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 4 

Supplementary Methods 5 

S1. Data and Materials. 6 

To study the societal impacts of droughts through the water-food nexus, we develop a theoretical framework 7 

using both agro-hydrological spatially distributed indicators and variables expressing societal conditions. We 8 

retrieved the main drought events from the Emergency Events Database (EM-DAT)1 and we assigned to 9 

each event a level of impact obtained by the Principal Component Analysis (PCA) of the informative variables: 10 

number of deaths, affected and economic damage (Table S1, Fig. S1). Conflicts data, population maps and 11 

rural-urban catchment areas were collected, respectively, from the Social Conflict Analysis Database 12 

(SCAD)2, WorldPop3 and Cattaneo et al.4. The Sub-national Human Development Index were retrieved from 13 

Global Data Lab5 and used in the analysis as an indicator of social development including the human health, 14 

education and standard of living dimensions6. Water and food indicators were developed as spatially explicit 15 

raster maps at 5 arc-min resolution per each year for the entire time period considered, using the WATNEEDS 16 

model7 (Section S2). As water indicators, we selected the green water availability (GWA), calculated as the 17 

total amount of green water (m3) needed for agricultural production, available per person (m3/cap/year). The 18 

index of food security was computed considering the annual agricultural production in terms of the total kcal 19 

available per person.  20 

Table S1. EM-DAT1 drought events involved in the CD model. For each event the duration, the correspondent area 21 
mapped (km2), the number of deaths, affected and the economic damage (‘000 $) have been listed. The results of the 22 
PCA performed on the three components (deaths, affected, damage) are shown, as well as the resulting impact classes. 23 

 24 

Event_ID
Duration 
[start-end]

Mapped Area (km2) Deaths (count) Damage ('000 $) Affected (count) PCA Impact class

HND-1997-9305 [1997-1997] 40000 - - - - -

SLV-1998-9216 [1998-1998] 4400 - 170000 - - 3

HND-2000-9860 [2000-2000] 8800 - - 1125 - 1

SLV-2001-9383 [2001-2001] 9200 - 22400 400000 0.1758 3

GTM-2001-9383 [2001-2001] 5200 41 14000 113596 -0.4423 3

HND-2001-9383 [2001-2004] 55600 - - 195000 - 4

HND-2002-9838 [2002-2002] 20400 - - 82000 - 4

HND-2004-9363 [2004-2004] 135600 - - 137500 - 4

SLV-2009-9415 [2009-2009] 25600 - 27000 - - 2

GTM-2009-9415 [2009-2009] 28000 - - 2500000 - 4

HND-2009-9559 [2009-2011] 36400 - - 45000 - 3

GTM-2012-9355 [2012-2012] 36800 - - 266485 - 4

HND-2012-9379 [2012-2012] 80800 - - 125000 - 4

SLV-2014-9580 [2014-2015] 15200 - 100000 700000 -0.1196 3

GTM-2014-9277 [2014-2016] 57200 - 100000 1300000 -2.438 4

HND-2014-9332 [2014-2015] 95200 - - 571710 - 4



Figure S1: Graphical representation of the droughts event reported in EM-DAT database1. They have been 25 
classified basing on the impact and duration. 26 

 27 

  28 



Table S2. Descriptive statistics per year of the variables included in the Bayesian econometric model CWFs. 29 
For each covariate, mean (top-left), standard deviation (top-right), the 1st (25%) and the 3rd (75%) quartiles (bottom) are 30 
reported. For the conflict also the total number per year is provided. 31 

 32 

33 

Variable

Confl icts 2.49E-02 2.77E-01 1.44E-02 1.95E-01 0.0327654 2.99E-01 1.83E-02 2.23E-01 2.88E-02 2.03E-01 4.19E-02 4.30E-01

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

HDI 4.93E-01 6.52E-02 5.01E-01 6.36E-02 13.60419397 6.28E-02 5.13E-01 6.19E-02 5.23E-01 6.05E-02 5.32E-01 5.93E-02

(4.43E-01 5.47E-01) (4.48E-01 5.52E-01) (4.59E-01 5.58E-01) (4.74E-01 5.62E-01) (4.87E-01 5.68E-01) (4.96E-01 5.73E-01)

Population 2.95E+04 7.37E+04 2.98E+04 7.45E+04 30028.35645 7.51E+04 3.03E+04 7.57E+04 3.05E+04 7.63E+04 3.09E+04 7.70E+04

(3.70E+03 3.70E+03) (3.74E+03 3.74E+03) (3.77E+03 3.77E+03) (3.80E+03 3.80E+03) (3.83E+03 3.83E+03) (3.94E+03 3.94E+03)

Water 1.34E+03 2.90E+03 1.54E+03 3.18E+03 1634.141767 3.53E+03 1.73E+03 3.84E+03 1.87E+03 3.84E+03 1.63E+03 3.75E+03

(9.14E+00 9.14E+00) (9.19E+00 9.19E+00) (9.57E+00 9.57E+00) (1.23E+01 1.23E+01) (1.34E+01 1.34E+01) (1.04E+01 1.04E+01)

Food 1.02E+03 1.83E+03 1.19E+03 1.62E+03 1267.440104 1.70E+03 1.60E+03 2.42E+03 1.96E+03 2.67E+03 1.24E+03 1.90E+03

(7.86E+01 7.86E+01) (1.19E+02 1.19E+02) (1.43E+02 1.43E+02) (1.52E+02 1.52E+02) (2.43E+02 2.43E+02) (1.23E+02 1.23E+02)

Water (Trade) 4.31E+02 2.99E+02 4.37E+02 3.04E+02 444.5621827 3.05E+02 4.50E+02 3.04E+02 4.51E+02 3.06E+02 4.34E+02 3.03E+02

(2.87E+01 2.87E+01) (9.19E+00 9.19E+00) (2.70E+01 2.70E+01) (3.44E+01 3.44E+01) (1.34E+01 1.34E+01) (1.04E+01 1.04E+01)

Food (Trade) 4.32E+05 3.73E+05 5.17E+05 4.03E+05 536705.0441 4.05E+05 5.89E+05 4.25E+05 6.46E+05 4.42E+05 5.03E+05 3.96E+05

(1.22E+05 1.22E+05) (1.38E+05 1.38E+05) (1.52E+05 1.52E+05) (1.60E+05 1.60E+05) (1.97E+05 1.97E+05) (1.47E+05 1.47E+05)

Access 4.99E+08 6.82E+08 6.53E+08 9.23E+08 0.51615933 1.00E+09 7.77E+08 1.06E+09 8.47E+08 1.21E+09 6.43E+08 8.00E+08

(1.39E+08 6.06E+08) (1.52E+08 7.59E+08) (1.67E+08 8.65E+08) (1.82E+08 9.46E+08) (1.85E+08 1.02E+09) (1.80E+08 8.42E+08)

Surplus-Demand gap 1.95E-02 1.00E-01 1.24E-02 5.70E-02 0.371713825 3.43E-02 2.14E-03 1.28E-02 1.11E-03 6.42E-03 6.52E-03 4.17E-02

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Drought Impact 0.00E+00 0.00E+00 3.28E-01 8.44E-01 0.043250328 3.58E-01 0.00E+00 0.00E+00 2.88E-02 1.67E-01 8.74E-01 1.61E+00

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Number of conflicts 19 11 25 14 22 32

Variable

Confl icts 4.59E-02 5.56E-01 4.98E-02 6.11E-01 3.93E-02 3.67E-01 3.80E-02 4.22E-01 2.75E-02 3.41E-01 3.01E-02 2.95E-01

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

HDI 5.39E-01 5.88E-02 5.46E-01 5.85E-02 5.52E-01 5.85E-02 5.59E-01 5.90E-02 5.69E-01 5.23E-02 5.79E-01 4.75E-02

(5.01E-01 5.78E-01) (5.07E-01 5.82E-01) (5.12E-01 5.88E-01) (5.16E-01 5.95E-01) (5.26E-01 5.84E-01) (5.34E-01 5.98E-01)

Population 3.15E+04 7.79E+04 3.21E+04 7.86E+04 3.27E+04 7.95E+04 3.33E+04 8.05E+04 3.40E+04 8.17E+04 3.46E+04 8.28E+04

(3.97E+03 3.97E+03) (4.16E+03 4.16E+03) (4.26E+03 4.26E+03) (4.35E+03 4.35E+03) (4.40E+03 4.40E+03) (4.51E+03 4.51E+03)

Water 1.72E+03 3.84E+03 1.78E+03 3.75E+03 1.85E+03 4.04E+03 1.63E+03 3.53E+03 1.56E+03 3.28E+03 1.61E+03 3.28E+03

(1.12E+01 1.12E+01) (9.12E+00 9.12E+00) (8.94E+00 8.94E+00) (8.07E+00 8.07E+00) (9.24E+00 9.24E+00) (9.83E+00 9.83E+00)

Food 1.45E+03 2.06E+03 1.65E+03 2.42E+03 1.65E+03 2.31E+03 1.54E+03 2.10E+03 1.46E+03 2.12E+03 1.51E+03 2.15E+03

(1.87E+02 1.87E+02) (1.79E+02 1.79E+02) (1.82E+02 1.82E+02) (1.73E+02 1.73E+02) (1.60E+02 1.60E+02) (1.64E+02 1.64E+02)

Water (Trade) 4.45E+02 3.04E+02 4.52E+02 3.06E+02 4.44E+02 3.08E+02 4.45E+02 3.06E+02 4.45E+02 3.06E+02 4.43E+02 3.06E+02

(1.12E+01 1.12E+01) (3.43E+01 3.43E+01) (8.94E+00 8.94E+00) (2.88E+01 2.88E+01) (3.46E+01 3.46E+01) (3.03E+01 3.03E+01)

Food (Trade) 5.76E+05 4.15E+05 6.05E+05 4.29E+05 5.93E+05 4.24E+05 5.89E+05 4.30E+05 5.76E+05 4.21E+05 5.89E+05 4.31E+05

(1.66E+05 1.66E+05) (1.60E+05 1.60E+05) (1.74E+05 1.74E+05) (1.57E+05 1.57E+05) (1.68E+05 1.68E+05) (1.56E+05 1.56E+05)

Access 7.63E+08 1.03E+09 8.22E+08 1.11E+09 8.16E+08 1.11E+09 8.12E+08 1.13E+09 8.24E+08 1.15E+09 8.95E+08 1.21E+09

(1.83E+08 9.30E+08) (1.91E+08 9.86E+08) (1.97E+08 9.85E+08) (1.77E+08 1.00E+09) (2.04E+08 1.02E+09) (2.07E+08 1.10E+09)

Surplus-Demand gap 3.68E-03 2.03E-02 2.27E-03 1.21E-02 2.24E-03 1.34E-02 3.49E-03 1.97E-02 4.34E-03 2.28E-02 5.12E-03 2.25E-02

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Drought Impact 2.67E-01 1.00E+00 0.00E+00 0.00E+00 1.85E+00 2.00E+00 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Number of conflicts 35 38 30 29 21 23

Variable

Confl icts 1.05E-02 1.35E-01 3.93E-02 5.03E-01 2.10E-02 3.23E-01 1.70E-02 2.07E-01 3.41E-02 2.38E-01 2.23E-02 2.53E-01

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

HDI 5.80E-01 4.23E-02 5.83E-01 3.88E-02 5.86E-01 3.66E-02 5.91E-01 3.48E-02 5.92E-01 3.48E-02 5.95E-01 3.57E-02

(5.40E-01 5.99E-01) (5.47E-01 6.00E-01) (5.57E-01 5.99E-01) (5.67E-01 6.01E-01) (5.64E-01 6.02E-01) (5.66E-01 6.04E-01)

Population 3.53E+04 8.38E+04 3.60E+04 8.50E+04 3.67E+04 8.61E+04 3.75E+04 8.77E+04 3.82E+04 8.92E+04 3.90E+04 9.07E+04

(4.61E+03 4.61E+03) (4.63E+03 4.63E+03) (4.79E+03 4.79E+03) (4.92E+03 4.92E+03) (5.16E+03 5.16E+03) (5.18E+03 5.18E+03)

Water 1.67E+03 3.56E+03 1.65E+03 3.60E+03 1.62E+03 3.32E+03 1.44E+03 3.01E+03 1.55E+03 3.18E+03 1.36E+03 2.67E+03

(1.07E+01 1.07E+01) (8.96E+00 8.96E+00) (9.49E+00 9.49E+00) (8.83E+00 8.83E+00) (9.17E+00 9.17E+00) (8.99E+00 8.99E+00)

Food 1.68E+03 2.38E+03 1.52E+03 2.11E+03 1.78E+03 2.47E+03 1.40E+03 1.98E+03 1.64E+03 2.30E+03 1.47E+03 2.08E+03

(1.96E+02 1.96E+02) (1.66E+02 1.66E+02) (2.08E+02 2.08E+02) (1.50E+02 1.50E+02) (1.87E+02 1.87E+02) (1.49E+02 1.49E+02)

Water (Trade) 4.43E+02 3.07E+02 4.27E+02 3.06E+02 4.39E+02 3.06E+02 4.26E+02 3.05E+02 4.21E+02 3.04E+02 4.26E+02 3.04E+02

(3.04E+01 3.04E+01) (8.96E+00 8.96E+00) (2.67E+01 2.67E+01) (2.64E+01 2.64E+01) (9.17E+00 9.17E+00) (2.85E+01 2.85E+01)

Food (Trade) 6.08E+05 4.35E+05 5.76E+05 4.29E+05 6.24E+05 4.44E+05 5.61E+05 4.32E+05 5.90E+05 4.37E+05 5.76E+05 4.36E+05

(1.72E+05 1.72E+05) (1.45E+05 1.45E+05) (1.81E+05 1.81E+05) (1.39E+05 1.39E+05) (1.57E+05 1.57E+05) (1.43E+05 1.43E+05)

Access 9.03E+08 1.23E+09 9.12E+08 1.26E+09 9.74E+08 1.29E+09 8.63E+08 1.17E+09 9.76E+08 1.35E+09 9.36E+08 1.28E+09

(2.05E+08 1.09E+09) (2.07E+08 1.13E+09) (2.25E+08 1.21E+09) (1.88E+08 1.04E+09) (2.21E+08 1.18E+09) (2.07E+08 1.13E+09)

Surplus-Demand gap 5.25E-03 2.25E-02 6.85E-03 2.93E-02 5.81E-03 2.41E-02 1.22E-02 4.41E-02 6.94E-03 2.88E-02 1.06E-02 3.89E-02

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Drought Impact 0.00E+00 0.00E+00 8.83E-01 1.43E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.54E+00 1.95E+00 0.00E+00 0.00E+00

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Number of conflicts 8 30 16 13 26 17

Variable

Confl icts 2.10E-02 2.28E-01 7.34E-02 7.87E-01 5.50E-02 4.28E-01

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

HDI 6.10E-01 4.09E-02 6.13E-01 4.36E-02 6.16E-01 4.25E-02

(5.80E-01 6.32E-01) (5.76E-01 6.38E-01) (5.77E-01 6.38E-01)

Population 3.98E+04 9.22E+04 4.07E+04 9.41E+04 4.15E+04 9.50E+04

(5.28E+03 5.28E+03) (5.42E+03 5.42E+03) (5.46E+03 5.46E+03)

Water 1.42E+03 2.92E+03 1.42E+03 3.15E+03 1.45E+03 3.04E+03

(8.06E+00 8.06E+00) (8.21E+00 8.21E+00) (8.93E+00 8.93E+00)

Food 1.19E+03 1.76E+03 1.17E+03 1.86E+03 1.28E+03 1.84E+03

(1.28E+02 1.28E+02) (1.24E+02 1.24E+02) (1.41E+02 1.41E+02)

Water (Trade) 4.20E+02 3.04E+02 4.28E+02 3.04E+02 4.27E+02 3.06E+02

(8.06E+00 8.06E+00) (2.92E+01 2.92E+01) (2.97E+01 2.97E+01)

Food (Trade) 4.97E+05 4.02E+05 4.85E+05 3.93E+05 5.20E+05 4.10E+05

(1.31E+05 1.31E+05) (1.33E+05 1.33E+05) (1.30E+05 1.30E+05)

Access 8.75E+08 1.25E+09 8.20E+08 1.14E+09 7.85E+08 8.19E+08

(2.19E+08 1.08E+09) (2.16E+08 1.03E+09) (2.15E+08 1.07E+09)

Surplus-Demand gap 9.36E-03 4.23E-02 1.07E-02 4.23E-02 1.56E-02 5.68E-02

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Drought Impact 2.15E+00 1.96E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00 0.00E+00) (0.00E+00 0.00E+00) (0.00E+00 0.00E+00)

Number of conflicts 16 56 42

20011996 1997 1998 1999 2000

2011 2012 2013

2002 2003 2004 2005 2006 2007

2014 2015 2016

2008 2009 2010



Table S3. Moran’s Index and p-values of the Moran’s test for spatial autocorrelation. They are reported per year 34 
and per each variable. 35 

 36 

 37 

  38 

Variable 1996 1997 1998 1999 2000 2001 2002

Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value

Conflicts 0.043 0.003 -0.005 0.612 0.032 0.028 -0.007 0.639 0.038 0.014 0.012 0.162 -0.004 0.590

HDI 0.421 0.000 0.399 0.000 0.386 0.000 0.371 0.000 0.367 0.000 0.361 0.000 0.365 0.000

Population 0.834 0.000 0.826 0.000 0.835 0.000 0.822 0.000 0.829 0.000 0.820 0.000 0.815 0.000

Water 0.328 0.000 0.328 0.000 0.328 0.000 0.328 0.000 0.328 0.000 0.331 0.000 0.334 0.000

Food 0.392 0.000 0.406 0.000 0.413 0.000 0.416 0.000 0.405 0.000 0.414 0.000 0.425 0.000

Water (Trade) 0.430 0.000 0.351 0.000 0.388 0.000 0.384 0.000 0.362 0.000 0.414 0.000 0.370 0.000

Food (Trade) 0.468 0.000 0.550 0.000 0.531 0.000 0.565 0.000 0.591 0.000 0.464 0.000 0.503 0.000

Access 0.303 0.000 0.377 0.000 0.381 0.000 0.358 0.000 0.364 0.000 0.341 0.000 0.390 0.000

Surplus-Demand gap 0.128 0.000 0.268 0.000 0.184 0.000 0.163 0.000 0.124 0.000 0.179 0.000 0.149 0.000

Drought Impact 0.466 0.000 0.543 0.000 0.529 0.000 0.554 0.000 0.569 0.000 0.462 0.000 0.493 0.000

Variable 2003 2004 2005 2006 2007 2008 2009

Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value

Conflicts 0.004 0.333 0.017 0.104 0.001 0.434 0.016 0.126 0.077 0.767 -0.006 0.630 0.007 0.283

HDI 0.372 0.000 0.377 0.000 0.387 0.000 0.388 0.000 0.386 0.000 0.376 0.000 0.362 0.000

Population 0.798 0.000 0.795 0.000 0.792 0.000 0.825 0.000 0.835 0.000 0.829 0.000 0.828 0.000

Water 0.340 0.000 0.342 0.000 0.345 0.000 0.346 0.000 0.348 0.000 0.353 0.000 0.355 0.000

Food 0.421 0.000 0.426 0.000 0.425 0.000 0.416 0.000 0.405 0.000 0.420 0.000 0.420 0.000

Water (Trade) 0.352 0.000 0.364 0.000 0.393 0.000 0.377 0.000 0.365 0.000 0.356 0.000 0.350 0.000

Food (Trade) 0.543 0.000 0.540 0.000 0.564 0.000 0.515 0.000 0.565 0.000 0.561 0.000 0.570 0.000

Access 0.384 0.000 0.387 0.000 0.401 0.000 0.402 0.000 0.393 0.000 0.393 0.000 0.399 0.000

Surplus-Demand gap 0.159 0.000 0.186 0.000 0.193 0.000 0.173 0.000 0.196 0.000 0.283 0.000 0.277 0.000

Drought Impact 0.531 0.000 0.535 0.000 0.555 0.000 0.506 0.000 0.553 0.000 0.545 0.000 0.563 0.000

Variable 2010 2011 2012 2013 2014 2015 2016

Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value Moran's I p-value

Conflicts -0.004 0.603 -0.007 0.636 0.085 0.000 0.002 0.389 -0.008 0.671 0.031 0.012 0.012 0.209

HDI 0.347 0.000 0.328 0.000 0.345 0.000 0.345 0.000 0.427 0.000 0.432 0.000 0.401 0.000

Population 0.812 0.000 0.812 0.000 0.795 0.000 0.801 0.000 0.784 0.000 0.798 0.000 0.805 0.000

Water 0.358 0.000 0.357 0.000 0.356 0.000 0.357 0.000 0.358 0.000 0.356 0.000 0.363 0.000

Food 0.403 0.000 0.415 0.000 0.418 0.000 0.405 0.000 0.397 0.000 0.390 0.000 0.388 0.000

Water (Trade) 0.346 0.000 0.356 0.000 0.355 0.000 0.361 0.000 0.401 0.000 0.367 0.000 0.364 0.000

Food (Trade) 0.576 0.000 0.570 0.000 0.580 0.000 0.575 0.000 0.512 0.000 0.515 0.000 0.564 0.000

Access 0.382 0.000 0.389 0.000 0.382 0.000 0.387 0.000 0.399 0.000 0.364 0.000 0.474 0.000

Surplus-Demand gap 0.264 0.000 0.306 0.000 0.295 0.000 0.323 0.000 0.206 0.000 0.280 0.000 0.326 0.000

Drought Impact 0.552 0.000 0.558 0.000 0.565 0.000 0.560 0.000 0.511 0.000 0.514 0.000 0.560 0.000



 39 

S2. The hydrological balance and indices computation 40 

Droughts in Central America are cyclical and closely related to the El Niño period of the Southern Oscillation 41 

(ENSO); with respect those occurring in other parts of the World they are more associated to anomaly in 42 

precipitation distribution within the rainy period8. Vulnerability to drought depends on how communities and 43 

productive activities cope with consequences of the rain deficit. Droughts might be classified accordingly to 44 

the effects they produce on local precipitation patterns, hydrological cycle, local crop production and water 45 

supply for human activities, for industrial, domestic and agricultural purposes8. We developed indices 46 

representative of these drought’s aspects. Water and food indicators were developed from the output of a 47 

spatially distributed hydrological balance model WATNEEDS7, reported in (Eq. S1). The model simulates the 48 

vertical soil water balance and introduces a spatially distributed crop specific monthly analysis of crop water 49 

requirement for available climatic data. The crop water requirement (mm yr-1) is the volume of water required 50 

to compensate for a crop’s evapotranspiration losses, without experiencing crop water stress. The crop water 51 

requirement has two components: namely, the green crop water requirement (met by available precipitation) 52 

and the blue crop water requirement (met by irrigation). The blue water requirement has not been used in the 53 

analysis as water used for irrigation accounts for only 1% of the total agricultural water footprint for the 54 

considered countries9. We calculate yearly green crop water requirement for the main cultivated crops – i.e., 55 

maize, pulses, sorghum, sugarcane, oil palm and coffee - covering around 80% of the overall harvested area 56 

in the region. Crop planting and harvesting dates, harvested areas and yields are provided by the MIRCA 57 

dataset10. Tropical fruits and vegetables are also included as they are largely produced in the area (avocado, 58 

banana, cauliflower, fresh fruit, lemons, lettuce, mangos, onions, oranges, papaya, pineapple, tomatoes, 59 

fresh vegetables, watermelons). Harvested areas for these crops are taken from the EarthStat28 dataset, as 60 

they are not included in the MIRCA dataset. 61 

The WATNEEDS model simulates the time variation of water storage 
∆𝑊𝑖

∆𝑡
 within a specific cell i as the 62 

difference between water inputs (precipitation 𝑃𝑖𝑡) and outputs (deep percolation 𝐷𝑖𝑡, runoff 𝑅𝑖𝑡 and actual 63 

evapotranspiration 𝐸𝑇𝑎𝑐𝑡,𝑖𝑡), at a daily time scale and a 5 arc-minutes resolution.  64 

  (S1)                                              
∆Wi

∆t
= Pit − ETact,it − Dit − Rit   65 

In particular, Wit is the soil moisture at time step t, 𝑃𝑖𝑡  is the daily effective precipitation, retrieved by the 66 

CHIRPSv2.0 dataset11. 𝐷𝑖𝑡 is the deep percolation, calculated following Chiarelli et al.7, using the maximum 67 

deep percolation flux 𝐷𝑚𝑎𝑥, depending on the soil type12 (Eq. S2) .  68 

 (S2)                                    Dit = {
Dmax

Wit− (1−p)Smax

Smax
       if (1 − p) Smax < Wit < Smax

0                               if Wit < (1 − p)Smax

 69 

The actual evapotranspiration 𝐸𝑇𝑎𝑐𝑡,𝑗 of a specific crop j is calculated (Eq. S3) as the product between the 70 

reference evapotranspiration, referred to the Penman-Monteith equation, 𝐸𝑇0
13, the crop coefficient 71 

𝑘𝑐,𝑗 related to the growing phase,  taken from Allen et al. 14 and a crop stress coefficient 𝑘𝑠.  72 

 (S3)                                                    ETact,j = kc,j ∙ ks ∙ ET0  73 

The water stress coefficient 𝑘𝑠,𝑖,𝑡 is calculated at a daily time scale (t), for crop j following Allen et al.14 (Eq. 74 

S4) as a function of the soil water content 𝑊𝑖,𝑡 and the maximum and the readily available water RAWi. The 75 

soil moisture Wi,t is calculated solving the daily soil water balance at time step t, as function of the soil moisture 76 

of the previous time step (W𝑖,t−1) and the water inputs and outputs (Eq. S1). The RAWi is calculated as the 77 

total available water multiplied TAWi by the critical depletion factor p𝑖 (i.e., the actual fraction of water that a 78 



crop can uptake from the rooting zone without experiencing crop water stress). For conditions of no water 79 
stress the crop stress coefficient is equal to 1. 80 

(S4)                                                        𝐤𝐬,𝐢,𝐭 = {

𝐖𝐢,𝐭

𝐑𝐀𝐖𝐢
  𝐢𝐟 𝐖𝐢,𝐭 < 𝐑𝐀𝐖𝐢

𝟏          𝐢𝐟 𝐖𝒊,𝐭 ≥ 𝐑𝐀𝐖𝐢

 81 

RAW𝑖 = TAW𝑖 ∗ p𝑖 = zri ∗ (θfc − θwp) ∗  pi 82 

Where θfc is the water content at field capacity (mm/m) and the and θwp the water content at wilting point15  83 

(mm/m), thus, the difference (θfc − θwp) represents the maximum soil moisture storage capacity. zr (m) is 84 

the crop rooting depth16. Soil information (e.g., maximum soil moisture storage capacity and maximum 85 

infiltration rate) were from Bajties et al.17.In time steps where the sum of the balance (i.e., Wit−1 + Pit −86 

ETact,it − Dit) exceeds the TAW𝑖, Rit – the sub-surface runoff – is calculated as the difference between the 87 

sum of the balance and TAW𝑖.  88 

For each day, each crop, and each grid cell we calculate 𝐸𝑇𝑎𝑐𝑡,𝑗 – equal to the green crop water requirement, 89 

then we sum the daily green crop water requirements across each month of a crop’s growing season to 90 

determine monthly green consumptive crop water requirement (mm). We finally assess the monthly green 91 

water volume per each grid cell, as the weighted mean of the crop-specific actual evapotranspiration (mm) 92 

over the harvested areas retrieved from the MIRCA dataset10.  93 

We, first, use the outputs of the WATNEEDS model to develop food security and green water availability 94 
indicators, at 5 arc-min resolution - as described in the following sections. Second, we rescale each indicator 95 
to match the spatial resolution of the grid cell (20 km x 20 km) required by the Econometric model design. 96 

Food availability and access. A strong nexus exists between water availability and food production18. We 97 

focused on assessing the effects of water stress on the first two pillars of food security, i.e. food availability, 98 

intended as the availability of necessary calories at the individual level, and food access, intended as the 99 

economic possibility for people to have access to the necessary calories19. We calculated the yearly 100 

production (in tons) of the six main cultivated crops covering around 80% of the overall harvested area. For 101 

this purpose, we adopted the Doorenbos and Kassam formula20, reported in Eq. S5, for crop yield evaluation 102 

in function of the actual crop evapotranspiration and their water demand. This method is commonly used by 103 

FAO20–22:  104 

 (S5)                                                     (1 −
Ya,j

Ymax,j
) = ky,j (1 −

ETact,j

ETp,j
)  105 

where 𝑌𝑚𝑎𝑥 and 𝑌𝑎 are the maximum and actual yields referred to the crop j, and 𝑘𝑦,𝑗 is a yield response 106 

factor representing the effect of a reduction in evapotranspiration on yield losses. As maximum yields, those 107 

under irrigated conditions provided Monfreda et al.23 were considered, while the actual yields were estimated 108 

from Eq. S4. Seasonal value of 𝑘𝑦 for the crops involved in the analysis were retrieved from FAO Irrigation 109 

and Drainage Paper No. 3320. The yearly production of staple crops was then converted into the 110 

corresponding kcal supplied per person, using the caloric content conversion (in kcal/100 g)24, in order to 111 

compute the spatially-distributed indicator of food availability. Instead, the yearly cash crop production was 112 

involved to define an economic indicator of food access (USD/year) representing the potential income 113 

deriving from the market sale of coffee, sugar cane and oil palm (producer prices provided by FAOSTAT25 114 

have been used). 115 

Different levels of food (in)security can be assessed referring to the Human Energy Requirements (HER)26. 116 

The reference HER was defined as “the amount of food energy needed to balance energy expenditure in 117 

order to maintain body size, body composition and a level of necessary and desirable physical activity 118 

consistent with long term good health”. Following FAO26, a value of 3000 kcal/cap/day was selected as mean 119 

Human Energy Requirement threshold (HERmean), and a value of 1800 kcal/cap/day as the minimum 120 

threshold (HERmin). The reference values involved in our analysis account also for the fraction of animal 121 

calories accordingly to the methodology of Davis et al.27.  122 



Green Water Availability. As the blue water footprint of domestic agricultural production accounts for only 123 

1% of the total agricultural water footprint9, only green water was included in this analysis. Green water (GW) 124 

was computed at 5 arc-min resolution per year as the total amount of water (m3) needed by the crops to 125 

compensate losses from evapotranspiration.  The green water demand of each crop was calculated with the 126 

WATNEEDS model7 (mm) and multiplied by the harvested area (ha). The selected crops are 20; harvested 127 

areas of the main cultivated cash and staple crops (i.e. sugarcane, sorghum, oil palm, maize, pulses and 128 

coffee) were retrieved from the MIRCA dataset10. Tropical fruits and vegetables were also included as they 129 

are largely produced in the area (avocado, banana, cauliflower, fresh fruit, lemons, lettuce, mangos, onions, 130 

oranges, papaya, pineapple, tomatoes, fresh vegetables, watermelons), and harvested areas were taken 131 

from the EarthStat28 dataset, as they are not included in the MIRCA dataset10. The total amount of GW was 132 

calculated summing green water volumes of each crop and then divided by the density of population, to 133 

obtain the water available per capita (m3/cap/year). 134 

135 



Sensitivity Analysis 136 

We also performed sensitivity analyses on the actual evapotranspiration ETact referred to the growing season 137 

of the crops, considering a variation of ±15%. The committed error on actual yields (and thus on the computed 138 

crop production) depends on the magnitude of the crop yield response to water deficit, thus, on the Ky value. 139 

In our analysis we use Ky values from FAO Irrigation and Drainage Paper No. 3320. They have been largely 140 

validated and used in several studies to predict crop yield at different locations29–31. Some uncertainties 141 

related to Ky might depend on the location and the experimental methods used, as other factors (e.g. 142 

nutrients, different cultivars, etc.) might affect locally the response to water. For analysis conducted at the 143 

regional scale, as in this case, the application of FAO yield response can be considered a robust approach31. 144 

Ky is crop specific and depend on the growth stage the water stress occurs (higher for flowering and yield 145 

formation, lower for vegetative and ripening phases). In our analysis, we used water deficit and Ky values 146 

referred to the total growing period of the crop. As high-yielding crops (e.g. sugarcane and maize) are more 147 

sensitive to water stress (Ky>1) than low-yielding crops (e.g. sorghum) (ky<1)30, in our sensitivity analysis we 148 

obtained different yield variation, accordingly to the considered crop.  149 

(S6)                                                             𝐸𝑟𝑟𝑜𝑟%𝑗,𝑖,𝑡 =  
|𝑌𝑎,𝑗,𝑖,𝑡−𝑌𝑎,𝑗,𝑖,𝑡

± |

𝑌𝑎,𝑗,𝑡
 150 

(S7)                                                             𝐸%̅̅ ̅̅̅
𝑗𝑡 =

1

𝑁
∑ 𝐸𝑟𝑟𝑜𝑟%𝑗,𝑖,𝑡

𝑁
𝑖=1  151 

Where 𝐸𝑟𝑟𝑜𝑟%𝑗,𝑖,𝑡 is the computed percentage error on the actual yield per crop j, cell i and year t. 𝑌𝑎,𝑗,𝑖,𝑡
±  is 152 

the computed actual yield considering a variation of ETact of ±15%, and  𝑬%̅̅ ̅̅ ̅
𝒋𝒕 is the average percentage error 153 

per each crop and year. In Figure S2(A) and Table S4 we summarize per each crop and for all the years, the 154 

average percentage error (Eq. S6-S7) committed computing the actual yield (Ya), using the FAO approach20, 155 

with a 15% variation of ETact. Figure S3(A) reports the computed percentage error 𝐸𝑟𝑟𝑜𝑟%𝑗,𝑖,𝑡=1996 per crop, 156 

for a fixed year (t=1996) with respect to the actual yield (Ya). While Figure S2(B) and Table S5 report the 157 

average percentage error committed on the production (P), and Figure S3(B) reports the percentage error 158 

on the production, for a fixed year (t=1996). The percentage error on Ya and P is of the same magnitude of 159 

ETact variation (15%) for crops with Ky=1 (coffee and oil palm fruit). For crops with Ky>1 (sugarcane, maize 160 

and pulses), the error is amplified proportionally to Ky value, with values of  𝑬%̅̅ ̅̅ ̅
𝒋𝒕 ranging from 18% to 28%, 161 

for sorghum (ky<1) the 𝑬%̅̅ ̅̅ ̅
𝒋𝒕 decreases varying from 11% to 13% (Fig. S2, Tables S4-S5).  162 

  163 



Figure S2: Average percentage error 𝐄%̅̅̅̅̅, on the actual yield Ya (A) and on the production P (B) obtained varying 164 
ETact of ±15%.  165 

(A) Average percentage error on Ya 166 

 167 

(B) Average percentage error on P 168 

 169 



Figure S3: Computed percentage error 𝑬𝒓𝒓𝒐𝒓% on the actual yield Ya (A) and on the production P (B), for a 170 
fixed year (1996), obtained varying ETact of ±15%.  171 

(A) Percentage error on Ya 172 

 173 

(B) Percentage error on P 174 

 175 



 176 

Table S4: Computed percentage error 𝑬%̅̅ ̅̅ ̅ on the actual yield per crop and year t. 177 

 178 

Crop/Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Ya- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya- 0.28 0.24 0.23 0.22 0.23 0.24 0.23 0.23 0.23 0.25

Ya+ 0.24 0.23 0.22 0.21 0.21 0.22 0.22 0.22 0.21 0.22

Ya
- 0.20 0.19 0.19 0.19 0.18 0.19 0.18 0.18 0.18 0.18

Ya
+ 0.19 0.19 0.19 0.18 0.18 0.19 0.18 0.18 0.18 0.18

Ya
- 0.25 0.23 0.23 0.22 0.21 0.23 0.22 0.22 0.22 0.21

Ya+ 0.24 0.22 0.22 0.21 0.20 0.22 0.21 0.21 0.21 0.20

Ya- 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Ya+ 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Crop/Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Ya- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya
+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Ya
- 0.24 0.23 0.23 0.22 0.22 0.23 0.21 0.22 0.22 0.22 0.22

Ya
+ 0.21 0.22 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21

Ya- 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.18

Ya+ 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.18

Ya- 0.21 0.21 0.21 0.22 0.21 0.22 0.21 0.21 0.22 0.23 0.22

Ya+ 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.22 0.20

Ya- 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Ya+ 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Coffee

Oil palm fruit

Sugarcane

Pulses

Maize

Sorghum

Coffee

Oil palm fruit

Sugarcane

Pulses

Maize

Sorghum



Table S5: Computed percentage error 𝑬%̅̅ ̅̅ ̅ on the production per crop and year t. 179 

 180 

  181 

Crop/Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

P- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P- 0.27 0.23 0.21 0.20 0.21 0.22 0.22 0.21 0.21 0.22

P+ 0.24 0.21 0.21 0.20 0.20 0.21 0.20 0.20 0.20 0.20

P
- 0.19 0.18 0.18 0.18 0.17 0.19 0.18 0.18 0.18 0.18

P
+ 0.19 0.18 0.18 0.18 0.17 0.19 0.18 0.18 0.18 0.18

P
- 0.25 0.23 0.22 0.21 0.20 0.23 0.21 0.21 0.20 0.20

P+ 0.24 0.22 0.21 0.21 0.19 0.22 0.21 0.20 0.20 0.20

P- 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

P+ 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Crop/Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

P- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P- 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P
+ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P
- 0.24 0.23 0.23 0.22 0.22 0.23 0.21 0.22 0.22 0.22 0.22

P
+ 0.21 0.22 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21

P- 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.18

P+ 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.18

P- 0.21 0.21 0.21 0.22 0.21 0.22 0.21 0.21 0.22 0.23 0.22

P+ 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.22 0.20

P- 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

P+ 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Sorghum

Coffee

Oil palm fruit

Sugarcane

Pulses

Maize

Sorghum

Coffee

Oil palm fruit

Sugarcane

Pulses

Maize



 182 

Virtual-Water and Food Trade. Trade associated to food and virtual water fluxes was modelled through two 183 

variables of green water availability and food availability, developed summing the local availability to the 184 

supply provided by domestic trade. In this analysis we considered a fixed value of food imports from 185 

international trade, while for national flows the Production and Trade Flow Maps and Livelihoods Zones by 186 

FEWS NET32–35 were used to select the main agricultural producer departments, that provide food to the 187 

cities. The normalized difference (Δ, Eq. S8) between the food (FA) and water availability (GWA) and the 188 

demand, given by the HER and 𝐺𝑊𝐷𝑗 thresholds respectively, was calculated per cell as indicator of Deficit 189 

(Δ<0) or Surplus (Δ≥0). 190 

 (S8)                                            ∆ =
∆𝐟+ ∆𝐰

𝟐
=

𝟏

𝟐
(

𝐅𝐀−𝐇𝐄𝐑

𝐇𝐄𝐑
+

𝐆𝐖𝐀−𝐆𝐖𝐃𝐣

𝐆𝐖𝐃𝐣
) 191 

Cells in the domain have then been categorized into three macro groups (importers, exporters or none) 192 

according to the value of Δ. A value of ∆ ≥ 1 corresponded to food-importing cells in the main metropolitan 193 

areas; while a value of ∆ ≤ −2 was used to define exporting cells within the main food-provider departments32. 194 

Surplus of food (kcal/year) and water (m3/year) was then calculated for each exporting cell n, and then 195 

summed to obtain the total domestic surplus per year t and country j (Eq. S9-S11). Demand of food (kcal/year) 196 

and water (m3/year) is calculated for each importing cell m (Eq. S12-S14). Domestic surplus is redistributed 197 

per each importing cell proportionally to the demand in the cell, through a spatial weight matrix 𝑊̃ (Eq. S15-198 

S16). To keep into account trade, the imported surplus per each cell m was then summed to the food and 199 

water available in the same cell. The population density3 in exporting (Pnt) or importing (Pmt) cells is 200 

accounted, as it affects the redistribution of food and water, influencing both the demand and the surplus of 201 

food. 202 

 (S9)                                             𝐅𝐨𝐨𝐝 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐧𝐭 =  (𝐇𝐄𝐑 − 𝐅𝐀𝐧𝐭) ∗ 𝐏𝐧𝐭     203 

 (S10)                                             𝐆𝐖 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐧𝐭 =  (𝐆𝐖𝐃𝐣 − 𝐆𝐖𝐀𝐧𝐭) ∗ 𝐏𝐧𝐭   204 

 (S11)                                             𝐃𝐨𝐦𝐞𝐬𝐭𝐢𝐜 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐣𝐭 =  ∑ 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐧𝐭
𝐌
𝐧⊆𝐣      205 

 206 
 (S12)                                             𝐅𝐨𝐨𝐝 𝐃𝐞𝐦𝐚𝐧𝐝𝐦𝐭 =  (𝐅𝐀𝐦𝐭 − 𝐇𝐄𝐑) ∗ 𝐏𝐦𝐭     207 

 (S13)                                           𝐆𝐖 𝐃𝐞𝐦𝐚𝐧𝐝𝐦𝐭 =  (𝐆𝐖𝐀𝐦𝐭 − 𝐆𝐖𝐃𝐣) ∗ 𝐏𝐦𝐭   208 

 (S14)                                           𝐃𝐨𝐦𝐞𝐬𝐭𝐢𝐜 𝐃𝐞𝐦𝐚𝐧𝐝𝐣𝐭 =  ∑ 𝐃𝐞𝐦𝐚𝐧𝐝𝐦𝐭
𝐌
𝐦⊆𝐣      209 

 210 

 (S15)                                         𝐈𝐦𝐩𝐨𝐫𝐭𝐞𝐝 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐦𝐭 =  𝐃𝐨𝐦𝐞𝐬𝐭𝐢𝐜 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐣𝐭 ∗ 𝑾̃     211 

where weights of 𝑊̃are given by: 𝑤̃𝑚,𝑗,𝑡  |  ∑ 𝑤̃𝑚,𝑗,𝑡 = 1𝑀
𝑚  212 

 (S16)                                                       𝐰̃𝐦,𝐣,𝐭 =
𝐃𝐞𝐦𝐚𝐧𝐝𝐦𝐭

𝐃𝐨𝐦𝐞𝐬𝐭𝐢𝐜 𝐃𝐞𝐦𝐚𝐧𝐝𝐣𝐭
 213 

 214 
The gap between demand and imported surplus per each importing cell m was then calculated (Eq. S17) 215 
as ratio of the food demand and the imported surplus. 216 
 217 

 (S17)                                         𝐃𝐞𝐦𝐚𝐧𝐝 − 𝐒𝐮𝐫𝐩𝐥𝐮𝐬 𝐆𝐚𝐩𝐦𝐭 =
𝐃𝐞𝐦𝐚𝐧𝐝𝐦𝐭

𝐈𝐦𝐩𝐨𝐫𝐭𝐞𝐝 𝐒𝐮𝐫𝐩𝐥𝐮𝐬𝐦𝐭
     218 

 219 

 220 

  221 



 222 

S3. The Bayesian Zero-Inflated Poisson econometric model 223 

The econometric implementation 224 

Bayesian inference is selected to avoid overfitting as a result of the presence of several heterogeneous 225 

parameters36. An independent and efficient model design37,38 is adopted selecting a square grid with a spatial 226 

resolution of 20 km x 20 km and a temporal dimension of one year. To reduce heterogeneity and enable 227 

comparability, all the variables are normalized within their annual distribution. We selected a Zero-Inflated 228 

Poisson39 (ZIP) regression (Eq. S18) to model conflict count data characterized by excess of zeros. The ZIP 229 

model draws only-zero observations with probability θ, and observations from a Poisson (λ) distribution, with 230 

probability (1 – θ). Hence: 231 

 (S18)                                {
𝐏(𝐲 = 𝟎)  =  𝛉 + (𝟏 − 𝛉)𝐞−𝛌                                    

𝐏(𝐲 = 𝐤)  =  (𝟏 − 𝛉)𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝐤; 𝛌), 𝐤 = 𝟏, 𝟐, . .
 232 

 233 

The empirical hierarchical structure of θ and λ is reported in Eq.s S19-S20. The logarithm of the Poisson 234 

intensity parameter 𝜆 is a linear function of the covariates. The spatial autocorrelation was modelled via the 235 

Spatially Lagged Explanatory Variables X (SLX)40 specification in the intensity 𝜆, through exogenous spatial 236 

interaction effects among covariates, involving neighboring spatial units, namely spatial spillovers36.  237 

 (S19)                                           log 𝜆𝑖𝑡 = β0t + Xtβt +  𝐖Xtξt 238 

where 𝛽𝑘,𝑡~𝑁 (0, 𝜎𝛽𝑘,𝑡
) is the regression coefficient, accounting for direct spatial effects, related to the kth 239 

exogenous explanatory variable, for all k. Coefficient  ξ𝑘,𝑡~𝑁 (0, 𝜎ξ𝑘,𝑡
) is the spatial spillovers, associated with 240 

the spatially lagged explanatory variable 𝐖𝑋𝑘,𝑡. Matrix 𝐖 is the first-order contiguity matrix that has null 241 

elements 𝑤𝑖𝑗 = 0 on the principal diagonal and 𝑤𝑖𝑗 = 1 if cell i and cell j are neighbors. An informative uniform 242 

priori distribution for the hyperparameters 𝜎𝛽and 𝜎𝛏 is selected: 𝜎𝛽𝑘,𝑡
~ U(0,10), 𝜎𝛏𝑘,𝑡

~ U (0,10). 243 

The logistic probability distribution is defined through 𝜃 (probability mass in zero): 244 

 245 

 (S20)                                                  logit (θ𝑖𝑡) = γ0t + γtXt 246 

where  𝛾𝑘,𝑡~𝑁 (0, 𝜎𝛾𝑘,𝑡
) is the regression coefficient, accounting for direct effects, related to the kth exogenous 247 

explanatory variable 𝑋𝑘,𝑡, being 𝜎𝛾𝑘,𝑡
~ U(0,10). 248 

The statistical computations and graphics were performed with the R package41, and the models were coded 249 

in Stan42 . Stan uses Markov chain Monte Carlo (MCMC) techniques and the Gibbs sampling algorithm43 to 250 

generate samples from the posterior distribution for full Bayesian inference. For each model a simulation of 251 

one MCMC chain with 100,000 iterations, a burn-in of 50,000 iterations, and a thinning of 10 was performed. 252 

Therefore, the final sample is made up of 5,000 simulated values. The convergence diagnostics (Geweke 253 

test, traceplot, autocorrelation function), computed for all parameters of each model, indicated that 254 

convergence was achieved. A check of robustness was made varying the hyperparameters given by the 255 

variances; homogeneous results in terms of posteriori means and medians and Bayesian 90% credible 256 

intervals were obtained for each coefficient. 257 

  258 



Bayesian goodness-of-fit methods 259 

A Bayesian comparison of the models was performed by computing the logarithm of the pseudo-marginal 260 

likelihood (LPML), and the Bayesian percentage outliers with level 90% for every model. A good fit for the 261 

SLX implementation of the ZIP models was obtained, with a percentage of total Bayesian outliers per year 262 

<2% (Table S6). Results show that the SLX model specification generally led to good model fitting 263 

performance, confirming that SLX is the simplest econometric implementation to model flexibly spatial 264 

spillover36,44. LPML is defined in Eq. S19 as the sum of the logarithms of the Conditional Predictive Ordinates 265 

(CPO), and each CPOit is given by the value of the posterior-predictive density evaluated at the actual Yit, 266 

conditionally to the sample Yit not containing any data from cell i at year t. The larger the value of the CPO’s 267 

(and hence the larger the value of the LPML), the better the fit of the model. Last, Bayesian outliers with level 268 

90% occur when the real density Yit falls into one of the two 5% tails of the marginal posterior-predictive 269 

density. 270 

 (S21)                                                         𝐋𝐏𝐌𝐋𝐢 = ∑ 𝐥𝐨𝐠 𝐂𝐏𝐎𝐢𝐭
𝐧
𝐢=𝟏  271 

 272 

The CD model resulted with an average LPML over years of -1264.27, that is of two orders of magnitude 273 

lower than the other models, confirming that the CD model cannot be selected as best performing and 274 

explanatory model. Once the best models were determined, following Gelman et al. (1996)45, the fit to the 275 

data was evaluated through the chi-squared discrepancy measure. The analysis of discrepancy is a method 276 

of posterior predictive checks, in which the observed data are compared to data replicated. The discrepancy 277 

referred to the observed data D(y, θ) can be modelled through chi-square 𝑋2 statistic (Eq. S20) and compared 278 

to the discrepancy of the replicated data D(yrep, θ) to check if the model fits the observed data. The Bayesian 279 

p-value (PB) indicates the probability that the discrepancy referred to predictive sample D (yrep, θ), is more 280 

extreme than the observed measure D (y, θ). A p-value close to 0.50 represents adequate model fit. 281 

 (S22)                                                𝐗𝟐(𝐲; 𝛉) = ∑
(𝐲𝐢−𝐄(𝐲𝐢|𝛉))

𝟐

𝐕𝐚𝐫 (𝐲𝐢|𝛉)
𝐧
𝐢=𝟏  282 

 283 

Table S6. Bayesian 90% outliers for the computed CWF, CWFs and CWFt models. Bayesian outliers have been 284 
reported in per year and calculated as the percentage of observations that don’t fall in the 10% credibility interval of the 285 
posterior distribution. 286 

 287 

  288 

Model 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

CWF 0.7% 1.2% 0.7% 2.1% 1.9% 1.9% 1.7% 2.3% 1.9% 1.2%

CWFs 0.5% 0.9% 0.7% 1.6% 1.4% 1.9% 1.9% 1.6% 1.2% 0.9%

CWFt 0.7% 1.2% 0.7% 2.1% 2.1% 1.9% 2.1% 1.9% 1.6% 1.0%

Model 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

CWF 2.1% 0.5% 1.9% 0.5% 0.7% 1.2% 1.0% 1.0% 1.2% 1.9%

CWFs 1.7% 0.5% 1.2% 0.3% 0.3% 1.4% 0.7% 1.0% 1.6% 1.9%

CWFt 2.3% 0.5% 1.7% 0.5% 0.7% 1.2% 1.0% 1.2% 1.6% 2.3%



Supplementary Notes 289 

S4. Urban conflicts characterization 290 

High levels of violence and criminality in Central American cities are generated by youth street gangs who 291 

create territories within the settlements and engage in drug-taking and homicides46. Other types of violence 292 

are mainly transnational organized crime, domestic violence, drug trafficking and corruption47. Poverty and 293 

inequality have consistently been recognized as key variables behind high rates of crime47–49. Moreover, the 294 

economic globalization and the 1990s transition from authoritarian rule to democratic institution, 295 

accompanied by civil war, produced a social disruptive process of unemployment and migration, dynamics 296 

of translocation and segregation of urban spaces49,50. The rise of criminal economies around the transnational 297 

drug business, the state weakness, and the existence of a predominantly young population have also been 298 

pointed to as driving factors behind Central American violence46,47,49,51.  299 

From the literature we know that armed conflicts tend to cluster spatially in certain geographic areas52–55. On 300 

the other hand, cities, with their high population densities, behave as ‘pools’ of recruits56. Indeed, 301 

geographical proximity tends to enhance collective action of groups intended to exploit the state incapacity 302 

as reaction to alienation and segregation54. Moreover, a similar tendence to spatial aggregation of conflicts 303 

in urban contexts can be observed in all Central America countries. As suggested by some studies52,55,56 this 304 

might be the result of a process of violence diffusion occurring among confining countries with transnational 305 

ethnic linkages and similar characteristics that increase the risk of conflict, as country poverty and an 306 

autocratic regime. In our analysis, to study local trends of food security and conflicts (Fig.s S4-S7), we 307 

selected the peri-urban area4 (approximately 900 km2) surrounding the main urban centers that resembles 308 

the geographical extent of conflict clusters. Indeed, the urban dimension might include also peri-urban areas, 309 

as they contribute in shaping food security of the rural-urban food system4,57. It is plausible that urban conflicts 310 

associated to a phase of food insecurity develop with a certain delay - that is difficult to estimate due to the 311 

different seasonality of agricultural calendars and the endemic presence of violence in these countries - with 312 

respect to the emergence of food shortage conditions. We reasonably assume a time lag ranging from few 313 

months to one year. For consistency, we have also tested other lags. The Social Conflict Analysis Database 314 

(SCAD)2 collects information on protests, riots, strikes, and other social disturbances, in Africa, Latin 315 

American and the Caribbean, from 1990 to 2017. The dataset provides detailed information for each event, 316 

such as, the location, the date, the issues, duration, escalation, etc., for each event also a brief description 317 

of the incident is provided. In our analysis we classified conflict events accondirngly to the first issue 318 

mentioned as source of the tension/disorder. We considered seven typologies of conflict event, summarizing 319 

the information provided in the dataset: discrimination (that includes ethnic and religious discrimination), 320 

economy (economy, job and subsistence, economic resources), violence (domestic war, violence, terrorism), 321 

internal policy (elections, pro-government), foreign affairs, human rights, environment (environmental 322 

degradation). In Fig S8 the urban conflicts occurred from 1996 to 2016 in the main cities are reported for 323 

each typology as percentage of the total number of events occurred. The majority depend on issues related 324 

to violence (39%), economy (20%) and internal policy (20%). Environmental degradation (1%) and 325 

discrimination (3%) causes are less relevant, even if they can be hidden by other more prominent issues 326 

(such as economy and politics). 327 
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Figure S4: Food security trends and conflict occurrences. The reference area is the urban, peri-urban zone 329 
surrounding the capital city of San Salvador, in El Salvador. The temporal scale refers to conflict occurrence (year t), 330 
while food availability oscillations have been reported with a temporal delay of six months. Most intense food security 331 
falls have been related to the evidence of the ‘canicula’. It becomes visible when comparing the precipitation pattern of 332 
a specific drought year to the average precipitation rates of the historical series. Rain trends have been reported both 333 
for the same area of conflicts occurrence (a) and the related food-suppliers (b), (c). 334 
 335 

 336 

 337 

 338 

 339 

 340 
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Figure S5: Food security trends and conflict occurrences. They refer to the urban and peri-urban area 342 
surrounding Guatemala City. Food security drops can be related to the evidence of the ‘canicula’, which have been 343 
assessed by comparing the precipitation pattern of the specific year to the average precipitation rates of the historical 344 
series for the reference areas of conflict occurrence (a) and food-supplier departments (b), (c). 345 

 346 
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Figure S6: Food security trends and conflict occurrences. They refer to the urban and peri-urban area 348 
surrounding the capital city of Honduras, Tegucigalpa. Food security drops can be related to the evidence of the 349 
‘canicula’, which have been assessed by comparing the precipitation pattern of the specific year to the average 350 
precipitation rates of the historical series for the reference areas of conflict occurrence (a) and food-supplier 351 
department (b).  352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 
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Figure S7: Food security trends and nature of conflicts. They refer to the urban and peri-urban area surrounding 365 
the three capital cities of Honduras (a), Guatemala (b) and El Salvador (c). Seven types of conflict issue have been 366 
identified basing on the classification and the event description provided by SCAD (2). 367 

 368 
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Figure S8: The seven typologies of conflicts. The total number of conflicts has been represented with a subdivision 370 
into seven classes related the issue/nature of the events. The conflicts occurrences are reported in the pie chart as 371 
percentage of the total conflicts observed in the three cities between 1996 and 2016. Those classes have been 372 
identified thanks to dataset information and description provided by SCAD2. 373 

 374 

 375 

 376 

S5. The major drought events and the Conflict-Drought (CD) model 377 

In Fig.s S9-S11, results in terms of Bayesian credibility intervals for the CD model are reported. In Fig. S9, 378 

it is evident that, in most of cases, the effects of a drought are perceived with a certain delay, that may vary 379 

according to the event characteristics (severity, impact and duration) and geographic localization. The 380 

temporal influence of the impacts of each event was defined as the double of the real duration of the event. 381 

Immediate influence has resulted for the events occurred in 1997 and 1998. Especially the drought 382 

occurred in 1998 is related to one of the most intense El-Niño events globally registered; in Central America 383 

it was associated with severe wildfire spreading through Mexico, Guatemala, Nicaragua, Honduras, El 384 

Salvador and Costa Rica and it is responsible of burning around 2 million of hectares of land. In the 385 

beginning of 1998, the livestock subsector suffered major damage due to the reduced availability of pasture 386 

areas8. Delayed effects can be observed for droughts in 2000 and 2001 for the subsequent few years. 387 

Drought events in 2000-2001, even if not related to the El Niño phenomenon, represents the most 388 

important recent drought in terms of the severity of its impacts. This event caused food insecurity and 389 

hunger for between 600 thousand and 1.5 million people affected by hunger and food insecurity58. 390 

Particularly severe were the consequences perceived in Honduras, where huge losses interested the 391 

industrial sector, behind the agricultural: 542 million US dollars, equivalent to 36% of regional losses. 392 

Moreover 1.8 million people suffered from lack of potable water. In 2009 and 2014 relevantly intense events 393 

were registered in all the region. Nutrition, basic agriculture and employment sectors resulted affected in 394 

the three countries. Bean, sorghum, corn, and cassava production decreased by more than 50% and 395 

25.6% of households reported job losses due to drought8. Effects were perceived both immediately and 396 

delayed (the temporal influence of 2014 event was limited by the data availability). Drought events occurred 397 

in the years 2002, 2004, 2012 interested mainly Honduras, their impact resulted to influence conflicts 398 

uniformly throughout their entire duration of perception. 399 
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Figure S9: 90% Bayesian credible intervals of direct effects of the Poisson intensity λ, under Droughts-Conflict 401 
Nexus (DC) Model. Credible intervals are shown for time-lagged drought’s intensity covariate and are drowned from a 402 
sample of 5,000 posterior simulated values. Solid blue circles denote the posterior medians, red cross points denote 403 
posterior means. 404 

 405 
 406 
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Figure S10: 90% Bayesian credible interval of the direct effect of population density on the Poisson intensity λ, 408 
under Droughts-Conflict Nexus (DC) Model. Solid blue circles denote the posterior medians, red cross points denote 409 
posterior means. Bayesian credible intervals are drowned from a sample of 5,000 posterior simulated values. 410 
 411 

 412 

Figure S11: 90% Bayesian credible intervals of the direct effects of population density and Human Development 413 
Index on the point mass zero θ, under Droughts-Conflict Nexus (DC) Model. Solid blue circles denote the posterior 414 
medians, red cross points denote posterior means. Bayesian credible intervals are drowned from a sample of 5,000 415 
posterior simulated values. 416 
 417 

 418 

 419 

  420 



Additional Supplementary Figures and Tables 421 

Figure S12: Country average diet pattern in Central America. Source: FAO food balance sheets54. 422 

 423 
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Annual Precipitation patterns per department  425 

 426 

Figure S13: Annual precipitation patterns in Guatemala. The rain rates referred to a certain department have been 427 
plotted per year and compared to the average annual rate of the historical series (1996-2016). The plots refer to the 428 
same area of conflicts occurrence (red) and to the food trade-connected areas (blue). 429 

 (a) Guatemala department 430 

 431 
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 (b) Jutiapa department 433 

 434 

  435 



 (c) Retalhuleu department 436 

 437 
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Figure S14: Annual precipitation patterns in Honduras.  439 

 (a) Francisco Morazán department 440 

 441 
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 (b) Olancho department 443 

 444 

 445 
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Figure S15: Annual precipitation patterns in El Salvador. 447 

 (a) San Salvador department 448 

 449 
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 (b) La Paz department 451 

 452 
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 (c) Chalatenango department 454 

 455 
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Bayesian credible intervals for the CWF, CWFt models 457 
 458 
Figure S16. 90% Bayesian credible intervals of the direct effects of population density, green water availability, 459 
food availability, and food access on λ, under the CWF Model. Solid blue circles denote the posterior medians, red 460 
cross points denote posterior means. Bayesian credible intervals are drowned from a sample of 5,000 posterior 461 
simulated values. 462 
 463 

 464 
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Figure S17. 90% Bayesian credible intervals of spatial spillover effects of spatial-lagged population density, 466 
green water availability, food availability and food access on the Poisson intensity λ, under the CWF Model. 467 
Solid blue circles denote the posterior medians, red cross points denote posterior means. Bayesian credible intervals 468 
are drowned from a sample of 5,000 posterior simulated values. 469 
 470 
 471 
 472 

 473 
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Figure S18. 90% Bayesian credible intervals for the direct effects of population density, Human Development 475 
Index, green water availability, food availability and food access on the point mass zero θ under the CWF Model. 476 
Solid blue circles denote the posterior medians, red cross points denote posterior means. Bayesian credible intervals 477 
are drowned from a sample of 5,000 posterior simulated values. 478 
 479 
 480 

 481 

  482 



Figure S19. 90% Bayesian credible intervals of direct effects of population density, green water availability 483 
(+virtual water trade), food availability (+trade) and food access on λ, under the baseline CWFt Model. Solid blue 484 
circles denote the posterior medians, red cross points denote posterior means. Bayesian credible intervals are drowned 485 
from a sample of 5,000 posterior simulated values. 486 
 487 
 488 

 489 
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Figure S20. 90% Bayesian credible intervals of spatial spillover effects of spatially lagged population density, 491 
green water availability (+virtual water trade), food availability (+trade) and food access on λ, under the baseline 492 
CWFt Model. Solid blue circles denote the posterior medians, red cross points denote posterior means. Bayesian 493 
credible intervals are drowned from a sample of 5,000 posterior simulated values. 494 
 495 
 496 
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Figure S21. 90% Bayesian credible intervals of the direct effects of population density, Human Development 498 
Index green water availability (+virtual water trade), food availability (+trade) and food access on the point mass 499 
zero θ under the CWFt Model. Solid blue circles denote the posterior medians, red cross points denote posterior 500 
means. Bayesian credible intervals are drowned considering a sample of 5,000 posterior simulated values. 501 
 502 
 503 

 504 
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Figure S22. 90% Bayesian credible intervals of the direct effects of population density, Human Development 506 
Index green water availability, food availability and demand-surplus gap on the point mass zero θ under the 507 
CWFs Model. Solid blue circles denote the posterior medians, red cross points denote posterior means. Bayesian 508 
credible intervals are drowned from a sample of 5,000 posterior simulated values. 509 

 510 
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The model goodness-of-fit 512 
 513 
Table S7. Bayesian p-value (PB) for the computed CWF, CWFs and CWFt models. PB indicates the probability 514 
that the predictive distribution takes a more extreme value than the observed distribution. 515 

 516 

 517 

Table S8: Means of the Logarithm of Pseudo-Marginal Likelihood (LPML) for the CWF, CWFs and CWFt 518 
models per year from 1996 until 2016. LPML is an indicator of model performance. The higher the LPML 519 
values (less negative), the better the model fit.  520 

 521 

  522 

Model 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

CWF 0.280 0.476 0.287 0.240 0.157 0.190 0.393 0.113 0.185 0.128

CWFs 0.256 0.533 0.233 0.219 0.249 0.316 0.247 0.276 0.307 0.404

CWFt 0.630 0.682 0.338 0.441 0.460 0.576 0.571 0.647 0.643 0.734

Model 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

CWF 0.381 0.235 0.051 0.129 0.235 0.276 0.164 0.334 0.112 0.296

CWFs 0.250 0.218 0.246 0.245 0.242 0.475 0.352 0.200 0.291 0.261

CWFt 0.574 0.449 0.664 0.600 0.436 0.566 0.638 0.478 0.563 0.517

Model 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

CWF -39.499 -59.969 -45.945 -75.599 -76.044 -80.717 -80.501 -78.035 -68.534 -49.756

CWFs -35.617 -54.295 -43.656 -73.615 -72.233 -79.907 -78.454 -75.150 -64.806 -46.312

CWFt -40.218 -60.090 -46.437 -76.940 -76.928 -81.587 -81.581 -80.365 -69.544 -51.014

Model 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

CWF -82.390 -36.476 -71.022 -34.815 -43.172 -75.539 -55.786 -54.670 -92.857 -102.232

CWFs -78.226 -33.512 -66.646 -30.914 -38.949 -70.737 -50.848 -50.294 -86.865 -99.227

CWFt -83.670 -36.116 -73.381 -37.642 -43.075 -75.869 -59.238 -54.299 -95.265 -102.438



 523 

Figure S23. Comparison between the observed and simulated values of conflicts, under the CWF model. The 524 
histograms refer to the observed number of conflicts per year (grey) and the median posterior densities (red) are 525 
reported for the simulated values. 526 
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Figure S24. Comparison between the observed and simulated values of conflicts, under the CWFt model. The 528 
histograms refer to the observed number of conflicts per year (grey) and the median posterior densities (red) are 529 
reported for the simulated values. 530 

 531 



Figure S25. Comparison between the observed and simulated values of conflicts, under the CWFs model. The 532 
histograms refer to the observed number of conflicts per year (grey) and the median posterior densities (red) are 533 
reported for the simulated values. 534 

 535 

536 



Figure S26: Comparison between observed (Y) and simulated (Y sim) conflicts occurrences per year, in the 537 
spatial domain discretized over the square grid of 20 km x 20 km, under the CWFs model. 538 

a) Period: 1997 - 2001 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 



 548 

b) Period: 2002 - 2006549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 
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c) Period: 2007 - 2011559 

 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
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d) Period: 2012 - 2016 577 

 578 
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 580 

Agricultural production and food security trends per department 581 

Figure S27. Yearly agricultural production and food security trends for the studied period (1996-2016), in 582 
Honduras. Trends refer to the urban, peri-urban area surrounding Tegucigalpa city (a) and the food-supplier 583 
department of Olancho (b). Yearly agricultural production is reported (in tons) for the main staple (maize, pulses) and 584 
cash crops (coffee, sugarcane), and compared to the average annual production. Basing of them, respectively the first 585 
and second pillars of food security (i.e., food availability and access) have been calculated (in kcal/cap/year). The total 586 
food supply due to the local production is the sum of these two contributions. Internal trade determines incoming food 587 
fluxes in the Francisco Morazán department, and corresponding outflows from the food supplier department of 588 
Olancho, determining food security oscillation within the HER thresholds in the capital city of Tegucigalpa. 589 

a) Tegucigalpa (Francisco Morazán department) 590 

 591 

 592 

 593 
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b) Olancho department 595 

 596 
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Figure S28. Yearly agricultural production and food security trends, in Guatemala. They refer to Guatemala City 598 
urban area (a) and the exporter departments of Jutiapa (b) and Retalhuleu (c), for the time period studied (1996-599 
2016). Yearly agricultural production is reported (in tons) for the main staple (maize, pulses) and cash crops (coffee, 600 
sugar cane) cultivated in the region, and compared to the average annual production. They have been used to 601 
calculate the first and second pillars of food security, namely food availability and the food access (kcal/cap/year). The 602 
total food available locally has been evaluated as the sum of the two contributions deriving from the local production, a 603 
comparison has been made with the total food also supplied by internal trade. Food security has been represented in 604 
comparison to the HER thresholds. 605 

a) Guatemala City 606 

 607 
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b) Jutiapa department 609 

 610 
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c) Retalhuleu department 612 

 613 
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Figure S29. Yearly agricultural production and food security trends, in El Salvador. They refer to San Salvador 615 
urban area (a) and the exporter departments of Chalatenango (b) and La Paz (c), for the time period studied (1996-616 
2016). Yearly agricultural production is reported (in tons) for the main staple (maize, pulses) and cash crops (coffee, 617 
sugar cane) cultivated in the region, and compared to the average annual production. They have been used to 618 
calculate the first and second pillars of food security, namely food availability and the food access (kcal/cap/year). The 619 
total food available locally has been evaluated as the sum of the two contributions deriving from the local production, a 620 
comparison has been made with the total food also supplied by internal trade. Food security has been represented in 621 
comparison to the HER thresholds. 622 
 623 

a) San Salvador 624 

 625 
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b) Chalatenango department 627 

 628 
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c) La Paz department 630 
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Figure S30: Green Water Availability trends and conflict occurrences in San Salvador. Temporal trends of both 633 
Local GWA (light green), and GWA + virtual-water Trade (dark green) have been reported. The reference area is the 634 
urban, peri-urban zone surrounding the capital city of San Salvador, in El Salvador. The temporal scale refers to 635 
conflict occurrence (year t), while GWA oscillations have been reported with a temporal delay of six months. 636 
 637 
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Figure S31: Green Water Availability trends and conflict occurrences in Guatemala City. Temporal trends of 640 
both Local GWA (light green), and GWA + virtual-water Trade (dark green) have been reported. The reference area is 641 
the urban, peri-urban zone surrounding the capital city of Guatemala City, in Guatemala. The temporal scale refers to 642 
conflict occurrence (year t), while GWA oscillations have been reported with a temporal delay of six months. 643 
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Figure S32: Green Water Availability trends and conflict occurrences in Tegucigalpa. Temporal trends of both 646 
Local GWA (light green), and GWA + virtual-water Trade (dark green) have been reported. The reference area is the 647 
urban, peri-urban zone surrounding the capital city of Tegucigalpa, in Honduras. The temporal scale refers to conflict 648 
occurrence (year t), while GWA oscillations have been reported with a temporal delay of six months. 649 
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