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Abstract 18 

Identification of important processes of a hydrologic system is critical for improving process-19 

based hydrologic modeling. To identify important processes while jointly considering 20 

parametric and model uncertainty, Dai et al. (2017) developed a multi-model process 21 

sensitivity index. Numerical evaluation of the index using a brute force Monte Carlo (MC) 22 

simulation is computationally expensive, because it requires a nested structure of parameter 23 

sampling and the number of model simulations is on the order of 2N  (N being the number 24 

of parameter samples). To reduce computational cost, develops a new method (here denoted 25 

as quasi-MC for brevity) that uses triple sets of parameter samples to remove the nested 26 

structure of parameter sampling in a theoretically rigorous way. It then illustrates the way the 27 

method is implemented using a quasi-MC algorithm. It reduces the number of model 28 

simulations from the order of 2N  to 2N. The performance of the quasi-MC method is 29 

assessed against the brute force MC approach and the recent binning method developed by 30 

Dai et al. (2017) through two synthetic cases of groundwater flow and solute transport 31 

modeling. Due to its rigorous theoretical foundation, the quasi-MC method overcomes the 32 

limitations imposed by the inherently empirical nature of the binning approach. We find that 33 

the quasi-MC method outperforms both the brute force Monte Carlo and the binning method 34 

in terms of computational requirements and theoretical aspects, thus strengthening its 35 

potential for the assessment of process sensitivity indices subject to various sources of 36 

uncertainty. 37 

Key words: Multi-model process sensitivity index; Global sensitivity analysis; Quasi-MC 38 

method; Binning method; Process model uncertainty; Parametric uncertainty   39 
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1. Introduction 40 

Development of process-based models is a key research focus in water related research 41 

areas. In this context, the functioning of a hydrologic system is often depicted through a 42 

model that embeds various components, each associated with a mathematical formulation 43 

representing a given system process (Montanari & Koutsoyiannis, 2012; Clark et al., 2015; 44 

Antonetti et al., 2016, 2017; Zhang 2019). Improving the performance of process-based 45 

models requires identification of important processes. One can then enhance their 46 

characterization through data collection and/or model calibration (Grayson & Bloschl, 2000; 47 

Bloschl, 2001; Beven, 2002; Razavi & Gupta, 2015; Antonetti et al., 2016). Important 48 

processes can be identified through a global sensitivity analysis targeting the assessment of 49 

the relative importance of model parameters. In this sense, processes associated with 50 

important parameters are typically considered to be important (Wainwright et al., 2014; Guse 51 

et al., 2016; Dell’Oca et al., 2017; Ceriotti et al., 2018; Melsen & Guse, 2019). Such an 52 

approach to sensitivity analysis is only geared towards the assessment of model parameters, 53 

while otherwise not considering model uncertainty, which arises when limited data and/or 54 

knowledge lead to multiple plausible conceptual-mathematical models (Neuman, 2003; 55 

Beven, 2006). New approaches to global sensitivity analysis have been recently developed to 56 

address model uncertainty for the identification of important system processes (e.g., Walker 57 

et al., 2018; Mai et al., 2020). Dai et al. (2017) develop a multi-model process sensitivity 58 

analysis method that relies on the integration of variance-based global sensitivity analysis 59 

(Sobol’, 1993; Saltelli et al., 1999, 2010) with model averaging methods (Draper, 1995; 60 

Neuman, 2003; Ye et al., 2008, 2010). The multi-model process sensitivity analysis enables 61 

one to jointly address uncertainty in process models as well as parametric uncertainty within 62 
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each process model. The approach yields a so-called process sensitivity index for each system 63 

process. A process associated with a larger value of the index is considered to be more 64 

important than other processes. 65 

The multi-model process sensitivity analysis method has been incorporated into a multi-66 

assumption architecture and testbed (MATT) (Walker et al., 2018), and the process sensitivity 67 

index has been used in several studies (Walker et al., 2018, 2020; Xu et al., 2019; Yang et al., 68 

2022; Yang and Ye, 2022). The current way of estimating the process sensitivity index is to 69 

use brute force Monte Carlo (MC) simulations, which is well known to be computationally 70 

expensive. Computational cost for estimating the index still constitutes a serious barrier to 71 

increase the index’s potential for applications. This is related to the observation that the total 72 

number of model simulations for estimating the index corresponds to 2
~K Kn n N  (here, N  73 

is the number of MC simulations for a single process model, and Kn  and ~Kn  are the 74 

numbers of plausible models of system process K  and other processes, denoted as ~ K , 75 

respectively). As we illustrate in Section 2, the dependence on 2N  is caused by a nested 76 

structure that multiplies N  randomly selected parameter samples for a model of process K  77 

by N  parameter samples of a model (or a set of models) of the remaining processes ~ K . 78 

Such a dependence is the key reason of the high computational cost. For example, tens of 79 

millions of model simulations are needed for a collection of 1,000N =  samples randomly 80 

selected across the parameter space.  81 

To reduce the computational cost of the brute force MC method, Dai et al. (2017) develop 82 

a binning approach that removes the nested structure of parameter sampling. Doing so 83 

enables one to decrease the number of model simulations from the order of 2N  to the order 84 
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of N . These authors show that the results obtained by using 36,000,000 model simulations 85 

of the brute force MC method can be obtained by using 16,000 model simulations framed in 86 

the context of their binning approach. A major drawback of the binning method of Dai et al. 87 

(2017) is that it lacks a mathematically rigorous foundation due to its reliance on an empirical 88 

selection of the number of bins as well as of the number of parameter samples across each 89 

bin. Tuning these settings by trial and error is time consuming. Additionally, an accurate 90 

evaluation of process sensitivity indices is not guaranteed. Therefore, the development of a 91 

theoretically rigorous method to overcome these issues and obtain an efficient and reliable 92 

estimate of process sensitivity index is still an open research challenge. This is the main 93 

objective of the current study. 94 

The key to reducing the computational cost associated with the brute force MC method is 95 

to remove the nested structure of parameter sampling for two process models (i.e., processes 96 

K  and ~ K ). In the context of parameter sensitivity analysis, Ishigami and Homma (1990) 97 

and Saltelli et al. (2010) introduce a method to remove a nested sampling structure for two 98 

parameters and illustrate its implementation upon relying on a quasi-MC sampling algorithm. 99 

Inspired by these studies for parameter sensitivity analysis, we develop here an original 100 

method that, for the first time, uses triple sets of parameter samples to remove the nested 101 

structure of parameter sampling for estimating the process sensitivity index in a 102 

computationally efficient manner and according to a theoretically rigorous approach. It 103 

should be noted that the our derivation of the method of triple sets of parameter samples is 104 

novel and different from those of Ishigami and Homma (1990) and Saltelli et al. (2010), 105 

because our derivation is set in the context of process (not parameter) sensitivity analysis. As 106 
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shown in Section 2, the method of triple sets of parameter samples yields a marked reduction 107 

of the number of parameter samples (i.e., the number of model executions). i.e., from 108 

2
~K Kn n N  to ~2 K Kn n N . We implement the method using a quasi-MC sampling algorithm to 109 

achieve an enhanced rate of convergence. As opposed to brute force MC that uses 110 

pseudorandom sequence of parameter samples and has a convergence rate of O(N-0.5), quasi-111 

MC uses a low-discrepancy sequence (e.g., Halton sequence, Sobol sequence, and Faure 112 

sequence) of parameter samples, and is characterized by a rate of convergence close to O(N-113 

1). Hereinafter, our method, which uses the triple sets of parameter samples and is 114 

implemented through quasi-MC, is referred to as the quasi-MC method for process sensitivity 115 

index (or quasi-MC method for brevity). 116 

The quasi-MC method is appraised by way of two synthetic cases associated with 117 

groundwater flow and transport to provide a transparent way of analysis. The first synthetic 118 

case corresponds to the groundwater reactive transport setting considered by Dai and Ye 119 

(2015) and Yang et al. (2022) to analyze model uncertainty in the representation of recharge, 120 

geology, and snowmelt processes. The other setting considers zinc sorption in a 121 

heterogeneous porous medium and is designed on the basis of the studies of Duan et al. 122 

(2020) and Maina et al. (2018). Here, we consider model uncertainty in the way geology and 123 

sorption processes are represented. Each of the process models associated with the two cases 124 

is characterized by parametric uncertainty (i.e., model parameters are uncertain and treated as 125 

random quantities). The process sensitivity index is estimated using the brute force MC, 126 

binning, and quasi-MC methods for both cases. Considering the results of the brute force MC 127 

method as a reference, the results of the latter two approaches are then assessed in terms of 128 
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their accuracy and convergence. 129 

2. Methodology 130 

We provide for completeness a brief introduction of the process sensitivity index and its 131 

estimation using the brute force MC and binning methods in Section 2.1. Section 2.2 is 132 

devoted to introducing the derivation of the new method that uses triple sets of parameter 133 

samples to remove the nested structure of parameter sampling. Section 2.3 discusses the 134 

implementation of the method through quasi-MC and its computational cost in terms of the 135 

number of parameter samples, which we note being equal to the number of model executions. 136 

2.1. Definition and Estimation of Process Sensitivity Index 137 

We consider a system of interest that is driven by various processes (e.g., A B  , , ). 138 

Each of these processes is prone to multiple representations, i.e., alternative process models. 139 

If process A  can be characterized through several alternative models (e.g., 

1 2A AM , M , ) 140 

with associated parameters Aθ , θ ,
1 2A , the model set of process A  can be denoted as 141 

( ) ( ) ( ){ }M 

1 1 2 2A A A Aθ = M θ , M θ ,A A . The system model can then be viewed as an 142 

integration, ( ) ( )( )M M A A B Bθ , θ , , of process models. Dai et al. (2017) propose to 143 

evaluate the importance of process A  (the collection of the other processes being hereafter 144 

denoted via ~ A ) through the following first-order process sensitivity index of process A  145 

[ ]( )
( )

A A A
A

V E M
PS

V

∆ |
=

∆
~M M ,                                                  (1) 146 

where ( )V ∆  is the total variance of the system output of interest ∆ , AM  is a single 147 

process model in model set AM , and A~M  denotes the set of alternative models for all of 148 

the other processes except process A . The term [ ]∆ |
~M A AE M  is the mean of ∆  taken 149 

across all possible models A~M  of process ~ A , ∆  being conditioned on the single model 150 
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AM  of process A , and [ ]( )A A AV E M∆ |
~M M  is the variance of [ ]

~A AE M∆ |M  taken over 151 

all possible models in the model set AM  (Dai et al., 2017). The first-order process 152 

sensitivity index (1) measures the average reduction of the variance of ∆  when the 153 

representation of process A  is fixed according to a given (individual) model. An important 154 

process yields a large variance reduction, and the process with the largest value of APS  155 

value is deemed as the most important. Thus, index APS  can be used to quantitatively rank 156 

the importance of multiple system processes. 157 

Equation 1 explicitly considers process model uncertainty. It can be expanded to further 158 

consider parametric uncertainty. To this end, let us consider a system with multiple processes 159 

and denote one process as process A  while denoting other processes as process B  (which 160 

can be either a single process or a combination of multiple processes). Based on the definition 161 

of variance and the law of total expectation, the term [ ]( )A A AV E M∆ |
~M M  appearing in 162 

Equation 1 for process A  can be rewritten as 163 

[ ]( ) [ ]( )
[ ]( )

[ ]( )

~

~

2

~ ~

2

~ ~

2

, , ,

, , ,

                               , , ,

A A A A A A A A

A A A A A A

A A A B B B

A M M A A A A

M M A A A A

M M A A B B

V E M E E E E M M

E E E E M M

E E E E M M

θ θ

θ θ

θ θ

| |

| |

| |

∆ | = ∆ |

                                − ∆ |

= ∆ |

                 

~ ~ ~

~ ~

M M M θ M θ

M θ M θ

M θ M θ

[ ]( )2
, , ,

A A A B B BM M A A B BE E E E M Mθ θ| |               − ∆ |M θ M θ

.                (2) 164 

where Aθ  and Bθ  are the parameter sets corresponding to model AM  and BM , 165 

respectively, and Aθ  and Bθ  represent a single realization of Aθ  and Bθ , respectively. 166 

Applying the model averaging techniques (e.g., Draper, 1995; Neuman, 2003; Ye et al., 2008) 167 

to estimate 
A

EM  and 
B

EM , the two terms at the right hand side of Equation 2 can be 168 

rewritten as 169 
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[ ]( )

[ ] ( ) ( )

2

2

, , ,

, , ,

A A A B B B

A A B B
A B

M M A A B B

M M A A B B B A
M M

E E E E M M

E E M M P M P M

θ θ

θ θ

| |

| |

∆ |

 
= ∆ | 

 
∑ ∑

M θ M θ

θ θ

,                       (3) 170 

and 171 

[ ]( )

[ ] ( ) ( )

2

2

, , ,

, , ,

A A A B B B

A A B B
A B

M M A A B B

M M A A B B B A
M M

E E E E M M

E E M M P M P M

θ θ

θ θ

| |

| |

∆ |

  
= ∆ |     

∑ ∑

M θ M θ

θ θ

,                          (4)  172 

where ( )AP M  is the probability associated with process model AM  in model set AM  and 173 

satisfies the condition ( )
1

A

l

n

A
l

P M
=
∑  = 1 ( An being the number of alternative process models 174 

considered). The same reasoning also holds for probability ( )BP M  related to process B .  175 

The terms related to 
A AME |θ and 

B BME |θ  are estimated using a brute force MC method in 176 

Dai et al. (2017), and its pseudo code being given in Figure 1(a). The method is structured 177 

across four nested loops, i.e., loops [1] and [3] for process models and loops [2] and [4] for 178 

process model parameters. If there are An  and Bn  process models for processes A  and 179 

B , respectively, and N  parameter samples are used for each process model, then the 180 

number of model simulations associated with the approach is 2
A B A Bn N n N n n N× × × = . We 181 

remark that the 2N  term due to nested loops [2] and [4] is the computational barrier to be 182 

removed. 183 

To remove the nested loops [2] and [4] of parameter sampling, Dai et al. (2017) develop a 184 

binning method whose pseudo code implementation is shown in Figure 1(b). In the binning 185 

method, MC simulations are performed in loops [1] - [3] for paired samples of { },A Bθ θ  that 186 

can be sampled in one loop, i.e., loop [3] in Figure 1(b), without using the nested loops [2] 187 

and [4] shown in Figure 1(a). After the MC simulations, the parameter space across which 188 
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parameter vector Aθ  is defined is divided into multiple bins. Subsequently, 189 

[ ], , ,
B BM A A B BE M Mθ θ| ∆ |θ  is approximated by , , ,

B B

bin
M A A B BE M Mθ θ|  ∆ | θ  in loop [6] of 190 

Figure 1(b) based on the model simulations for the values of Aθ  comprised within each bin. 191 

The expectation, 
A AME |θ , is subsequently approximated in loop [5] by using bin

A AM
E

|θ  through 192 

averaging over the values of , , ,
B B

bin
M A A B BE M Mθ θ|  ∆ | θ  obtained for different bins 193 

associated with Aθ . The number of model runs for the binning method is bin
A Bn n N , where 194 

binN  is the number of parameter samples for { },A Bθ θ  in Loop [3] of Figure 1(b). Note that 195 

binN  is generally larger than N  and smaller than 2N . 196 

While the binning method is computationally more efficient than the MC method, the 197 

selection of the number of bins is purely empirical, and there are no theoretically firm 198 

guidelines to drive it. The bin width in the binning method can be selected according to two 199 

algorithms based on the concept of (a) equal width or (b) equal depth, respectively. The equal 200 

width algorithm subdivides the support of parameter variability into bins of equal width. 201 

When the number of parameter realizations is small and/or the bin width is narrow, it may 202 

happen that a bin is empty (i.e., no parameter realization is comprised in the bin) or thin (i.e., 203 

only very few, e.g., one or two, parameter samples can be found in it). The presence of empty 204 

and/or thin bins leads to inaccurate estimates of the expectations required for the evaluation 205 

of the sensitivity indices. Otherwise, the equal depth algorithm subdivides the support of 206 

parameter variability into bins containing (approximately) the same number of random 207 

samples. We remark that the number of parameter realizations and/or the number of bins must 208 

be adjusted empirically for both algorithms, a procedure which can be markedly time 209 

consuming. 210 
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 211 

 212 
Figure 1. Pseudo codes for evaluating Equations 3 and 4 for sensitivity index of process A 213 
using model averaging and (a) the brute force MC method and (b) the binning method. 214 

 215 

Loop [1] over models of process A (MA, the set of process model MA)     (a) 
    Loop [2] over parameter realizations θA of model MA 
        Loop [3] over models of process B (MB, the set of process model MB) 
            Loop [4] over parameter realizations θB of model MB 
                Compute | , , ,A A B BM Mθ θ∆  
            End loop [4] 
            Compute | [ | , , , ]

B BM A A B BE M Mθ θ∆θ  
        End loop [3] 
        Compute 2

|( [ | , , , ])
B B BM A A B BE E M Mθ θ∆M θ  and | [ | , , , ]

B B BM A A B BE E M Mθ θ∆M θ   
        using model averaging                                         
    End loop [2] 

Compute 2
| |( [ | , , , ])

A A B B BM M A A B BE E E M Mθ θ∆Mθ θ  and 

| | [ | , , , ]
A A B B BM M A A B BE E E M Mθ θ∆Mθ θ  

End loop [1] 
Compute 2

| |( [ | , , , ])
A A A B B BM M A A B BE E E E M Mθ θ∆M Mθ θ  and 

2
| |( [ | , , , ])

A A A B B BM M A A B BE E E E M Mθ θ∆M Mθ θ  using model averaging 

Loop [1] over models of process A (MA, the set of process model MA)     (b) 
    Loop [2] over models of process B (MB, the set of process model MB) 
        Loop [3] over parameter realizations Aθ  of model MA and Bθ  of model MB 

            Compute | , , ,A A B BM Mθ θ∆  
        End loop [3] 
    End Loop [2] 
End Loop [1] 
Loop [4] over models of process A (MA, the set of process model MA)   
    Loop [5] over parameter bins bin

Aθ  of model MA  
        Loop [6] over models of process B (MB, the set of process model MB) 
            Compute | [ | , , , ]

B B

bin
M A A B BE M Mθ θ∆θ  for all Bθ  realizations of each bin 

        End loop [6] 
        Compute 2

|( [ | , , , ])
B B B

bin
M A A B BE E M Mθ θ∆M θ  and 

        | [ | , , , ]
B B B

bin
M A A B BE E M Mθ θ∆M θ  using model averaging                                        

    End loop [5]   
Compute 2

||
( [ | , , , ])bin B B BA A

bin
M A A B BM

E E E M Mθ θ∆M θθ
 and 

||
[ | , , , ]bin B B BA A

bin
M A A B BM

E E E M Mθ θ∆M θθ
 

End loop [4] 
Compute 2

||
( [ | , , , ])binA B B BA A

bin
M A A B BM

E E E E M Mθ θ∆M M θθ
 and 

2
||

( [ | , , , ])binA B B BA A

bin
M A A B BM

E E E E M Mθ θ∆M M θθ
 using model averaging 
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2.2. Using Triple Sets of Parameter Samples for Estimating Process Sensitivity Index 216 

The nested sampling structure can be removed in a theoretically rigorous way by using 217 

the method of triple sets of parameter samples. We note that our derivation, while being in 218 

spirit similar to the one given by Saltelli et al. (2010), is set in the context of process 219 

uncertainty. Thus, it markedly differs from the work of Saltelli et al. (2010). Starting from 220 

Equation 3 and expanding the squared term yields 221 

[ ]( )

( ) ( )

( ) ( )

2

2 2

1

1 1

1

, , ,

, , ,

, , ,

, , ,

A A A B B B

B

B B j j jj j

A A A B B
B B j jj j

j l

B B l ll l

A

A Ai i

M M A A B B

n

M A A B B B
j

M n n M A A B B

B B
j l

M A A B Bl j

n

M
i

E E E E M M

E M M P M

E E E M M
P M P M

E M M

E

θ θ

θ θ

θ θ

θ θ

| |

|
=

|
|

= =
|≠

|
=

∆ |

  ∆ |  
 
 =   ∆ |   +     × ∆ |   

=

∑

∑∑

M θ M θ

θ

M θ
θ

θ

θ

( ) ( )

( ) ( )
( )

( ) ( )

2 2

1

1 1

2 2

, , ,

, , ,

, , ,

, , ,

B

B B i i j j jj j

iB B
B B i i j jj j

j l

B B i i l ll l

A A B B i i j j ji i j j

n

M A A B B B
j

An n M A A B B

B B
j l

M A A B Bl j

M M A A B B B
j

E M M P M

P ME M M
P M P M

E M M

E E M M P M

θ θ

θ θ

θ θ

θ θ

|
=

|

= =
|≠

| |

  ∆ |  
 
   ∆ |   +     × ∆ |   

 = ∆ | 

∑
∑

∑∑

θ

θ

θ

θ θ ( )

( ) ( ) ( )

1 1

1 1 1

, , ,

, , ,

A B

i

A B B
B B i i j jj j

A A j l ii i

B B i i l ll l

n n

A
i

n n n M A A B B

M B B A
i j l

M A A B Bl j

P M

E M M
E P M P M P M

E M M

θ θ

θ θ

= =

|

|
= = =

|≠

  ∆ |  +
   × ∆ |  

∑∑

∑∑∑
θ

θ

θ ,        (5) 222 

where 
iAθ , 

jBθ , and 
lBθ  are the parameter sets of models 

iAM , 
jBM , and 

lBM , 223 

respectively, and 
jBM  and 

lBM  are two individual models of process B .  224 

The next step is to evaluate the expectation terms appearing at the right hand side of 225 

Equation 5, i.e., ( )2
, , ,

A A B B i i j ji i j jM M A A B BE E M Mθ θ| |
 ∆ | θ θ  and 226 

( ), , , , , ,
A A B B i i j j B B i i l li i j j l lM M A A B B M A A B BE E M M E M Mθ θ θ θ| | |

   ∆ | × ∆ |  θ θ θ . We start by writing 227 



13 
 

( )
( ) ( )

2

2

, , ,

, , ,

A A B B i i j ji i j j

B B i i j j i i ij jAi

M M A A B B

M A A B B A A A

E E M M

E M M p M d

θ θ

θ θ θ θ

| |

|

 ∆ | 

 = ∆ |  ∫

θ θ

θθ

,                            (6) 228 

where ( )i iA Ap Mθ   is the probability density function for parameter 
iAθ  conditional on 229 

process model 
iAM . Following Saltelli et al. (2010), the term 230 

( )2
, , ,

B B i i j jj jM A A B BE M Mθ θ|
 ∆ | θ  in Equation 6 can be expressed as 231 

( )

( )( ) ( )( )

2

,

, , ,

, , , , , ,

, , , , , ,

B B i i j jj j

B B i i j j B B i i j jj j j j

i i j j i i j j

B Bj j

j j j j j j

M A A B B

M A A B B M A A B B

A A B B A A B B

B B B B B B

E M M

E M M E M M

M M M M

p M d p M d

θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

|

| |

′

 ∆ | 

   = ∆ | × ∆ |   

  ′ ∆ | ∆ |   
=  

′ ′×   
 

∫∫

θ

θ θ

θ θ

,                        (7) 232 

where ( )j jB Bp Mθ   and ( )j jB Bp Mθ ′  are the probability density functions for parameter
jBθ  233 

(conditional on 
jBM ) and 

jBθ ′  (conditional on 
lBM ), respectively. The double integral 234 

appearing in Equation 7 accounts for duplicate parameter sets of { },
j jB B

′θ θ , where these two 235 

parameter sets are all for model 
jBM . Parameter sets 

jBθ  and ′
jBθ  are sampled from 236 

( )j jB Bp Mθ   and ( )j jB Bp Mθ ′  (that is the same as ( )j jB Bp Mθ  ), respectively. Substituting 237 

Equation 7 into 6 leads to 238 

( )

( )( ) ( )( ) ( )
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i i j j i i j j
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  ′ ∆ | ∆ |   
=  

′ ′×   
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 ′ ∆ | ∆ |   
=

× 

∫ ∫∫

θ θ

θ θ θ

( ) ( )( ) ( )( ), ,A B Bi j j

j j j j i i iB B B B A A Ap M d p M dθ θ θ θ
′ ′ ′ 

∫∫∫θ θ θ

,          (8) 239 

where the triple integral 
, ,A B Bi j j

′∫∫∫θ θ θ
 denotes integration across the support of parameter set 240 

{ }i j jA B B
′θ ,θ ,θ . The term ( , , ,

i i j jA A B BM Mθ θ∆ | ) indicates that the system model output, ∆ , is 241 
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conditioned on the system model formed with the thi  model of process A , the thj  model 242 

of process B , and their corresponding parameter realizations 
iAθ  and 

jBθ . The only 243 

difference between , , ,
i i j jA A B BM Mθ θ ∆ |   and , , ,

i i j jA A B BM Mθ θ ′∆ |
 

 is that the latter term 244 

is evaluated with 
jBθ ′ , which is a random sample for the parameters of the thj  model of 245 

process B . 246 

We denote the product, , of two model 247 

outputs as 248 

( ), , | , , , , , , , ′ ′ = ∆ | ∆ |   i j j i j i i j j i i j jA B B A B A A B B A A B Bf M M M M M Mθ θ θ θ θ θ θ ,             (9) 249 

Equation 8 then becomes 250 
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=  
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 

∫∫∫

θ θ

θ θ θ

.             (10) 251 

Since the integral in Equation 10 corresponds to the expectation of 252 

( ), , | ,
i j j i jA B B A Bf M Mθ θ θ ′ , Equation 10 can be rewritten as 253 

( )
( )( )

2

, ,

, , ,

, , | ,

A A B B i i j ji i j j

i j j i jA B Bi j j

M M A A B B

A B B A B

E E M M

E f M M

θ θ

θ θ θ

| |

′

 ∆ | 

′=

θ θ

θ θ θ

.                     (11) 254 

This is a key equation of our new method, because it transforms the nested expectation 255 

( )2
, , ,

A A B B i i j ji i j jM M A A B BE E M Mθ θ| |
 ∆ | θ θ  into a single expectation 256 

( )( ), ,
, , | ,

i j j i jA B Bi j j
A B B A BE f M Mθ θ θ′

′
θ θ θ

. In other words, the nested structure of parameter 257 

sampling is removed in a rigorous way by using the triple sets of parameter samples, 258 

{ }i j jA B B
′θ ,θ ,θ , and the parameter samples can be generated separately (rather than requiring a 259 

nested loop), as we discuss in the following. 260 

, , , , , ,
i i j j i i j jA A B B A A B BM M M Mθ θ θ θ ′ ∆ | ∆ |   
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Similar to the derivation of Equation 11, the second term of Equation 5 is expressed as 261 
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=
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 | =  
 × | | 

=

∫∫∫θ θ θ

θ θ θ
 ,       (12) 262 

where ( ), , | , ,
i j l i j lA B B A B Bg M M Mθ θ θ = , , , , , ,

i i j j i i l lA A B B A A B BM M M Mθ θ θ θ   ∆ | ∆ |   . 263 

This equation enables one to reduce the nested expectation 264 

( ), , , , , ,
A A B B i i j j B B i i l li i j j l lM M A A B B M A A B BE E M M E M Mθ θ θ θ| | |

   ∆ | × ∆ |  θ θ θ  to a single expectation, 265 

i.e., ( )( ), , , , | , ,
A B B i j l i j li j l A B B A B BE g M M Mθ θ θθ θ θ . This is another example of using triple sets of 266 

parameter samples to remove the nested structure of parameter sampling. 267 

2.3.Quasi-MC Implementation 268 

The expectations in Equations 11 and 12 can be estimated using either brute force MC 269 

with pseudorandom samples or quasi-MC with a low-discrepancy sequence (also known as 270 

quasi-random sequence, e.g., Halton sequence, Sobol sequence, and Faure sequence) of 271 

parameter samples. Quasi-random sequences can cover the parameter space more quickly and 272 

uniformly than pseudorandom samples (Caflisch, 1998), thus achieving a faster convergence 273 

rate (Hou et al., 2019). In this study, we used the Sobol sequence for the estimation of 274 
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expectations, and rewrote Equation 12 as 275 

( ) ( )2

1

1, , , , , | ,
A A B B i i j j i j j i ji i j j

N
r r r

M M A A B B A B B A B
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,                 (13) 276 

and 277 
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= ∑

θ θ θ
,                     (14) 278 

where N is the number of Sobol sequence parameters. As a result, the first and second terms 279 

on the right side of Equation 5 become 280 
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and 282 
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θ

θ

θ .            (16) 283 

Therefore, Equation 3 can be estimated via 284 
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.              (17) 285 

Estimation of the terms included in Equation 4 is relatively straightforward. It essentially 286 

corresponds to the total expectation of ∆ over all of the models and model parameters, 287 

according to 288 
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.                      (18) 289 

Therefore, the process sensitivity index defined through Equation 2 can be estimated via 290 
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              (19) 291 

It should be noted that, since the quasi-MC algorithm is only applied to the expectation terms, 292 

model weights (e.g., P(MA) and P(MB)) do not affect computational performance for the 293 

estimation of such terms. 294 

The pseudo code for the evaluation of Equation 19 is given in Figure 2. The figure shows 295 

that, while the nested loops [1] and [2] for process models remain, the new quasi-MC method 296 

removes the nested structure of parameter sampling, and parameter sampling is performed in 297 
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only one loop, i.e., loop [3]. Three sets of parameter samples are needed in this loop. These 298 

correspond to N realizations of 
i

r
Aθ  for process model 

iAM , N realizations of 
j

r
Bθ  for 299 

process model 
jBM , and N realizations of 

j

r
Bθ ′  for process model 

jBM . The quantity 300 

, , ,
i i j j

r r
A A B BM Mθ θ∆ |  is evaluated by running the system model (denoted as 

iAM ∪
jBM ) for 301 

N times based on the N realizations of 
i

r
Aθ  and 

j

r
Bθ . Evaluation of , , ,

i i j j

r r
A A B BM Mθ θ ′∆ |  is 302 

based on running the same system model (
iAM ∪

jBM ) for N times, considering the N  303 

realizations of 
i

r
Aθ  and 

j

r
Bθ ′ . Therefore, the total number of model simulations associated 304 

with the quasi-MC method is 2 A Bn n N , which is substantially smaller than the corresponding 305 

number of simulations of the MC method (i.e., 2
A Bn n N ). 306 

The formulation of the quasi-MC method is rigorous and general. It can be applied to 307 

complex problems with a large number of processes and process model parameters. It is 308 

noted that the computational cost of the quasi-MC method is independent of the number of 309 

processes. The pseudo code in Figure 2 shows that Loop [1] is for one process and Loop [2] 310 

is for other processes (they are denoted as process B in Figure 2). In other words, the quasi-311 

MC method only needs two loops regardless of the number of processes. We note that, while 312 

the computational cost of our quasi-MC method for process model parameters can in 313 

principle be reduced upon development of more efficient quasi-MC sampling algorithms, cost 314 

reduction for model parameters is beyond the scope of this study.  315 

 316 

 317 
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 318 
Figure 2. Pseudo code for estimating Equation 19 for the sensitivity index of process A using 319 
the quasi-MC method. 320 
 321 

3. Assessment of the Quasi-MC Method 322 

We compare our quasi-MC method against the brute force MC and the binning method of 323 

Dai et al. (2017) upon performing process sensitivity analysis associated with two synthetic 324 

cases encompassing groundwater flow and solute transport. This yields transparent 325 

comparative analyses to assess the quality of the performance of the quasi-MC approach we 326 
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develop. The first case is related to a one-dimensional setting where reactive transport in a 327 

river-aquifer system takes place. Three key processes, a set of eight alternative system 328 

models, and eight uncertain parameters are considered. We then consider a scenario 329 

associated with a two-dimensional heterogeneous porous medium across which we simulate 330 

migration of zinc in the presence of sorption. In this case, the effects of two processes, a set 331 

of six alternative system models, and five uncertain parameters are analyzed. Numerical 332 

results associated with the classical MC method whose implementation is based on a 333 

markedly large number of forward model simulations are employed as a reference against 334 

which the performance of the quasi-MC and binning methods are assessed. 335 

3.1. One-dimensional reactive transport in a river-groundwater system 336 

We consider a one-dimensional scenario that is adapted from the synthetic setting 337 

introduced by Dai and Ye (2015) and Yang et al. (2022) and sketched in Figure 3. Steady-338 

state flow takes place across the unconfined aquifer of length =10 000 mL ，  depicted in 339 

Figure 3. A constant precipitation 1,524 mm/yearPP =  is set across the entire domain. A 340 

constant head 1 330 mh =  is set on the left boundary. A constant head 2h  determined by a 341 

snowmelt process, whose characterization we discuss below, is set at the river boundary. A 342 

continuous contaminant source is placed at the center of the domain ( 5,000 mx = ). The 343 

source involves chain reactions of the following five chemical species: perchloroethene 344 

(PCE), trichloroethene (TCE), dichloroethane (DCE), vinyl chloride (VC) and ethene (ETH). 345 

Additional details of the chain reactions considered are offered by Dai and Ye (2015) and 346 

Aziz et al (2000). An analytical solution for the evolution of the considered chemical species 347 

across the domain is given by Sun et al. (1999). 348 



21 
 

 349 

Figure 3. Sketch of the one-dimensional domain considered, including the key geometrical 350 
features and boundary conditions. A continuous contaminant source is located at the domain 351 
center. The demarcation of the two regions with differing hydraulic conductivity values 352 
considered in one of the representations of the geological setting is highlighted (vertical red 353 
dash line).  354 

Two alternative mathematical models (hereafter termed 1R  and 2R ) are considered to 355 

depict the recharge process, i.e., 356 

( )
( )

0.50
1

2

355.6

399.8

R w= a PP -

R w= b PP -

 : 

 : 
                             (20) 357 

Parameter a  of process model 1R  and parameter b  of process model 2R  are two 358 

arbitrary coefficients for the recharge estimation. Here, these are assumed to be characterized 359 

by normal and uniform distributions, respectively. The distributions of these two parameters 360 

and other parameters discussed below are listed in Table 1, for completeness. Values of 361 

deterministic parameters discussed below are listed in Table 2. 362 

Two alternative representations (hereafter termed 1G  and 2G ) of the setting stemming 363 

from the action of geological processes are considered, i.e., 364 
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Hydraulic conductivity [m/d]K  in model 1G  is homogeneous across the model domain. 366 

Model 2G  includes a zonation, as shown in Figure 3. Hydraulic conductivity is 367 

homogeneous (while uncertain) across each of these regions. Conductivities of Zone 1 and 368 

Zone 2 are denoted as K1 and K2, respectively. 369 

The river stage 2h  is considered to be driven by a snowmelt process and is 370 

characterized through an empirical rating curve of the kind: 371 

2
2 1 3

ah a Q a= +   (22) 372 

where 1a , 2a , and 3a  are arbitrary coefficients. The river discharge 3[m /s]Q  is estimated 373 

through snowmelt runoff as: 374 

1  snQ C C M SVC A= × × × ×                   (23) 375 

where parameters ,, ,snC M A  and SVC  are runoff coefficient, snowmelt rate [mm/d] , 376 

watershed area 2[m ], ratio of snow-covered area to watershed area, respectively, and 1C  is 377 

a unit conversion factor from [mm/d]  to 3[m /s] . We use two process models to evaluate the 378 

daily snowmelt rate. These are hereafter termed as 1M  and 2M , and they correspond to the 379 

degree-day method and the restricted degree-day radiation balance method, respectively, i.e., 380 

( )
( )

1 1

2 2

:

:
a m

a m n

M M f T T

M M f T T rR

= −

= − +
               (24) 381 

Here, 1f  and 2f  -1 -1[mm C d ]⋅° ⋅  represent the snowmelt factors; [ C]aT °  and [ C]mT °  382 

represent the average temperature for one day and the temperature threshold for snow 383 

melting, respectively. Process model 2M  considers the effects of surface radiation budget, 384 

-2[W/m ]nR , and relies on the transformation coefficient 2[(mm/d)/(W/m )]r  to estimate the 385 

snowmelt rate by energy flux. 386 

 387 



23 
 

Table 1. Uncertain parameters and their distributions used in the first case.  388 

Process Model Parameter Distribution Unit 

Recharge 1R  a  (16.88,1)   
 

2R  b  (0.1, 0.2)U   

Geology 1G  K  (15,1)  m/d 

 
2G  1K  (20,1)  m/d 

2K  (10,1)  m/d 

Snowmelt 1M  
1f  (3.5, 0.75)  mm∙℃-1∙d-1 

 
2M  

2f  (2.5, 0.3)  mm∙℃-1∙d-1 

 
 r  (0.3, 0.05)  (mm/d)/(W/m2) 

 389 

Table 2. Values of deterministic parameters used in the first case. 390 

Parameter Value Unit 
Coefficient a1 0.3  

Coefficient a2 0.6  

Coefficient a3 289  

Runoff coefficient (Csn) 0.8  

Watershed area (A) 2000 km2 
Ratio of snow-covered area to watershed area (SVC) 0.7  

Unit conversion factor (C1) 0.001/86400  

Average temperature for one day (Ta) 7 ℃ 
Temperature threshold for snow melting (Tm) 0 ℃ 
Surface radiation budget (Rn) 80 W/m-2 

Based on the (i) two recharge process models, (ii) two geology process models, and (iii) 391 

two snowmelt process models described above, a total of eight alternative system models are 392 

here developed (hereafter denoted as 1 1 1R G M , 1 1 2R G M , 1 2 1R G M , 1 2 2R G M , 2 1 1R G M , 393 

2 1 2R G M , 2 2 1R G M , and 2 2 2R G M ). Equal weights are used for these process models, i.e., 394 

( ) ( )1 2 0.5P R P R= = , ( ) ( )1 2 0.5P G P G= = , and ( ) ( )1 2 0.5P M P M= = . Ethene 395 

concentrations at seven locations within the range of 5, 400 m 6,000mx≤ ≤  are the model 396 

outputs of interest ( ∆ ) for the evaluation of the process sensitivity index. 397 

The brute force MC method is implemented using a total of NMC = 3,920,000 model 398 

executions for the evaluation of the process sensitivity index based on the pseudo code shown 399 
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in Figure 1(a) for each of the processes analyzed. Considering the recharge process as an 400 

example, the number of MC simulations is structured according to 2 recharge models × 700 401 

parameter realizations for each recharge model × 2 geology models × 2 snowmelt models × 402 

700 parameter realizations for each combination of geology and snowmelt models. The total 403 

number MC simulations for the combination of these three processes is then 404 

11,760,000 3 3,920,000NMC = = × . Note that such a large number of MC simulations is 405 

unnecessary from a practical standpoint (as discussed below, sufficiently accurate results of 406 

process sensitivity index can be obtained through about 2,000,000 MC simulations). We 407 

resort to such a high number of MC iterations only to ensure that the MC results can be used 408 

as a highly accurate benchmark against which the main features of the quasi-MC and the 409 

binning methods can be assessed. In this sense, we take the MC results for the value of the 410 

process sensitivity index obtained at NMC = 3,920,000 as the reference to evaluate the 411 

absolute relative error (%) for the three computational methods as a function of the number of 412 

model simulations. The binning and quasi-MC methods are implemented with 400,000 and 413 

200,000 model executions, respectively. For the quasi-MC method, 28,000 model executions 414 

(corresponding to 1,750 parameter samples) are adequate for reaching convergence, as 415 

discussed in the following. 416 

Figure 4 shows the difference between the results obtained through 700 pseudorandom 417 

samples of brute force MC and 1,750 quasi-random samples of quasi-MC, using model 418 

R2G2M2 as an example (only parameters of G2 and M2 are shown in Figure 4). Figure 4(a) 419 

depicts scatterplots of 700 sample points for pairs of parameters of the same process model 420 

(e.g., K1 and K2 of model G2). One can note that the nested sampling structure of brute force 421 
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MC requires generating 700 × 700 = 490,000 samples for two parameters of different process 422 

models. For example, for each of the 700 samples of K1, 700 samples of b, f2, or r values need 423 

to be generated, according to loops [2] and [4] in Figure 1(a). Thus, the subplots for K1-b, K1-424 

f2, and K1-r include a total of 490,000 sample points. Figure 4(b) shows that, after removing 425 

the nested sampling structure, application of our quasi-MC method leads to generating 1,750 426 

samples for each parameter. This constitutes a clear advantage of our quasi-MC method, 427 

because more samples are generated for parameters (e.g., K1 and K2) of the same process 428 

model, while less samples are generated for parameters (e.g., K1-b, K1-f2, and K1-r) of 429 

different process models without sacrificing computational accuracy as shown below. 430 

 431 

Figure 4. Random parameter samples associated with model R2G2M2 for the process sensitivity 432 
index estimation of the first test scenario generated through (a) the brute force MC and (b) the 433 
quasi-MC methods. 434 

Figure 5 depicts the results of absolute relative errors referred to the geology process 435 

sensitivity index obtained at location x = 5,700 m. Figure 5(a) enables one to examine 436 

convergence of the brute force MC method. These results suggest that the brute force MC 437 

method stabilizes at the reference value after approximately 2,000,000 model simulations 438 

(with an absolute relative error less than 1%). Figure 5(b) focuses on the binning method. 439 

Note that here the maximum number of model executions is 400,000. The latter stems from 440 
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considering 2 recharge models × 2 geology models × 2 snowmelt models × a total of 50,000 441 

sets of parameter values (each of these sets corresponds to a combination of the eight process 442 

models considered). These results suggest that the absolute relative error shows a consistently 443 

decreasing trend and becomes less than 1% after about 360,000 model simulations. The 444 

results depicted in Figure 5(c) for the quasi-MC method shows that the absolute relative error  445 

 446 
Figure 5. Absolute relative error (%) associated with the process sensitivity index estimated 447 
for the geology process using (a) MC method, (b) binning method and (c) new quasi-MC 448 
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method for the ethene concentration at location 5,700 mx = . The process sensitivity index 449 

value obtained through the MC method with 3,920,000 model simulations is used as the 450 
reference value for the evaluation of the absolute relative error. The red dashed lines mark the 451 
numbers of model executions with the absolute relative error of 1% for each method. 452 

with respect to the final MC-based value becomes less than 1% after about 28,000 model 453 

executions. Such a number corresponds to considering 2 recharge models × 2 geology models 454 

× 2 snowmelt models × 2 × 1,750 parameter samples generated for each of the eight process 455 

models. Figure 5 indicates that the new quasi-MC method outperforms (i) the MC method in 456 

terms of convergence rate and (ii) the binning method in terms of both accuracy and 457 

convergence rate for the evaluation of the process sensitivity index.  458 

Table 3. Absolute relative error (%) linked to the process sensitivity indices associated with the 459 
geology, recharge, and snowmelt processes and corresponding to the binning (with equal width 460 
and equal depth strategies) and quasi-MC methods for the simulated ethene concentrations at 461 
the seven target locations in the domain. 462 
 Recharge Geology Snow-melt 

Location(m) 
Equi-
Width 

Equi-
Depth 

Quasi-
MC 

Equi-
Width 

Equi-
Depth 

Quasi-
MC 

Equi-
Width 

Equi-
Depth 

Quasi-
MC 

5400 0.2796 0.0778 0.7984 1.5456 0.3580 0.0086 0.7735 0.6782 1.0289 
5500 0.2388 0.2106 0.4243 0.8651 0.4204 0.0096 0.6713 0.9621 0.9705 
5600 0.3614 0.0622 0.2105 0.2426 0.4407 0.0368 0.3259 1.2965 0.2177 
5700 0.1023 0.4645 0.1925 0.6884 0.4469 0.0878 0.0370 1.3867 0.5190 
5800 0.6383 1.4938 0.9261 2.0012 0.5508 0.2523 0.3519 0.9014 0.8293 
5900 1.8053 2.9334 0.9541 0.4282 0.8386 0.6702 0.8577 0.3819 0.5835 
6000 2.7889 4.0617 1.9872 4.1174 1.0582 1.5017 1.9536 2.6813 0.2478 

Maximum 2.7889 4.0617 1.9872 4.1174 1.0582 1.5017 1.9536 2.6813 1.0289 
Minimum 0.1023 0.0622 0.1925 0.2426 0.3580 0.0086 0.0370 0.3819 0.2177 

Mean 0.8878 1.3292 0.7847 1.4126 0.5877 0.3667 0.7101 1.1840 0.6281 

A similar analysis is performed for several seven locations of the model domain 463 

considered in the system. These results are summarized in Table 3. The table lists the values 464 

of the absolute relative error (%) for the binning (considering both equal width and equal 465 

depth) and quasi-MC methods for the process sensitivity index related to the geology, 466 

recharge, and snowmelt processes at the seven locations. Figure 6 complements these results 467 

by depicting the process sensitivity index related to the (a) geology, (b) recharge, and (c) 468 
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snowmelt processes evaluated through the three approaches (using binning with equal with). 469 

The analysis of the ensemble of these results suggests that, while differences are hardly 470 

discernible from visual inspection of Figure 6, the quasi-MC method generally yields more 471 

accurate results than their counterparts grounded on the binning method. Moreover, the equal 472 

depth binning strategy yields slightly more accurate results than the quasi-MC method in 473 

some of the process sensitivity indices. For example, considering the geology and snowmelt 474 

processes, Table 3 shows that the quasi-MC method outperforms the equal width and equal 475 

depth binning methods. The binning method based on an equal depth strategy performs better 476 

than the quasi-MC method with reference to the recharge process sensitivity indices. 477 
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 478 
Figure 6. Process sensitivity indices associated with the (a) geology, (b) recharge, and (c) 479 
snowmelt processes and related to the simulated ethene concentrations at seven locations in 480 
the domain evaluated via the new quasi-MC, binning, and MC methods. 481 

It should be noted that the results of the binning method depicted in Figure 6 and listed in 482 

Table 3 are associated with a carefully tuned number of (i) bins and (ii) random parameter 483 

samples within these. We remark that selection of the number of bins to obtain the results 484 

depicted in Figure 6 for the binning method is mostly empirical and time consuming. In this 485 

context, results of the binning method are markedly sensitive to the number of bins when 486 

considering both the equal width and equal depth strategies. This limitation is elucidated in 487 

Figure 7 that depicts the way that values of the absolute relative errors (between the results of 488 
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the binning method and the reference results obtained using 3,920,000 MC simulations) 489 

depend on the number of bins with reference to the snowmelt process at three selected 490 

locations where ethene concentrations are observed. Figure 7 illustrates the marked impact of 491 

the selection of the number of bins when the binning method is implemented through the 492 

equal width and equal depth strategies. An optimal (i.e., with zero absolute relative error) 493 

number of bins can be identified for each location at which the process sensitivity index is 494 

estimated. The error increases when the number of bins deviates from such an optimal 495 

number. It can be as large as 8.7% and 9% for the equal width and for the equal depth 496 

algorithm, respectively. It is further remarked that the selection of optimal number of bins is 497 

empirical, and it is only possible on the basis of our prior knowledge of the results of the MC 498 

method. In other words, if the MC results are not available, the binning method may not 499 

provide accurate results due to its empirical nature. 500 

 501 
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 502 
Figure 7. Absolute relative error versus the number of bins with reference to the snowmelt 503 
process at three selected locations where ethene concentrations are observed. Results 504 
correspond to the binning method implemented according to (a) the equal-width and (b) the 505 
equal-depth binning strategies. Reference values correspond to results obtained via 3,920,000 506 
MC simulations. The dashed lines correspond to the absolute relative errors of the quasi-MC 507 
method. 508 

3.2. Transport and sorption of zinc across a two-dimensional heterogeneous medium 509 

This section illustrates the comparison of the binning and quasi-MC methods through the 510 

evaluation of the dynamics involved in a more complex scenario. The latter is inspired by the 511 

studies of Duan et al. (2020) and Maina et al. (2018) and involves transport and sorption of 512 

zinc through a laboratory scale heterogeneous porous medium. The domain of groundwater 513 

flow and solute transport is taken from the study of Maina et al. (2018). This numerical case 514 

considers a flow cell (internal size of 325  25  1.5 cm× × ) packed with three types of sand 515 

materials (corresponding to a fine, medium, and large grain size) and distributed according to 516 
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the heterogeneous patterns depicted in Figure 8. An inlet and an outlet are located at the 517 

upper left and lower right corners of the system, respectively, as shown in Figure 8. Water 518 

with dissolved zinc at a concentration of 0.5 mol/L  is injected at the inlet according to a 519 

constant flow rate of 4.0 L/d . Migration and sorption of zinc are simulated through 520 

PFLOTRAN, a well established open-source software for subsurface flow and reactive 521 

transport modeling (Steefel et al., 2015). The quantity of interest is the amount of absorbed 522 

zinc across the area demarcated by red boxes in Figure 8. Transport of zinc in the domain is 523 

rendered through a classical advection-dispersion equation coupled with a sorption model, as 524 

described in the following. 525 

 526 
Figure 8. Spatial distributions of three types of sand (sand 1 marked in light grey, sand 2 in 527 
grey, and sand 3 in dark grey) across the flow and transport domain to mimic geological models 528 
(a) 1G  and (b) 2G . Inlet and outlet sections are represented by black rectangles. Black arrows 529 

represent the flow direction. Red boxes in the upper-right corners demarcate the area of interest 530 
where the amount of adsorbed zinc is estimated. 531 

This analysis considers model and parametric uncertainty related to geology and sorption 532 

processes associated with zinc dynamics within the domain. With reference to the geology 533 

process, models 1G and 2G  represent two differing spatial distributions of the three sand 534 

materials in the cell, as shown in Figure 8. Parameters 1 [m/d]K , 2 [m/d]K , and 3[m/d]K  535 

represent hydraulic conductivity of sand 1, sand 2, and sand, 3 respectively. Parameters K1 536 
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and K2 are considered to be described through a normal distributions. The distributions of 537 

these two parameters and of the other parameters discussed below are listed in Table 4. The 538 

value of K3 was deterministically set and is listed in Table 5 together with the values 539 

employed for the other deterministic parameters discussed below. For the purpose of our 540 

demonstration and to keep computational time manageable when performing the reference 541 

MC analysis (note that the total computational time associated with 60,000 simulations is 542 

about 1 week on a 10 system cores-based machine with Intel(R) Core(TM) i9-10900KF CPU 543 

and 64.0 GB RAM), we consider diffusion and dispersion to be characterized by 544 

deterministic parameter values. The effective aqueous diffusion coefficient is set to be 545 

constant across the entire modeling domain. Different values of longitudinal and transverse 546 

dispersivities are set for sands 1 - 3. 547 

Table 4. Uncertain parameters and their distributions used in the second test scenario.  548 

Process Model Parameter Distribution Unit 

Geology 1 2&G G  1K  (691, 691)  m/d 
  

2K  (20.7, 20.7)  m/d 

Sorption 1 2 3, &S S S  dK  (0.426,1.14)U  kg/cm3 
 

2S  1k  (0.664, 0.0664)  h-1 
 

3S  , Fe(III)dK  (1.28, 0.128)  kg/cm3 
 549 

Table 5. Values of deterministic parameters used in the second test scenario. 550 

Parameter Value Unit 

Hydraulic conductivity of sand 3 (K3) 0.23 m/d 

Effective aqueuse diffusion coefficient 1.0×10-9 m2/s 

Longitudinal dispersivity of sand 1 1.1×10-3 m 

Longitudinal dispersivity of sand 2 5.3×10-4 m 

Longitudinal dispersivity of sand 3 2.3×10-4 m 

Transverse dispersivity of sand 1 1.1×10-4 m 

Transverse dispersivity of sand 2 5.3×10-5 m 

Transverse dispersivity of sand 3 2.3×10-5 m 

 551 
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  552 

The sorption process is represented by three alternative models ( 1S , 2S , and 3S ). Model 553 

1S  rests on a linear equilibrium formulation, i.e., 554 

1 : Zn ZndS Kq C= ×                                                                  (25) 555 

where 3[mol/cm ]Znq  is the amount of adsorbed zinc, [mol/kg]ZnC   is the aqueous zinc 556 

concentration, and 3[kg/cm ]dK   is the linear equilibrium sorption constant. The latter is 557 

assumed to be affected by uncertainty and to be characterized by a uniform distribution. Model 558 

2S   is based on describing zinc sorption through a dual first-order kinetic model with five 559 

parameters( dK , 1k , 2k , 1f  and 2f ), i.e., 560 
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dq
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     (26) 561 

where -1[h ]ik  is the first-order rate constant at sorption site i ; if  is the site fraction  for 562 

site i ; 3
, [mol/cm ]t iq  is the actual amount of adsorbed zinc at contact time t  at site i ; and 563 

3
, [mol/cm ]e iq  is the amount of adsorbed zinc at time t  at site i  in equilibrium with aqueous 564 

zinc concentration, [mol/kg]ZnC . Model 3S  is based on the conceptual picture according to 565 

which the oxidation process of mineral-bonded Fe(II) to Fe(III) in a porous medium is assumed 566 

to improve zinc sorption capacity and an adjusted linear equilibrium sorption model can then 567 

be employed, i.e., 568 

3 , Fe(III) ): (Zn d ZndS K K Cq += × ,                                     (27)  569 

where 3
,Fe(III) [kg/cm ]dK  is an additional term contributing to increase the linear equilibrium 570 

sorption constant. We consider dK   and ,Fe(III)dK   to be uncertain and characterized by a 571 

uniform and a normal distribution, respectively. 572 

Equal weights are employed for the different models included in the process sensitivity 573 
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analysis targeting the geology and sorption processes, i.e., 1 2( ) ( ) 0.5P G P G= =   and 574 

1 2 2( ) ( ) ( ) 0.33P S P S P S= = = . The amount of adsorbed zinc in the upper-right corner of the 575 

domain (see Figure 8) at seven observation times within the range of 5 h 8 ht≤ ≤  from the 576 

solute injection is the output of interest against which we evaluate the process sensitivity index 577 

via the MC, binning, and quasi-MC methods. The above mentioned time period is selected 578 

because preliminary simulations document that the amount of absorbed zinc is negligible for 579 

5 ht ≤  and does not vary significantly with time after 8 ht ≥ . The brute force MC method is 580 

implemented upon relying on 60,000 model simulations with 10 seconds of computing time 581 

for each simulation. These correspond to 2 geology models × 100 parameter realizations for 582 

each geology model) × 3 sorption models × 100 parameter realizations for each sorption model. 583 

Similar to Section 3.1, we consider the brute force MC results at the largest number of 584 

realizations as a reference and evaluate the absolute relative errors (%) with respect to it for the 585 

three methods.  586 

Figure 9 depicts the results of this analysis for time t = 6.5. Figure 9(a) depicts the relative 587 

error associated with the geology process sensitivity index versus the number of realizations 588 

evaluated by the MC method. Convergence to the reference value is noted after about 50,000 589 

model executions (where the absolute relative error becomes less than 1%). A 1% relative error 590 

is attained after about 5,500 and 2,100 model executions for the binning and quasi-MC methods, 591 

respectively, as shown in Figures 9(b) and 9(c). These results suggest that (i) the binning and 592 

quasi-MC methods are significantly more efficient than the brute force MC for the evaluation 593 

of the process sensitivity index and (ii) the quasi-MC method is computationally more efficient 594 

than the binning approach. 595 
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 596 
Figure 9. Absolute relative error (%) associated with the process sensitivity index estimated 597 
for the geology process using (a) MC, (b) binning and (c) the new quasi-MC method for the 598 
amount of Zn adsorbed in the upper right area of the system at time t = 6.5 h. The process 599 
sensitivity index value obtained through the MC method with 60,000 model simulations is 600 
used as the reference value for the evaluation of the absolute relative error. The red dashed 601 
lines mark the numbers of model executions with the absolute relative error of 1% for each 602 
method. 603 

Figure 10 plots the process sensitivity index estimated for the geology and sorption 604 

processes using the brute force MC, binning, and quasi-MC methods at seven observation times 605 

within the range of 5 8h t h≤ ≤ . These results show that the binning and quasi-MC methods 606 
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can yield accurate results for all of the observation times. Table 6 complements these results 607 

by listing the absolute relative errors (%) associated with the binning and quasi-MC methods 608 

for the geology and sorption process sensitivity index at the seven observation times. While the 609 

both methods yield accurate results, the quasi-MC method is generally more accurate than the 610 

binning method in terms of the mean values of absolute relative errors, an exception being 611 

noted for the results related to the sorption process and based on the equal depth binning method.  612 

Table 6. Absolute relative error (%) linked to the process sensitivity indices associated with 613 
the geology and sorption processes and corresponding to the binning (with equal width and 614 
equal depth strategies) and quasi-MC methods for the simulated adsorbed Zn within the 615 
target area. 616 

 Geology Sorption 
Time (h) Equi-

Width 
Equi-
Depth 

Quasi-
MC 

Equi-
Width 

Equi-
Depth 

Quasi-
MC 

5.0 2.0379 1.9245 0.9028 1.4238 0.4066 1.1701 
5.5 1.2610 1.5114 0.3454 0.8802 0.4538 0.9951 
6.0 0.5760 1.0577 0.1382 0.6963 0.1781 0.5943 
6.5 0.0182 0.6009 0.5175 0.7349 0.2709 0.0193 
7.0 0.4131 0.1813 0.8231 0.8398 0.6857 0.6230 
7.5 0.6621 0.1351 1.0288 0.9212 0.9887 1.1771 
8.0 0.8113 0.3884 1.1770 0.9108 1.1129 1.5340 
Maximum 2.0379 1.9245 1.1770 1.4238 1.1129 1.5340 
Minimum 0.0182 0.1351 0.1382 0.6963 0.1781 0.0193 
Mean 0.8257 0.8285 0.7047 0.9153 0.5853 0.8733 

Similar to Figure 7, Figure 11 depicts the absolute relative errors versus the number of bins 617 

for the binning method implemented through the equal width and equal depth strategies. These 618 

results reinforce the observation that the absolute relative errors depend heavily on the number 619 

of bins. We further emphasize that determining appropriate values of the binning variables is 620 

empirical and time consuming and does not ensure attaining optimal results in the absence of 621 

a reference value (which we have at our disposal in this demonstration). 622 
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 623 

Figure 10. Process sensitivity indices associated with the (a) geology and (b) sorption processes 624 
and related to the simulated amount of adsorbed Zn in the target area of Figure 8 evaluated at 625 
seven observation times via the MC, binning, and quasi-MC methods. 626 
 627 
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 628 

Figure 11. Absolute relative errors (%) versus the number of bins with reference to the 629 
geology process sensitivity index. Results correspond to the binning method implemented 630 
according to (a) the equal-width and (b) the equal-depth binning strategies. Reference values 631 
correspond to results obtained via 60,000 MC simulations. The dashed lines correspond to the 632 
absolute relative errors of the quasi-MC method. 633 

 634 

4. Conclusions 635 

We present a new theoretically robust quasi-MC method geared towards the evaluation of 636 

the multi-model process sensitivity index derived in Dai et al. (2017). Such an approach is 637 

here employed for the first time for process sensitivity analysis. The method is then assessed 638 

against the traditional Monte Carlo approach and the recent binning method proposed by Dai 639 

et al. (2017) through two synthetic cases associated with groundwater flow and transport 640 

scenarios with increasing level of complexity. These scenarios embed uncertainties associated 641 
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with process models and their parametrization. Our study leads to the following major 642 

conclusions. 643 

1. As a significant advancement, our quasi-MC method removes the need for the nested 644 

structure of parameter sampling that is required by the typically used brute force MC 645 

method. Hence, it is significantly more computationally efficient than it brute force MC 646 

counterpart, because the number of model simulations is reduced from the order of 2N  647 

for the MC method to the order of 2N  for the quasi-MC method, N  being the number 648 

of parameter realizations of each process model. 649 

2. Our quasi-MC method outperforms the binning method used in Dai et al. (2017) in terms 650 

of theoretical aspects. The quasi-MC method is theoretically rigorous, thus removing the 651 

barrier imposed by the inherently empirical nature of the binning approach. The latter is 652 

plagued by the need of a time consuming procedure of bin selection/tuning which, by its 653 

nature, is otherwise lacking the capability of ensuring results of optimal quality. 654 

3. Results about the performance of our quasi-MC method against the binning and brute 655 

force MC approaches document that the former yields highly accurate results in a 656 

computationally more efficient manner. As such, the quasi-MC method is a remarkably 657 

promising alternative for the evaluation of process sensitivity indices in the presence of 658 

multiple sources of uncertainty. 659 
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