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Abstract—Modern microwave networks must cope with strict
Quality of Services (QoS) requirements, such as low latency, high
bandwidth and high availability. As network failures can affect
service availability, failure management is crucial for service
maintenance and, recently, application of Machine Learning
(ML) for automated failure management is becoming pervasive.
In particular, ML promises to deliver predictive maintenance
capabilities, where failure occurrence is anticipated thanks to ML
prediction capabilities. In this study we developed two workflows,
based on a modular ML implementation, capable of short- and
long-horizon failure predictions, while taking into consideration
computational complexity constraint. As input data, we used
real alarms coming from deployed equipment of a nation-wide
microwave network. Our ML-based failure-prediction system
learns from human experience through labelled data, performs
alarms forecasting, detects future failure occurrence and iden-
tifies failure root causes. In our numerical results, we compare
the prediction performance of different ML models in terms
of various standard ML performance metrics. Overall accuracy
over 95% is achieved in all prediction scenario simulated within
an hour, suggesting that microwave network operators can gain
actual operational benefits by deploying this framework in real-
world infrastructures.

Index Terms—Machine learning, microwave networks, alarms
forecasting, failure identification and prediction, root-cause anal-
ysis

I. INTRODUCTION

Today’s microwave networks are installed with built-in
monitoring capabilities, and generate a huge amount of mon-
itored data, that can be stored and processed using new
raising technologies, as network telemetry, SDN/NFV, edge
computing, etc. Such progress in network monitoring makes
Machine Learning (ML) a suitable methodology to automate
microwave failure management [1].

Failure management plays a role of capital importance in
communication networks to avoid service disruptions and to
satisfy customers service level agreements (SLAs). Currently,
failure management strongly depends on the ability of do-
main experts to perform manual troubleshooting of failures
by observing monitored alarms and performance metrics.
Considering the high amount of information to be treated
in modern microwave networks and the stringent availability
requirements of today’s service, this time-consuming and
human-error-prone process is not scalable. Novel Machine
Learning (ML) techniques are currently being investigated as
a solution towards automated failure management to reduce
service unavailability by taking adequate countermeasures in
a timely manner. Among the different aspects of failure man-
agement, future failure prediction is among the most important

for network operators, as it may allow proactive decision
making, such as network reconfiguration, traffic re-routing, in-
field intervention, etc., and hence limit service unavailability.

The failures that can occur in a microwave link can be
broadly classified either into failures related to radio sig-
nal propagation, such as channel interference and fading,
or hardware failures, i.e., failures affecting the functioning
of transmitting/receiving equipment. Microwave network op-
erators can detect the failure the moment the link suffers
from an unavailability (known as Unavailable Seconds, or
UAS). Despite detecting the failure upon its occurrence, the
forecast of future failures remains of utmost importance to
network operators. In this study, we focus on automating
failure management with the specific objective of forecasting
failure occurrence and identifying failures causes of hardware
failures leveraging alarm messages from network devices.
More specifically, we develop a ML-based framework for
future failure prediction in microwave networks that leverages
field alarms collected from 1025 deployed microwave links.
During the development, the prediction problem is designed
with two alternative workflows differing in terms of time
horizon and granularity. One achieves long-term predictions
analyzing 15 minutes time intervals, while the other permits
deeper inspection of data considering 1 second time intervals,
but reaching a less forward-looking prediction in the future.

The proposed framework achieves promising results, mea-
sured in term of accuracy, precision, recall, with negligible
execution time. We can summarize the contribution of this
paper as follows:

• We propose a short-term proactive root-cause failure
prediction using deep neural networks based on Long
Short Term Memory cells, to forecast future alarm be-
haviour with a short-term time horizon (in the order of
seconds); leveraging alarm forecast, joint failure detection
and root-cause identification are performed using multiple
ML classification models;

• We propose an alternative long-term ML-based predic-
tion approach aiming at forecasting future failure causes
considering only current alarms status and with no need
for future alarms forecast.

The rest of the paper is organized as follows. In Sec. II
relevant existing work is discussed. Sec. III formulates the
problem, while Sec. IV discusses the proposed framework.
Sec. V discusses the numerical results obtained using real
monitored data labelled by domain experts. In Sec. VI we



draw our conclusion.

II. RELATED WORK

The problem of automated failure management in commu-
nication networks has gained lot of traction lately, with ML
technologies enabling and pushing towards this automation
[2]. Data collected from networks as alarms are used for
either supervised-ML frameworks for failure detection [3], [4]
and failure-cause identification [5], [6], or unsupervised ML
frameworks for anomaly detection and identification [7], [8]
when labelled data is scarce. Furthermore Ref. [9] shows time
series prediction method based on variant LSTM recurrent
neural network. In microwave (and, more generically, radio)
networks, Refs. [10] and [11] are among the earliest works
focusing on failure root-causes analysis. In Ref. [10] authors
applied correlation techniques based on causality graphs and
associate failure root-causes to alarm sequences. Similarly,
Ref. [11] adopts artificial neural networks to correlate the
presence of different alarms in mobile network equipment
to an initial cause generating the alarms sequence. Authors
in Ref. [12] designed a framework for automatic anomaly
detection and root-cause identification in mobile networks,
based on alarms and employing a decision process which
emulates the human reasoning. In Ref. [5], microwave link
failure detection based on LSTM was employed assuming
sequential link features that describe the signal strength and
power, and error states of nodes and links. Meanwhile, in Ref.
[13] explainable artificial intelligence is used for failure iden-
tification. So, our works propose a new way to foresee failure
root-cause using detection and identification technologies.

III. PROBLEM STATEMENT

The main goal of our study is to predict failure root cause
by monitoring alarm data coming from microwave equipment.
Given as input data the status of alarms (with a time granu-
larity that can go down to one alarm instance per second), we
aim to forecast the root cause (among a set of possible pre-
defined root cause classes) of future failures with its relative
probability.

To this end, we jointly solve the following three sub-
problems:

• Alarm Forecasting. Given current and past status of
alarms, we predict future status (on or off) of all alarms.
The alarm forecasting is modeled using a LSTM model.

• Failure Detection. Leveraging the prediction of the status
of all alarms, we perform “incoming failure” detection,
that is modeled as a supervised binary classification
problem.

• Failure Identification. Once an incoming failure is de-
tected, we identify the root-cause of this failure by clas-
sifying it into one of the root-cause classes. The failure
root-cause identification is modeled as a supervised multi-
class classification problem.

Timestamp Alarm
name

Change
in alarm status

Link
ID

Site
ID

TABLE I: Alarm message structure

IV. MACHINE-LEARNING FAILURE PREDICTION
FRAMEWORK

The overall framework for failure prediction is summarized
in Fig. 1. Details regarding each phase are reported in the next
subsections.

A. Data Collection

Data regarding alarms and performance metrics are col-
lected over a real nation-wide microwave network. Alarm
messages are collected from 1025 links in period spanning
seven consecutive days. Based on type of equipment installed,
a total of 231 alarms exist. A centralized server collects
alarm messages arriving from any link in the network, which
represent the raw data. The alarm message format is shown in
Table I.

B. Data Preprocessing

The alarm messages of each link are elaborated considering
site id and link id, and, based on the change in alarm status, a
sequence of bits (1 or 0) is constructed where each bit of the
sequence indicates if an alarm is on or off in a given second.
That is, for each alarm at a given site and at a given link, the
alarm status at each second is reported, constructing what we
refer to as alarm bit sequence. In total, for each alarm on a
given site, 604800 seconds, referring to the whole duration of
seven days, are constructed representing alarm status. Starting
from the bit sequence dataset, we construct another dataset
of 15-minute granularity windows considering i) the number
of seconds an alarm is on (this value ranges between 0 and
900 in a 15-minute window) and ii) the number of times an
alarms goes on in a window (ranges from 0 to 450). We refer
to this dataset as 15-min window. The 15-min window dataset
consists of 787200 data points of which 49899 with failure
and 737301 without. In summary, two datasets are used in
our analysis:

• Alarm bit sequence: contains, for each link, a row of
bits representing the binary alarm status at each second.

• 15-min window: aggregates bit sequences in windows
of 15 minutes, counting for each alarm and each window
the number of seconds the alarm is on and the number
of times the alarm activates.

C. Building the Ground Truth: Clustering and Labeling

To build the ground truth for our framework, we labelled
the observations belonging to failure classes in the 15-min
window dataset. Then, we performed clustering using k-means,
assigning the same root-cause label to data points belonging
to same cluster. Specifically, different numbers of clusters
have been taken into consideration and to determine the best
number of clusters, first we performed elbow analysis on
inertia, then we had multiple interactions with domain experts



Fig. 1: Overall Prediction Diagram

who manually analyzed around 10% of the data points of each
cluster for label assignment. At the end of this clustering and
labelling process, we ended up with 35 clusters, assigned by
domain experts to different failure root causes.

In the next two subsections we describe two different
proposed approaches for failure prediction, namely, Short-
Term Approach in Subsec. IV-D, and Long-Term Approach
in Subsec. IV-E.

D. Short-Term Approach

The short-term approach consists of three components:
alarm forecaster, responsible for predicting future status of
alarms, failure detector, responsible for detecting failures, and
the fault identifier, which, in case a failure is detected, is
responsible to identify failure cause. Fig. 2 shows the overall
workflow of the short-term approach. First, the bit sequence of
each alarm is given as input to the alarm forecaster. Then, the
alarm forecaster outputs the predicted status of all alarms for a
given time horizon (1 or 0 for ON or OFF status, respectively).
To forecast alarm status, we employ three different models,
including two baseline algorithms used as benchmarks:

1) Baseline: as baseline approach we use a static proba-
bilistic forecaster with fixed probability for ON and OFF
status, based on the overall percentage of ON alarms in
the whole dataset. For each alarm, its future status is
selected with probability p1 or p0, for ON (’positive’)
or OFF (’negative’) status according to the following
formulas: p1 =

positive[all data]

total[all data]
;

p0 = 1− p1.

(1)

(2)

2) Baseline Optimized: here we consider a variable prob-
abilistic forecaster, where ON and OFF probabilities
p0 and p1 also depend on the alarm status during the
preceding ’x’ seconds. More specifically, we consider a
moving window of x=10 seconds (that corresponds to the

prediction interval, in our scenario) and use the following
formulas for ON and OFF probabilities:p1 = α

pos[all data]

total[all data]
+ β

pos[mov win]

total[mov win]
;

p0 = 1− p1.

(3)

(4)

Parameters α and β could be set to optimize model
performance, and for our work they have been set re-
spectively to 0.5 and 0.1.

3) LSTM model with hyperparameters reported in Tab. II

Parameter Value
Output layer Dense, sigmoid
Loss function Binary Cross Entropy

Optimizer Adam
Overfitting Earlystopping, patiente 10

Epoch 1, trained iteratively on links

TABLE II: Hyperparameters selected for LSTM algoritm

Based on the outcome of the alarm forecaster, 15-minute
windows are constructed and are then fed as input to the
failure detector. The failure detector detects whether failure
occurs based on predicted status of alarms, and, in case of
failure detection, the fault identifier classifies the 15-minute
window into one of the failure classes. For failure detection
and identification, we employed four different ML models,
namely, Random Forest (RF), K-Nearest Neighbors (KNN),
Support Vector Machine (SVM) and Artificial Neural Network
(ANN) with hyperparameters reported in Tables III.

E. Long-Term Approach

The long-term approach also uses the 15-min window
dataset and it also consists of three cascaded components,
namely, failure detector, fault identifier and fault forecaster.
Fig. 3 shows the overall workflow of the long-term approach,
detailed in the following. First, the failure detector takes the
15-min window observations in input and classifies them as
either a failure or not. In case of failure, the fault identi-
fier classifies the 15-min window observation in one of the



Fig. 2: Short-term Approach

Model Parameter Value

RF Number of trees 10
Maximum tree depth 10

Minimum number of split 2

KNN Number of neighbors 5
Weight function Distance

Distance function Manhattan
Searching algorithm Kd-tree

SVM Regularization parameter 100
Kernel RBF

Kernel coefficient 0.01
Decision function One-versus-rest

ANN Number of hidden neuron 5
Activation function Linear

TABLE III: Hyperparameters selected for ML algorithms

Window # Fault New Fault
Prediction: 2

1 RC 1 RC 3
2 RC 2 RC 4
3 RC 3 RC 5
4 RC 4 RC 6

TABLE IV: Windows labelling considering 2-windows pre-
diction time horizon

35 classes of failures. The failure root cause identified by
fault identifier is then given as an input, along with failure
root causes identified for x previous windows, to the fault
forecaster. The fault forecaster, which now has a vector
representing the failure root causes of the previous x windows
on the link, predicts the failure root causes of the next x
15-min windows (i.e., for the next 30 minutes if x = 2). To
perform failure detection and identification, we use the same
four different ML models, namely, RF, KNN, SVM and ANN,
used in the short-term approach.

V. NUMERICAL RESULTS

We now evaluate the performance of the two prediction
approaches. In Subsec. V-A, we focus on the short-term
approach and in Sec. V-B on the long-term approach. In all our
evaluations, datasets are divided considering 70% for training

set, 20% for validation and 10% for testing. All the results are
cross-validated using 10-fold cross-validation method.

A. Short-Term Approach
Alarm Status Prediction: We evaluated the alarm-status

prediction model considering different forecasting time hori-
zons ranging from 2 to 120 seconds. Specifically, we consider
a forecasting time horizon of 2, 10, 30, 60 and 120 seconds1.
In all cases, we use 10 seconds of alarm status as input.
Figure 4 shows the performance of our developed LSTM
approach in terms of accuracy, precision and recall for varying
forecasting horizon. Results show that the model achieves
its best performance for a 2-seconds (1 for accuracy and
precision, and 0.94 for recall). Performance in terms of all
the three metrics slightly decreases as the forecasting horizon
increases to 10 seconds, but performance does not decreases
further as forecasting time horizon increases further to reach
120 seconds. In these cases, the model achieves an accuracy
close to 1, precision near 0.94 and recall near 0.86. We
now compare the performance of the LSTM approach to
two baseline scenarios. Figure 5 shows the performance in
terms of accuracy, precision and recall of the LSTM approach
with respect to the baseline approaches for a forecasting time
horizon of 120 seconds. Results show that LSTM approach
significantly outperforms the baseline approaches.

Failure Detection: We now compare the performance of
the various models for failure detection. Figure 6 shows the
accuracy, precision and recall of RF, SVM, KNN and NN
considering windows formed with a forecasting time horizon
of 10 seconds and 120 seconds. Results show that all models
have an accuracy and precision of around 1 and around 0.95
when windows are formed considering 10 and 120 seconds
of forecasting time horizon, respectively. In terms of recall,
the models show a performance of around 1 in case of 10-
seconds forecasting time horizon, significantly higher than that
for 120-seconds forecasting time horizon which shows a recall
of 0.82. There are not relevant differences between models.
As expected, since the prediction for a longer time into the
future is more prone to error, the performance considering a
length of 120-second forecasting time horizon is lower than
that of 10 seconds. Yet, performance of various models can
be considered acceptable, being higher than 0.8.

1Note that we limit this analysis to a maximum of 120 seconds as
forecasting time horizon due to limitations in the random access memory
required to manage all ML model weights needed during the training phase.



Fig. 3: Long-term Approach

Fig. 4: LSTM performance varying prediction horizon

Fig. 5: Alarms Forecast Performance Comparison

Failure Identification: We now compare the performance
of the different developed models for failure identification.
Fig. 7 shows the accuracy, precision and recall considering
10- and 120-second-length forecasting time horizon. Similar to
the case of failure detection, results show that models perform
better considering a forecasting time horizon of 10 seconds
with respect to the case of 120 seconds.

Fig. 6: Short-Term Failure Detection Performance

Fig. 7: Short-Term Failure Identification Performance

B. Long-Term Approach

We consider three prediction scenarios for the long-term
approach that differ in terms of the prediction time horizon
which is set at either 1, 24 or 48 hours. Figures 8, 9, 10 plot
the accuracy, precision and recall, respectively. Results show
a general trend inversely proportional to time horizon, with
a similar pattern appearing for all metrics in all scenarios,
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Short-term (seconds) More accurate Prediction horizon limited
by computational constraint

Long-term (hours) Longer
prediction horizon

Short-term prediction
not possible

TABLE V: Prediction approach comparison

except for KNN which shows an unacceptable performance
for a prediction interval of 48 hours. Comparing long-term
and short-term we note a decrease in long-term performance
as expected due to increase in prediction time horizon. An
overall comparison between the two approaches is shown in
Tab. V.

Fig. 8: Long-Term Performance: Accuracy

Fig. 9: Long-Term Performance: Precision

Fig. 10: Long-Term Performance: Recall

VI. CONCLUSION

We designed a ML-based framework for failure root-cause
prediction on microwave links based on equipment alarms
from real data. We proposed two different workflows, one for
long-term time horizons and the other one for short-term. Each
step of the process is measured with performance metrics:
accuracy, precision, recall. Overall, considering prediction
time horizons, the framework results in very high system
performance, with metrics above 95% within an hour, while
for longer horizons we lose 20% each 24 hours. Models
performs the same for the considered scenario expect for
KNN losing reliability at long prediction interval. Execution
times are in terms of seconds and are negligible related to
the prediction time horizon order of magnitude. These results
suggest that our proposed approaches, both short-term and
long-term, are suitable to solve this problem. As future work,
short-term prediction horizon could be extended and compared
directly with long-term approach, by using more powerful
computing machines. In addition, future works may focus on
the integration of a graph neural network for fault identification
and localization.
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