formulation can be applied to an arbitrary
number of objects (only limited by computational capabil-
ities considerations).

The previous problem definition corresponds to maxi-
mizing the number of serviced objects for a specific mis-
sion. However, during the design of the active debris
removal service the goal is not to optimize a specific mis-
sion, because the set of failed objects is not known a priori.
Instead, the aim in this work is to assess the performance of
the mission choices with respect to the mission require-
ments, quantified through the number of objects N dis-
tributed in P planes that can be serviced while complying
with the problem constraints. This problem can be formu-
lated as a constraint satisfaction one, obtaining the whole
set of feasible controlled and uncontrolled variables for
each mission outcome. Then, the problem can be mathe-
matically stated as follows:

Given :

X Set of controlled and uncontrolled variables

D Set of domains for each variable in X

C Set of constraints given by Eq: 1ð Þ

Find the largest D � D such that constraints C are

respected for any X 2 D. Note that this differs from a
typical Constraint Programming application of finding
a feasible solution to a problem (or proving its unfeasi-
bility), in that the complete domain of feasible solutions
is sought.

The methodology adopted to tackle this problem is pre-
sented in detail in Section 3.
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3. Methodology

Given a collection of predefined mission analysis
choices, the proposed methodology is able to evaluate the
performance of such choices with respect to a series of
requirements. That is, the feasibility of achieving different
mission outcomes is analysed and the possibility of improv-
ing the given mission analysis choices is explored. The
aforementioned feasibility depends on controlled as well
as uncontrolled variables, with the values of the latter being
indeterminate during this mission design phase. Hence, the
problem at hand is to obtain the whole set of feasible val-
ues of the controlled and uncontrolled variables for each of
the mission outcomes. This constitutes a constraint satis-
faction problem. A general computational paradigm to
deal with this kind of problems is Constraint
Programming.

3.1. Constraint Programming resolution process

Constraint satisfaction problems comprise a set of vari-
ables, each of them with an associated domain of values,
and a set of constraints that relates such values. In turn,
a feasible solution of such problems entails a value assign-
ment to every variable, from within their associated
domains, such that the whole set of constraints is fulfilled.
The main advantage of using Constraint Programming to
solve this kind of problems is that it regards constraints
as general relations between the domains of the variables,
as opposed to other methodologies that consider con-
straints as analytical mathematical functions. Hence, it
provides a great flexibility to develop detailed models of
complex problems.

The resolution of a Constraint Programming problem
involves the interaction of two different processes, namely
constraint propagation and search. The purpose of the con-
straint propagation process is twofold. First, it checks the
feasibility of a given constraint for the considered variable
domains (i.e. if there is at least one possible value assign-
ment, from the domains of the considered variables, that
fulfills such constraint). Second, it prunes values from the
variable domains that cannot appear in a feasible solution.

In general, the use of constraint propagation alone does
not guarantee the determination of a feasible solution (or
infeasibility) of the problem. However, this can be achieved
with the inclusion of an additional search process. This
process follows a divide-and-conquer approach to split
the variable domains of the original problem, thus parti-
tioning it into several subproblems. The purpose of this
technique is to obtain subproblems simple enough so that
the constraint propagation process is able to determine
their feasibility.

Consequently, the usual workflow of Constraint Pro-
gramming alternates the constraint propagation and search
processes until a feasible solution of one of the subprob-
lems is found or the infeasibility of all the subproblems is
demonstrated. However, in the particular case addressed
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in this work, the whole set of feasible solutions of the prob-
lem has to be determined. Therefore, every one of the sub-
problems has to be demonstrated to be feasible or
infeasible.

3.2. Constraint Programming for mission analysis

The general resolution process of Constraint Program-
ming problems has to be tailored to solve the mission anal-
ysis problem at hand. As previously stated, this
methodology evaluates the feasibility of a set of mission
outcomes, henceforth referred as problem instances. Such
problem instances can be partitioned into specific intervals
of the uncontrolled variables. Thus, the decision variables
and their associated domains are characterised by the set
of problem instances. In turn, the search process selects
the order of evaluation of the problem instances and splits
them into simpler ones when required.

The constraints for the constellation-servicing active deb-
ris removal problem formulated in Section 2 impose maxi-
mum values to specific performance costs. In particular,
limits are given to themaximum total timeDt� andDV � avail-
able to carry out the mission, where the DV � limits derive
from the dry mass and maximum wet mass of the servicing
satellites. The feasibility of a problem instance can then be
assessed by finding upper and lower bounds for the costs
(i.e., Dt and DV ) required to implement any mission belong-
ing to said instance, and comparing them to the values of the
constraints Dt� and DV �. If the lower bound of one of the
costs is greater than the associated constraint, then no mem-
ber of that problem instance will be able to satisfy the con-
straint and the instance is rejected. If instead the upper
bound of the cost is lower than the constraint, all members
of the instance will fulfil the constraint and the instance is ac-
cepted (at least regarding that cost). Finally, if the constraint
value falls within the bounds, some members of the problem
instance may be feasible while others may violate the con-
straint. This instance is then inconclusive, and has to be par-
titioned into smaller ones to assess its feasibility. Sections 4
and 5 detail the models for the computations of the costs
Dt and DV , and the subproblems defined to compute their
upper and lower bounds.

Each of the desired bounds can be obtained solving an
optimisation problem, dependent on the controlled and
uncontrolled variables. This way, the lower bound can be
determined by simply finding the values of the controlled
and uncontrolled variables that minimise the performance
cost. Likewise, selecting the values of the controlled and
uncontrolled variables that maximise the performance cost
results in an upper bound. However, albeit simple to
obtain, this is not the tightest bound, nor the most logical,
because a sound mission analysis is supposed to select the
most advantageous values of the controlled variables.
Therefore, a tighter upper bound is computed when simul-
taneously using the uncontrolled variables to maximise the
cost and the controlled variables to minimise it. Specifi-
cally, the former upper bound represents the worst feasible
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solution, while the latter stands for the worst optimal solu-
tion. Thus they are referred as feasibility and optimality
upper bounds, respectively. This way, the constraint prop-
agation problem is reduced to a set of best- and worst-case
optimization problems that can be tackled efficiently with
well-known optimization techniques. It is important to
note that the aim of Constraint Programming is normally
to identify feasible problems, and not to optimize perfor-
mance. In this sense, the inclusion of the tighter optimality
bounds represents a particularity of the proposed frame-
work, aimed at providing decision-makers with a holistic
view of the trade-offs involved in mission design and execu-
tion. From an strict perspective, only the feasibility bounds
would be required for a Constraint Programming
formulation.

Finally, the domain pruning process exploits the hierar-
chical relations between the problem instances. That is, if a
problem instance is accepted, all the less restrictive
instances can be accepted without assessing their feasibility.
Similarly, if a problem instance is rejected all the more
restrictive instances are rejected.

The resolution process that collects the previous con-
cepts is depicted in Fig. 1. A problem instance is selected
Fig. 1. Problem resolution process.
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and its feasibility is sequentially evaluated for each of the
constraints. If the instance is rejected by one of the con-
straints, it is not necessary to evaluate its feasibility for
the remaining ones and all the more restrictive problem
instances are rejected. In turn, if the instance is deemed
inconclusive by one of the constraints, it cannot be
accepted by the subsequent constraints (i.e., it will remain
inconclusive unless a subsequent constraint rejects it).
However, if the instance is still considered inconclusive
after the last constraint has been evaluated, it is split into
simpler instances. Consequently, those new instances are
added to the problem instances set. Finally, if the instance
is accepted by every constraint, all the less restrictive prob-
lem instances are accepted. This process continues until the
whole set of problem instances has been evaluated.
4. Active debris removal mission: Chaser case

The chaser case involves the use of a set of servicing
satellites, i.e. chasers, to remove defunct satellites within
a constellation. In particular, the defunct satellites are
directly transported to a disposal orbit by a chaser. This
way, each chaser is assigned a set of orbital planes of the
constellation and will perform round trips between those
planes and their corresponding disposal orbits until the
totality of the defunct objects located within those planes
is removed. Specifically, each chaser carries out the follow-
ing sequence of actions:

1. Remaining in the injection orbit until the RAAN of the
first constellation plane is achieved. This RAAN varia-
tion is exclusively produced by the nodal drift resulting
from the J 2 perturbation.

2. Transferring to the first constellation plane and ren-
dezvousing with the first target.

3. Transferring the first target to its corresponding disposal
orbit.

4. Repeating Steps 2 and 3 until the first constellation
plane is cleared.

5. Transferring to a drifting orbit and remaining there until
the RAAN of the subsequent constellation plane is
achieved. Just like in Step 1, this RAAN variation is
exclusively produced by the J 2 perturbation.

6. Repeating Steps 2 to 5 until all the constellation planes
assigned to the concerning chaser are cleared.

7. The chaser will deorbit together with the last target.
4.1. Predefined mission choices

The proposed methodology will be used to assess the
performance of the choices made in previous mission anal-
yses (Huang et al., 2020; Colombo et al., 2021). In partic-
ular, such predefined parameters can be classified into the
following categories:
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Chaser parameters:

� Maximum wet and dry mass of each chaser.
� Semimajor axis, inclination and eccentricity of the initial
injection orbit.

� Semimajor axis, inclination and eccentricity of the drift-
ing orbit used to transfer between two different constel-
lation planes.

� Semimajor axis, inclination and eccentricity of the dis-
posal orbit associated to each chaser.

Constellation parameters:

� Defunct satellite mass.
� Semimajor axis, inclination and eccentricity of each con-
stellation plane.

� RAAN difference between two adjacent constellation
planes.

� Semimajor axis, inclination and eccentricity of the dis-
posal orbit associated to each defunct satellite.

Thus, regarding the constellation, the uncontrolled vari-
ables of the problem at hand are the number of objects to
be removed and their position and distribution within the
different constellation planes. In turn, the uncontrolled
variables related to a chaser are its initial position within
the injection orbit as well as its initial relative RAAN with
respect to the constellation planes. In addition, the object
removal sequence is the only controlled variable. It has
to be noted that the predefined mission analysis choices
can be readily disregarded and considered as controlled
variables so as to achieve potential performance
improvements.

Consequently, the initial problem instances can be desig-
nated by a tuple N ; Pð Þ, where N is the number of objects to
be removed and P is the number of planes in which these
objects are distributed. Those instances can be further par-
titioned when considering particular object distributions,
initial positions of the chaser and RAAN differences
between the concerning orbital planes. Moreover, such def-
inition of the initial problem instances shows a clear hierar-
chical relation between the different instances and,
therefore, allows to perform a straightforward domain
pruning strategy. Specifically, if an instance N 0; P 0ð Þ is
accepted, every instance such that N 6 N 0 and P 6 P 0 is
instantaneously accepted. In turn, if N 0; P 0ð Þ is rejected,
every instance such that N P N 0 and P P P 0 is rejected.

4.2. Feasibility bounds

The requirements imposed by the previous mission anal-
ysis involve limitations in the maximum mission time and
the available fuel mass. Thus, the values of the aforemen-
tioned problem variables have to be optimized so that the
most and least advantageous mission time and fuel con-
sumption are obtained. Opportunely, a careful analysis of
the problem at hand allows to readily characterise the
desired variable values.
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The most expensive manoeuvres are the inclination
changes performed to drift between the different orbital
panes of the constellation. Furthermore, the heavier the
chaser, the more fuel-expensive is a manoeuvre. Hence,
the sooner such inclination changes are performed, the
worse the total fuel consumption will be. Consequently,
the object distribution that achieves the feasibility lower
bound comprises N � P þ 1 objects in the first constella-
tion orbital plane and one object in the subsequent planes.
Conversely, the feasibility upper bound is achieved when
there are N � P þ 1 objects in the last plane and one object
in each of the preceding ones.

The feasibility bounds are directly related with the total
RAAN difference traversed by the chaser. Thus, the upper
bound is obtained when the last constellation plane to be
visited has an initial RAAN very similar to the one of
the injection orbit. This way, the chaser has to perform a
virtually whole RAAN revolution. In turn, the lower
bound is obtained when the RAAN of the injection orbit
is identical to the one of the first constellation plane to
be visited and the subsequent constellation planes are adja-
cent to it. Note that the assumption taken for the upper
bound, that the final constellation plane visited has a
RAAN very similar to the injection plane, is a very conser-
vative one. Indeed, by including in the optimal problem
formulation the option to control the RAAN drifting, such
a plane could be visited first in the sequence, reducing the
feasibility upper bound for time. However, in this study
it is decided to work under the simpler, worst-case scenario
proposed. Furthermore, because this is the upper limit, this
assumption will not lead to the rejection of otherwise feasi-
ble problem instances, but increase the number of those
classified as inconclusive. An extension of the model to
include this additional flexibility can be tackled as a future
work.

Finally, the removal sequence and initial situation of the
chaser and the objects within their respective orbits are
chosen so as to minimise, or maximise, the phasing time
necessary to rendezvous with an object when completing
a transfer between the injection or disposal orbit and a con-
stellation plane.

4.2.1. Fuel consumption constraint

The fuel consumed during the whole mission can be
obtained by iterating in a reverse chronological order
(i.e., starting with a chaser with no fuel and adding the fuel
consumed during each manoeuvre until the initial mass is
retrieved) the following equation:

mi ¼ miþ1 þ aimobj

� �
exp

DV i

g0ISP

� �
� aimobj ð2Þ

where i indexes the set of performed manoeuvres (in
chronological order), mi is the mass of the chaser after
manoeuvre i;mobj is the mass of a defunct satellite, ai is
1 if the chaser is transporting a defunct satellite during
manoeuvre i (is 0 otherwise), DV i is the DV spent during
manoeuvre i; g0 is the gravity acceleration at the Earth’s
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surface and ISP is the specific impulse of the chaser’s
thruster. This way, given the whole set of DV i values
and starting with a miþ1 equal to the dry mass of the
chaser, Eq. (2) can be iterated to obtain the initial wet
mass of the chaser.

Note that Eq. (2) is formulated with the aim of assessing
the feasibility of the fuel consumption constraint for a
given removal sequence. This is the reason why it is
assumed that the final mass is equal to the chaser dry mass.
Of course, for a mission with a fixed initial wet mass mwet, a
feasible removal sequence would lead to a leftover fuel
mass mleftover, which can be computed evaluating the mass
equation in chronological order, instead of reverse chrono-
logical order, starting from the given mwet. The mleftover

would then be the difference between the chaser mass after
the final manoeuvre and its dry mass. Furthermore, it is
also possible to apply Eq. (2) in cases where a minimum
mleftover is imposed (e.g., to account for operational safety
margins), by taking as final mass the dry mass plus this
mleftover.

Moreover, the manoeuvres are modelled as combined
impulses, whose associated DV consumption can be com-
puted as:

DV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

1 þ V 2
2 � 2V 1V 2 cos Dið Þ

q
ð3Þ

where V 1 and V 2 are the orbital velocities before and after
the impulse, respectively, and Di is the inclination change
performed during the manoeuvre.

Finally, it has to be noted that the DV consumption does
not depend on the initial position or distribution of the
objects within the constellation planes. Hence, for a given
N ; Pð Þ combination, the feasibility bounds for the fuel con-
sumption are obtained when evaluating the aforemen-
tioned best and worst object distributions.

4.2.2. Mission time constraint

The mission time can be readily computed by the follow-
ing expression:

Dt ¼ DtTdf þ N � P þ 1ð ÞDtDC þ P � 1ð ÞDtDNþ
þDtRI þ N � Pð ÞDtRC þ P � 1ð ÞDtRN

ð4Þ

where DtTdf is the aggregated time spent while coasting in
the different drifting orbits, DtRI is the time elapsed
between the departure from the initial injection orbit
and the rendezvous with the first object, and DtDC and
DtRC are, respectively, the time spent to transport an
object to its corresponding disposal orbit and the time
elapsed between departing such disposal orbit and the
rendezvous with the subsequent object; both terms con-
sider that such object is situated in the same constellation
plane as the previously removed one. In turn, DtDN and
DtRN are analogous to the previous terms, but for the case
in which the subsequent object is noncoplanar with the
formerly removed one.

The time spent while coasting in a drifting orbit is the
necessary to nullify the RAAN difference between the tar-
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get and the drifting orbits, as expressed by the following
equation:

Dtdf ¼ DXþ 2pB
_X2 � _Xdf

ð5Þ

where Dtdf is the drifting time, DX is the initial RAAN dif-
ference between the target and the drifting orbits,
B 2 �1; 0; 1f g is a constant chosen so as to obtain the

smallest positive Dtdf , and _X2 and _Xdf are the nodal preces-
sions of the target and drifting orbit, respectively. Only the
averaged effect of the J 2 perturbation has been considered
in the computation of such nodal precessions. Hence, they
are represented by the following expression:

_X ¼ � 3nR2
�J 2

2p2
cos ið Þ ð6Þ

where R� is the equatorial radius of the Earth, J 2 is the coef-
ficient of the spherical harmonic of degree 2 and order 0 of
the Earth’s gravity field, n is the mean motion of the consid-
ered orbit, p is its semilatus rectum and i is its inclination.

Aside from the coasting intervals, the rest of the manoeu-
vres can be generalised with a two-stage strategy involving a
phasing stage and a Hohmann-like transfer with inclination
change (although it is not necessary for all of them to com-
prise a phasing stage or an inclination change). Thus, the
remaining terms of Eq. (4) can be modelled as:

Dt̂ ¼ KT pha þ 1

2
T tra ð7Þ

where Dt̂ represents a term of Eq. (4) (excluding DtTdf ), K is
the number of revolutions performed by the chaser during
the phasing stage and T pha and T tra are the orbital periods
of the phasing and transfer orbits, respectively. Moreover,
K and T pha have to be chosen so that the mean motion dif-
ference between the target and phasing orbits produces a
desired difference in true anomaly in an integer number
of revolutions:

Dhþ 2pC þ n2 � npha
� �

KT pha ¼ 0 ð8Þ
where Dh is the difference in true anomaly to be compen-
sated, C is an integer number, and n2 and npha are the mean
motions of the target and phasing orbits, respectively.

Reformulating Eq. (8) in terms of the orbital periods
and isolating K gives:

K ¼ Dhþ 2pC

2p 1� T pha

T 2

� � ð9Þ

Three unknown variables of Eq. (9), namely, K;C and T pha,
have to be determined. An initial step to configure an effi-
cient algorithm to solve this equation is to analyse the
domain of the concerned variables.

Regarding T pha, in Section 4.2.1, it was stated that the
positions of the objects within their constellation plane
do not affect the DV consumption. It is due to the fact that
the phasing stage does not produce a net DV consumption,
i.e., the DV spent to reach the phasing orbit and, subse-
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quently, the transfer orbit is identical to the DV that would
be spent to directly reach the latter. This entails that the
semimajor axis of the phasing orbit must have a value
located between the ones corresponding to the semimajor
axes of the initial orbit of the current manoeuvre and the
transfer orbit. In terms of orbital periods, it means that
T pha 2 min T 1; T trað Þ;max T 1; T trað Þ½ �, where T 1 is the period
of the initial orbit of the current manoeuvre.

Regarding K and C, in order to minimise KT pha;K has to
be the smallest natural number possible. In addition, for K

to be positive, C must have the same sign as 1� T pha=T 2

� �
and its absolute value has to be as small as possible to min-
imise K. Thus, a lower bound of jCj can be obtained when
substituting K ¼ 1 as well as the minimum and maximum
values of T pha in Eq. (9), and selecting the minimum jCj
from the two values obtained. Then, as C must be an inte-
ger, if C has to be positive, it is rounded up, otherwise, it is
rounded down.

Hence, the aforementioned concepts can be used to con-
figure the following algorithm:

1. The lower bound of C is substituted in Eq. (9).
2. The minimum and maximum values of T pha are intro-

duced in that equation, resulting in the extremes of an
interval of possible values of K.

3. If there are natural numbers within such interval, K is
the smallest of them.

4. Otherwise, increase jCj in 1 and repeat the previous two
steps until K is determined.

5. Once C and K are known, they are substituted in Eq.(9)
to obtain T pha.
4.3. Optimality upper bounds

The feasibility upper bounds are obtained when both the
controlled and uncontrolled variables are selected to pro-
duce the least advantageous value of a particular con-
straint. However, in practice, the controlled variables will
be carefully selected so as to produce the most advanta-
geous results for the mission. The optimality upper bounds
take into account this concept by means of the interaction
of two antagonistic optimisation processes. Specifically, the
uncontrolled variables are chosen to worsen the mission
performance, while the controlled ones are selected to
improve the constraint value. As a result, the optimality
bounds represent the tightest bounds that can be obtained
for a particular constraint value, but at a greater computa-
tional complexity. As previously indicated, this differs from
a classical Constraint Programming application, where the
goal is to identify feasible problems without considerations
on their optimality.

In this particular case, the only controlled variable to be
optimised is the removal sequence. As the fuel consump-
tion constraint does not depend on it, its corresponding
feasibility and optimality upper bounds are identical. In
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turn, the mission time constraint depends on the removal
sequence so the optimality bounds have to be computed.

In addition, the uncontrolled variables to be considered
during this computation are the initial positions of the
objects and the chaser as well as the aggregated RAAN tra-
versed by the chaser while drifting. It has to be noted that
the time elapsed between the removal of two consecutive
objects does not depend on their absolute initial positions,
but on their relative geometry (i.e., the elapsed time would
be the same if a constant is added to the initial position of
the two objects). It entails that this problem can be decom-
posed into smaller ones that account for the initial position
of the chaser and the objects in a single constellation plane.
Then, these plane-wise individual solutions can be con-
nected by adding a constant quantity to the whole set of
positions corresponding to each solution, so that the final
position of one solution corresponds to the initial position
of the subsequent one.

When matching two consecutive solutions, it is impor-
tant to note that the situation for the chaser is slightly more
complex than for the objects to be removed. Indeed, the
constant quantity that is added to the initial position of
the objects in the plane should be added to the initial posi-
tion of the chaser inside that particular plane (i.e., before
any phasing manoeuvre inside the plane), not to its overall
initial position. The difference between both will be due to
the drifting and transfer manoeuvres performed before
arriving to that plane. Therefore, to strictly compute the
quantity that needs to be added to the initial position of
the chaser, the transfers and drift would need to be propa-
gated backwards starting from the position in the plane.
However, this process can be circumvented by directly con-
sidering such chaser position within the constellation plane
during the problem resolution. As a consequence, the
aggregated RAAN traversed by the chaser while drifting
can be uncloupled from this problem. Thus obtaining the
optimality upper bound by simply considering the largest
possible traversed RAAN.

All in all, each of those subproblems involve an uncon-
strained Bilevel Mixed Integer Nonlinear Programming
problem, represented by the following objective function:

max
u

min
X

Dt u;Xð Þf g
	 


ð10Þ

where X is a matrix of binary variables that represents the
removal sequence and u is the vector of initial arguments of
latitude of the chaser and the objects, which represents
their respective initial positions within their orbits.

The resolution process of this problem follows the struc-
ture shown in Fig. 2. The upper lever, hereinafter referred
to as parameter search, explores u and sends promising val-
ues to the lower lever. In turn, the lower level obtains the
optimal removal sequence for the received u and provides
the resulting Dt to the upper level. This way, the upper level
can use the Dt information to select a subsequent u that can
potentially produce a worse Dt.



Fig. 2. Optimality upper bound process.
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4.3.1. Parameter search

Assuming that u1 represents the position of the chaser, it
can be seen that every permutation of the elements of u

(aside from u1) represents the same problem. Hence, elim-
inating that permutation symmetry results in a reduction
of the search space size by a factor of N!. It can be readily
achieved by ordering the arguments of latitude in a mono-
tonic way, as imposed by the following constraint:

ui 6 uiþ1 8i : 2 6 i 6 N ð11Þ
where i indexes the components of u.

Therefore, considering the sequence optimisation prob-
lem as a black-box function, the parameter search problem
involves the maximisation of the objective function defined
by Eq. (10), subject to Eq. (11). As Eq. (10) is non-smooth
and discontinuous, derivative-free methodologies are pro-
posed to solve this problem. In addition, said function is
computationally expensive to evaluate because it requires
the resolution of an Integer Programming problem. This
arises a dilemma about the trade-off between objective
function evaluations and solution quality. As a result,
two different methodologies are proposed to solve the
parameter search problem.

On the one hand, Generalised Pattern Search (Lewis
and Torczon, 2000) constitutes a derivative-free direct
search methodology that follows a similar strategy to steep-
est descent approaches. This way, a single solution is itera-
tively improved by means of sampling its neighbouring
points. Thus being prone to obtaining disadvantageous
local optimal solutions and, consequently, being sensitive
to the initial guess used to initialise the search. On the other
hand, Evolutionary Algorithms provide a better search
space exploration by means of maintaining a population
of possible solutions, but at the cost of a considerably lar-
ger number of objective function evaluations.

The selection of a good-quality initial guess not only is
of capital importance for the performance of the Gener-
alised Pattern Search method, but also can have a favour-
able effect when including it within the initial population of
an Evolutionary Algorithm. This phenomenon is going to
be quantified by means of the use of two possible initial
guesses.
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The most straightforward of them is the one that results
in the feasibility upper bound. This solution provides an
artificial selection of the removal sequence to maximise
the mission time. This implies that a simple modification
of the sequence can result in notable improvements of such
time. Hence, the u provided by this solution is very unlikely
to be the global optimum.

The other considered initial guess involves all the
objects with an identical orbital position, such that, the
combination of this position and the one selected for
the chaser maximise DtRI. This kind of solution makes it
impossible to improve the mission time by modifying
the removal sequence and, despite being an unrealistic
and degenerate case, is very likely to be near-optimal,
or even the global optimum, if the ratio
DtRC Du ¼ 0ð Þ=max DtRCð Þ is close to 1, where max DtRCð Þ
is the maximum DtRC that can be achieved across the
domain of possible u vectors.

4.3.2. Sequence optimisation

The sequence optimisation problem involves the deter-
mination of the removal sequence, as well as the selection
of the objects to be removed in case it is not required to
remove all of them. As the initial arguments of latitude
of the different objects are obtained by the parameter
search problem, the Dt spent during each of the possible
transfers can be unambiguously computed and the
sequence optimisation problem can be formulated as an
Integer Linear Programming problem. In particular, this
problem intends to minimise the total Dt spent during the
mission:

min
X
i2D

X
j2D
i–j

DtijX ij

8<
:

9=
; ð12Þ

where D is the set of possible objects to be removed (in-
dexed by i and j), X ij is a binary variable that is 1 if and
only if a transfer from object i to j is performed and Dtij
is the time elapsed during each of those transfers.

Considering a directed graph formed by D and the dif-
ferent transfers between those objects, the removal
sequence can be modelled as a directed cycle comprising
the selected objects and an additional dummy object (la-
beled as object 1). That object represents both the chaser
initial and final state, i.e., its outgoing edge represents the
transfer between the injection orbit and the first object,
while its incoming edge represents the final transfer of the
chaser to its corresponding disposal orbit. Hence, a set of
linear constraints that guarantees the formation of such
cycle is subsequently defined.

First, a transfer between an object and itself cannot be
performed:

X ii ¼ 0 8i 2 D ð13Þ
Moreover, if an object is removed, it has exactly one outgo-
ing transfer. Otherwise, it cannot have such transfers:
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X
j2D
i–j

X ij ¼ Y i 8i 2 D ð14Þ

where Y i is a binary variable that is 1 if and only if the
object i is removed.

Likewise, each removed object has exactly one incoming
transfer:X
j2D
i–j

X ji ¼ Y i 8i 2 D ð15Þ

Furthermore, the number of selected objects is equal to the
number of objects required to be removed (N) plus the
dummy object:X
i2D

Y i ¼ N þ 1 8i 2 D ð16Þ

Note that if the whole set of objects has to be removed,
case known as Travelling Salesman Problem (TSP)
(Dantzig et al., 1954), this latter constraint is equivalent
to imposing that Y i ¼ 1 8i 2 D.

The aforementioned set of constraints does not prevent
the appearance of disjoint cycles, also known as subtours.
The reason for their appearance is that they allow to sub-
stitute expensive transfers of the main cycle for cheaper
ones that form subtours. This phenomenon is specially
impactful for problems with lots of potential advantageous
subtours, such as problems that involve a large candidate
object pool or objects distributed in several orbital planes.
Thus, it is important to select the most adequate methodol-
ogy to deal with this problem.

A common strategy to eliminate potential subtours
entails the consideration of additional ad hoc constraints
of the following form (Dantzig et al., 1954):X
i2R

X
j2R
i–j

X ij 6 Rj j � 1 ð17Þ

where R is the set of objects that form a subtour. The num-
ber of possible subtours of length jRj corresponds to the
number of possible jRj-combinations of objects divided
by jRj, i.e., jDj!= jRj jDj � jRjð Þ!ð Þ. Hence, the straightfor-
ward use of this strategy would result in an impractical
number of constraints, even for problems of moderate size.
Consequently, two different approaches can be considered
as a function of the problem size.

On the one hand, for problems involving five or less
objects, the addition of Constraints (17) particularised for
two-object subtours (i.e. round trips between two objects)
is enough to prevent the appearance of subtours. Such con-
straints can be defined as follows:

X ij þ X ji 6 1 8i 2 D 8j 2 D : i < jð Þ ð18Þ
On the other hand, for larger problems, Constraints (17)
can be dynamically generated during the resolution of the
problem. This way, if a solution with subtours is found,
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the solution will be rejected and the corresponding subtour
elimination constraints will be added to the model. This
strategy is usually very efficient, but its performance signif-
icantly degrades for problems with a large number of rele-
vant subtours, specially for instances involving objects
distributed within different orbital planes.

It has to be noted that the considered variables do not
store information about the removal sequence (i.e., the
order in which each of the transfers is performed). How-
ever, the appearance of subtours can be prevented by
means of unambiguously defining such removal sequence.
Hence, no-subtour formulations can be configured by
means of the inclusion of additional variables.

Such formulations have been thoroughly explored for
the Travelling Salesman Problem (Langevin et al., 1990).
The most notable of them (Miller et al., 1960) involves
the introduction of additional variables zi that directly
determine the order in which each node is visited. Assum-
ing that z1 ¼ 0, i.e., the chaser starts at the node 1, the
domain of the rest of those variables is zi 2 1; jDj � 1½ �
and their corresponding order can be obtained with the fol-
lowing set of constraints:
zi � zj þ Dj jX ij 6 Dj j � 1 8i 2 D : i > 1ð Þ; 8j 2 D

: j > 1ð Þ ^ i– jð Þð Þ ð19Þ
The TSP no-subtour formulations achieve a weaker linear
relaxation than the one that would be obtained with the use
of Constraints (17) or require a large number of constraints
(Langevin et al., 1990). Thus, the dynamic elimination is
often preferred. However, they can be useful when there
is a large number of relevant subtours.

A more general no-subtour formulation, suitable for
problems in which it is not necessary to remove all the can-
didate objects, was proposed in Barea et al. (2020). It
includes the sequence information within the X ij variables,
transforming them into the new X ijk variables and substi-
tuting each X ij instance for the expression

P
k2KX ijk. This

way, X ijk is 1 if and only if the k-th transfer is performed
between objects i and j. Moreover, one transfer corre-
sponds to each position k:
X
i2D

X
j2D
i–j

X ijk ¼ 1 8k 2 1;N þ 1½ � ð20Þ

Furthermore, the first and last transfers correspond to the
departure from the injection orbit and the disposal of the
chaser, respectively:X
j2D

X 1j1 ¼ 1;
X
j2D

X j1 Nþ1ð Þ ¼ 1 ð21Þ

Finally, the subtour appearance can be readily prevented
by imposing that the final object of a transfer is the first
of the subsequent one:
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X
i2D
i–j

X ijk ¼
X
i2D
i–j

X ji kþ1ð Þ 8j 2 D; 8k 2 1;N½ � ð22Þ

This formulation is especially tailored for instances in
which the candidate object pool is large, but only a small
subset of those objects must be removed. Hence outper-
forming the dynamic elimination strategy in those
instances. However, its performance deteriorates when
increasing the number of objects to be removed.

Table 1 summarises the recommended formulation
selection for different kinds of problem instances. Note that
it is not clear which formulation to use for cases that
involve a large set of candidate objects, distributed among
different orbital planes, such that a large subset of those
objects is required to be removed. The reason for that is
the degradation of the performance of both the dynamic
elimination strategy and the general no-subtour formula-
tion for such kind of instances.

5. Active debris removal mission: Mothership case

The mothership case, just like the chaser case, involves
the use of a set of servicing satellites, i.e., motherships, to
remove defunct satellites within a constellation. However,
in this case, the defunct satellites are transported to their
corresponding disposal orbits by deorbiting kits, which
have been previously attached to them by a mothership.
This way, each mothership rendezvous with each of its
assigned objects to deploy the deorbiting kits and will only
transfer to a disposal orbit when performing the removal of
its last associated object. During that manoeuvre, the
mothership will transport such object to the disposal orbit
so that both can simultaneously reenter the atmosphere.
Hence, the sequence of actions carried out by each mother-
ship is analogous to the one explained in Section 4, save for
the intermediate transfers to the disposal orbit.

5.1. Predefined mission choices

Analogously to the chaser case, the following parame-
ters are extracted from a previous mission analysis.

Mothership parameters:

� Maximum wet and dry mass of each mothership.
� Mass of the deorbiting kits.
Table 1
MIP formulation selection criteria.

jDj Object distribution N

6 5 Any 1; jDj½ �
Small Any 1; jDj½ �
Large Coplanar jDj
Large Noncoplanar jDj
Large Any � jDj
Large Noncoplanar 	 jDj
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� Semimajor axis, inclination and eccentricity of the initial
injection orbit.

� RAAN difference between the initial injection orbit and
the target constellation plane.

� Semimajor axis, inclination and eccentricity of the drift-
ing orbit used to transfer between two different constel-
lation planes.

� Semimajor axis, inclination and eccentricity of the phas-
ing orbit used to transfer between two objects within the
same constellation plane. Note that such phasing orbit
should keep a minimum safety distance from the con-
cerned constellation orbit, so as not to generate a risk
of potential collisions of the mothership with active
satellites located in that constellation plane.

� Semimajor axis, inclination and eccentricity of the dis-
posal orbit associated to each mothership.

Constellation parameters:

� Defunct satellite mass.
� Semimajor axis, inclination and eccentricity of each con-
stellation plane.

� RAAN difference between two adjacent constellation
planes.

The uncontrolled variables, save for theRAANdifference
between thedifferentorbital planes, areanalogous to theones
of the chaser case. The same is true for the problem instances
and domain pruning strategy. However, in this case, it is log-
ical to remove the defunct objects in order of monotonically
increasing (or decreasing) arguments of latitude. Therefore,
there would be no controlled variables and the feasibility
and optimality bounds would be identical. This provides a
good opportunity to disregard some of the predefined
choices, thus potentially improving the performance of the
mission. Specifically, the semimajor axes of the phasing
orbits used to transfer between two objects within the same
constellation plane as well as the inclinations of the initial
injection orbit and the drifting orbits are considered as the
controlled variables of the problem at hand.

5.2. Feasibility bounds

The requirements imposed by the previous mission anal-
ysis involve limitations in the maximum mission time and
the DV consumed during the mission. Therefore, the most
Formulation

Two-object constraints (Dantzig et al., 1954)
Dynamic elimination (Dantzig et al., 1954)
Dynamic elimination (Dantzig et al., 1954)

TSP No-subtour (Langevin et al., 1990; Miller et al., 1960)
General No-subtour (Barea et al., 2020)

Undetermined
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and least advantageous values of the object distribution
within the different constellation planes and the initial posi-
tions of the different objects have to be determined.

The feasibility lower bound is obtained when the initial
positions of every object are such that the phasing is
achieved when transferring to the predefined phasing orbit
(recall that the phasing orbit does not intersect the orbit of
the constellation plane) and, upon arrival, instantaneously
transferring back to the constellation orbit, i.e., the phasing
is directly achieved by the transfer orbit.

In turn, the upper bound also depends on the object dis-
tribution. Specifically, the objects have to be allocated
within the constellation planes such that the aggregated
argument of latitude compensated by the whole set of phas-
ing manoeuvres is maximised. A naive approach would be
to consider that a complete revolution in argument of lat-
itude is compensated for each orbital plane. However, a
tighter feasibility bound can be achieved without a mean-
ingful computational effort.

First, it is assumed that the objects are equally spaced
within its plane. Otherwise, the first object to be removed
could be regarded as a controlled variable and one of the
objects adjacent to the largest gap in argument of latitude
would be assigned to it. This would result in a better solu-
tion, but not necessarily an upper bound of the feasible
solution set.

Second, it is postulated that, due to the accumulation of
uncertainties during the clearance of former planes, the
mothership arrives to the second and subsequent constella-
tion planes with a phasing error. This way, the arrival is
produced at an argument of latitude equidistant from
two objects and an additional phasing manoeuvre has to
be performed to correct it.

Taking into account both assumptions, the object distri-
bution can be obtained by minimising the argument of lat-
itude not compensated by the phasing for each
constellation plane:

min
2p
N 01 þ

X
p2P
p>1

p
N 0p

8><
>:

9>=
>; ð23Þ

where N 0p is the number of objects allocated to the plane
p 2 P . Evidently, the total number of allocated objects
has to be the number of objects to be removed:X
p2P

N 0p ¼ N ð24Þ

Moreover, N 0p must be natural numbers. However, when
relaxing such integrality condition, the problem defined
by Eqs. (23, 24) has the following analytical solution:
N 01 ¼ N
ffiffiffi
2

p

P � 1þ ffiffiffi
2

p ; N 0p ¼ N

P � 1þ ffiffiffi
2

p 8p 2 P : p > 1

ð25Þ
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Then, two possible integer solutions can be obtained,
resulting from rounding up or down the value of N 01.
The rest of variables can be rounded so that Eq. (24) is ful-
filled and both solutions are computed to select the one
that minimises Eq. (23).

5.2.1. DV constraint

The DV spent during the mission can be readily obtained
from the following expression:

DV ¼ DV RI þ N � Pð ÞDV RC þ P � 1ð ÞDV RN þ DV D ð26Þ
where the subindices RI, RC and RN represent the DV
spent to rendezvous with the next object to be removed if
it is the first object in the sequence, coplanar with the pre-
viously removed object or noncoplanar with it, respec-
tively. Moreover, DV D represents the DV used to transfer
the mothership, along with the last object of the sequence,
to its corresponding disposal orbit.

Each of the terms of the right hand side of Eq. (26) com-
prises several impulses (modelled using Eq. (3)) arranged to
configure Hohmann-like transfers with inclination changes
as well as intermediate phasing and drifting orbits. The
semimajor axis and inclination changes performed during
each of those impulses are optimised so that their corre-
sponding term is minimised, while complying with the pre-
defined mission choices.

It has to be noted that the predefined mission choices,
along with the optimised terms of the right hand side of
Eq. (26), unambiguously define the spent DV for each
N ; Pð Þ tuple. Hence, both feasibility bounds associated to
the DV constraint collapse into a single quantity regardless
of the values of the uncontrolled variables.

5.2.2. Mission time constraint

The total mission time can be computed with the follow-
ing equation:

Dt ¼ DtTdf þ DtRI þ N � Pð ÞDtRC þ P � 1ð ÞDtRN ð27Þ
where DtTdf is the aggregated time spent while coasting in
the different drifting orbits and the subindices RI, RC
and RN are analogous to the ones found in Eq. (26), but
applied to the transfer time. Each of the individual drifting
times included in DtTdf can be obtained using Eq. (5). In
turn, the rest of the Dt components of Eq. (27) can be
obtained by means of the resolution of Eq. (7).

Unlike theDV constraint, themission time depends on the
object distribution aswell as the initial positions of themoth-
ership and the objects to be removed. Hence, the feasibility
bounds are achieved when considering the most and least
advantageous values of those uncontrolled variables.

5.3. Optimality bounds

As the removal sequence is predefined, this problem
does not have controlled variables and the optimality
bounds correspond to the feasibility bounds. However, so
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as to potentially improve the performance of the mission,
the semimajor axes of the phasing orbits as well as the incli-
nations of the initial injection orbit and the drifting orbits
are considered as controlled variables of the problem.
Moreover, the considered uncontrolled variables are the
object distribution within the different constellation planes
and the initial positions of the different objects.

Despite the similarities of the present problem with the
chaser case, its structure and the resolution methods
applied to it are radically different. Specifically, this prob-
lem is also a Mixed Integer Nonlinear Programming prob-
lem because the semimajor axes have to be chosen such
that the phasing orbits perform an integer number of rev-
olutions. Nevertheless, its resolution can be decomposed
into two sequential phases. The first phase allows the selec-
tion of phasing orbits with fractional numbers of revolu-
tions, thus constituting a Nonlinear Programming
problem. Then, the second phase corrects the solution to
achieve the revolution integrality, resulting in an Integer
Linear Programming problem.

5.3.1. Phasing and drifting orbit optimisation
The first phase to obtain the optimality bounds involves

the selection of the semimajor axes of the phasing orbits as
well as the inclinations of the initial injection orbit and the
drifting orbits so that the mission time is minimised, as
shown in the following objective function:

min
X
k2K

Dtpha akð Þ þ
X
‘2L

Dtdf i‘ð Þ
( )

ð28Þ

where K represents the set of phasing manoeuvres (indexed
by k), L is the set of drifting orbits (indexed by ‘), Dtpha is
the time spent during the phasing manoeuvres, Dtdf is the
time elapsed while drifting, ak stands for the semimajor axis
of the phasing orbit k and i‘ is the inclination of the drifting
orbit ‘.

Specifically, this problem entails the redistribution of the
DV available for phasing and drifting manoeuvres to
achieve the desired solution. This is modelled by the follow-
ing constraint:X
k2K

DV pha akð Þ þ
X
‘2L

DV df i‘ð Þ ¼ DV � ð29Þ

where DV pha and DV df represent the DV spent to achieve
the phasing and drifting orbits, respectively, and DV � is
the DV available for the considered manoeuvres.

This problem can be readily solved with conventional
Nonlinear Programming techniques. However, the dual-
based methodology proposed in Barea et al. (2022) pro-
vides an efficient way to obtain the global optimum of
the problem. For the sake of completeness, the application
of such methodology to the problem at hand is subse-
quently explained in a concise manner.

The Lagrangian function of the problem at hand can be
defined as:
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L ¼
X
k2K

Dtpha akð Þ þ
X
‘2L

Dtdf i‘ð Þ

� k
X
k2K

DV pha akð Þ þ
X
‘2L

DV df i‘ð Þ � DV �
 !

ð30Þ

where k is the dual variable associated to Eq. (29).
The optimality conditions of this problem can be

obtained by means of nullifying the gradient of the Lagran-
gian function, yielding:

dDtpha
dak

akð Þ � k
dDV pha

dak
akð Þ ¼ 0 8k 2 K ð31aÞ

dDtdf
di‘

i‘ð Þ � k
dDV df

di‘
i‘ð Þ ¼ 0 8‘ 2 L ð31bÞ

The derivative chain rule can be used to isolate k in Eqs.
(31), resulting in the following conservation law:

k ¼ dDtpha
dDV pha

akð Þ ¼ dDtdf
dDV df

i‘ð Þ 8k 2 K; 8‘ 2 L ð32Þ

Eqs. (32) can be inverted and substituted into Eq. (29) to
configure the following univariate function:

/ kð Þ ¼
X
k2K

DV pha ak kð Þð Þ þ
X
‘2L

DV df i‘ kð Þð Þ � DV � ð33Þ

A root of Eq. (33) automatically fulfills the optimality con-
ditions, i.e., Eqs. (29, 32). Hence, the solution of the prob-
lem simply involves the determination of k, regardless of
the number of phasing and drifting orbits. Then, the values
of ak and i‘ can be retrieved with the inverse of Eqs. (32).

5.3.2. Phasing orbit correction

The previous problem regards ak as a continuous vari-
able. However, only the values that result in an integer
number of revolutions of the phasing orbits are feasible.
A feasible solution can be obtained by computing the num-
ber of revolutions associated to each ak, rounding up such
number and computing the corrected values of each ak.
This gives a solution with a greater mission time, but a
lower DV consumption. Therefore, considering the solution
with rounded up revolutions as the reference, the problem
at hand involves deciding which revolutions to round up or
down such that the DV surplus can be optimally redis-
tributed, hence improving the mission time. This can be
modelled with the following objective function:

min
X
k2K

D Dtkð ÞWk ð34Þ

where D Dtkð Þ is the Dt difference between the rounded
down and the rounded up revolutions and Wk is a binary
variable that is 1 if the revolutions associated to the k-th
phasing orbit are rounded down. The following constraint
models the DV redistribution:X
k2K

D DV kð ÞWk 6 DV 0 ð35Þ

where D DV kð Þ is the DV difference between the rounded
down and the rounded up revolutions and DV 0 is the DV



Table 3
Mission requirements for the chaser case.

Parameter Value

Maximum mission time (years) 5
Dry mass of the chaser (kg) 245

Maximum wet mass of the chaser (kg) 520
Specific impulse of the chaser (s) 285

Table 4
Drifting orbit parameters for the chaser case.

Parameter Positioning 1 Positioning 2

Perigee altitude (km) 500 500
Apogee altitude (km) 1100 1100

Inclination (deg) 87.1082 86.5896
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surplus to redistribute. Eqs. (34, 35) define an Integer Lin-
ear Programming problem that can be readily solved with
branch-and-bound methods.

6. Results

The mission analysis from Huang et al. (2020) is subse-
quently compared with the results obtained with the pro-
posed methodology. Specifically, predefined performance
baselines are defined for both application cases and the
achieved level of fulfilment of such baselines is discussed.
Table 2 shows the predefined mission parameters shared
by both application cases.

6.1. Chaser case

Table 3 shows the requirements imposed for the chaser
case. In addition, its associated performance baseline
involves removing three objects located in different orbital
planes. Moreover, it is assumed that the chaser will be
deployed with a rideshare launch. Thus, the initial RAAN
associated to the injection orbit is considered as an uncon-
trolled variable. This implies the analysis of two possible
mission geometries: one case with Type 1 Positioning,
which considers that such initial RAAN is not included
within the interval defined by the constellation planes to
be cleared; and another case with the Type 2 Positioning,
which involves an initial RAAN inside that interval, result-
ing in a more disadvantageous case.

Tables 4 and 5 summarise the mission analysis carried
out in Huang et al. (2020). In particular, the inclination
of the drifting orbits depends on the initial positioning of
the chaser. In turn, the disposal orbit associated to an
object depends on the constellation plane in which the next
object to be removed is located, as well as the initial posi-
tioning of the chaser.

Consequently, according to Huang et al. (2020), the
aforementioned parameter selection makes it possible for
the chaser to remove three coplanar objects within the
required mission time, regardless of the initial positioning
of the chaser. However, in order to remove three noncopla-
nar objects, it would be necessary to increase the wet mass
of the chaser by 5 and 35 kg for the initial positioning of
Type 1 and 2, respectively.
Table 2
Predefined parameters for both application cases.

Parameter Value

Object mass (kg) 150
Constellation altitude (km) 1200

Constellation inclination (deg) 87.9
Constellation eccentricity 0

DX between adjacent planes (deg) 15.2
Number of constellation planes 12
Injection orbit altitude (km) 500

Injection orbit inclination (deg) 86
Injection orbit eccentricity 0
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Hence, the results of the proposed methodology are
compared with such conclusions. The first step in its appli-
cation is the configuration of the problem instances. Specif-
ically, as the N ; Pð Þ combinations are going to be
evaluated, an upper bound of the maximum N to be eval-
uated has to be obtained. Such maximum number of
objects can be readily computed by iterating backwards
Eq. (2), starting from the dry mass of the chaser, until a
mass of the chaser greater than the maximum wet mass is
achieved. This yields that, under the imposed requirements,
it is impossible to remove more than three objects with a
single mission.

Consequently, Fig. 3 shows the results of computing the
feasibility bounds for the N ; Pð Þ problem instances of up to
three objects, where the green instances are feasible in any
case, the red ones are always infeasible and the yellow ones
are inconclusive. The evaluated instances are highlighted
with black squares, while the feasibility of the rest was con-
cluded with constraint propagation. So far, the feasibility
showed in Fig. 3 is in line with the conclusions of Huang
et al. (2020). That is, for Type 2 positioning, it is only pos-
sible to remove three objects if they are coplanar. In turn,
for Type 1 positioning, there are cases in which it is not fea-
sible to remove three noncoplanar objects. However, the
mission time upper feasibility bound of the 3; 3ð Þ instance,
for Type 1 positioning, violates the maximum mission time
by just 2.8 h. Moreover, further splitting such problem
instance, it is determined that it is feasible for any aggre-
gated DX traversed by the chaser with a value lower than
359.961 degrees. Thus, unlike Huang et al. (2020) proposes,
it is not worth to modify the design of the chaser for such a
small and improbable violation of the maximum mission
time.

The optimality bounds do not provide additional infor-
mation about the problem feasibility, as the 3; 3ð Þ instance
has a predefined removal sequence, i.e., clearing the planes
in a monotonic RAAN order. However, such analysis can
provide insightful information about the influence of
sequence optimisation for problems with a similar struc-
ture, as well as about the performance of the proposed



Table 5
Disposal orbit parameters for the chaser case.

Parameter Coplanar Noncoplanar Pos. 1 Noncoplanar Pos. 2

Perigee altitude (km) 351.422 351.4722 351.4959
Apogee altitude (km) 1100 1100 1100

Inclination (deg) 87.9 87.1082 86.5896

Fig. 3. N ; Pð Þ instances diagram for the chaser case.
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techniques to solve this kind of Bilevel Mixed Integer Non-
linear Programming problems.

As the considered sequence involves at most four objects
(three objects to be removed plus the dummy object), the
formulation with two-object constraints is used for the
sequence optimisation level. Regarding the parameter
search level, it is solved using the two methodologies men-
tioned in Section 4.3.1 (Generalised Pattern Search and an
Evolutionary Algorithm), as well as the two initial guesses
discussed there (i.e., the object distribution that gives worst
feasible rendezvous time and all the objects with an identi-
cal position).

Regarding the Generalised Pattern Search algorithm, a
2N-direction complete polling strategy has been considered
to characterise the neighbourhood of a point. That is, a
positive and negative variation of each of the variables is
evaluated and the point that gives the most advantageous
value for the objective function is considered in the subse-
quent iteration.
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Regarding the Evolutionary Algorithm, a Genetic Algo-
rithm has been selected. Specifically, its initial population
considers 49 random points and one of the initial guesses,
and the evaluation is halted when the objective function
has not achieved a significant improvement for 50
generations.

Table 6 shows the Dt ratio between the worst aggregated
value for the optimal rendezvous time (corresponding to
the optimality upper bound) and the worst aggregated
value for the feasible rendezvous time (corresponding to
the feasibility upper bound). The values reported for the
Dt ratio are in general close to 1, highlighting the limited
improvement in rendezvous time and, accordingly, in
shortening of the total mission time, which can be achieved
by optimizing the controlled variables under the worst case
scenario uncontrolled variables. It has to be noted that the
problem can be decomposed into each individual constella-
tion plane. Thus, the depicted solutions represent the
removal of two or three objects within a single plane, for
the cases in which it is the first plane cleared or one of
the subsequent ones.

Evidently, the Genetic Algorithm requires a consider-
ably larger number of function evaluations, i.e., resolutions
of the sequence selection problem. However, when using
the Identical initial guess, both optimisation techniques
converge to the same solution. The reason for such coinci-
dence is that both techniques have been unable to find a
solution with a greater rendezvous time than the one
directly achieved by such initial guess. In fact, the ratio
DtRC Du ¼ 0ð Þ=max DtRCð Þ ¼ 0:8361 for the considered
problem. Hence, it is reasonable to think that the initial
guess with identical object positions is very likely to be
the global optimum. Consequently, it could be used to cir-
cumvent the resolution of this rather complex Bilevel
Mixed Integer Nonlinear Programming problem in cases
with DtRC Du ¼ 0ð Þ=max DtRCð Þ close to 1.

Table 7 shows the aggregated rendezvous time ratio for
the multi-plane problem instances, obtained by assembling
the plane-decomposed solutions. Obviously, when there is
a single object per plane, the feasibility and optimality
upper bounds are identical and so are the worst rendezvous
times associated to each of those bounds. Moreover, the
larger the number of objects within a single plane, the smal-
ler the computed ratio and, thus, more important the influ-
ence of the sequence selection in the optimality bounds.

As previously stated, this upper bound improvement is
not necessary to accurately determine the feasibility of
the considered problem instances, mainly because the
majority of the mission time is spent during the drifting



Table 6
Worst rendezvous time ratio for plane-decomposed cases.

Number of objects Orbital plane Optimisation technique Initial guess Number of iterations Function evaluations DtRC ratio

2 First P. Search Identical 26 147 0.9051
2 First P. Search Worst 60 270 0.9051
2 First Genetic Identical 51 2450 0.9051
2 First Genetic Worst 51 2450 0.9051
2 Rest P. Search Identical 24 129 0.9247
2 Rest P. Search Worst 52 178 0.8138
2 Rest Genetic Identical 51 2450 0.9247
2 Rest Genetic Worst 51 2450 0.9247
3 First P. Search Identical 32 301 0.8798
3 First P. Search Worst 50 242 0.7156
3 First Genetic Identical 51 2450 0.8798
3 First Genetic Worst 68 3249 0.7986
3 Rest P. Search Identical 28 250 0.8967
3 Rest P. Search Worst 40 214 0.8714
3 Rest Genetic Identical 51 2450 0.8967
3 Rest Genetic Worst 79 3766 0.8715

Table 7
Worst rendezvous time ratio for multi-plane cases.

P/N 1 2 3

1 1 0.9051 0.8798
2 - 1 0.9435
3 - - 1
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phases. However, this could have a great impact for prac-
tical cases in which a larger number of objects is removed
from a single constellation plane and the chaser is directly
injected into it. Furthermore, such larger number of objects
entails a more complex optimisation problem, therefore
emphasising the importance of a good initial guess like
the one proposed in this work.

6.2. Mothership case

Table 8 shows the requirements imposed to the mother-
ship case. Its associated performance baseline involves two
different scenarios: Scenario 1 considers nine objects to
remove within each of the constellation planes. Each of
those planes has associated its own mothership, resulting
in a mission involving twelve servicing satellites. It is
assumed that the whole mothership set is launched into a
single injection orbit with the RAAN of the first constella-
tion plane to be cleared. This way, the remaining mother-
ships will coast in the injection orbit until achieving the
RAAN of their associated orbit. Then, they will perform
a transfer to rendezvous with one of the objects and, after
that, phasing manoeuvres will be carried out to remove the
Table 8
Mission requirements for the mothership case.

Parameter Value

Maximum mission time (years) 2
DV budget (km
s�1) 1
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remaining ones. Such phasing manoeuvres involve a trans-
fer to a circular orbit with an altitude of 1195 km, so as to
keep a safety distance of 5 km from potential active satel-
lites while coasting in the phasing orbit.

Scenario 2 also involves removing nine objects with each
mothership. However, in this case, those objects are dis-
tributed among two adjacent constellation planes. As a
result, this scenario only requires six servicing satellites.
After clearing its first associated constellation plane, each
mothership will use a drifting orbit to transfer to the sub-
sequent one. In particular, the selected drifting orbit is
identical to the constellation orbit save for its inclination,
which will have a value of 87.67 deg.

The aforementioned mission analysis in Huang et al.
(2020) states that, for Scenario 1, every mothership is able
to clear its assigned plane while fulfilling the maximum mis-
sion time and DV constraints. However, for Scenario 2, if
the DV constraint is fulfilled, the upper bound for the mis-
sion time ranges from 2.2 years (for the first mothership) to
3.4 years (for the sixth mothership).

The results of the proposed methodology are compared
with such conclusions. Fig. 4 shows the results of comput-
ing the feasibility bounds for the N ; Pð Þ problem instances
of up to nine objects. In particular, this figure depicts the
problem instance diagrams for the motherships that serve
the planes closer to and farther from the injection orbit,
respectively labeled as minimum and maximum drift cases.
It has to be noted that the feasibility of both mission time
and DV requirements is considered in such diagrams, i.e., if
one of those constraints is infeasible for an instance, such
instance is deemed infeasible. In turn, for an instance to
be feasible, both requirements have to be feasible for the
whole variable domain. The feasibility showed in Fig. 4 is
in line with the conclusions of Huang et al. (2020). How-
ever, it has been observed that the infeasibility of removing
objects dristributed into two planes is due to violations of
the maximum mission time constraint. In contrast, the pre-



Fig. 4. N ; Pð Þ instances diagram for the mothership case.
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defined mission parameters result in an unused DV of
214.9 m
s�1. Hence, instead of exploring the particular
cases in which the removal of objects distributed into two
planes is feasible, it would be of great interest to use the
techniques explained in Section 5.3 to optimally redis-
tribute such DV surplus, thus minimising the mission time.

Fig. 5 depicts the inverse of the summands of Eq. (33),
i.e., k as a function of DV for each of the problem variables.
It has to be noted that, for a particular constellation plane,
the conditions of all of the phasing manoeuvres (save for
the first one) are identical. Hence, the DV assigned to the
phasing of four of the five objects within the first constella-
tion plane is represented by the solid blue line. Likewise,
the phasing of three of the four objects within the second
plane is characterised by the solid red line. Regarding the
Fig. 5. Mothership case parameter correction.
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DV assigned to drifting manoeuvres, the dashed blue line
labeled as ”injection” corresponds to the cost of moving
from the injection orbit to the first constellation plane (re-
call that the injection orbit is also used for drifting in this
case), while the ”drifting” dashed red line depicts the con-
tribution from drifting between two constellation planes.
Furthermore, the value of k corresponding to a root of
Eq. (33) is also portrayed. Consequently, the DV assigned
to each of the manoeuvres corresponds to the intersection
of its corresponding function with the k value. As the
depicted functions show a monotonically increasing beha-
viour, such intersection is unique and the obtained solution
is a global optimum.

Table 9 provides a comparative between the initial incli-
nations of the injection and drifting orbits, provided by
Huang et al. (2020), and the values resulting from the com-
puted k. Recall that in this scenario, the inclination of the
injection orbit is a design parameter. The table also depicts
the DV allocated to each of those orbits. For the injection
case it includes the cost to move from injection orbit to a
constellation plane, while for the drifting case it corre-
sponds to transferring to the drifting orbit from one con-
stellation plane, and then back to the next constellation
plane. As the drifting phases have a much greater influence
in the mission time than the phasing manoeuvres, the bulk
of the DV surplus is allocated to increase the nodal drift of
the injection and drifting orbits.

Table 10 shows the semimajor axes associated to each of
the phasing orbits, obtained from the computation of k, as
well as their allocated DV . Specifically, phasing orbits 1 to 4
are the ones used to rendezvous with objects 2 to 5 within
the first constellation plane. Likewise, phasing orbits 5 to 8
are the ones used to rendezvous with the four objects situ-
ated within the second plane. Furthermore, a Corr. and DV
Corr. stand for the corrections that have to be added to the
previous columns so that an integer number of revolutions
during the phasing manoeuvres is achieved. Those correc-
tions happen to be considerably small. In addition, Dt
Dif. represents the difference in mission time produced by
them. The aggregated value of such time difference
amounts to 3919 s, which is negligible with respect to the
maximum mission time. Therefore, the solution obtained
in the phasing and drifting orbit optimisation can be con-
sidered as a good approximation of the mission time,
regardless of the integrality of the revolutions of the phas-
ing orbits.

Finally, Fig. 6 depicts a comparison between the initial
bounds of the mission time and the bounds resulting from
the optimised mission, for the problem instance involving
nine objects distributed within two constellation planes.
Table 9
Optimised inclination for the injection and drifting orbits.

Orbit i Ini. (deg) i Opt. (deg) DV (m
s�1)

Injection 86 85.225 63.46
Drifting 87.67 87.174 125.53



Table 10
Optimised phasing orbits.

Phasing orbit a Opt. (m) DV (m
s�1) a Cor. (m) DV Cor. (m
s�1) Dt Dif. (s)

1 7:562784 
 106 3.096 �3:036 
 101 2:916 
 10�2 �2:952 
 103
2 7:562784 
 106 3.096 �3:036 
 101 2:916 
 10�2 �2:952 
 103
3 7:562784 
 106 3.096 3:678 
 101 �3:532 
 10�2 3:604 
 103
4 7:562784 
 106 3.096 3:678 
 101 �3:532 
 10�2 3:604 
 103
5 7:564505 
 106 1.445 2:550 
 101 �2:447 
 10�2 2:492 
 103
6 7:561815 
 106 4.028 4:150 
 10�1 �3:987 
 10�4 4:052 
 101
7 7:561815 
 106 4.028 4:150 
 10�1 �3:987 
 10�4 4:052 
 101
8 7:561815 
 106 4.028 4:150 
 10�1 �3:987 
 10�4 4:052 
 101

Fig. 6. Mothership case mission time comparison. The optimised cases
used the surplus DV budget to improve the mission time bounds.
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The bounds are obtained by applying the proposed
methodology to both the initial solution, that is, the one
using the injection, drifting, and phasing orbit definitions
from Huang et al. (2020), and the proposed optimized solu-
tion that uses the DV surplus to reduce mission time. Note
that the upper bounds for the initial case coincide with the
mission times obtained in Huang et al. (2020), Table 2.
Blue and golden bars illustrate, respectively, the initial
upper and lower bounds for the initial solution, whereas
the red and green bars show, respectively, the upper and
lower bounds after the optimisation. Thus, the heights of
these bars not only illustrate the reduction in Dt achieved
through the proposed modification of injection, drifting
and phasing orbits, but also the narrowing between the
upper and lower bounds. Note also that the lower and
upper bounds are associated with the best- and worst-
case scenarios for satellite placement within a respective
plane, this being the reason why the difference between
the upper and lower bounds is constant across all 6 satel-
lites. The optimised mission shows a remarkable improve-
ment of the mission time, hence fulfilling the maximum
mission time constraint with the six servicing satellites
and accomplishing the predefined performance baseline
for Scenario 2.
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In recapitulation, this Section has revisited the mission
analysis results of Huang et al. (2020). Taking the two
application cases presented therein as a baseline, a perfor-
mance comparison has been carried out to showcase the
capabilities and advantages brought by the proposed
methodology. The most remarkable observations and con-
clusions stemming from this comparison can be sum-
marised as follows:

� Our methodology allows to readily compute the maxi-
mum allowable number of objects to be removed with
prescribed mission requirements, simply by backwards
iteration of Eq. (2), i.e., it provides immediate informa-
tion on the mission feasibility without the need of per-
forming an actual optimisation. This is exemplified in
Section 5.1, where this procedure determines, before-
hand, the impossibility of removing more than 3 objects
in a single mission with the given constraints.

� For cases in which mission constraints are not met, a
quantifiable measure of the non-compliance is obtained
(e.g., the amount by which the mission duration is
exceeded), along with a clear insight on the situations
under which such constraint violation occurs; this gives
the mission analyst valuable information for decision-
making, thus enabling better informed mission trade-
offs, rigorous risk assessments, or revisions of the mis-
sion constraints or the overall mission concept. This is
also exemplified in Section 5.1, where for Type 1 posi-
tioning the maximum mission time is violated by only
2.8 h, as a consequence, deciding that it is not worth
to modify the design of the chaser for such a small
and improbable violation of the maximum mission time.

� Although the optimality bounds per se do not necessar-
ily provide additional information about the problem
feasibility, they can nonetheless provide insightful infor-
mation about the influence of the sequence optimisation
for problems with a similar structure; this is, again,
exemplified in Section 5.1.

� For scenarios with simultaneous mission constraints to
fulfil, the individual feasibility compliance of each of
these constraints also provides valuable information to
the mission analyst to perform trade-offs between the
mission constraints, e.g. exchanging the DV budget in
benefit of a reduced mission duration; this is illustrated
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in Section 5.2 under the Scenario 2, where an unused DV
of 214:9ms� 1 is identified, and suggested to be opti-
mally redistributed to minimise the mission duration.
7. Conclusions

This manuscript proposes a Constraint Programming
framework for the preliminary analysis of space missions.
Specifically, it is able to quantify the performance of a set
of predefined mission choices with respect to the mission
requirements. Moreover, if a poor performance is shown
or if the mission choices have not been previously obtained,
appropriate mission choices will be generated so that the
desired performance is optimised.

This process involves the partitioning of the search
space of the concerning problems into problem instances.
The feasibility of each of those problem instances with
respect to a series of constraints (i.e., the mission require-
ments) is evaluated. If the feasibility (or infeasibility) of a
problem instance is unambiguously determined, a domain
pruning process will evaluate the implications of its feasi-
bility for the rest of the problem instances. In turn, if the
feasibility of a problem instance is inconclusive, it is parti-
tioned into simpler instances, which will be later evaluated
in a similar fashion.

The feasibility of an instance depends on a set of con-
trolled and uncontrolled variables and it is determined by
means of bounding the range of constraint values that
would be obtained for that set of variables. It has to be
noted that such bounds are not unique. Hence, two differ-
ent sets of bounds have been proposed: in a first case, the
feasibility bounds are obtained when using both the con-
trolled and uncontrolled variables to minimise (or max-
imise) the constraint value, whereas in a second case, the
optimality upper bound is obtained when using the con-
trolled variables to minimise the constraint value, while
the uncontrolled variables try to maximise it. Conse-
quently, the optimality bounds provide a tighter interval
of constraint values, but at the cost of a greater computa-
tional complexity. This separates from a strict definition of
a Constraint Programming application, where the goal is to
identify feasible problems without taking optimality con-
siderations. However, this modification allows to provide
a holistic view of the trade-offs involved in mission design
and execution.

The proposed methodology has been particularised for
two application cases involving constellation-servicing
active debris removal missions, namely, a chaser case and
a mothership case. The chaser case involves constraints in
the fuel consumption and the mission time. Their corre-
sponding feasibility bounds can be readily computed by
an algebraic expression. However, obtaining the optimality
upper bound requires the resolution of a Bilevel Mixed
Integer Nonlinear Programming problem. In such prob-
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lem, the initial positions of the objects and the removal
sequence are simultaneously chosen so as to respectively
maximise and minimise the mission time. The upper level
is solved using a derivative-free method. Specifically, a
Genetic Algorithm and Generalised Pattern Search have
been used. Furthermore, an initial guess that provides,
under particular circumstances, a near optimal or even
the global optimal solution has been figured out. The lower
level is modelled as an Integer Linear Programming prob-
lem and solved using Branch-and-Bound techniques.

The mothership case involves constraints in the spent
DV and the mission time. Just like for the chaser case, their
corresponding feasibility bounds can be readily computed
by an algebraic expression. Nevertheless, the optimality
upper bound requires the resolution of a Mixed Integer
Nonlinear Programming problem. This problem is divided
into two sequential phases. First, the integrality of the rev-
olutions of the phasing orbits is relaxed, obtaining a Non-
linear Programming problem, which is solved by a dual-
based method, and then, a correction phase is performed
to retrieve the integrality of the revolutions of the phasing
orbits.

This methodology has been used to evaluate a prelimi-
nary mission analysis of both application cases, developed
under ESA’s Sunrise project. Regarding the chaser case, it
has been determined that its associated mission choices
achieve a better performance than the one computed in
the preliminary analysis. That is, a more precise knowledge
about the performance of the preliminary analysis has been
gained, which is an effect of the thorough exploration of
the search space performed by the proposed methodology.
Regarding the mothership case, it has been shown that the
preliminary analysis provides a poor performance. As a
result, new values for the semimajor axes of the phasing
orbits and the inclinations of the injection and drifting
orbits have been computed, thus obtaining significant per-
formance improvements.

In all tested scenarios, the proposed methodology con-
sistently provided a meaningful gain in performance. How-
ever, as noted in Section 4.3.2, the performance of the
sequence optimization degrades when both the number of
objects to be removed jDj and the length of the removal
sequence N are large, i.e., jDj and N 	 jDj. While this situ-
ation does not constitute a problem for the number of
objects typical of the application case consider in this work,
it can limit the applicability of this methodology to a differ-
ent mission scenario and would require further model
developments to address it.

Although the preliminary mission analysis considered in
this work corresponds to two specific scenarios with prede-
fined manoeuvre sequences and constellation characteris-
tics, the flexibility of the proposed methodology allows to
extend it to other types of servicing applications. This
extension can be considered for future works.
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