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Abstract. The level of the vibrations and the presence of instability are the two 

most critical aspects regarding the operations of turbomachinery. To cope with 

this issues that may compromise the operation of the machines, squeeze film 

dampers (SFD) are often used in many industrial applications. Unfortunately, 

many complex phenomena characterize the dynamic behavior of these compo-

nents and determine the high complexity of the modeling of these components. 

The most relevant phenomena involved in the characterization of SFDs are indi-

viduated after a comprehensive investigation of the state of the art. Among them, 

the oil film cavitation, the air ingestion, and the effect of the inertia are intro-

duced. A modeling strategy based on the Reynolds equation is then presented. 

The boundary conditions to be adopted for the feeding and discharging of oil are 

investigated and implemented. Eventually, the finite difference model is applied 

to a practical example to evaluate the possibility to minimize the vibration level 

and to reduce the effect of the instability if a SFD is added to a rotodynamic 

system. Meaningful information about the modeling of SFDs is provided in this 

work. The critical aspects of these components and their modeling are high-

lighted and discussed. 
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1 Introduction 

In mechanical engineering high levels of vibrations are problematic in all fields, espe-

cially in rotordynamics. To increase the productivity and the efficiency of rotating ma-

chines, the load that applied to these mechanical components are becoming more and 

more remarkable. Also considering the increase of the operation speeds, to guarantee 

safe long operation times is fundamental to reduce the vibrations. In rotordynamics, the 

typical problems to be dealt with are the high levels of steady state synchronous vibra-

tion and the subsynchronous rotor instabilities. The first one is usually dependent on 

excessive unbalance or if the machine is operated close to a critical speed. On the con-

trary, the second one is linked to the presence of some instability sources, connected to 

cross-coupling effects arising, for example, in bearings or seals. Moreover, the level of 

the vibration when a critical speed is crossed during a runup, or a rundown may also be 

detrimental to the operation of the machine. Given these considerations, the dynamic 
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response of the system should benefit from the addition of damping. When the system 

is supported by rolling element bearings, the damping introduced in the system may be 

insufficient. Therefore, squeeze film dampers (SFDs can be considered to this aim. 

Both the dissipation of the vibrational energy and the improvement of the dynamic sta-

bility of the rotor-bearing system can be improved by these components. 

The most widespread design for such components is the one coupled with rolling 

element bearings, as shown in Fig. 1. 

 

Fig. 1. SFD schematization. 

A rolling element bearing supports the shaft. The coupling of the two elements is often 

referred as journal. The external ring of the bearing moves together with the shaft and 

the lubricant film, placed between the external surface of the journal and the housing, 

is “squeezed”. The damping effect is generated by the large dynamic forces generated 

by the large dynamic pressures generated by the squeeze. An anti-rotation pin may be 

adopted to avoid the transmission of the spinning motion from the shaft to the oil. Only 

lateral displacement is possible. In other words, the journal cannot spin around its axis 

of symmetry but only translate. The bearing presence determines the decoupling of the 

journal motion from the shaft spinning. The shaft kinematics are explained more in the 

detail in Section 2.1. 

Most of the times, supports are applied to sustain the journal at the runup until the 

vibration amplitude is high enough to guarantee the detachment between the casing and 

the journal. Therefore, a supporting structure, such as O-rings and squirrel cages, is 

applied to reduce the risk of impacts. Then they avoid the presence of strong non-line-

arity determined by the detachment of the journal from the casing. The stiffness of the 

supporting structure is indeed one fundamental parameter for the optimal operation of 

the SFD. If the stiffness of the supporting structure is over dimensioned, the relative 

motion between the journal and the cage will be limited reducing the squeezing of the 

lubricant film. On the contrary, if the supporting structure is not stiff enough, the SFD 

can behave as a non-supported one and may be subject to impacts and damages, [1, 2]. 
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SFDs are designed to introduce in the system the optimal level of damping that is 

strongly dependent on the application. For example, SFDs characterized by lower 

damping may reduce more the amplitude of the than the ones characterized by higher 

damping. 

The ideal level of damping needed by a machine generally depends on the type of 

the excitations, the operating conditions, and the dynamic characteristics of the system 

[3, 4]. In the literature, the modeling of the dynamic behavior of SFDs is performed 

with numerous models characterized by distinct levels of complexity. The 1D Reynolds 

equation was the first one considered for SFDs with length to diameter ratios lower than 

0.25 and if no sealing mechanism is adopted, [5]. Linearized stiffness and damping 

coefficients are adopted. However, if the spinning motion is not considered, no stiffness 

is introduced in the system by the SFD. When the hypothesis of infinitely long bearing 

is valid, another form of the 1D Reynolds equation is adopted [5]. For both approxima-

tions, the resulting equations can be analytically solved, and numerous examples of 

force coefficients may be found, [2, 3]. 

The shaft motion needs to be modeled to characterize the dynamic behavior of SFDs.  

Two different approaches can be followed: circular synchronous orbits, centered or 

with a statically eccentric, or small amplitude motions about a static displaced center. 

The first one is usually considered to investigate the response to unbalance, while the 

second one is considered to analyze the stability of the system, [6]. 

The SFD clearance and length to diameter ration results as fundamental parameters 

to characterize the operation of the SFD depending on the level of the vibration, [1–3]. 

The simplicity is the main advantage of the models based on the 1-D Reynolds equation 

but, unfortunately, the resulting predictions are accurate only for a reduced range of 

operating conditions and for simplified geometrical configurations. 

Many complex phenomena, not captured by the previously mentioned models, affect 

the dynamic response of SFDs such as the inertia, the cavitation, the air entrainment, 

and complex geometrical features. 

In the derivation of the Reynolds equation the presence of inertia is usually ne-

glected. However, for large clearances and amplitudes of motions and frequencies, the 

dynamic pressurization of the lubricant film generates an added mass that was experi-

mentally found in [7] to be of the same order of magnitude of the mass of the whole 

SFD. Many authors deal with the effect of inertia. In [8], assume that for moderate 

values of the Squeeze Reynolds Number (𝑅𝑒 =  
𝜌𝜔𝑐𝑙2

𝜇
≤ 10 with 𝜌 being the density 

and 𝜇 being viscosity of the fluid, 𝑐𝑙 the SFD clearance and 𝜔 the vibration frequency) 

the fluid inertia does not affect the shape of the purely viscous velocity profile. Only 

the effect of temporal inertia is considered by the authors while both the effects of tem-

poral and convective inertia are considered in [9]. 

Moreover, the presence of cavitation is considered as the main reason why predic-

tions made with the simplified modes used in [1, 3] do not agree well with the experi-

mental results. Zeidan and Vance in [10] report five different cavitation regimes: ab-

sence of cavitation, cavitation bubble following the journal, mixture of oil and air, vapor 

cavitation, combination of vapor and gaseous cavitation. The second cavitation regime 

may be assumed as a transient condition, present only at small whirling frequencies that 
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eventually turns into the third one at higher speeds. The most common regimes that are 

encountered are the third and the fourth that sometimes appear together as combined. 

In [11], Diaz and San Andrés focused on air ingestion and vapor cavitation. A SFD was 

tested by the authors in open-ends and in fully flooded configuration, considering dif-

ferent whirling frequencies and pressures of supply oil. The dynamic pression gener-

ated was measured in time and the differences between the two cavitation regimes was 

shown. When vapor cavitation occurs, the measured pressure evolution did not change 

for the different revolutions while, for air entrainment, the pressure profiles changed 

significantly from one revolution to the other. The differences showed by the two cav-

itation regimes often pushed the authors to treat and model them separately. The π-film 

model, also known as Gumbel condition, can be considered to model the vapor cavita-

tion. In this case, the pressure is considered zero in the region where it assumes negative 

values. Half of the circumferential length of the SFD is therefore characterized by a 

ruptured lubricant film, see Fig. 2. More refined cavitation algorithms are the Elrod’s 

cavitation algorithm, [12] and the Linear Complementarity Problem (LCP). 

  

(a) (b) 

Fig. 2. Evolution of oil film thickness (a) and representation of Gumbel condition for vapor 

cavitation (b). 

For what regards air ingestion, in [11], [13], and [14] its effect is experimentally 

investigated. When this phenomenon occurs, air is “sucked” inside the SFD, and, after 

some time, a fine mixture of oil and air bubbles is formed. Air bubbles are present also 

in the high-pressure zone and the variability of the values of the pressure peaks shown 

in [11] can be explained by their presence. Diaz [15] presented a detailed strategy, sup-

ported by numerous experimental results, to model the effect of the air entrainment in 

the 2-D Reynolds equation. The oil-air bubbly mixture is considered to be homogene-

ous and the distribution of the air content inside the mixture is calculated starting from 

a reference value. In the experimental campaign conducted in [13], and [14], the SFD 

is directly fed by a controlled mixture of oil and air. On the contrary, in industrial ap-

plications, pure oil is fed to the SFD, and air enters from the region where the lubricant 

is discharged. So, it is necessary to estimate the value of reference air ingested. A model 

to predict the air entrainment for short open-ends SFDs is presented in [16]. Mendez 
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then adapted the model of Diaz et al. [17] to finite length SFDs. Both models presented 

in [16] and [17] are based on the static form of the Rayleigh-Plesset equation to model 

the effect of air bubbles in the oil for open-ends SFDs. A more complex modeling strat-

egy, where the complete form of the Rayleigh-Plesset equation is adopted, is presented 

by Gehannin et al. in [18]. Moreover, the differences between the modeling with the 

complete and the simplified form of the Rayleigh-Plesset equation are shown by the 

same authors. 

A thorough experimental and numerical investigation on the effect of different geo-

metrical configurations on the dynamic characteristics of SFDs is shown in [19]. The 

effect on the force coefficients of the SFD clearance, length, hole feeding and groove 

feeding, number and disposition of feeding holes, open ends and sealing ends, whirl 

orbit amplitude, and shape of orbit is investigated. 

A model based on the 2D Reynolds equation is briefly introduced and validated with 

experimental and numerical results present in the literature. Then, an unbalanced cen-

trifugal compressor is considered to evaluate the reduction of the level of the vibration 

with the addition of a SFD to the system. The effectiveness of the application of the 

SFD in correcting the instability of the machine is also investigated. The authors are 

aware that more accurate models based on the bulk-flow equations [20], and computa-

tional fluid dynamics [21–24] are described in the literature. Both modeling strategies 

are characterized by higher precision of the results. Unfortunately, both the modeling 

and computational efforts are higher. 

2 SFD model 

The 2D Reynolds equation, discretized with the finite difference approach, is 

adopted in the model proposed. To the standard equation, two extra terms are added to 

model the ai ingestion and inertia. 

2.1 Oil film modeling 

The dynamic behavior of SFDs is studied considering circular orbit motions of the jour-

nal, whether centered (see Fig. 3) or not, or small perturbations around the equilibrium 

position. The model proposed is developed for circular orbits. However, the model can 

be easily adapted to deal with non-circular orbits and small motions around the 
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equilibrium position when it is possible to describe the evolution of the lubricant film 

thickness in time. 

 
 

(a) (b) 

 

Fig. 3. Representation of circular centered orbit (a) and relative evolution of oil film thickness 

(b) 

The rotation 𝜗 in the relative frame of reference and the rotation 𝜃 in the absolute frame 

of reference (x-y) are related as follows: 

 𝜃 = 𝜗 + 𝜔𝑡 (1) 

If the fixed reference system is considered, the variation in time and space domains 

of the oil film thickness can be written as: 

 ℎ(𝜃, 𝑡) = 𝑐𝑙 − (𝑒 𝑐𝑜𝑠 𝜔𝑡 + 𝑒𝑠 𝑐𝑜𝑠 𝜃𝑠) 𝑐𝑜𝑠 𝜃 − (𝑒 𝑠𝑖𝑛 𝜔𝑡 + 𝑒𝑠 𝑠𝑖𝑛 𝜃𝑠) 𝑠𝑖𝑛 𝜃 (2) 

where 𝑒𝑠 and 𝜃𝑠 are the amplitude and phase of the static eccentricity. 𝑒 is the orbit 

radius. 

At each time instant: 

 
𝜕ℎ

𝜕𝑡
= −𝜔

𝜕ℎ

𝜕𝜗
= −𝜔

𝜕ℎ

𝜕𝜃
 (3) 

Equation (3) allows to simplify the time derivatives in spatial derivatives if the or-

biting frequency remains constant in time and if the feeding and sealing system are not 

considered. Therefore, the transformation proposed in equation (3) allows to reduce the 

calculation time since the pressure distribution at one orbit location is representative of 

the SFD behavior for the whole orbit. 
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2.2 Reynolds equation 

The equations to describe the dynamic behavior of a viscous Newtonian fluid are the 

3-D Navier-Stokes equations: 

 
𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗� ) = 0 (4) 

 𝜌 (
𝜕�⃗⃗� 

𝜕𝑡
+ �⃗� ∙ 𝛻(�⃗� )) = −𝛻𝑃 + 𝛻 ∙ (𝜇𝛻�⃗� ) + 𝛻 (−

2𝜇

3
𝛻 ∙ �⃗� ) + 𝜌𝑔 (5) 

Where (4) is the continuity equation and (5) are the conservation of momentum equa-

tions within the flow boundary. 

For the SFD application, some simplifications can be considered. For example, fluid 

density ρ is considered constant, fluid kinematic viscosity is constant, inertia and body 

forces are neglected, fluid flow is considered laminar.  

Since the fluid film thickness is small and the geometry of the SFD, the curvature of 

the surfaces can be neglected, and the surfaces can be considered planar. Moreover, the 

oil fil film thickness is about three orders of magnitudes lower than the axial and cir-

cumferential dimensions of the SFD sot the velocity gradients along the latter two di-

mensions are negligible. Finally:  

 
𝜕

𝜕𝑥
(ℎ3 𝜕𝑃

𝜕𝑥
) +

𝜕

𝜕𝑧
(ℎ3 𝜕𝑃

𝜕𝑧
) = 12𝜇

𝜕

𝜕𝑡
(ℎ) (6) 

If the whirling frequency is constant, equation (3) can be substituted inside equation 

(6). On the other hand, if the effect of inertia is not neglected, the equations of momen-

tum are different. In [25], the authors state that it is legitimate to hypothesize that the 

shape of the purely viscous velocity profiles is not affected by the fluid inertia, at least 

for moderate values of Reynolds number (Re). Moreover, considering average quanti-

ties in the flow equations the wall shear stress differences are approximated, [26].  

In this work, a similar approach as in [26] is adopted. A single Reynolds-like equa-

tion is adopted in which the temporal inertia effect is added. Convective inertia effect 

is considered negligible as in [25]. In cylindrical coordinates: 

 
𝜕

𝑅𝜕𝜃
(

ℎ3

12𝜇

𝜕𝑃

𝑅𝜕𝜃
) +

𝜕

𝜕𝑦
(

ℎ3

12𝜇

𝜕𝑃

𝜕𝑦
) =

𝜕

𝜕𝑡
(ℎ) +

𝑅𝑒ℎ2

12𝜔𝑐𝑙2
 
𝜕2ℎ

𝜕𝑡2 (7) 

The comparison between the pressures, normalized w.r.t the reference ambient pres-

sure, obtained with and without the inertial term is shown in Fig. 4. The pressure ob-

tained considering the inertia term remains larger than the ambient reference for a 

longer time and is also flatter than the pressure calculated with the standard Reynolds 

equation. For the case with inertia, both the maximum and minimum values are reduced 

and slightly shifted. In this case the Reynolds number is about 3.5. From the classical 

Reynolds equation, the force obtained from the pressure distribution is purely tangential 

and opposes the vibration of the journal. On the other hand, if the temporal inertia term 

is considered, the resulting force is characterized both by a radial and tangential com-

ponent. The first one counterbalance the radial acceleration introduced by the inertia 

term. 
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(a) (b) 

Fig. 4.(a) non-dimensional oil thickness; (b) non-dimensional pressure distribution for standard 

and Reynolds equation with inertia. 

2.3 Air ingestion 

Air entrainment is modeled considering the same approach introduced by the authors 

in [16]. The presence of the air bubbles in the lubricant affects the density and viscosity 

of the lubricant. The Reynolds equation becomes: 

 
∂

R∂θ
(
𝜌ℎ3

12𝜇

𝜕𝑃

𝑅𝜕𝜃
) +

∂

∂z
(
𝜌ℎ3

12𝜇

𝜕𝑃

𝜕z
) =

∂

∂t
(𝜌ℎ) +

𝑅𝑒ℎ2

12𝜔𝑐2  
∂2𝜌ℎ

∂t2
 (8) 

 ρ = (1 − β)ρL (9) 

 μ = (1 − β)μL (10) 

 𝛽 =
1

1+
𝑃(𝑥,𝑡)−𝑃𝑣

𝑃𝐺𝜎
(

1

𝛽0
−1)

 (11) 

𝛽 is the air-mixture volume fraction, 𝛽0 is the reference value for 𝛽, 𝑃𝑣 is the vapor 
cavitation pressure, 𝑃𝐺𝜎  is the pressure of the air bubble for the critical radius, and μL 
and ρL are the viscosity and density for the pure oil.  
The characterization of 𝛽0 is necessary to evaluate the air entrainment level. A simpli-
fied model, based on the balance of the flow rates for short SFDs is presented in [16]. 
Unfortunately, the short bearing hypothesis is applicable only for 𝐿/𝐷 < 0.2. An ap-
proach valid for finite length SFD is introduced in [17]. The authors propose to estimate 
numerically the volumetric flowrate of air entering at the sides of the SFD to evaluate 
𝛽0. This approach is then repeated iteratively to update the dynamic pressure distribu-
tion until the convergence of the reference air-volume fraction. In this paper, the ap-
proach proposed in [17] is adopted. 
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2.4 Negative pressure zone 

As previously mentioned, vapor cavitation can be modeled according to different algo-

rithms. In this work, different cavitation models have been tested. Two are based on the 

LCP, [27] and [28], and one is based on the Elrod’s cavitation algorithm, [29]. All the 

models tested are effective in calculating the pressure distribution when the standard 

Reynolds equation is considered. On the contrary, some difficulties were encountered 

when the inertia contribution is considered. The same holds for the modeling of the air 

ingestion. 

Therefore, a simplified approach is adopted. The dynamic pressure is imposed to be 

equal to the vapor cavitation value when it assumes lower values than that threshold 

during the iterative solution of the Reynolds equation. As of now, this simplification 

allows the authors to include in the analysis some more interesting phenomena like the 

inertia effect and the air entrainment. 

2.5 Geometry 

The cylindrical geometry of the damper il opened in a bidimensional plane, see Fig. 5. 

 

Fig. 5. 2D representation of the SFD.  

The mesh considered for the spatial discretization is structured. The approach followed 

for the boundary conditions is presented in the sub-sections below. 

2.6 Boundary Conditions 

Inlet 

The inlet boundary condition can be modeled in many ways. As a simplified ap-

proach, half of the SFD can be considered by applying the symmetry boundary condi-

tion: 

 
𝜕𝑃

𝜕𝑦
|
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

= 0 (12) 

If equation (12) is adopted, the feeding system is not modeled. 
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On the contrary, if the feeding system is considered, the inlet flowrate is imposed at 

the orifices. Moreover, the hypothesis of laminar flow can be assumed to simplify the 

modeling. Then: 

 𝑄𝑖𝑛𝑙𝑒𝑡 = 𝐶𝑖 (𝑃𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑃(𝑥ℎ , 𝑧ℎ)) [
𝑚3

𝑠
] (13) 

where 𝐶𝑖 is a coefficient that includes the orifice area and flow coefficient. 𝑃(𝑥ℎ , 𝑦ℎ) is 

the pressure of the oil at the hole location and 𝑃𝑠𝑢𝑝𝑝𝑙𝑦  is the feeding pressure far from 

the orifice. A more detailed description of the boundary condition can be found in [30]. 

In general, a backflow happens if 𝑃𝑠𝑢𝑝𝑝𝑙𝑦 < 𝑃(𝑥ℎ, 𝑧ℎ). Therefore, some oil exits the 

lands of the SFD and enters in the supply circuit. In practical applications check valves 

may be used to limit the effect of pressure waves in the supply circuit and to avoid 

backflows, [31]. In this case, if the oil pressure at the nodes of the holes is higher than 

the supply one, no boundary condition is assigned. 

Central grooves are often present in many applications as shown in Fig. 6. 

 

 

(a) (b) 

Fig. 6. 3D representation of SFD with central groove (a); Schematization of the flow path pass-

ing through the central groove for half SFD (b). 

In older literature, [30, 32], the authors suggest considering the groove as a region 

where the oil is at the feeding pressure. On the contrary, in [19] the authors report that 

large levels of dynamic pressure are registered in the groove, proving that the previous 

assumption was wrong. In this paper, the same approach introduced in [25] is adopted 

to model the effect of the central groove. The flow inside the groove is considered to 

be divided into two regions, a recirculating one and through-flow close to the journal, 

see Fig. 6-b. For the analysis, only the second one is considered effective in the gener-

ation of dynamic pressure in the groove. To evaluate the effective groove depth, in [25] 

the authors characterize experimentally the dynamic coefficients of the SFD. Then, the 

value of 𝑑𝑔𝑒 adopted in the model is tuned to obtain the same dynamic characteristics.  
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Outlet 

Different approaches for the outlet boundary condition can be followed, see [5]. 

When the SFD ends are at ambient pressure the boundary condition is: 

 𝑃(𝐿, 𝑡) = 𝑃𝑎𝑖𝑟  (14) 

Where 𝑃(𝐿, 𝑡) is the pressure at the opening if the SFD. In this case the SFD is sub-

jected to high air entrainment, which reduces the dynamic performance of the device. 

In case of pen ends configuration, larger inlet flow rate of oil is needed to compensate 

the oil that exits the damper. Therefore, seals are usually applied at the end. The sealing 

is usually partial to avoid an excessive oil heating that would decrease the SFD damping 

capacity. Among the various sealing mechanisms, the most common is the piston ring, 

[5, 31, 33]. 

The piston ring seal limits the outlet flow rate. It can be modeled as in [30]: 

 𝑞𝑜𝑢𝑡 =
𝐶𝑝(𝑃(𝜃,𝐿)−𝑃𝑜𝑢𝑡)ℎ𝑝

3  

12𝜇𝑤𝑝
 [

𝑚2

𝑠
] (15) 

Where  𝑃𝑜𝑢𝑡  is the pressure outside the seal, usually ambient pressure, 𝐶𝑝 is the piston 

ring loss coefficient, 0 < 𝐶𝑝 < 1 and ℎ𝑝 is the piston ring radial gap and 𝑤𝑝 is the axial 

dimension of the piston ring. The 𝐶𝑝 coefficient strongly affects the sealing capability. 

Moreover, it may be difficult to correctly estimate its value. In this work, this coeffi-

cient will be considered as a tuning parameter. The authors are aware that the boundary 

conditions selected for this model represent a simplified approach. More complex and 

accurate formulations will be evaluated in the future developments. 

Circumferential periodicity 

The last boundary condition to be applied corresponds to the circumferential perio-

dicity. To maintain the pressure continuity at the lateral sides of the geometry (Fig. 5), 

both the pressure and the circumferential pressure gradient along the axial direction 

must be equal on the two sides. To guarantee that it is sufficient to impose the pressures 

to be equal at both sides. The resulting circumferential pressure gradient respect the 

previous hypothesis. 

2.7 Forces and Force Coefficients 

The Reynolds equation is integrated once the geometry, the mesh, and the boundary 

conditions are assigned. Eventually the pressure distribution is obtained and is inte-

grated along the circumferential and axial direction to obtain the forces acting on the 

shaft: 

 [
𝐹𝑥

𝐹𝑦
] = −∫ ∫ 𝑃(𝜃, 𝑧, 𝑡) [

cos 𝜃
sin 𝜃

]
2𝜋

0

𝐿

0
𝑅 𝑑𝜃𝑑𝑦 (16) 
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The tangential and radial forces, applied on the shaft in the point where the oil thick-

ness is the minimum, can be calculated starting from the forces obtained in the 𝑥 and 𝑦 

directions with a simple geometrical transformation. 

The forces coefficients can be obtained once the forces are known. As reported in 

many sources, [6] and [19], no stiffness is generated by the damper itself. The damper 

forces are represented in linearized form: 

 [
𝐹𝑥

𝐹𝑦
] = − [

𝐶𝑥𝑥 𝐶𝑥𝑦

𝐶𝑦𝑥 𝐶𝑦𝑦
] [

𝑣𝑥

𝑣𝑦
] − [

𝑀𝑥𝑥 𝑀𝑥𝑦

𝑀𝑦𝑥 𝑀𝑦𝑦
] [

𝑎𝑥

𝑎𝑦
] (17) 

Where 𝑣𝑥and 𝑣𝑦 and 𝑎𝑥, 𝑎𝑦are the instantaneous journal velocities and accelerations, 

respectively. 

Damping and added mass coefficients along the 𝑥 and 𝑦 directions are typical of 

small shaft displacement around the static equilibrium position. If circular centered or-

bits are considered, a constant rotating reaction film force is generated by the SFD. In 

most rotodynamic application, linearized force coefficients are considered. They repre-

sent the effect of infinitesimal amplitude motions about the equilibrium position on the 

bearing reaction forces. These coefficients can be adopted if the previously mentioned 

hypothesis is valid. However, in SFDs the orbit radius can be comparable to the clear-

ance. The orbit described is far from being close to the equilibrium position. Therefore, 

the main hypothesis behind linearized force coefficients is violated and an alternative 

approach should be considered. An orbit-based model, as in [34], is adopted. 

3 Model validation 

Numerical and experimental results available in the literature have been considered for 

the model validation. In [19] the authors tested different geometrical configurations. 

Therefore, the results reported in [19] have been considered as a reference for this work. 

Three configurations (SFD B, E and F) have been selected for this paper. The differ-

ences among them are related to the clearance, length, presence of end seals and central 

groove. The diameter of the SFD is 127 mm. Moreover, the oil has density 𝜌𝐿 =
805 𝑘𝑔/𝑚3 and viscosity 𝜇𝐿 = 26.5 𝑚𝑃𝑎. 𝑠 as in [19]. The characteristics of the SFDs 

considered for the validation are listed in Table 1. 
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Table 1. SFDs considered from [19]. 𝑑𝐺  and 𝐿𝐺  represent the physical depth and length of the 

central groove, not present in SFD E and F. 𝑑𝐸 and 𝐿𝐸 represent the depth and length of the 

grooves at the discharge, not present in SFD E and F. Piston ring seals are applied only for SFD 

B. 

  SFD B SFD E SFD F 

Length 𝐿 [𝑚𝑚] 2x 12.7 25.4 25.4 

Clearance 𝑐𝑙 [𝑚𝑚] 0.138 0.122 0.267 

Central groove length 𝐿𝐺  [𝑚𝑚 12.5 no no 

Central groove depth 𝑑𝐺  [𝑚𝑚] 9.5 no no 

End groove length 𝐿𝐸  [𝑚𝑚] 2.5 no no 

End groove depth 𝑑𝐸  [𝑚𝑚] 3.5 no no 

Seal - yes no no 

For SFD E and SFD F zero static eccentricity and variable orbit radius are consid-

ered. The 𝑒/𝑐𝑙 ratios considered are 0.05, 0.14, 0.29, and 0.43. The tested frequencies 

are 10 ÷ 250 𝐻𝑧 for SFD E and 10 ÷ 100 𝐻𝑧 for SFD F. Since the force coefficients 

are constant for the selected frequency range, only their values at 100 𝐻𝑧 and 50 𝐻𝑧 

are shown respectively. SFD B is instead tested in [19] considering a constant obit ra-

dius (𝑒 = 0.055𝑐𝑙) and for different values of static eccentricity. The frequency range 

considered is 110 − 210 𝐻𝑧. Also, for this configuration, the force coefficients remain 

constant with the frequency. Therefore, the frequency considered for SFD B is 150 𝐻𝑧. 

The effective groove depth of the model is tuned to match the force coefficients shown 

in [19]. The evolution of both the mass and damping coefficients for SFD F is shown 

in Fig. 7 (a, b), for SFD E is shown in Fig. 7 (c, d), and for SFD B is shown in Fig. 

7 (e, f). The results obtained with the current model and the results shown in [19] agree 

well with each other. For the three configurations, the damping coefficient shows a 

better agreement between the numerical and the experimental results. On the contrary, 

the agreement between the numerical and the experimental results for the mass coeffi-

cients is lower. This trend may be related to the high values of inlet pressure. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7. SFD F: (a) evolution of mass coefficient as a function of the orbit radius, (b) evolution of 

damping coefficient as a function of the orbit radius. SFD E: (c) evolution of mass coefficient 

with orbit radius, (d) evolution of damping coefficient with orbit radius. SFD B open ends: (e) 

evolution of mass coefficient with static eccentricity, (f) evolution of damping coefficient with 

static eccentricity. Numerical and experimental results from [19]. 
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4 Application 

A finite beam analysis of a centrifugal compressor has been integrated with the pro-

posed model. The shaft of the machine is 0.7 𝑚 long and the nominal diameter is 

50 mm. The impeller maximum diameter is 140 mm and the minimum one is 33 mm 

and the length is 70 mm. The finite element discretization of the structure, with a total 

of 34 nodes, is shown in Fig. 8. 

  

Fig. 8. Mass diameter and stiffness diameter FE discretization of the centrifugal compressor. 

As shown in Fig. 8, the different elements are different in stiffness and mass diame-

ter. The two roller element bearings supporting the machine are represented by the yel-

low triangles. Due to the characteristics of the bearings selected the system is barely 

damped. The sealing element is placed before the impeller and is indicated by the green 

rectangle. The presence of this component will be considered as the source of the insta-

bility. The reduction of the amplitude of the vibration and the mitigation of the insta-

bility are studied if the SFD is added to the system. 

4.1 Vibration reduction 

An unbalance force of 3 × 10−6 [𝐾𝑔 ∙ 𝑚] is considered in the analysis at the yellow 

node of the impeller (node 27). For the vibration reduction analysis, the effect of the 

sealing element in the green rectangle is not taken into consideration. The focus is 

placed on the nodes of the impeller because, considering the tight clearances required 

to maximize the efficiency of the machine, an excessive level of the vibration could be 

harmful. The operational speed range considered for the compressor goes from 100 −
300 𝐻𝑧. 200 𝐻𝑧 is considered as the operating frequency. The forced response to the 

unbalance at node 27, 29, and 33 of the impeller is shown in Fig. 9. The amplitude of 

the vibration in the last node at 185 𝐻𝑧, is close to 2 × 10−4 𝑚. Large vibration ampli-

tudes can compromise the safe operation of the compressor. Considerable damage can 

result from the contact between the stator and the rotor. For this reason, the level of the 
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vibration, both at the critical speed and at the operating speed, must be reduced as much 

as possible. 

 

Fig. 9. Amplitude and phase of forced response at nodes 27, 29, and 33. 

A SFD is applied in parallel with the bearing on the left to try to reduce the vibration 

peak. The new system is shown in Fig. 10. An external squirrel cage is supposed to be 

supporting the SFD. This component is defined by its own stiffness (kcage) and mass 

(mcage) respectively. An external source of added mass (mSFD) and damping (cSFD) are 

introduced by the SFD. 

 

Fig. 10. System discretization with SFD. 

A plain SFD without feeding system, seals, and grooves is considered. The character-

istics of the SFD and the properties of the ISO VG 46 oil considered are listed in Table 

2. 
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Table 2. Characteristics of the SFD and oil properties considered. 

  SFD 

Length 𝐿 [𝑚𝑚] 25 

Clearance 𝑐𝑙 [𝑚𝑚] 0.3 

Diameter 𝐷 [𝑚𝑚] 100 

Oil density 𝜌𝐿  [𝐾𝑔/𝑚3] 870  

Oil viscosity 𝜇𝐿  [𝑃𝑎 ∙ 𝑠] 0.0775 

The forced response of the system when the squirrel cage is added to the system and 

when the SFD is applied is shown in Fig. 11. The effect that is obtained on the forced 

response of the system when the squirrel cage is added is the same as if a tuned mass 

damper is considered. The vibration peak is moved at a lower frequency, but the am-

plitude is not strongly affected. On the contrary, when the SFD dynamic effect is con-

sidered, the system is highly damped, and the amplitude of the vibration peak is strongly 

reduced. 

 

Fig. 11. Forced response comparison for original configuration, configuration with squirrel 

cage application and configuration with SFD. 

To assess the effect of the SFD clearance on its dynamic characteristics, a parametric 

investigation has been performed. Considering different values of SFD clearance, the 

ratio between the peak of the force response at node 33 in the configuration with SFD 

and the original configuration without SFD, is shown in Fig. 12. If the ratio is lower 

than one, then the addition of the SFD determines a reduction of the vibration ampli-

tude. The SFDs with the highest clearance minimize the forced response at the operat-

ing frequency. When the SFD clearance is 0.1 𝑚𝑚, the amplitude of the vibration is 

almost identical as the one of the original configuration. The evolution of the force 
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coefficients of the SFD with the clearance is shown in Fig. 13. It is possible to appre-

ciate that the reduction of the SFD clearance determines an increase in the force coef-

ficients. However, the increase of the force coefficients does not determine a reduction 

of the vibration amplitude at the operation frequency considered for this application. 

 

Fig. 12. Forced response peak ratio for different values of the SFD clearance. 

 

Fig. 13. Evolution of force coefficients at 200 Hz with the SFD clearance. 

The evolution of the forced response at node 33 with the SFD clearance is shown in 

Fig. 14. The SFD that minimizes the forced response at 200 𝐻𝑧 is not the one that 

guarantees the minimization of the first amplitude peak. Moreover, the SFD clearance 

seems to have no impact on the second peak around 250 𝐻𝑧.  
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Fig. 14. Evolution of the forced response of the system at node 33 for the different SFD clear-

ances considered and evolution of peak amplitude and first critical speed with SFD clearance. 

The complexity of selecting the most appropriate SFD configuration is highlighted 

from this analysis. This decision is strongly dependent on the application that is con-

sidered. Moreover, the selection of the SFD configuration is strongly affected by the 

goal that must be obtained (peak minimization or amplitude reduction at operational 

frequency). 

4.2 Correction of instability 

In this section the effect of the seal placed before the impeller is considered as source 

of instability. The stiffness matrix at the nodes of the seal is introduced as follows: 

 𝐾𝑠𝑒𝑎𝑙 = [
0 𝑘𝑠𝑒𝑎𝑙

−𝑘𝑠𝑒𝑎𝑙 0
] (18) 

The value of 𝑘𝑠𝑒𝑎𝑙  is varied to establish when the sealing presence destabilizes the sys-

tem resulting in positive values of the real parts of the eigenvalues of the system. The 

evolution of the maximum real part of the eigenvalues of the system with the increase 

of 𝑘𝑠𝑒𝑎𝑙 is shown in Fig. 15. The first instability is encountered at 𝑘𝑠𝑒𝑎𝑙 = 15000 𝑁/𝑚 . 
However, it is at 𝑘𝑠𝑒𝑎𝑙 = 17500 𝑁/𝑚 that the system is unstable for the whole speed 

range. It is worth to notice that until 𝑘𝑠𝑒𝑎𝑙 = 35000 𝑁/𝑚 only the real part of the first 

eigenvalue assumes positive values, for higher levels of 𝑘𝑠𝑒𝑎𝑙  also the real part of the 

fifth eigenvalue is positive. 
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Fig. 15. Evolution of maximum real part of eigenvalues with 𝑘𝑠𝑒𝑎𝑙 . 

For this analysis it is considered 𝑘𝑠𝑒𝑎𝑙 = 17500 𝑁/𝑚 since it is the first value at which 

the system is unstable for the whole speed range. To limit the instability, a SFD is ap-

plied in parallel with the first bearing as shown in Fig. 10. The addition of the SFD to 

the system will introduce damping that will counteract the presence of the instability. 

To study the stabilizing effect of the SFD, the evolution of the dimensionless damping 

factor with the speed is considered. This indicator is defined as follows: 

 𝜂𝑖 = −
𝑅𝑒𝑎𝑙(𝜆𝑖)

𝐼𝑚𝑎𝑔(𝜆𝑖)
 (19) 

where 𝜆𝑖 is the eigenvalue and 𝜂𝑖 is the dimensionless damping factor for the i-th node. 

When 𝜂𝑖 is positive the relative mode is unstable. 

The tested SFD has the same characteristics of the one shown described in Table 2 but 

the clearance is set to 0.5 𝑚𝑚. The force coefficients obtained are like the one shown 

in Fig. 13. The evolution of the dimensionless damping factor for the original system 

and the SFD system for the unstable mode is shown in Fig. 16. As expected, for the 

original system, the dimensionless damping factor is negative for the whole speed 

range. The same holds for the configuration with the addition of the cage. On the con-

trary, the addition of the SFD can stabilize the system for the whole frequency range 

considered.  

Then a parametric analysis on 𝑘𝑠𝑒𝑎𝑙 has been performed to investigate at which extent 

the application of the SFD is able to stabilize the system. The evolution of the dimen-

sionless damping factor for different values of 𝑘𝑠𝑒𝑎𝑙  for the system with the SFD is 

shown in Fig. 17. For the SFD configuration considered the system is stabilized until 

𝑘𝑠𝑒𝑎𝑙 = 5𝑒4 𝑁/𝑚. In this case, also the 7th mode of the original system results unstable. 

On the contrary, when the SFD is applied, only the 1st mode is unstable. In case of 

higher values of 𝑘𝑠𝑒𝑎𝑙 , a different SFD configuration may guarantee the stability of the 

system. 
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Fig. 16. Evolution of dimensionless damping factor for unstable modes of original, cage, and 

SFD system with rotational frequency. 

 

Fig. 17. Evolution of dimensionless damping factor for the unstable mode for different values 

of 𝑘𝑠𝑒𝑎𝑙  for the system with the SFD. 

5 Conclusions 

The state of the art on SFDs is investigated in this paper. The characteristic features 

of these components are highlighted and a review on the modeling strategies is given. 

A comprehensive model based on the 2D Reynolds equation is presented in the details. 
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The classical Reynolds equation is modified so to include the modeling of both the air 

entrainment and the temporal inertia. 

The model is validated with both numerical and experimental results available in the 

literature. Then the model is integrated into a finite element code developed to study 

the dynamic response of turbomachines. The effectiveness of the SFD in the reduction 

of the level of the vibrations is investigated. From the results shown it is evident that 

the introduction of the SFD can drastically reduce the amplitude of the vibration. How-

ever, the optimal configuration to be selected strongly depends on the application con-

sidered and on the wanted effect. For example, it is shown that the optimal configura-

tion to reduce the level of the vibration at a given frequency is not the same that mini-

mize the amplitude of the vibration peak. 

Secondly, the effectiveness of SFDs to mitigate the presence of destabilizing phe-

nomena is investigated. The same turbomachine considered for the previous analysis is 

considered and the presence of a destabilizing sealing element is added. Different levels 

of source instability have been considered. The results obtained show that SFD are, in 

general, able to solve the presence of the instability. Also in this case, a trade-off may 

be needed when designing the SFD if both the vibration reduction and the instability 

correction are wanted. 

The model proposed can be considered predict effectively and efficiently the dy-

namic behavior of SFDs. Moreover, it can be easily integrated in models used for the 

rotor dynamic analysis of turbomachines. The authors are aware that more accurate and 

precise models are present in the literature. However, some of them are more complex 

and require higher simulation time. An improvement in the modeling of the boundary 

conditions and in general in the modeling of the other characterizing aspects related to 

the SFDs may be required when studying more complex geometrical configurations. 
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