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Abstract

Highly accurate simulations of complex phenomena governed by partial differential equations (PDEs) typ-
ically require intrusive methods and entail expensive computational costs, which might become prohibitive
when approximating steady-state solutions of PDEs for multiple combinations of control parameters and
initial conditions. Therefore, constructing efficient reduced order models (ROMs) that enable accurate but
fast predictions, while retaining the dynamical characteristics of the physical phenomenon as parameters
vary, is of paramount importance. In this work, a data-driven, non-intrusive framework which combines
ROM construction with reduced dynamics identification, is presented. Starting from a limited amount of
full order solutions, the proposed approach leverages autoencoder neural networks with parametric sparse
identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model. This model
can be queried to efficiently compute full-time solutions at new parameter instances, as well as directly
fed to continuation algorithms. These aim at tracking the evolution of periodic steady-state responses as
functions of system parameters, avoiding the computation of the transient phase, and allowing to detect
instabilities and bifurcations. Featuring an explicit and parametrized modeling of the reduced dynamics, the
proposed data-driven framework presents remarkable capabilities to generalize with respect to both time and
parameters. Applications to structural mechanics and fluid dynamics problems illustrate the effectiveness
and accuracy of the proposed method.

Keywords: Nonlinear dynamics, reduced order modeling, data-driven methods, autoencoder neural
networks, sparse identification of nonlinear dynamics

1. Introduction

The ever-increasing resources and computational power allow nowadays to simulate very complex physical
phenomena more and more accurately, even in multi-scale and multi-physics scenarios. However, the solu-
tion of parametrized, time-dependent systems of partial differential equations (PDEs) by means of full order
models (FOMs) – such as the finite element method – may clash with time and computational budget restric-
tions. Moreover, using FOMs to explore different scenarios with varying initial conditions and parameter
combinations might be a computationally prohibitive task, or even infeasible in several practical applica-
tions. Differently from the problem of estimating output quantities of interest that depend on the solution
of the differential problem, the computation of the whole solution field is intrinsically high-dimensional, with
additional difficulties related to the nonlinear and time-dependent nature of the problem. All these reasons
drive the search of efficient, but accurate, reduced order models (ROMs). Among these, the reduced basis
method [56, 33, 4] is a very well-known approach, exploiting, e.g., proper orthogonal decomposition (POD)
to build a reduced space, either global or local [1, 55], to approximate the solution of the problem. However,
despite their accuracy and mathematical, these techniques are in general intrusive [25].

Among machine and deep learning techniques widely used to build surrogate models or emulators to the
solution of parametrized, nonlinear, time-dependent system of PDEs, autoencoder (AE) neural networks
[27] have recently become a popular strategy because they allow to non-intrusively reduce dimensionality
and unveil latent features directly from data streams, without accessing the FOM operators [26, 43, 48, 37].
Their success is due to the expressiveness capacity of neural networks [11, 44, 34], which enables outstanding
performances in nonlinear compression and great flexibility in identifying coordinate transformations [46].
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Recently proposed techniques consider convolutional AEs, suitably coupled to deep feedforward neural net-
works in order to simultaneously perform dimensionality reduction and learn the parameter-to-solution map,
as in the case of deep learning-based ROMs (DL-ROMs) [18, 17], and their enhanced version through POD
(POD-DL-ROMs) [21]. These techniques outperform (in some cases, also by several orders of magnitude)
classical ROMs in terms of both the dimension of the reduced problem and the query time for predicting
the solution at unseen instances. The resulting ROMs are nonintrusive and low-dimensional, ultimately
enabling real-time simulations in complex physical scenarios; see, e.g., [19] for a possible application to the
real-time simulation of the mechanical behavior of micro-electro-mechanical systems (MEMS). We highlight
that this approach relies on the idea that the system dynamics lies on a low dimensional invariant manifold,
setting a clear parallel with the Direct Parametrization of Invariant Manifolds approach preconized, e.g., in
[60, 52, 59]; see also [24] for further details.

Nonetheless, this approach relies on the underlying physical model only when computing FOM snapshots
required for training the deep neural networks involved, but not when querying the parameter-to-solution
map for unseen parameter values at testing stage. Moreover, although showing impressive efficiency during
both the training and the testing phases, and providing reliable predictions on unseen scenarios in the
time-parameter range where training data are generated, POD-DL-ROMs show some limitations in terms of
interpretability and generalization capability outside the observed parametric-temporal domain.

A possible alternative approach to learn the reduced space dynamics is represented by the so-called Sparse
Identification of Dynamical Systems (SINDy) method, a sparse regression technique initially introduced for
learning dynamics from time-series data, and then further generalized to address several features [35, 5, 6, 29].
In the past few years, SINDy has been widely applied to identify models of fluid flows, convection phenomena,
structural models, and many others. The appeal of the SINDy approach is the generation, from a dictionary of
pre-defined (analytical) functions, an explicit ROM in the form of a system of ordinary differential equations
(ODEs), that can improve the interpretability of the latent space dynamics thanks to suitable sparsity
constraints. Regarding time integration, as well as the computation of derived output quantities of interest,
the identified dynamical system can be then treated with standard numerical tools. For instance, when
the transient dynamics is relevant, or when steady-state regimes are not required, the obvious choice is
represented by time-marching techniques. However, this might not be the optimal choice when periodic
solutions are needed. These latter arise in many practical applications, ranging from aircraft design and
simulation [2], chemistry [16] to MEMS [51], just to mention some instances. Periodicity conditions can be
enforced directly in the formulation of the dynamical system and ad-hoc numerical methods can be applied
like, e.g., the Harmonic Balance [40] or collocation techniques [15]. While their computational burden is
usually prohibitive for large-scale FOMs [13, 51], these techniques become much more appealing when used
in conjunction with ROM strategies.

Even if the SINDy approach has been so far mainly applied to rather low-dimensional problems, Cham-
pion et al. in [8] have fostered its use in combination with AE neural networks, laying the foundation
for a unified framework for dimensionality reduction and system identification. This approach with recent
extensions [3, 28, 39, 7, 23], however, does not encompass the possibility to treat parameters and forcing
dependencies. This inevitably precludes the possibility of drawing efficiently a complete portrait of the
dynamics of the observed system in multiple scenarios. In this respect, the SINDy method offers a great
flexibility in view of incorporating parameters and forcing terms in the identified ODE system [6]. The major
benefit of identifying an explicit parameter-dependency in the latent system is represented by the possibility
to use continuation algorithms to track the evolution of periodic responses as a function of system parame-
ters avoiding the computation of transients, which represents a significant computational advantage for long
transient systems or for real-time applications. Moreover, these algorithms allow to identify, in a straightfor-
ward way, instabilities and bifurcations which might occur in the latent dynamics and result in macroscopic
changes of the steady-state behavior of the physical system. For example, variations of input parameters can
result in the development of vorticity in fluids or resonance phenomena in mechanical structures. In practical
applications, these behaviors can significantly affect the operation of the observed systems, therefore it is
essential to estimate at which parameter configurations these regime transitions occur.

In the present work, we propose an extension of the AE+SINDy approach presented in [8] to efficiently
construct reduced order approximations of parametrized PDE solutions, as well as to discover their underlying
dynamics and parametric dependencies, starting from a limited number of FOM snapshots. Our method
hinges upon a data-driven, non-intrusive, ROM construction employing POD and AEs – the one provided by
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the so-called POD-DL-ROMs [21] – together with reduced dynamics identification through a parametrized
SINDy approach. The proposed framework thus leverages recent SINDy extensions with the aforementioned
POD-DL-ROM reduction. In contrast to recent works in the same direction [22, 36], the main appeal of our
method is that, by representing the latent dynamics as a parametrized system of ODEs, we can naturally
embed continuation algorithms in the overall framework, thus providing a comprehensive description of the
dynamics of the physical system.

The proposed method is first applied to a structural mechanics problem dealing with a straight beam
MEMS resonator, which is excited at different forcing amplitudes and frequencies. We show how the proposed
strategy allows to construct a ROM which manages both to generalize with respect to parameters and to
accurately forecast the solution over long term horizons, even reaching the steady-state response for which no
measurement is provided. In addition, the nonlinear hardening behaviour of the beam is portrayed by means
of continuation algorithms directly from the reduced identified system. Next, the problem of a fluid flow
past a cylinder is considered, employing the proposed method to efficiently approximate the fluid velocity
and pressure at different regimes as the Reynolds number varies, as well as to empirically identify, through
continuation algorithms, the bifurcation value of the transition from laminar to unsteady behaviour.

Besides the considered examples, the AE+SINDy method can be applied straightforwardly to any time
series which tends to a periodic regime. Moreover, although this work focuses on periodic orbits, the entire
framework could be also extended to handle quasi-periodic solutions by employing continuation techniques
which are suitable for these regimes [32], or, more in general, to any time series that tends towards a limit
cycle – which is the only requirement for continuation algorithms to work [41].

The paper is structured as follows. In Sect. 2 we detail the structure of the method and we present how
to use it for the efficient approximation of parametrized PDE solutions as well as for dynamic analysis using
both time-marching schemes and continuation algorithms. In Sect. 3 we present and discuss its performance
on the two aforementioned numerical examples, finally drawing some concluding remarks in Sect. 4.

2. Reduced order modeling with AE and SINDy

2.1. Problem setup

Let us consider the following general form of a dynamical system{
ẋ(t;β) = f(t,x(t;β);β), t ∈ (0, T ),

x(0;β) = x0,
(1)

where x ∈ RN is the state of the system, ẋ its time derivative, t the time, x0 the initial state, while f
is the function that defines the dynamical evolution of the physical system. Here, β ∈ Rp represents the
vector collecting p (possibly) time dependent parameters and/or forcing terms. System (1) consists of a
set of ordinary differential equations (ODEs), whose dimensionality N represents the number of degrees of
freedom associated to the space discretization technique (such as, for instance, finite element, finite volume
or isogeometric analysis methods) applied to a system of partial differential equations (PDEs) which defines
the physical system. Therefore, the size N is typically extremely large and the system (1) is denoted as full
order model (FOM).

The goal is to learn the dynamics f from a set of time histories of the state x and its time-derivative ẋ
for different instances of β. In general, ẋ can be either computed directly or approximated numerically from
x. Snapshots of the time histories are stacked in matrices

X =
[

x(t1;β1) x(t2;β1) . . . x(tNt ;β1) x(t1;β2) . . . x(tNt ;β2) . . . x(tNt ;βNβ )
]T
,

Ẋ =
[

ẋ(t1;β1) ẋ(t2;β1) . . . ẋ(tNt ;β1) ẋ(t1;β2) . . . ẋ(tNt ;β2) . . . ẋ(tNt ;βNβ )
]T
,

respectively, such that (X, Ẋ) ∈ RNtNβ×N , where Nt is the total number of time instants and Nβ is the
number of parameter/forcing instances considered. However, approximating such a high dimensional function
f might be an extremely complicated and computationally demanding task.
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2.2. Latent space construction

In order to significantly speed up the computationally expensive simulations, to have a more interpretable
and parsimonious dynamic model, and to efficiently estimate the dynamical behaviour of the system at
steady-state by continuation, we propose a reduction technique that shall simultaneously reduce the prob-
lem dimensionality and provide a new set of coordinates better suited to represent the dynamics of the
problem. Starting from the assumption that the full order solution of the parametrized system (1) lies on
a low-dimensional manifold embedded in high-dimensional (discrete) space [52], we efficiently reduce the
dimensionality of the problem directly from the snapshot data matrix X, without accessing the FOM oper-
ators appearing in (1). The reduced space dimensionality n can be set equal to the intrinsic dimension of
the solution manifold whenever this is known a priori or, conversely, it can be tuned to discover the intrinsic
dimension of an unknown system for which only state measurements are available.

Therefore, we consider a preliminary linear reduction by POD, projecting the full order states of the
system x onto the NPOD dominant singular vectors denoted as Ũ ∈ RN×NPOD , i.e., x̃ = xŨ1. POD

coordinates of FOM data matrices are then X̃ = XŨ, ˙̃X = ẊŨ. Next, a further nonlinear reduction is
performed by means of an autoencoder neural network. In particular, we identify a new set of latent variables
z such that

z(t;β) = ϕ(x̃(t;β)), (2)

where ϕ(·) = ϕ(· ; Wϕ) : RNPOD → Rn, n� NPOD � N , is an encoder consisting of a fully connected neural
network and Wϕ denotes the network parameters. Moreover, in order to go back to POD coordinates from
intrinsic ones, we make use of a decoder, that is, another fully connected neural network ψ(· ; Wψ) : Rn →
RNPOD such that

ψ(z(t;β)) = ψ(ϕ(x̃(t;β))) ≈ x̃(t;β). (3)

Finally, to reconstruct the FOM solution, we project back through POD modes the output of the decoder,
namely ψ(z(t;β))ŨT ≈ x(t;β).

The pair (ϕ,ψ) constitutes the autoencoder (AE) neural network [27] which is trained at once by solving

min
Wϕ,Wψ

∥∥∥X̃−ψ (ϕ(X̃; Wϕ

)
; Wψ

)∥∥∥2
F
, (4)

where ‖·‖F is the Frobenius norm and ψ,ϕ are intended to be applied row-wise to the input matrices. The
preliminary POD reduction enables a more efficient encoding process [21], since the AE only needs to reduce
the dimension from a moderate number NPOD of features to n, instead of starting from an extremely large
amount N of degrees of freedom. It is worth stressing that POD, a linear reduction technique, presents
several limitations when applied alone to nonlinear, time-dependent parametrized problems, thus motivating
the inclusion of the neural network encoder.

In the new set of intrinsic coordinates, defined by (2), system (1) can be reformulated as{
ż(t;β) = f̃(t, z(t;β);β), t ∈ (0, T ),

z(0;β) = z0,
(5)

where f̃ encodes the dynamics of the low-dimensional system, ż = ϕ̇(x̃) = ˙̃x∇Tx̃ϕ(x̃) and z0 = ϕ(x̃0), with

x̃0 = x0Ũ .

2.3. Latent dynamics identification

The problem of estimating the high-dimension function f ∈ RN in (1) is now reduced to the estimation of
f̃ ∈ Rn in (5), which describes the latent dynamics of the system in a low-dimensional space. We are interested
in a model representation that should not only be accurate, but also interpretable and generalizable, that is,

1In the present work, snapshots are stacked as rows for consistency with how neural networks are trained, and in contrast
with standard POD literature, where snapshots are listed in columns. For clarification, the reader must intend POD to be
applied to XT , i.e. XT ≈ ŨΣ̃ṼT . Consistently with the notation adopted, POD projections – usually indicated as x̃ = ŨTx
– are rewritten here in terms of row vectors, namely x̃ = xŨ.
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capable of forecasting in time and extrapolating with respect to parameters. For the latter reasons, a purely
black-box approach is not optimal in this context.

Therefore, to identify the latent dynamics, we make use of the SINDy regression strategy [35, 5, 6], which
assumes that f̃ can be expressed as a sparse combination of a set of linear and nonlinear candidate basis
functions of the latent state z and of β. The choice of the library of candidate features is typically guided
by a possible prior knowledge of the physical system and of the parameter/forcing dependency. A typical
choice is polynomials as they frequently appear in most dynamical system models.

In practice, SINDy aims to approximate the latent dynamics f̃ in (5) as

ż = f̃(z;β) ≈ Θ(z,β)Ξ (6)

where Θ(z,β) = [ θ1(z,β) , . . . , θr(z,β) ] ∈ Rr is the library of r candidate functions to describe the dy-
namics of the data, while Ξ ∈ Rr×n is the unknown matrix of coefficients that determine the active terms
from Θ in the dynamics f̃ . Matrix Ξ is estimated by sparse regression

arg min
Ξ

∥∥∥Ż−Θ(Z,B)Ξ
∥∥∥2
F

+ λ‖Ξ‖1, (7)

where Z =
[
z (t1,β1) | . . . | z

(
tNt ,βNβ

)]T ∈ RNtNβ×n is the matrix of low-dimensional encoded snapshots,

Ż = ˙̃X∇Tx̃ϕ(X̃) contains their time derivatives, B =
[
β1(t1) | . . . |βNβ (tNt)

]T ∈ RNtNβ×p collects the
parameter/forcing data, while Θ is intended to be applied row-wise to the input matrices. Here, ‖Ξ‖1 is a
regularization term chosen to promote sparsity in Ξ and λ ∈ R+ weights its contribution. More sophisticated
techniques, such as, e.g., sequentially thresholded least-square algorithm, might be used to promote sparsity
on the entries of Ξ more efficiently [8, 3]. Prior knowledge can be incorporated by imposing constraints
on the entries of Ξ, which reflect physical properties of the problem. Specific entries can be masked and
constrained to assume values of given coefficients. As a result, they remain constant over the training and
only unconstrained entries of Ξ are updated at each iteration. In the following, we discuss how to practically
solve the sparse regression problem (7) together with (4).

2.4. Offline training

In the previous sections we introduced the overall framework which consists of (i) a dimensionality reduction
and a change of coordinates from physical to intrinsic ones via POD and AE and (ii) the identification of
the latent dynamics by sparse regression. Tasks (i) and (ii) are addressed by solving minimization problems
(4) and (7), respectively. Although of different types, these tasks are intrinsically related [8, 3]. Indeed, the
possibility of finding an accurate latent dynamical description with few meaningful and interpretable terms
depends strongly on the choice of intrinsic coordinates, thus on the AE mapping.

Therefore, both tasks are performed by a single neural network architecture model denoted AE+SINDy,
as illustrated in Fig. 1. This unified structure allows us to reformulate (4) and (7) as a single minimiza-
tion problem by incorporating the latter in the former, namely the sparse regression terms are inserted as
additional weighted components in the AE loss function. In this perspective, the unknown entries of Ξ are
treated as network variables and they are estimated at the same time as AE parameters Wϕ and Wψ during
the training of the neural network. Specifically, the optimization problem reads as∥∥∥X̃−ψ (ϕ(X̃;Wϕ

)
;Wψ

)∥∥∥2
F︸ ︷︷ ︸

Autoencoder loss

+λ1

∥∥∥Ż−Θ(Z,B)Ξ
∥∥∥2
F
+ λ2‖Ξ‖1︸ ︷︷ ︸

Sparse regression loss

+λ3

∥∥∥Ẋ−∇zψ(Z;Wψ)Θ(Z,B)Ξ
∥∥∥2
F︸ ︷︷ ︸

Consistency loss

→ min
Wϕ,Wψ,Ξ

,
(8)

where the latter term, denoted as consistency loss, ensures that the time derivative of the network output
matches the input time derivatives Ẋ. This term is proposed in [8] and extended here to account for
parametric/forcing dependencies. The coefficients λ1, λ2, λ3 ∈ R+ are hyperparameters which weight the
contribution of each term. As a rule of thumb, the AE loss represents the leading term, so the coefficient λ1,
relative to the sparse regression term, should be smaller than unity and kept two orders of magnitude larger
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Figure 1: Neural network used during the training stage. The different stages of the training procedure are schematized as
follows. X and Ẋ are provided as input data (1) and are fed to the POD linear reduction procedure (2). The POD coordinates
X̃ are processed by the AE+SINDy (3), where the AE extracts the latent coordinates Z and these, together with Ż and B, are
used to compute the SINDy approximation of the latent dynamics. A linear POD reconstruction (4) provides the final output
(5). The trainable parameters are highlighted in red.

than λ2 and λ3, these latter weighting regularization and consistency terms, respectively. More precise values
need to be adjusted to the specific dataset at-hand, being the choice of these coefficients problem-dependent.

A further hyperparameter to be tuned is the latent dimension n. This can be set equal to the dimension
of the low-dimensional manifold, if this information is available. Otherwise, the behavior of the autoencoder
loss (4) as function of the number of latent variables may be used as an investigation tool to find the minimal
latent dimension n. This value is the one for which further reducing the number of latent variables results
in a drastic increase of the error. Although no examples are shown in the present work, AE+SINDy can be
also employed by setting a number of variables larger than the dimension of the manifold. This may require
placing more emphasis on sparse regression loss in (8), since the system identification task becomes more
complex as both the number of latent equations and the number of features in the SINDy library increase.

The offline training procedure consists in the minimization of (8) through backpropagation with ADAM
algorithm [38]. Once the joint training is finished, we freeze the AE weights Wϕ,Wψ and we fine-tune just
the SINDy coefficients Ξ for a better estimation of latent model coefficients [3].

2.5. Online testing

Once the AE+SINDy model is trained offline, we can query it online to efficiently compute the entire time
evolution of the full order system for different initial conditions and new parameter and forcing instances.
The procedure, illustrated in Fig. 2a , consists of the following steps:

1. encoding. Once the encoder ϕ is trained, it is employed as mapping from the physical, full order
space to the latent one. Hence, the physical initial condition x0 ∈ RN is encoded in order to obtain
the latent counterpart z0 = ϕ(x0Ũ) ∈ Rn;
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e.g. Runge-Kutta

Decoding

Output

Numerical continuation
of periodic orbits

Output

Given parameters

b) Continuation

Figure 2: Schematic representation of the setup used during the testing stage with the two approaches considered: time-
marching solution and continuation of periodic orbits. In the former case, for a given value of the parameters beta, the ROM
solution is computed through a time marching scheme, like, e.g., Runge-Kutta methods, starting from a given initial condition.
The computed ROM solution spanning the time range t ∈ [t0 : tend] is passed to the decoder. In the latter approach, the
numerical continuation computes the periodic orbits of the ROM within a set of parameters. Latent orbits are collected in ZC

and then decoded.

2. time-marching ROM solver. SINDy feature library Θ is populated with parameter and forcing
terms β, such that – together with the feature coefficients Ξ identified during the training – it defines
the right-hand-side of the latent ODE dynamical system ż = Θ(z,β)Ξ. This equations are numerically
integrated, e.g. by Runge-Kutta time-marching scheme, starting from z(t0) = z0 up to an arbitrary
time tend – which may be much longer than the final time employed in the training phase. As result, we
obtain the temporal evolution of the latent variables, collected in the matrix Ztest ∈ RNtest

t ×n, where
N test
t is the total number of testing time instants;

3. decoding. The integrated latent variables are passed through the decoder and multiplied by the POD
modes in order to reconstruct the entire time evolution of the original variables in the physical space,
so X̂ = ψ(Ztest)Ũ

T ∈ RNtest
t ×N .

These steps are extremely efficient from a computational standpoint: indeed, steps (1) and (3) only
require the evaluation of pre-trained neural network functions (encoder and decoder, respectively); step (2)
consists instead of the numerical integration of a low-dimensional system, a task which is much cheaper and
faster than the resolution of high-dimensional numerical schemes for full order problems.

2.6. Continuation of periodic orbits

As commented in Sect. 1, one of the major benefits behind the identification of an explicit, low-dimensional,
parameter-dependent latent dynamical system is the possibility to use continuation algorithms to track the
evolution of periodic responses as a function of the system parameters and to perform a bifurcation analysis
of the solutions in order to have a complete portrait of the dynamics. As schematically represented in Fig. 2b,
once the continuation parameter is defined periodic orbits are computed in the latent space, collected in a
matrix ZC and the corresponding full field solutions are eventually reconstructed with the decoder.

Periodic responses can be directly computed with several numerical strategies like harmonic balance [40],
collocation [15], and shooting methods [54]. Focusing e.g. on the simplest version of collocation methods, the
latent variables z are expressed over one period, of duration τ , as the weighted sum of predefined time-shape
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functions Ni as

z(t) =

nc∑
i=1

Ni(t)zc,i t ∈ (0, τ) (9)

with the additional constraint z(0) = z(τ). zc,i denotes the value of z at the i− th collocation point and nc
is the total number of collocation points. The shape functions might be defined globally over the period or
locally, resorting to a partition of the period into finite elements in time. Inserting Eq.(9) into Eq.(5), this
latter transforms in a nonlinear system of algebraic equations of the form:

G(zc, β) = 0 (10)

where zc represents the collection of the {zc,i}nci=1 values in Eq.(9) and β is the selected continuation
parameter, i.e. the parameter which is varied in a predefined range over which the solutions for zc are
sought. For instance, in the numerical applications discussed next, the continuation parameters will be the
actuation frequency for the clamped-clamped beam and the Reynolds number for the simulation of the flow
past a cylinder. This equation is complemented by suitable phase conditions, see e.g. [41], to guarantee
uniqueness.

Let us now suppose that z
(k)
c is a known solution of the system in correspondence of the parameter β(k).

The simplest choice consists in taking β as continuation parameter, fixing β(k+1) = β(k) + ∆β and solving

(10) for z
(k+1)
c through an iterative Newton–Raphson procedure. However, this procedure fails e.g. in the

presence of an unstable branch as in Fig. 3. Indeed, by imposing an increment ∆β > 0 at the peak, the
solution would jump to stable solutions on the lower branch, completely missing the unstable dashed branch.
For this reason, it is customary to introduce an arc-length control in which ∆β is part of the unknowns and
the abscissa s along the solution curve is taken as the continuation parameter. A new constraint is added,
a typical choice being:

F (∆zc,∆β) = (∆zc)
T∆zc + (∆β)2 − (∆s)2 = 0

where ∆s is the user defined distance between successive solutions. An alternative is the Keller’s pseudo
arc-length method [41] in which the increment (∆zc,∆β) such that its projection along a specific direction
(typically the tangent to the zc, β manifold) has length ∆s. These methods are implemented in many ready-
to-use packages like Auto07p [15], that implements collocation methods in FORTRAN to perform numerical
continuation and bifurcation analysis; Manlab, a Matlab tool that uses HB methods and Asymptotic Numer-
ical Method [30, 31]; PyCont[42] package on Python; Nlvib, that also exploits HB methods [40], and many
others among which we mention COCO [12] and BifurcationKit [58]. The numerical examples addressed in
this work will be solved using the Matlab MATCONT package [14], that exploits collocation methods to perform
the continuation of periodic orbits.

ODEs
Time

discretization
(collocation)

Algebraic
parametrized

system

Continuation

m
ax

(z
)

β

Δs

(zc,0,β0)

(zc,1,β1)

Figure 3: Sketch of the continuation of periodic orbits. Starting from a system of first order ODEs the system response is
discretized in time using collocation methods. The continuation approach introduces a distance constraint between successive
solutions corresponding to varying β. This allows to follow both stable as well as unstable branches.
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3. Applications

3.1. Hardening behaviour of a clamped clamped beam

To highlight the capabilities of the AE+SINDy approach, we first address a structural mechanics problem
in which a straight beam MEMS resonator is excited at resonance. Despite its simplicity, such a problem
has practical applications like in micro resonators [62], where geometric nonlinearities provide meaningful
contributions to the system dynamic response.

3.1.1. Problem description

We consider the doubly clamped beam depicted in Fig. 4 having length L = 1000µm with a rectangular
cross-section of dimensions 10µm×24µm , made of isotropic polysilicon [10], with density ρ = 2330 Kg/m3,
Young modulus E = 167 GPa and Poisson coefficient ν = 0.22. The first bending eigenfrequency is ω0 =
0.5475 rad/µs

In the undeformed configuration, the device occupies the domain Ω0 described by material coordinates x.
The boundary ∂Ω0 is partitioned in ∂ΩD and ∂ΩN where homogeneous Dirichlet and Neumann boundary
conditions are enforced, respectively. The external excitation is here provided by fictitious time-periodic
body forces B(x, t). The governing system of PDEs is classical in the context of solid mechanics problems
in large transformations [47] and is formulated in terms of the displacement field u as follows:

ρ0ü(x, t)−∇ ·P(x, t)− ρ0B(x, t;µ) = 0, (x, t) ∈ Ω0 × (0, T ), (11a)

P(x, t) ·N(x) = 0, (x, t) ∈ ∂ΩN × (0, T ), (11b)

u(x, t) = 0, (x, t) ∈ ∂ΩD × (0, T ). (11c)

Eq. (11a) expresses the conservation of momentum where ρ0 is the initial density and P is the first
Piola-Kirchhoff stress. The device is made of cubic single crystal silicon or polysilicon, thus admitting only
small strains, a condition which is well described by the Saint Venant-Kirchhoff constitutive model S(x, t) =
A(x) : E(x, t) where S is the second Piola-Kirchhoff stress tensor, A is the fourth-order elasticity tensor and
E(x, t) = 1

2

(
∇u(x, t) +∇Tu(x, t) +∇Tu(x, t) · ∇u(x, t)

)
is the Green-Lagrange strain tensor. Eq. (11b)

and (11c) define the Neumann and Dirichlet boundary conditions respectively. Within the context at hand,
it is worthy to highlight that Eq. (11) exactly accounts for geometric (elastic and inertia) nonlinearities, e.g.,
large rotations or nonlinear mode coupling. The spatial discretization of Eq. (11), e.g., by means of the finite
element method, with the additional inclusion of a Rayleigh model damping term, yields a FOM under the
form of a system of coupled first-order nonlinear differential equations that reads as:

Mv̇h(t) + Cvh(t) + Kuh(t) + G(uh,uh) + H(uh,uh,uh)− F(t;β) = 0, t ∈ (0, T ) (12a)

u̇h(t)− vh(t) = 0, t ∈ (0, T ) (12b)

uh(0) = 0, vh(0) = 0, (12c)

Figure 4: Schematic representation of the beam with the mesh used in the FOM simulations. Dirichlet boundaries are high-
lighted.
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where the vectors uh(t),vh(t) ∈ RNh collect the Nh unknown displacements and velocity nodal values respec-
tively, M ∈ RNh×Nh is the mass matrix, C = (ω0/Q)M is the Rayleigh mass-proportional damping matrix
with quality factor Q = 50. The internal force vector has been exactly decomposed in linear, quadratic,
and cubic power terms of the displacement: K ∈ RNh×Nh is the stiffness matrix related to the linearized
system, while G ∈ RNh and H ∈ RNh are vectors related to second- and third-order terms, respectively,
and indicated with the notation G(uh,uh) =

∑
k,l Gkluhkuhl and H(uh,uh,uh) =

∑
k,l,m Hklmuhkuhluhm,

where Gkl stands for the vector of coefficients Gikl, for i = 1, . . . , Nh, and analogously Hklm is a vector of
coefficients Hi

klm. We refer to [53] for a detailed description of these terms. F(t;β) ∈ RNh is the nodal force
vector which depends on the vector of parameters µ. In this application the device is excited, for simplicity,
by a body load such that F = Mφ1F cos(ωt) is proportional to the first eigenmode φ1, with M mass matrix
and F load multiplier. In the application at hand the input parameter vector hence becomes β = [ω, F ] ∈ P,
with P a closed and bounded set of dimension 2.

We point out that, independently of the mesh size, the solution of the FOM (12) is usually a challenging
task since MEMS devices feature high quality factors while only the steady-state response is of practical
interest [51]. Indeed, the performance of such devices is typically characterized by means of the so called
Frequency Response Functions (FRFs) (see e.g. Figure 5) which, for different values of the load multipliers,
express a steady-state output quantity of interest, like the maximum deflection, for all the values of angular
frequency ω of the forcing within a prescribed range. As a consequence, the generation of reliable and
efficient ROMs for this type of applications has recently stimulated intensive research with both standard
and deep learning approaches; see, e.g., [52, 24, 19, 21].

3.1.2. Dataset

We consider 2 values for the amplitude, F ∈ {0.125, 0.250}µN, and 28 values for the frequency ω in the
range [0.526, 0.564] rad/µs with a finer sampling around the natural frequency ω0. Hence the total number
of instances is Nβ = |P| = 56. The parameter set P is randomly partitioned in training and testing subsets,
Ptrain and Ptest, such that N train

β = |Ptrain| = 54 and N test
β = |Ptest| = 2.

For each choice of training parameters, (ω, F ) ∈ Ptrain, we numerically approximate the FOM solutions for
displacement and velocity up to time T = 390µs and we collect them in the matrices Xβ, Ẋβ ∈ RNt×N ,
where Nt = 5000 and N = 7821 are the number of time-steps and spatial degrees of freedom of the FOM,
respectively, obtained by considering a mesh with 2607 nodes and linear finite elements. The matrices

{Xβ}β∈Ptrain are then stacked together, obtaining a single matrix Xtrain ∈ RNtN
train
β ×N , which contains the

displacement snapshots for all the training parameters. Analogously to Xtrain, we fill a matrix Ẋtrain with
the corresponding velocity snapshots.

Preprocessing. We preliminary reduce the dimensionality of the system by POD, moving from a dimension
of N = 7821 to NPOD = 64. In order to do so, first a reduced basis is constructed by applying POD
on the training displacement snapshot matrix Xtrain. Next, all the FOM data are projected onto the first

NPOD = 64 bases, yielding POD coordinates denoted as X̃train,
˙̃Xtrain ∈ RNtN

train
β ×NPOD .

Moreover, the neural network optimization algorithm is more efficient if the training data is in a limited
magnitude range, typically in the order of unity, as the standard nonlinear activation functions perform at
best in this range. Hence, we chose to rescale each of the 64 input features with respect to its maximum in
absolute value, such that they all fall in the range [−1, 1].

3.1.3. AE+SINDy architecture

The encoder block of the AE is composed of 3 hidden dense layers consisting of 64, 32 and 16 neural units.
The decoder has a symmetrical structure. The dimensionality of the latent space corresponds to the size of
the encoder output (as well as that of decoder input) and it is set to 1. Indeed, as discussed in [19, 21, 24],
the dynamics underlying the system lies on a two dimensional manifold in the phase space [52], but the
dependence on the velocity is minimal for the master bending mode that we inspect herein. Therefore, we
aim to identify a latent dynamical system of the form

z̈ = f(z, ż,β), (13)
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where z is the latent variable, ż and z̈ are its first- and second-order time derivatives, respectively, and β
accounts for the parameter and forcing terms. All variables are time-dependent, although the dependency
is not explicit for conciseness.

In order to estimate f by SINDy, we rewrite the second-order ODE (13) as a system of two first-order
ODEs,

ż = y,

ẏ = f(z, y,β),
(14)

which can be easily expressed in a suitable form for the SINDy framework, namely

ż = f (z;β) ≈ Θ (z;β) Ξ. (15)

Here, Θ represents a library of polynomials up to the third degree with respect to z = [z, y]
T

and of the
first degree with respect to β, while Ξ is the sparse unknown matrix of the multiplicative coefficients of the
candidate features in Θ.

Regarding the choice of β, since the beam structure is forced harmonically with amplitude and fre-
quency parameterized by F and ω, these are incorporated in the SINDy model through the library terms
F cos(ωt), F sin(ωt). Therefore, Θ has the following form

Θ(z;β) =
[
z (t) , y (t) , z2 (t) , z (t) y (t) , . . . , y3 (t) , F cos(ωt) , F sin(ωt)

]
and contains r = 11 candidate features. Furthermore, we remark that not all the entries of Ξ ∈ Rr×n, with
n = 2, need to be estimated. In fact, by construction, the first equation in (14) is known, thus the first
column of Ξ – which indeed represents the coefficients of this equation – is all set to 0 except for the second
entry, relative to y, which is set to 1. Moreover, we can incorporate prior-knowledge about the dynamics
by setting the values of (or imposing constraints on) the coefficients of Ξ. In structural problems governed
by (14), linear terms reduce to −ω2

0z that just depends on the natural frequency ω0, which is known as the
spectral properties of the linearized system are the classical primal output of the FOM. Thus, Ξ becomes

Ξ =

[
0 1 0 . . . 0 0
−ω2

0 Ξ2,2 Ξ3,2 . . . Ξr−1,2 Ξr,2

]T
∈ Rr×n.

Following the procedure of Sect. 2.4, the overall architecture (see Fig. 1) is trained on X̃train and ˙̃Xtrain to
simultaneously reconstruct the POD coordinates with the AE as well as to learn the dynamics of the latent
system by SINDy. The identified dynamical latent system finally reads:

ż = y,

ẏ =− 0.3 z − 0.011 y + 0.003 z2 − 0.012 y2 − 0.113 z3 + 0.036 z2y

+ 0.719 zy2 − 0.051 y3 − 0.009F cos(ωt). (16)

3.1.4. Results

Once the offline training is concluded and the AE parameters Wϕ and Wψ, as well as the SINDy coefficients
Ξ, are learned, we can employ the model for the online fast evaluation of new solutions or get insight into
the dynamics by the continuation algorithms.

Time-marching solutions. The trained model is used to efficiently compute solutions for new instances of
the parameters, i.e. for the new forcing frequencies ω and amplitude values F . In particular, we assess the
performance on the test set Ptest. Following the procedure presented in Sect. 2.5, initial conditions and
forcing parameters are passed to the encoder and to the SINDy model respectively; then the identified latent
system is integrated up to tend = 1170µs, i.e. three times longer than the training final time (T = 390µs).
In particular, at tend the system has reached the steady-state, while, during the training, only data covering
a transient part of the dynamics have been fed to the network. Finally the physical solution is recovered
via the decoder. In Fig. 5 we compare the AE+SINDy predictions with the displacement approximated
with the FOM. The model manages to approximate the FOM solution with great accuracy in the whole
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Figure 5: Comparison between the time evolution of the FOM numerical solution X and the predicted displacement X̂ on a
specific mesh node positioned at mid-span of the beam, for different frequency-loading pairs. Fig. a) FRF of the system. The
continuous line denotes the FOM solution, while the markers represent the solutions obtained with the AE+SINDy after a long
time integration of the ROM. The coloured markers correspond to solutions reported in subfigures b)-g). In particular, for each
marker the whole time history is plotted in the first column and an enlarged view of the last few periods is presented in the
second column. The black dashed lines refer to the FOM solution, while the red and blue ones to the AE+SINDy solution on
training and testing load levels, respectively. The light blue shaded regions define the training time interval. The markers on
Figs. d) and f) highlight the instants spatially reconstructed in Fig.6.
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Figure 6: AE+SINDy spatial reconstruction of the displacement field on the y direction and the error with respect to the FOM.
Fig. a-b) refer to the testing instance and time instant highlighted in Fig. 5 d), while Fig. c-d) refer to the one in Fig. 5 f).

time window. In addition, long-time predictions for few training parameters are depicted in Fig. 5 for a
more comprehensive representation of the capacity of the method to extrapolate in time and to estimate the
steady-state behavior in different regions of the parameter space.

These results highlight that (i) the identified model is able to explain dynamical phenomena, such as
the steady-state behavior, while it has been trained only with snapshots covering a limited portion of the
transient; (ii) the AE+SINDy framework not only manages to forecast in long-time horizons but it simul-
taneously generalizes with respect to new parameters; (iii) the identified latent one-dimensional dynamics
physically represent and accurately approximate the whole high-dimensional system.

Continuation of periodic orbits. The low-dimensional latent dynamical system can be analysed with several
different approaches and in particular with continuation algorithms that allow tracking directly the steady-
state value of a quantity of interest as the parameters of the model are varied. In the problem at hand we are
interested in plotting FRFs, that are particularly meaningful because they summarize most of the dynamical
information of the mechanical system in a compact form.

Following the continuation strategy presented in Sect. 2.6, steady-state solutions are computed in the
latent space, then mapped, by passing them to the decoder, into the physical space, where finally FRFs are
drawn. In Fig. 7 we illustrate the comparison between the predicted curves with the exact curves obtained
from the FOM [51]. Therefore, even though no steady-state information and unstable solutions have been
provided during the training of the model, we still manage to track the evolution of the steady-state response
changes with respect to the parameters, even in the unstable regions. Indeed, since the system is nonlinear
we encounter bifurcations that affect the number of the solutions and their stability.

In Fig. 7, we plot (in light blue) the FRFs corresponding to the training values of F , i.e. F ∈ {0.125, 0.250}µN.
We note that the predicted curves follow with great accuracy the exact ones and, in particular, there is an
excellent match even outside the span of training frequencies, that is [0.526, 0.564] rad/µs, which denotes a
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Figure 7: Comparison between FRFs obtained with the FOM [51] and the AE+SINDy. FOM solutions are plotted with dashed
lines while AE+SINDy solutions with continuous ones. The red curves refers to testing load levels while the light blue one
to training load levels. FRFs are represented as continuous lines for illustrative clarity, since continuation algorithm provides
data-points which are very close to each other.

remarkable capability of the AE+SINDy to extrapolate with respect to parameter ω.
Moreover, we plot (in red) FRFs for forcing amplitudes F that have not been seen during the training

phase. Also in this case, in general, there is a very good match with the exact curves, suggesting an excellent
ability to generalize with respect to both the forcing amplitude F and frequency ω. A progressive degradation
of the accuracy can be noted at the peak of FRFs for large values of forcing amplitudes outside the training
range, e.g., for the curve corresponding to F = 0.3125µN. This limitation in extrapolation is mainly due
to low data sampling for the frequencies corresponding to peaks and to the fact that the AE performs a
data-driven nonlinear coordinate transformation which may be less accurate when the nonlinearity content
of the response increases well beyond what experienced during training. It is however worth stressing that
far from the peaks the prediction is very accurate, even in the unstable branch of the FRFs. In support of
these remarks we further notice that, on the contrary, for the curve at F = 0.0938µN, i.e., below training
range, we have a very accurate approximation.

3.2. Fluid flow around a cylinder

For this second application, our goal is to efficiently approximate the fluid velocity and pressure in the case
of a fluid flow problem, at different regimes as the Reynolds number varies, as well as to empirically identify,
through continuation algorithms, the bifurcation value of the transition from laminar to unsteady behaviour.

3.2.1. Problem description

We consider the well-known benchmark dealing with a two-dimensional fluid flow around a cylinder. The
problem is described by the following unsteady Navier-Stokes equations for a viscous, incompressible New-
tonian flow

ρ
∂v

∂t
− ρv · ∇v−∇ · σ(v, p) = 0, (x, t) ∈ Ω× (0, T ) ,

∇ · v = 0, (x, t) ∈ Ω× (0, T ) .
(17)

Here, v(x, t) and p(x, t) represents respectively the velocity and pressure fields of the flow, ρ = 1.0 kg/m
3

is
the fluid density, σ(v, p) = −pI+2νε(v) is the stress tensor, ε(v) is the strain tensor, while ν is the kinematic
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viscosity. The domain Ω = (0, 2.2)×(0, 0.41)\Br(0.2, 0.2), with r = 0.05, consists in a bidimensional channel,
where Br represents a cylindrical obstacle (see Fig. 8). We prescribe the following boundary and initial
conditions:

v = 0, (x, t) ∈ ΓD1 × (0, T ) ,

v = h, (x, t) ∈ ΓD2 × (0, T ) ,

σ(v, p)n = 0, (x, t) ∈ ΓN × (0, T ) ,

v(x, 0) = 0, x ∈ Ω ,

(18)

which represent a no-slip condition on ΓD1 , a parabolic inflow of the form

h(x, t) =

(
4U(t)x2(0.41− x2)

0.412
, 0

)
, where U(t) =

{
0.75(1− cos (πt)), t < 1
1.5, t ≥ 1

on the inlet ΓD2
, open boundary conditions on the outlet ΓN and homogeneous initial conditions.

In this framework, ν = 1/Re [20, 9], where Re is the Reynolds number, a quantity which allows to compare
different flow regimes and characteristics. In the present study, we focus on the region 40 ≤ Re ≤ 60. For
the case at hand, when Re < 49 the flow is entirely laminar; instead, for larger Reynolds numbers, a pair
of vortices are generated in the wake of the cylinder, periodically alternating between the top and bottom
side, and the flow becomes unsteady [61, 57].

For a set of values of the number of Reynolds in the range P = [40, 60], we approximate the velocity
components and pressure solutions up to T = 30s, for which the flow becomes fully developed. For the spatial
and time discretization we consider finite elements and a semi-implicit backward differentiation formulas
(BDF) respectively, employing Matlab redbKIT library [49].

The geometric mesh employed is shown in Fig. 8, while the temporal discretization step is ∆t = 5ms.
The total number of degrees of freedom is N = 73131, obtained by considering quadratic finite elements for
the velocity field and linear finite element for the pressure field, on a mesh made by 16478 triangular elements
and 8239 vertices. Thus, numerical solutions of this type – although extremely accurate – are characterized
by a very high dimensionality and they are computationally expensive and time consuming.

Our goal is to exploit the AE+SINDy structure to compute the entire space-time solution for a new
instance of the Reynolds number, by exploiting a ROM consisting of a low-dimensional dynamical system. In
addition, we are interested in understanding whether the identified system can actually represent the change
of fluid behaviour as the Reynolds number varies, in particular, if it manages to detect the bifurcation at
the transition from laminar to unsteady flow (between Re = 49 and 50, for this application [61, 57]).

3.2.2. Dataset

A uniform grid ofNβ = 21 Reynolds number values over the parameter interval P = [40, 60] is considered. For
each parameter value, we compute numerical solutions for the pressure and the two velocity components of the
fluid. For the sake of computational efficiency, we restrict our analysis to the time window [t0, T ] = [15s, 30s],
by trimming off the first portion of the transient. N train

β = 19 snapshots will be employed as training set and

the remaining N test
β = 2 for testing. In order to verify the accuracy of the proposed method in reconstructing

different fluid behaviors, we consider as test instances the full order snapshots for Re = {43, 55}, which
correspond to solutions in either the laminar or the unsteady regime, respectively.

Figure 8: Geometry for the 2-D channel flow around a cylinder. All lengths are measured in meters. The node highlighted in
orange is used as reference node for visualizations of results in Figs. 9,11.
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Training and testing snapshots are stacked respectively in matrices Xtrain ∈ RNtN
train
β ×N and Xtest ∈

RNtN
test
β ×N , where Nt = 3000 is the number of time-steps.

As in the previous example, a preliminary dimensionality reduction is performed by POD. In particular,
POD is applied separately on the training snapshots of both pressure and velocities, once they have been
properly shifted to obtain zero mean snapshots, since they feature different units of measurement. Then,
for both velocity and pressure, we retain the projections of the snapshots onto the first 32 bases (for a
final dimension of NPOD = 64). These POD coordinates are scaled by the square root of the corresponding
singular value (to reemphasize low-energy POD modes) and divided by the overall maximum in absolute
value. In this way, POD coordinates of velocity and pressure have the same order of magnitude (ı.e. unitary),
which is also ideal for the neural network training. Finally, the two sets of POD coordinates are collected

into a single matrix X̃train ∈ RNtN
train
β ×NPOD . Here, time derivatives ˙̃Xtrain are computed numerically.

Analogously, testing snapshots are projected onto the POD training modes, rescaled in the same way and

collected in the matrix X̃test ∈ RNtN
test
β ×NPOD .

3.2.3. AE+SINDy architecture

The AE architecture is such that the encoder block consists of 4 hidden layers of widths 64, 32, 16 and 8,
respectively, while the decoder has a symmetrical structure. Given a low Reynolds number, the dynamical
system evolves onto a two-dimensional parabolic manifold [45, 50]. To further account for the parametric
dependency of the manifold on the Reynolds number, the number of latent variables, which correspond to
the dimension of the bottleneck of the AE, is set to 3. Regarding the SINDy algorithm, we employ a set of
polynomials features Θ, up to the third degree, with respect to both the latent variables z = [z1, z2, z3]

T

and the parameter 1
Re to approximate the latent dynamics f , such that

ż = f

(
z,

1

Re

)
≈ Θ

(
z,

1

Re

)
Ξ, (19)

where Ξ is the sparse matrix of the unknown multiplicative coefficients of the features of library Θ. The
parametric dependence is with respect to the reciprocal of Reynolds number – which corresponds to the
viscosity ν – for consistency with the full order equation (17). Differently from the previous example in
Sect. 3.1 for which the parametric dependency is directly related to the forcing term, thus known a priori,
this application provides an example for which no information about how the parameter enters the latent
equations is available. For this reason, we consider a extensive polynomial library that includes also parameter
interactions with latent variables.
The identified coefficients of the latent system (19), i.e. the entries of Ξ, are reported in Table 1.

Table 1: Entries of Ξ obtained by training AE+SINDy. Each column indicates to which candidate feature the coefficient is
associated to, while rows indicate the left-hand-side of the equation of the system (19) in which the coefficient enters. Note
that the following scaling: β = 103/Re = ν · 103 has been considered.

1 z1 z2 z3 β z21 z1z2 z1z3 z1β z22 z2z3 z2β

ż1 2.23 0 3.44 61.8 -0.25 0 -4.17 0 0 0 -8.15 -0.43

ż2 10.81 -89.0 112.5 -67.5 0 327.2 -623.2 82.17 -2.68 244.7 -54.0 -1.49

ż3 0 -35.4 -16.1 0 0.04 229.2 -61.2 81.9 2.34 -7.41 1.46 1.77

z23 z3β β2 z31 z21z2 z21z3 z21β z1z
2
2 z1z2z3 z1z2β z1z

2
3 z1z3β

ż1 -7.55 -29.5 -8.15 0 -33.6 111.3 -1175.1 0.14 -142.5 1449.0 -3.38 -687.0

ż2 -3.79 -23.0 3.96 0 -734.1 1309.0 -187.5 12.5 -781.0 0 -2.23 0

ż3 31.0 11.8 0 0 0 154.1 217.0 -12.4 -153.8 -10.9 0 0

z1β
2 z32 z22z3 z22β z2z

2
3 z2z3β z2β

2 z33 z23β z3β
2 β3

ż1 0 4.58 -565.0 0 408.2 -18.5 0 -262.1 7.91 0 0

ż2 0 151.5 113.0 -2.51 -85.9 6.78 0 47.3 1.26 0 0

ż3 0 94.4 -121.0 4.03 139.7 -2.4 0 -58.5 0.77 0 0
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Figure 9: Time marching solutions: comparison between FOM and AE+SINDy. Fig. a) time histories related to Re = 43
(AE+SINDy in red, FOM in black), enlarged view proposed in Fig. b); Fig. c) time histories related to Re = 55, enlarged
view proposed in Fig. d); Fig. e) FOM and AE+SINDy velocity field along the x direction with Re = 43; Fig. f) FOM and
AE+SINDY pressure field with Re = 43; Fig. g) FOM and AE+SINDY velocity field along the y direction with Re = 43; Fig. h)
absolute difference velocity field along the y between the FOM and AE+SINDy with Re = 43; Fig. i) FOM and AE+SINDY
velocity field along the x direction with Re = 55; Fig. j) FOM and AE+SINDY pressure field with Re = 55; Fig. k) FOM and
AE+SINDY velocity field along the y direction with Re = 55; Fig. l) absolute difference between the FOM and AE+SINDy
with Re = 55 on the y direction.
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3.2.4. Results

Time-marching solutions. The AE+SINDy model is trained on X̃train,
˙̃Xtrain data, with the method in-

troduced in Sect. 2.4, then it is evaluated on the testing values Re = {43, 55} following the strategy in
Sect. 2.5. Approximated solutions are predicted by AE+SINDy up to final time T = 30s and compared
to the numerical values Xtest in Fig. 9. The proposed method provides solutions of comparable accuracy
to the numerical one, though, at extremely advantageous computational cost and time. Furthermore, we
emphasize how indeed the model manages to accurately reconstruct the different behaviors of the fluid, i.e.
laminar and unsteady, as the Reynolds number varies.

However, this is not sufficient to ensure that the identified system is indeed representative of the whole
dynamics of the phenomenon. To this end, we pass the identified system to the continuation algorithms to
estimate the latent dynamic behavior of the system as the Reynolds number changes.

Continuation. We now intend to apply the continuation algorithm to the identified latent system in order
to gain insight into the dynamics of the system under observation. Such approach allows us to directly
compute the steady-state response, i.e. when the flow is fully developed, avoiding the costs of computing
the transient and the error accumulation of numerical integration. In addition, the continuation technique
is an extremely useful tool in this context for identifying and characterizing the transition of the dynamics
from laminar to unsteady. Indeed, while in the unsteady regime the steady-state solution is characterized by
periodic oscillations, in the laminar regime it is stationary. Therefore, we expect the continuation technique,
which assumes a-priori the existence of a periodic response, to break down during a downward sweep over
the Reynolds number when reaching the bifurcation point (see Figure 11). We aim to verify whether we can
effectively recover the expected bifurcation value, which is between Re = 49 and 50 [61, 57], and to check if the
latent solutions estimated by continuation are physically representative of the dynamics of the phenomenon
when projected back to the physical space. We stress that appropriately locating the bifurcation value would
not be straightforward with time-marching schemes, since they would require instead the calculation of the
entire time evolution of solutions for a dense sampling of parameter instances.

Starting from Re = 60, we employ the continuation algorithm to compute the periodic steady-state
latent solutions over the parametric domain under consideration, namely for Re ∈ P = [40, 60]. We obtain
that continuation procedure correctly halts at the Reynolds number which matches the expected bifurcation
value for the transition from unsteady to laminar regime (see Fig. 10). To convey continuation insights to
the original physical system we follow the procedure presented in Sect. 2.6: physical steady-state solutions
are reconstructed by mapping the so-computed periodic latent variables via decoder and then by projection
to the physical space through POD modes. The comparison between the predicted physical orbits with the

0

-0.540 41

-0.3

42 43 44 45

-0.25

46 47 48 49

-0.2

50 51 52
Re
53 54

-0.15

55 56 57

z
3

58

-0.1

59 60

-0.05

0

0.05

Figure 10: Behaviour of the latent coordinates (z2, z3) with respect to the Re parameter. After a critical Re value the fixed
point solution (steady state flow) become unstable and a limit cycle arises (Hopf bifurcation). The limit cycle is embedded by
the SINDy model integrated with continuation approach.
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Figure 11: Continuation solutions with AE+SINDy. Fig. a) bifurcation diagram obtained from continuation compared with
the FOM solution close to the steady state, the orange marker highlights the point having Re = 55 used as testing parameter
value Fig. b) Surface described by the orbits envelope in the space (Re, vy , P ) referring to the node (highlighted previously)
compared with the FOM solutions. Since the FOM is based on time-marching methods, the orbits here represented with dashed
lines correspond to the one closer to the steady state. To better highlight the limit cycles, the orbits are also projected in the
plane (vy , P ). Fig. c) solution corresponding to Re = 55 achieved with AE+SINDy, the marker highlights the time instant kept
as reference in the spatial reconstructions Fig. d)-e)-f) AE+SINDy velocity fields along the two directions and the pressure field
with Re = 55. The marker highlights the mesh node used as reference.
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ones drawn from the original data is illustrated in Fig. 11.
Moreover, this technique allows to draw bifurcation diagrams which describes the characteristics of the

flow as the Reynolds number changes. For instance, we report in Fig. 11a, the maximum value over time of
the velocity of the flow in the cross-channel direction for a spatial point, as a function of the parameter Re.
This velocity component is a direct indicator of the presence of vortexes in the flow that characterize the
unsteady regime, while it is absent for the laminar flow. We observe that the bifurcation diagram identified by
continuation is coherent with the (training and testing) snapshot data of the physical system (see Fig. 11a).
For completeness, moreover, we show in Fig. 11d-e-f the physical reconstruction of the steady-state solution
obtained by continuation at Re = 55. Comparing it with the numerical solution (see Fig. 9i-j-k), we observe
that the dynamic behavior of the system is accurately detected.

4. Conclusions

In this work we proposed a framework for building low-dimensional dynamical models which overcomes the
major bottlenecks of full order models to approximate solutions of parametrized, nonlinear, time-dependent
systems of PDEs. Our method exploits both POD and AEs to construct a ROM, while simultaneously iden-
tifying the reduced dynamics via parametric SINDy. The possibility to incorporate parametric dependences
in the latent ODE system, besides extending existing approaches [8, 3], opens the door to the application
of continuation techniques. On one hand, these techniques allow to derive a portrait of the dynamics of
the observed system; on the other hand, they offer the chance to efficiently estimate periodic steady-state
solutions, without computing the whole transient dynamics.

We applied the proposed method to study two problems, the first in structural mechanics dealing with
the hardening behaviour of a clamped clamped beam, and the second in fluid dynamics dealing with the
motion of a fluid flow past a cylinder. In the first application, starting from simulation data covering a
limited portion of the transient dynamics, we could efficiently derive a one-dimensional dynamical ROM
which predicts the steady-state responses for new parameters outside the training range, thus extrapolating
in time for long-term horizons while simultaneously generalizing with respect to system parameters. For
the second example, the identified latent model allows to accurately estimate full order solutions, both for
laminar and unsteady behaviours, as well as to identify the correct value of the Reynolds number at which
the change of the flow regime occurs.

The considered examples highlight that if AE+SINDy successfully converges to a solution on training
instances, it also allows numerical integration in long time horizon for testing instances as well as continu-
ation algorithms to work, hence implying robustness and stability with respect to temporal and parameter
extrapolation. This suggests that the AE+SINDy algorithm is less prone to overfitting phenomena with
respect to standard data-driven method, thanks to the incorporation of physical and dynamical information
via SINDy.

In addition to ensuring high accuracy at low computational cost, this method is highly non-intrusive
since it just requires a very limited number of snapshots solutions and a choice of basis functions for the
latent dynamics, instead of accessing the expensive FOM operators. Therefore, even though only simulation
data are considered in the present work, the proposed method can be directly applied to observational and
experimental data sets as well. This would allow to construct ROMs and discover the underlying dynamics
also in the case of systems for which no information about their generative model is available.

Further improvements of the proposed method include the use of more powerful neural networks than
standard feedforward autoencoders and the implementation of more sophisticated techniques for sparsity
imposition in order to promote parsimonia and interpretability of the reduced dynamical model.

Acknowledgment

Paolo Conti has been supported on funding under the JRC STEAM STM-Politecnico di Milano agreement.
Stefania Fresca, Giorgio Gobat, and Andrea Manzoni have been supported by Fondazione Cariplo, Grant
no. 2019-4608. The authors would like to express their appreciation to Dr. Andrea Opreni for the fruitful
discussions.

20



References

[1] D. Amsallem, M. J. Zahr, and C. Farhat. Nonlinear model order reduction based on local reduced-order
bases. International Journal for Numerical Methods in Engineering, 92(10):891–916, 2012.

[2] N. Ananthkrishnan and K. Sudhakar. Characterization of periodic motions in aircraft lateral dynamics.
Journal of guidance, control, and dynamics, 19(3):680–685, 1996.

[3] J. Bakarji, K. Champion, J. N. Kutz, and S. L. Brunton. Discovering governing equations from partial
measurements with deep delay autoencoders. arXiv preprint arXiv:2201.05136, 2022.

[4] P. Benner, M. Ohlberger, A. Cohen, and K. (Eds.) Willcox. Model reduction and approximation: theory
and algorithms. SIAM, 2017.

[5] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15):3932–
3937, 2016.

[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse identification of nonlinear dynamics with control
(sindyc). IFAC-PapersOnLine, 49(18):710–715, 2016.

[7] J. L. Callaham, S. L. Brunton, and J.-C. Loiseau. On the role of nonlinear correlations in reduced-order
modelling. Journal of Fluid Mechanics, 938, 2022.

[8] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of coordinates and
governing equations. Proceedings of the National Academy of Sciences, 116(45):22445–22451, 2019.

[9] P. Conti, M. Guo, A. Manzoni, and J. S. Hesthaven. Multi-fidelity surrogate modeling using long
short-term memory networks. Computer methods in applied mechanics and engineering, 404:115811,
2023.

[10] A. Corigliano, B. De Masi, A. Frangi, C. Comi, A. Villa, and M. Marchi. Mechanical characterization
of polysilicon through on-chip tensile tests. Journal of Microelectromechanical Systems, 13(2):200–219,
2004.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

[12] H. Dankowicz and F. Schilder. Recipes for continuation. SIAM, 2013.

[13] T. Detroux, L. Renson, L. Masset, and G. Kerschen. The harmonic balance method for bifurcation
analysis of large-scale nonlinear mechanical systems. Computer Methods in Applied Mechanics and
Engineering, 296:18–38, 2015.

[14] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. Riet, and B. Sautois. Matcont and cl
matcont: Continuation toolboxes in matlab. Universiteit Gent, Belgium and Utrecht University, The
Netherlands, 2006.

[15] E. J. Doedel, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. A. Kuznetsov, B. Oldeman, R. Paf-
fenroth, B. Sandstede, X. Wang, and C. Zhang. Auto-07p: Continuation and bifurcation software for
ordinary differential equations. 2007.

[16] I. R. Epstein and K. Showalter. Nonlinear chemical dynamics: oscillations, patterns, and chaos. The
Journal of Physical Chemistry, 100(31):13132–13147, 1996.

[17] N. Franco, A. Manzoni, and P. Zunino. A deep learning approach to reduced order modelling of
parameter dependent partial differential equations. Mathematics of Computation, 92(340):483–524,
2023.

21



[18] S. Fresca, L. Dede, and A. Manzoni. A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized pdes. Journal of Scientific Computing, 87(2):1–36,
2021.

[19] S. Fresca, G. Gobat, P. Fedeli, A. Frangi, and A. Manzoni. Deep learning-based reduced order models
for the real-time simulation of the nonlinear dynamics of microstructures. International Journal for
Numerical Methods in Engineering, 123(20):4749–4777, 2022.

[20] S. Fresca and A. Manzoni. Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models. Fluids, 6(7):259, 2021.

[21] S. Fresca and A. Manzoni. Pod-dl-rom: enhancing deep learning-based reduced order models for nonlin-
ear parametrized pdes by proper orthogonal decomposition. Computer Methods in Applied Mechanics
and Engineering, 388:114181, 2022.

[22] W. D. Fries, X. He, and Y. Choi. Lasdi: Parametric latent space dynamics identification. Computer
Methods in Applied Mechanics and Engineering, 399:115436, 2022.

[23] K. Fukami, T. Murata, K. Zhang, and K. Fukagata. Sparse identification of nonlinear dynamics with
low-dimensionalized flow representations. Journal of Fluid Mechanics, 926, 2021.

[24] G. Gobat, S. Fresca, A. Manzoni, and A. Frangi. Virtual twins of nonlinear vibrating multiphysics mi-
crostructures: physics-based versus deep learning-based approaches. arXiv preprint arXiv:2205.05928,
2022.

[25] G. Gobat, A. Opreni, S. Fresca, A. Manzoni, and A. Frangi. Reduced order modeling of nonlinear
microstructures through proper orthogonal decomposition. Mechanical Systems and Signal Processing,
171:108864, 2022.

[26] F. J. Gonzalez and M. Balajewicz. Deep convolutional recurrent autoencoders for learning low-
dimensional feature dynamics of fluid systems. arXiv preprint arXiv:1808.01346, 2018.

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[28] P. Goyal and P. Benner. Learning low-dimensional quadratic-embeddings of high-fidelity nonlinear
dynamics using deep learning. arXiv preprint arXiv:2111.12995, 2021.

[29] P. Goyal and P. Benner. Discovery of nonlinear dynamical systems using a runge–kutta inspired
dictionary-based sparse regression approach. Proceedings of the Royal Society A, 478(2262):20210883,
2022.

[30] L. Guillot, B. Cochelin, and C. Vergez. A taylor series-based continuation method for solutions of
dynamical systems. Nonlinear dynamics, 98(4):2827–2845, 2019.

[31] L. Guillot, A. Lazarus, O. Thomas, C. Vergez, and B. Cochelin. A purely frequency based floquet-hill
formulation for the efficient stability computation of periodic solutions of ordinary differential systems.
Journal of Computational Physics, 416:109477, 2020.
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[52] A. Opreni, A. Vizzaccaro, A. Frangi, and C. Touzé. Model order reduction based on direct normal form:
application to large finite element mems structures featuring internal resonance. Nonlinear Dynamics,
105(2):1237–1272, 2021.
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