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A B S T R A C T

We propose an adaptive curved virtual element method (ACVEM) which is able to combine an exact represen-
tation of the involved computational geometry and a dynamic tuning of the optimal mesh resolution through
a robust and efficient residual-based a-posteriori error estimator. A theoretical analysis on the reliability of the
estimator and a gallery of numerical tests supports the efficacy of the proposed approach. The ACVEM is com-
bined with Monte Carlo simulations, and a methodology is developed to determine homogenized material moduli
and representative unit cell size of random long-fibre reinforced composites in the framework of antiplane shear
deformation. Accuracy and computational efficiency of the proposed homogenization procedure is confirmed by
numerical examples.

1. Introduction

Composite materials are extensively used materials in many engi-
neering applications due to their interesting properties, as, for instance,
high strength-to-weight ratio and tunable features of the constituents.
Use of such complex materials requires accurate yet computationally
efficient methods of analysis of their mechanical response.

In reference to the scope of the present communication which
focuses on fibre reinforced composite materials, a large number of analy-
sis methods have been devised seeking to approximate composite struc-
tural mechanics by analyzing a representative (smaller) part of the com-
posite microstructure, commonly called a Representative Volume Ele-
ment (RVE) or Representative Unit Cell (RUC) [1,2]. They all are based
on scale decoupling leading to analyses at the local and global levels
and, with some differences, apply either to doubly periodic arrange-
ments of fibres (doubly periodic composites) or random distributions
of inclusions (random composites) within a matrix medium. The local
level analysis models the microstructural details to determine effective
elastic properties. The composite structure is then replaced by an equiv-
alent homogeneous material having the calculated effective properties.
Such a process of calculating effective properties is usually termed mate-
rial homogenization [3] and has led to massive interest in the scientific
community since the early 70s [3–11].
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In this regard, a significantly studied method for solving the micro
scale problem is represented by asymptotic homogenization which can
lead, in selected cases, such as linear elastic material response and
periodic arrangement of the inclusions, to closed form solutions of the
homogenization problem. Despite asymptotic homogenization or other
methods are used to solve the small scale problem, in a wide variety of
situations homogenization requires an approximate numerical solution
of the relevant homogenized field equation [12–14]; such is the case
of composite materials whose constituents exhibit complex constitutive
behavior [15–20]. Another typical case requiring a numerical approx-
imation is that of composites with inclusions having random size and
shape, as well as random space distribution within the host medium. In
the latter case, the assessment of homogenized quantities will require in
general a twofold procedure: on the one hand, a numerical approach for
the solution of the field equation under investigation and computation
of relevant homogenized properties, and, on the other hand, a statisti-
cal evaluation of such quantities by some sort of averaging procedure
over a sufficiently large set of random realizations. An efficient statis-
tical homogenization procedure of random composite materials hence
requires high accuracy level of the numerical solution of the field equa-
tion for each realization, in order to converge rapidly, as pointed out,
for instance, by Kanit and Forest in their pioneering work, where a par-
allelized computational procedure is presented to tackle these critical
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issues [21]. The finite element method is undoubtedly the most utilized
method to solve the field equation [22–27].

In the previously outlined framework, major problems involved in
the micro scale computational modeling are: i) meshing curved objects
i.e. fibre/matrix interfaces within a random-generated domain which
can present geometrical difficulties or singularities (i.e. nearly touch-
ing objects); ii) efficient domain discretization for any realization and
any given loading condition; iii) high computational cost due to a large
number of realizations needed in a statistical homogenization process
for it to accurately reach convergence.

Recently, the Virtual Element Method (VEM) has been proposed
and shown to be a very efficient alternative to the standard finite ele-
ment method [28,29]. It represents a generalization of the FE method
with the capability of dealing with very general polygonal/polyhedral
meshes. The VEM has already been successfully adopted to solve linear
elasticity problems [30–32], as well as in conjunction with topology
optimization and with complex material nonlinearity such as plastic-
ity, viscoelasticity, damage and shape memory problems, see, e.g. Ref.
[33–39] for a short representative list of related works. In the frame-
work of computational homogenization, a VEM based procedure has
been proposed in Ref. [20], for evaluating the antiplane shear homog-
enized material moduli of a doubly periodic composite material rein-
forced by cylindrical inclusions, more recently a study of particle-based
composites via VEM has been presented in Refs. [18,19], adopting
polygonal meshes for the matrix and a single element for the inclusions.
An investigation on the capability and advantages of the VEM technique
in solving the micromechanical and homogenization problem for peri-
odic composites characterized by linear mechanical response has been
performed in Ref. [40].

The aim of this communication is to develop a VEM based proce-
dure for the antiplane shear homogenization problem which tackles and
solves the above mentioned issues inherent to a numerical approach for
the micromechanical problem, by making use of specific features of the
virtual technology, namely the possibility of using curvilinear polygo-
nal elements [41,42] (thus avoiding geometry discretization errors at
fibre/matrix interface) and of using adaptive mesh refinement in order
to get large scale analysis on several domain realizations with a reduced
computational cost by tuning the mesh discretization through an ad-hoc
a posteriori error estimator for the specific micromechanical problem
under consideration. In particular, VEM elements characterized by lin-
ear and higher order polynomial approximation are proposed. Homoge-
neous and functionally graded constitutive laws are considered for the
fibre constituents of the composite. Numerical applications are devel-
oped to assess the effectiveness of the proposed VEM elements by mak-
ing several comparisons with results obtained adopting available more
established techniques showing the advantages of the newly proposed
methodology with respect to standard mesh generation and uniform
refinement techniques.

The paper is organized as follows. In Section 2 the asymptotic
homogenization problem under investigation is sketched for the case
of long fibre composites. In Section 3 the curvilinear VEM formulation
is described. Section 4 illustrates an a posteriori error estimator for the
model under investigation together with its theoretical assessment and
inherent adaptive mesh refinement capability. Section 5 presents a large
class of numerical tests validating the curvilinear VEM and proving the
effectiveness of the proposed method as a tool for the computational
homogenization of random fibre reinforced materials. Finally, conclu-
sive remarks are given in Section 6.

2. Asymptotic homogenization of random fibre-reinforced
composite

We consider a composite material, reinforced with long, parallel
fibres, randomly distributed in the material with a statistically homo-
geneous microstructure. Fibres have circular cross section and the same
radius.

Fig. 1. A stochastic realization of a parallelogram shaped repeating unit cell
(RUC) of the composite with volume fraction f = 0.2 and three circular fibres.
Geometrical parameters and fibre frame reference.

At the microscale, the cross section of the composite consists of a
doubly-periodic arrangement of repeating unit cells (RUC). Geometry-
wise a RUC is a parallelogram, with sides L1, L2, and angle 𝜙, containing
the centres of F fibres, denoted by Cj, with radii Rj, j = 1… F, as
represented in Fig. 1. In the following, we will denote fj = 𝜋R2

j ∕|D| as

the volume fraction of the jth fibre, and f = ∑F
j=1 fj as the total volume

fraction.
In this treatment, reference will be made to effective in-plane elastic

shear moduli, computed applying asymptotic homogenization. Hence,
a family of equilibrium boundary value problems, indexed by a param-
eter 𝜺, for the longitudinal (i.e. orthogonal to fibre cross section plane)
displacement field w𝜺, is considered on the composite domain:

div(G∇w𝜺) = 0 in ∪jΩ
f
j𝜺 ∪ Ωm

𝜺
; (1)

[[G∇w𝜺 · 𝝂]] = 0 on∪jΓj𝜺 ; (2)

G∇w𝜺 · 𝝂 = 1
𝜺

Dj[[w𝜺]] on∪jΓj𝜺 . (3)

where ∪jΩ
f
j𝜺 and Ωm

𝜺
denote fibres and matrix domains respectively,

∪jΓj𝜺 is the set formed by fibre/matrix interfaces, 𝝂 is unit vector nor-
mal to ∪jΓj𝜺 pointing into Ωm

𝜺
, and square brackets [[·]] denote jump

across the interface, defined as extra-fibre value minus intra-fibre value.
In the above, the parameter 𝜺 scales the microstructure, such that
𝜺 = 1 refers to the real composite material under consideration, and
the homogenization limit is obtained by sending 𝜺 to zero.

Equation (1) is the field equilibrium equation; Eq. (3) represents
equilibrium at the fibre/matrix interface requiring continuity of the
normal-to-interface component of the shear stress; Eq. (2) is the inter-
face constitutive law.

Assuming linear elastic fibres and matrix, the relative shear moduli
are given by the constitutive tensor G, which respectively reads:

G = Gf
j in Ωf

j𝜺 j = 1… F (4)

G = Gm in Ωm
𝜺
. (5)

Fibres are made of a linear elastic material with cylindrical orthotropy,
their material moduli are graded along the radius, such that, setting a
polar coordinate system (Cj, rj, 𝜃j) for each fibre, it results:

Gf
j = (Gr

j e
r
j ⊗ er

j + G𝜃
j e𝜃j ⊗ e𝜃j )gj(𝜌j), (6)

where 𝜌j = rj∕Rj, gj(𝜌j) is the grading function, and (er
j , e

𝜃
j ) are the

radial and tangential unit vectors, respectively. The matrix material is
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homogeneous and isotropic, so that Gm = GmI, with I the second order
identity tensor and Gm the matrix shear modulus.

Zero-thickness imperfect fibre/matrix interfaces are assumed
according to the classical linear spring-layer model [11,43,44]. As can
be deduced by Eq. (2), a linear elastic relation for the displacement
jump [[w𝜺]] and the interface normal traction G∇w𝜺 · 𝝂 is assumed
through the parameter Dj, with the factor 𝜺−1 granting the right scaling
in the homogenization limit [11].

In order to guarantee the well posedness of the above problem, the
following limitations hold true:

Gm > 0 Gr
j > 0 G𝜃

j > 0 Dj > 0 gj(𝜌j) > 0 in (0,1]

j = 1… F. (7)

2.1. Homogenized equilibrium equation

The asymptotic homogenization method is employed to derive the
homogenized or effective constitutive tensor of the composite material.
Two different length scales characterize the problem under considera-
tion. Hence, two different space variables are introduced: the macro-
scopic one, x, and the microscopic one, y = x∕𝜺, y ∈ D, being D the
RUC (see Fig. 1), whose extra-fibre space, intra-fibre space and fibre-
matrix interface are denoted by Dm, Df

j and Γj, for j = 1… F, respec-
tively. An asymptotic expansion of the unknown displacement field is
considered in the form:

w𝜺(x, y) = w0(x, y) + 𝜺w1(x, y) + 𝜺
2w2(x, y) +… , (8)

where w0, w1, w2 are D-periodic functions in y, and w1, w2 have null
integral average over D. Substituting (8) into Problem (1)–(2) and
equating the power-like terms of 𝜺, three differential problems for w0,
w1 and w2 are obtained, respectively, which, following a standard argu-
ment [6,9], yield the homogenized equation for the macroscopic dis-
placement w0:

divx(G#∇xw0) = 0. (9)

Here ∇xw0 is the macroscopic shear strain, and

G# = 1|D|∫D
G
(

I −∇t
y𝝌

)
da (10)

is the effective constitutive tensor, where the superscript t denotes the
transpose, da is the area element of D, | · | is the Lebesgue measure,
and the vector-valued cell function 𝝌 (y) has been introduced. Its com-
ponents 𝜒 s, s = 1,2, are the unique, null average, D-periodic solutions
of the cell problem:

divy[G(∇y𝜒s − es)] = 0 in Df ∪ Dm ; (11)

[[G(∇y𝜒s − es) · 𝝂]] = 0 on∪jΓj ; (12)

G(∇y𝜒s − es) · 𝝂 = Dj[[𝜒s]] on∪jΓj (13)

where es is the unit vector parallel to the ys axis.
Using the Gauss-Green Lemma and introducing the auxiliary cell

function:

𝝌(y1, y2) = 𝝌 (y1, y2) − (y1e1 + y2e2), (14)

Eq. (10) is transformed into:

G# = Gm + 1|D|
F∑

j=1
∫Df

j

(divyGf)⊗ 𝝌 da + 1|D|
F∑

j=1
∫Γj

[[G𝝂 ⊗ 𝝌 ]]dl, (15)

where dl is the line element of Γj. Equation (15) yields the effective
shear moduli of the composite material in terms of the solution 𝝌 of
the cell problem.

3. C0 curved virtual element method

A weak formulation for the cell problem (11)-(13) is provided by
the virtual work principle:

⎧⎪⎨⎪⎩
Find χ̃s ∈ Ṽ such that

a(𝜒s, 𝛿𝜒s) = 0 ∀ 𝛿𝜒s ∈ V, s = 1,2
(16)

where Ṽ ≔ H1
sp(D) is the space of the admissible auxiliary cell functions

𝝌 which are shift D-periodic, i.e. such that the associated 𝜒 s(y1, y2)
function (that is, the corresponding component s of the vector field in
(14)) satisfies

𝜒s(y1 + L1, y2) = 𝜒s(y1, y2) = 𝜒s(y1 + L2 cos𝜙, y2 + L2 sin𝜙). (17)

More precisely (s ∈ {1,2})

Ṽ ={𝜒 ∈ L2(D) such that 𝜒 ∣Df
j
∈ H1(Df

j) for j = 1,2,‥, F,

𝜒 ∣Dm ∈ H1(Dm), 𝜒(y1, y2) + ys satisfies (17)}.

Note that, due to the last condition, the space Ṽ depends on s ∈ {1,2},
but we prefer to avoid expliciting such dependence in the notation. We
denote by V the space of the admissible D-periodic variations of Ṽ. The
bilinear form characterizing the variational formulation is:

a(𝜒 s, 𝛿𝜒s) = −∫D
divy[G(∇y𝜒 s)] 𝛿𝜒s dx (18)

which, exploiting Gauss-Green lemma, considering constitutive equa-
tion (13) and that unit normal vectors to ∂Dm on opposite sides of the
unit cell are opposite, becomes:

a(𝜒 s, 𝛿𝜒s) =∫Dm
∇y𝛿𝜒s · Gm(∇y𝜒s)dx +

F∑
j=1

∫Df
j

∇y𝛿𝜒s · Gf
j(∇y𝜒s)dx

+
F∑

j=1
∫Γj

[[𝛿𝜒s]]Dj [[𝜒 s]] dl.

(19)

In more compact notation, one can also write

a(𝜒 s, 𝛿𝜒s) = ∫D
∇y𝛿𝜒s · G(∇y𝜒s)dx +

F∑
j=1

∫Γj

[[𝛿𝜒s]]Dj [[𝜒 s]] dl. (20)

The form a(·, ·) is symmetric, continuous and coercive on Ṽ, so that
problem (16) is well posed.

3.1. The virtual element space

Aiming at a virtual element discretization of problem (16) with
curved edges, we follow the same lines of [41]. Let  h be a simple polyg-
onal mesh on D, i.e. any decomposition of D in a finite set of simple poly-
gons E, without holes and with boundary given by a finite number of
edges. Whenever an element has an edge lying on an interface Γj, such
edge is then allowed to be curved in order to describe exactly the geom-
etry of the problem. We assume that each interface Γj is parametrized
by an invertible C1 mapping 𝛾 j from an interval in the real line into Γj.
It is not restrictive to assume that each curved edge is a subset of only
one Γj and therefore regular. In order to simplify the notation in the
following we sometimes drop the index j, simply use Γ and

𝜸 ∶ [0, L] ⟹ Γ

to indicate a generic curved part of the fibre/matrix interface and its
associated parametrization.

In the following we will denote with e a generic edge of the mesh
and with 𝜈 a generic vertex. As usual the symbol h will be associated to
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the diameter of objects, for instance hE will denote the diameter of the
element E and he the (curvilinear) length of the edge e. An h without
indexes denotes as usual the maximum mesh element size.

3.2. The virtual space

In the present section we briefly review the space proposed in Ref.
[41], that we will use for the discretization of the problem. As usual,
we define the space element by element. Let therefore E ∈  h. Note
that E may have some curved edge, laying on some curved interface
Γj (j ∈ {1,2,‥, F}). For any of such curved edges e, let 𝜸e ∶ [a, b] → e
denote the restriction of the parametrization describing Γj to the edge
e. Then we indicate the space of mapped polynomials (living on e) as

̃ k(e) = {p ∘ 𝜸−1
e ∶ p ∈  k[a, b]}.

The local virtual element space on E is then defined as

Vh(E) ={v ∈ H1(E) ∩ C0(E) ∶ v ∣e ∈  k(e) if e is straight,

v ∣e ∈ ̃ k(e) if e is curved,−Δv ∈  k−2(E)}.
(21)

The associated degrees of freedom are (see Ref. [41] for the simple
Proof).

• pointwise evaluation at each vertex of E;
• pointwise evaluation at k − 1 distinct points for each edge of E;
• moments ∫ Evpk−2 for all pk−2 ∈  k−2(E).

As usual, the global space is obtained by a standard gluing procedure

Ṽh = {v ∈ Ṽ ∶ v ∣E ∈ Vh(E) ∀E ∈  h},

and the same holds for the corresponding space of discrete variations

Vh = {v ∈ V ∶ v ∣E ∈ Vh(E) ∀E ∈  h}.

The global degrees of freeedom are the obvious extension of the
local ones. Note that on the edges of the mesh the degrees of freedom
are standard Lagrange type interpolation points. Therefore, handling
the discontinuities across interfaces and the periodic boundary condi-
tions in the definition of H1

sp(D) is done exactly as in standard finite
elements.

3.3. Discretization of the problem

The discretization of the problem is a combination of the scheme
proposed in Ref. [20] for the case with standard straight edges and
the curved-edge technology introduced in Ref. [41] for a model linear
diffusion problem.

We start by introducing the following projection operator that is
used to compute, on each mesh element E, an approximated gradient
operator. Let [ k−1(E)]2 denote the set of polynomial vector fields of
degree k − 1 living on E. Given E ∈  h and any vh ∈ Vh(E), the opera-
tor Π ∶ Vh(E) → [ k−1(E)]2 is defined by

⎧⎪⎨⎪⎩
Π(vh) ∈ [ k−1(E)]2

∫E
Π(vh) · pk−1 = ∫E

∇(vh) · pk−1 ∀pk−1 ∈ [ k−1(E)]2,

where ∇(vh) denotes as usual the gradient of vh (we dropped the y to
simplify the notation). By definition, Π(vh) is the L2 projection of ∇vh
on [ k−1(E)]2. Note that the above operator is computable. Indeed an
integration by parts shows that

∫E
∇vh · pk−1 = −∫E

vh(div pk−1) + ∫𝜕E
vh(pk−1nE).

The first term on the right hand side can be computed noting that
divpk−1 is a polynomial of degree k − 2 and using the internal degrees
of freedom values of vh. The second term on the right hand side can
be computed since we have complete knowledge of vh on the boundary

of E. Note that all these computations clearly require the integration of
known functions on a curved element and a curved boundary; those can
be accomplished as shown for instance in Ref. [41,45,46].

We can now describe the proposed numerical method. We start
by defining the local discrete counterpart of the first bilinear form
appearing in the right hand side of (20). Let E ∈  h. We define for
all vh,wh ∈ Vh(E) the local discrete bilinear form as

aE
h(vh,wh) = ∫E

Πwh · G(Πvh) dx + sE((I − 𝜋)vh, (I − 𝜋)wh) (22)

where the first term is a direct approximation of ∫ E∇wh · G(∇vh) by
substituting ∇ with Π, and the second term is the stabilization form,
described below. The operator 𝜋 ∶ Vh(E) →  k(E) can be chosen as any
projection operator on polynomials of degree k, for instance one that
minimizes the distance of the euclidean norm of the degree of freedom
values (such particular choice has the advantage of being very simple to
code, see for instance Refs. [32]). The stabilization form can be taken,
for example, as

sE((I − 𝜋)vh, (I − 𝜋)wh) = 𝛼E

#dofs∑
i=1

(dofi(wh − 𝜋wh)) (dofi(vh − 𝜋vh)) (23)

where the dofi symbol denotes evaluation at the ith local degree
of freedom and the positive scalar 𝛼E is introduced in order to
take into account the material constants. For example one can take
𝛼E = trace(G(xE))∕2 with xE the centroid of E or any other internal
point (the method turns out to be quite robust with respect to this
parameter). Note that the above stabilization, that is quite awkward
to write on paper, is instead very simple to code since it is directly
based on the degree of freedom values, that is what the code operates
on. More details on the stabilization can be found for instance in Refs.
[32].

The global discrete bilinear form is now taken as, for any vh,wh in
Ṽh or Vh,

ah(vh,wh) =
∑

E∈ h

aE
h(vh,wh) +

F∑
j=1

∫Γj

[[wh]]Dj [[vh]] dl

where we observe that the jumps above can be immediately computed
since the virtual functions are known explicitly on the boundaries of
the elements.

The proposed Virtual Element Method then reads

⎧⎪⎨⎪⎩
Find 𝜒hs ∈ Ṽh such that

ah(𝜒hs, 𝛿𝜒hs) = 0 ∀𝛿𝜒hs ∈ Vh, s = 1,2.
(24)

To ease notation, in the following, we simply indicate either component
𝜒hs, s = 1,2 of the cell function with 𝜒h, explicitly indicating a specific
component whenever needed. Note that the above construction follows
the same logic and structure as for the straight-edge case [20,28] and
we refer to such papers for a more detailed description of the practical
implementation of the scheme. In the code, the main difference is only
the need to integrate along curved edges and on curved domains (that
can be handled following the literature given above).

4. A posteriori error estimator

In the present section, inspired by Ref. [47] (see also [48]) we intro-
duce the proposed error estimator, and develop a theoretical reliability
analysis (i.e. the estimator bounds the error from above) that takes into
account the material constants appearing in the problem.

We start by introducing some notation. In the following we assume
for simplicity that the material tensor G is piecewise constant with
respect to the mesh (see also Remark 4.1), and we define for each ele-
ment E ∈  h the positive constants Ginf

E ,Gsup
E by

Ginf
E ≤ w · G ∣Ew

w · w ≤ Gsup
E ∀w ∈ ℝ2. (25)

4
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Moreover for each internal edge e, denoting by E± the two elements
sharing e, we define

Ginf
e ≔ min{Ginf

E+ ,G
inf
E−}.

In order to simplify the notation, we introduce an additional assump-
tion, which controls the jumps of G among adjacent elements of the
same subdomain. Given any element E, let 𝜔E denote the union of all
elements sharing at least a vertex with E and that lay in the same sub-
domain as E (either Df

j for some index j or Dm). Then, there exist two
constants c⋆, c⋆ such that for all E ∈  h it holds

c⋆Ginf
E′ ≤ Ginf

E ≤ c⋆Ginf
E′ ∀E′ ∈ 𝜔E, (26)

and the analogous for Gsup
E .

Given 𝜒h solution to the discrete problem (24), we introduce the
following terms for the error indicator. For each E ∈  h we define the
internal residual term

𝜂2
R,E ≔ h2

E

Ginf
E

‖divy[G(Π𝜒h)]‖2
L2(E).

For each edge e of the mesh, including the boundary and interface ones,
we define the edge residual term

𝜂2
r,e ≔ he

Ginf
e

‖ [[G(Π𝜒h) · 𝝂e]] ‖2
L2(e).

For each edge e on the interface Γ we also consider the interface residual
term

𝜂2
Γ,e ≔ he

Ginf
e

‖ {G(Π 𝜒h) · 𝝂e} − D[[𝜒h]] ‖2
L2(e),

where the {…} symbol above denotes the average operator among the
left and right elements sharing the edge e. Furthermore, for each ele-
ment E ∈  h we consider the additional term taking into account the
inconsistency stemming from the VEM formulation

𝜂2
S,E ≔ sE((I − 𝜋)𝜒h, (I − 𝜋)𝜒h).

Finally, the local and global error estimators are

𝜂2
E = 𝜂2

R,E + 𝜂2
S,E + 1

2
∑

e∈𝜕E
𝜂2

r,e +
1
2

∑
e∈𝜕E∩Γ

𝜂2
Γ,e ∀E ∈  h, (27)

𝜂2 =
∑

E∈ h

𝜂2
E . (28)

In the following we assume that the operator 𝜋 in (23) is continuous
in the H1 norm, a property that holds for essentially all choices used
in the literature. In order to state the reliability result we require the
following mesh assumptions, that are standard in the VEM literature.

Mesh assumptions. There exists a positive constant 𝜌 such that all
elements E of the mesh family { h}h are star-shaped with respect to a
ball with radius RE ≥ 𝜌hE. Moreover all edges e of each element E of
the mesh family { h}h have length he ≥ 𝜌hE.

Theorem 4.1. Let the mesh assumptions above hold. Then it exists a uni-
form constant C, independent of the mesh and the material constants, such
that the error 𝜒 − 𝜒h satisfies

a(𝜒 − 𝜒h, 𝜒 − 𝜒h) ≤ C 𝜂2.

Proof. In the following the symbol ⪅ will denote a bound up to a con-
stant that is independent of the mesh and the material constants. We
note that the constant 𝛼E = trace(G(xE))∕2 proposed for the stabiliza-
tion term in (23) is equivalent (up to universal constants) to Gsup

E . There-
fore, assuming to use stabilization (23) and recalling standard results in
the VEM literature (see, e.g. Refs. [29,49]), we have for all elements E
and all vh in the discrete space

Gsup
E ‖∇(I − 𝜋)vh‖2

L2(E) ⪅ sE((I − 𝜋)vh, (I − 𝜋)vh)

⪅ Gsup
E ‖∇(I − 𝜋)vh‖2

L2(E). (29)

Let the error 𝜙 = 𝜒 − 𝜒h ∈ V and let 𝜙I ∈ Vh be an interpolant of
𝜙 to be better defined later. First using the continuous equation (16),
then adding/subtracting 𝜙I and using (24), we obtain

a(𝜒 − 𝜒h, 𝜒 − 𝜒h) = a(𝜒 − 𝜒h, 𝜙) = −a(𝜒h, 𝜙)

= −a(𝜒h, 𝜙− 𝜙I) − a(𝜒h, 𝜙I)

= −a(𝜒h, 𝜙− 𝜙I) − a(𝜒h, 𝜙I) + ah(𝜒h, 𝜙I ).

(30)

By recalling that Π𝜒h is the L2 projection of ∇𝜒h on [ k−1(E)]2 and
noting that ∇𝜋𝜒h ∈ [ k−1(E)]2, we can derive the following prelimi-
nary bounds for all elements E

‖G1∕2(∇𝜒h −Π𝜒h)‖2
L2(E) ≤ Gsup

E ‖∇𝜒h −Π𝜒h‖2
L2(E)

≤ Gsup
E ‖∇𝜒h −∇𝜋𝜒h‖2

L2(E) ⪅ sE((I − 𝜋)𝜒h, ((I − 𝜋)𝜒h), (31)

where we used (29). Let us observe that it holds

a(𝜒h, 𝜙− 𝜙I) =
∑

E∈ h
∫E

(∇𝜒h −Π𝜒h) · G∇(𝜙 − 𝜙I)dx

+
∑

E∈ h
∫E

Π𝜒h · G∇(𝜙 − 𝜙I)dx

+
F∑

j=1
∫Γj

[[𝜒h]]Dj[[𝜙− 𝜙I]]dl

=
∑

E∈ h

(IE + IIE) +
F∑

j=1
∫Γj

[[𝜒h]]Dj[[𝜙− 𝜙I]]dl.

Employing the Cauchy-Schwarz inequality, (25) and (31) we obtain

∑
E∈ h

IE ⪅
⎛⎜⎜⎝
∑

E∈ h

sE((I − 𝜋)𝜒h, (I − 𝜋)𝜒h)
⎞⎟⎟⎠

1∕2

⎛⎜⎜⎝
∑

E∈ h

Gsup
E ‖∇(𝜙− 𝜙I)‖2

L2(E)

⎞⎟⎟⎠
1∕2

.

Moreover, integration by parts yields

∑
E∈ h

IIE = −
∑

E∈ h
∫E

∇ · (GΠ𝜒h)(𝜙− 𝜙I )dx

−
∑

e∈h
∫e
[[GΠ𝜒h · 𝝂e]]{𝜙 −𝜙I}dl

−
F∑

j=1

∑
e∈Γj

∫e
{GΠ𝜒h · 𝝂e}[[𝜙− 𝜙I]].

Secondly, first recalling the definition of Π and that G ∣E is constant,
then using again (31) and standard properties of symmetric bilinear
forms we have

ah(𝜒h, 𝜙I) − a(𝜒h, 𝜙I)

=
∑

E∈ h

(
∫E

(Π𝜒h −∇𝜒h) · G∇𝜙Idx + sE((I − 𝜋)𝜒h, (I − 𝜋)𝜙I)
)

⪅
⎛⎜⎜⎝
∑

E∈ h

sE((I − 𝜋)𝜒h, (I − 𝜋)𝜒h)
⎞⎟⎟⎠

1∕2

⎛⎜⎜⎝
∑

E∈ h

‖G1∕2∇𝜙I‖2
L2(E) + sE((I − 𝜋)𝜙I , (I − 𝜋)𝜙I)

⎞⎟⎟⎠
1∕2

.
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Fig. 2. Doubly periodic composite. Representative unit cell meshes. Upper row: square lattice; lower row: parallelogram lattice. Circular fibre inclusion with volume
fraction f = 0.5. (a)–(d) Tri-mesh. (b)–(e) Poly-mesh. (c)–(f) Quad-mesh.

We now observe that (29) and the continuity of the operator 𝜋 in H1

yield

sE((I − 𝜋)𝜙I , (I − 𝜋)𝜙I) ⪅ Gsup
E ‖∇(I − 𝜋)𝜙I‖2

L2(E) ⪅ Gsup
E ‖∇𝜙I‖2

L2(E). (32)

Collecting the above terms in (30), we obtain

a(𝜙,𝜙) ⪅
⎛⎜⎜⎝
∑

E∈ h

sE ((I − 𝜋)𝜒h, (I − 𝜋)𝜒h

⎞⎟⎟⎠
1∕2

⎛⎜⎜⎝
∑

E∈ h

Gsup
E ‖∇(𝜙− 𝜙I)‖2

L2(E)

⎞⎟⎟⎠
1∕2

+
F∑

j=1

∑
e∈Γj

‖{GΠ𝜒h · 𝝂e} − Dj[[𝜒h]]‖L2(e)‖[[𝜙− 𝜙I]]‖L2(e)

+
∑

E∈ h

‖∇ ·
(
GΠ𝜒h

) ‖L2(E)‖𝜙− 𝜙I‖L2(E)

+
∑

e∈h

‖[[GΠ𝜒h · 𝝂e]]‖L2(e)‖{𝜙− 𝜙I}‖L2(e)

+
⎛⎜⎜⎝
∑

E∈ h

sE((I − 𝜋)𝜒h, (I − 𝜋)𝜒h)
⎞⎟⎟⎠
1∕2

⎛⎜⎜⎝
∑

E∈ h

Gsup
E ‖∇𝜙I‖2

L2(E)

⎞⎟⎟⎠
1∕2

. (33)

We now select 𝜙I ∈ Vh (that we define piecewise on each Df
j or Dm

and therefore may have jumps across the subdomains) as the Clément-
type interpolant operator for the Virtual Elements introduced in Ref.
[50], here extended in trivial way to the case with curved edges. By
combining the theoretical results in Ref. [50] with those derived in
Ref. [41] for curved edges, one can obtain the following approximation
results for all elements E (and e ∈ ∂E)

‖𝜙− 𝜙I‖L2(E) ⪅ hE‖∇𝜙‖L2(𝜔E)

‖∇𝜙I‖L2(E) ≤ ‖∇𝜙‖L2(𝜔E)

‖(𝜙− 𝜙I) ∣E‖L2(e) ⪅ h1∕2
E ‖∇𝜙‖L2(𝜔E) (34)

where 𝜔E denotes the union of all elements sharing at least a vertex
with E and that lay in the same subdomain as E (either Df

j for some
index j or Dm).

Employing in (33) the above bounds together with standard trace
inequalities, (25) and assumption (26) yields the thesis:

a(𝜙,𝜙) ⪅
∑

E∈ h

h2
E

Ginf
E

‖∇ · (GΠ𝜒h)‖2
L2(E)

+
∑

e∈h

he

Ginf
e

‖[[GΠ𝜒h · 𝝂e]]‖2
L2(e)

+
F∑

j=1

∑
e∈Fj

he

Ginf
e

‖{GΠ𝜒h · 𝝂e} − Dj[[𝜒h]]‖2
L2(e)

+max
E∈ h

(Gsup
E ∕Ginf

E )
∑

E∈ h

sE((I − 𝜋)𝜒h, (I − 𝜋)𝜒h.

Remark 4.1. The assumption on the material tensor, i.e. G piecewise con-
stant with respect to the mesh, can be relaxed. For instance, Theorem 4.1 is
still valid with the same expression for the a posteriori error indicator 𝜂 if we
suppose that G is a smooth function on the computational mesh. However,
suitable quadrature formulas have to be employed in order to practically
compute the internal, boundary and interface residual terms. Moreover, the
efficiency of the error indicators requires to control the so-called oscillation
terms measuring the polynomial approximation of the tensor G [51].

4.1. Adaptive curved virtual element method (ACVEM)

This section is devoted to describing how the above a-posteriori
error estimate can be employed to drive an adaptive mesh refinement
procedure. As detailed in the following section, adaptivity represents a
crucial tool to efficiently compute overall elastic properties for random
fibre reinforced composites. Similarly to, e.g. Refs. [52,53], we here

6
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Fig. 3. Doubly periodic composites, with f = 0.2, 0.4,0.6. h−convergence plots for k = 2,3,4, for the cell function 𝝌(y) in the H1−error norm for uniform mesh
refinement. Left column: square lattice, isotropic homogeneous fibres: 𝛿 = → ∞, 𝜉 = 500. Right column: parallelogram lattice, isotropic exponentially graded
fibres: 𝜉 = 500, 𝜔 = 8, 𝛿 = 10.
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devise ACVEM based on the classical paradigm (see, e.g. Refs. [54],
and the references therein):

SOLVE → ESTIMATE → MARK → REFINE
Staggered along the following steps. Given an initial (relatively

coarse) representative unit cell mesh on which a solution has been com-
puted:

• compute local element error indicators (see Eq. (27));
• sort elements with respect to local error indicator;
• mark elements according to the so-called Dörfler marking strategy,

i.e. starting from the local largest error indicator and proceeding in
a decreasing order mark the corresponding elements until a fixed
percentage (here we employ 40%) of the global error indicator 𝜂 is
reached.

• refine marked elements adopting centroid-edge midpoint ray algo-
rithm [52,53];

• compute a new solution for the refined mesh;
• iterate until a certain threshold for the global error is reached.

5. Numerical tests

This section presents numerical tests on the proposed VEM based
strategy for the homogenization of fibre-reinforced composite materi-
als. In particular, in Section 5.1 we numerically explore the accuracy
and convergence properties of the curved virtual element method for
the asymptotic homogenization in the basic case of doubly periodic
composite materials adopting uniform mesh refinement. In Section 5.2,
we apply the mesh refinement algorithm of Section 4.1 to investigate
the capability of our a posteriori error estimate to drive an effective
adaptive procedure. Last, in Section 5.3 we address statistical homog-
enization of composite materials with randomly distributed fibres by
joint application of the adaptive mesh refinement strategy and Monte
Carlo simulations.

5.1. Validation and accuracy of curved virtual element technology: doubly
periodic functionally graded fibre reinforced composite

For accuracy and convergence assessment, we here study doubly
periodic fibre reinforced composites for different fibre arrangements
and material setups. A given doubly periodic composite unit cell is
identified through the usual dimensionless geometrical parameters 𝜙,
𝜅 = L2∕L1, f = 𝜋R2∕|D| (being R the radius of the single circular fibre
embedded into the RUC), and the following ones for material proper-
ties:

• fibre/matrix stiffness ratio (contrast factor) 𝜉 = Gr∕Gm;
• grading intensity factor 𝜔 = g(0)∕g(1);
• dimensionless interface parameter 𝛿 = D∕(GmL1);
• 𝜎2 = G𝜃∕Gr.

The simulations refer to isotropic exponentially-graded fibres, with
g(𝜌) = exp(−𝜆𝜌), and 𝜎 = 1, so that g(0) = 1, and Gr = G𝜃 rep-
resents the shear modulus at fibre axis. We present results correspond-
ing to three types of mesh discretizations, namely triangles, Voronoi
polygons, quadrilaterals, indicated in the sequel as Tri-mesh, Poly-
mesh, Quad-mesh, respectively. Representative meshes for square (resp.
parallelogram) unit cell are portrayed in Fig. 2 with the three types
of adopted discretizations. Presented results are obtained for order
k = 2,3,4, respectively. As reference results we use the analytical
method provided in Ref. [55] selecting a high number of terms in the
series expansion for the unknown cell function in order to have high
accuracy.

In Fig. 3 we report h−convergence plots for the cell function 𝝌(y)
in the H1−error norm for uniform mesh refinement, for a set of cases
selected as the more significant ones over an extensive test campaign.

Since the exact solution is piecewise regular in each subdomain
and we have an exact geometric representation of the interface, the

expected convergence rate is O(hk) (see Ref. [41]) which is obtained for
all examined material patterns and any given order k. We notice that
quadrilateral elements produce slightly more accurate results among
the three compared discretizations. From a standpoint of material setup
effect on overall accuracy, it is observed that skew unit cells as well as
non-homogeneous fibres require higher computational cost to reach a
given accuracy level with respect to homogeneous fibres lodged into a
square lattice. As a further Proof of the efficiency of a curved element
approach for the problem under investigation, in Fig. 4 we plot the case
of square lattice with graded fibres and straight-edge quadratic poly-
gons across the fibre/matrix interface, thus introducing a rectification
error on such interior boundary. A sub-optimal convergence rate for
all three discretizations is expected due to this geometric inconsistency
[41] (see also [56] for FEM) and can be clearly observed.

5.2. Adaptive mesh refinement procedure: doubly periodic functionally
graded fibre reinforced composite

In order to validate the proposed a-posteriori error estimator we
apply the adaptive mesh refinement algorithm (cf. Section 4.1) to the
homogenization problem of fibre reinforced doubly periodic compos-
ites introduced in the previous section. The analysis focuses on square
fibre arrangements for simplicity. We present results corresponding to
quadrilateral and Voronoi polygonal discretizations, obtained for order
k = 2,3, respectively. Reference solutions are derived resorting to the
analytical method proposed in Ref. [55].

In Fig. 5 we report #dof−convergence plots for the cell function
components 𝜒h in the H1−error norm, for a set of selected fibre grading
cases corresponding to isotropic homogeneous fibres with exponential
grading and fibre volume fractions f = 0.4,0.6. Efficiency and relia-
bility of the proposed error estimator is clearly observed as the error
curves for the adaptive mesh refinement solutions present the optimal
slopes O((#dofs)−k/2) for given k and grant significantly lower error lev-
els if compared with homologous (i.e. with the same number #dofs of
degrees of freedom) uniform mesh refinement solutions.

In Fig. 6, for illustrative purposes, we report the cases of a homo-
geneous (resp. a graded composite) with different volume fractions and
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Fig. 4. Doubly periodic composite. Sub-optimal h−convergence plots for k = 2,
for the cell function 𝝌(y) in the H1−error norm for uniform mesh refine-
ment and rectified fibre/matrix interface. Square lattice, isotropic homogeneous
fibres: 𝜉 = 500, 𝛿 = → ∞.
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Fig. 5. Doubly periodic composite. # dof−convergence plots for k = 2,3, for the cell function components 𝜒 s(s = 1,2) in the H1−error norm for uniform vs.
adaptive mesh refinement: square lattice, imperfect interfaces with 𝛿 = 10. Left column: isotropic homogeneous fibres with 𝜉 = 500. Right column: isotropic
exponentially graded fibres with 𝜉 = 500, 𝜔 = 8, 𝛿 = 10. Upper row: f = 0.4, k = 2. Lower row: f = 0.6, k = 3.

the relative meshes at different adaptive mesh refinement iterations.
The refinement process clearly shows localization of the error depend-
ing on the unit cell components and, in particular, in the vicinity of
the unit cell fibre/matrix interface, and of the exterior boundary edges
along the direction of each Cartesian component of the unit cell func-
tion, with more error spreading within the fibre domain in the graded
case. These are in fact the areas characterized by the steepest gradient
for any of the two unknown field components 𝜒h.

From the above numerical evidence, it can be inferred that for the
relevant case of random composites, where a statistical homogenization
approach imply solving for possibly large number of RUC random real-
izations, the above tool may be utilized as a means of tuning a computa-
tionally efficient mesh for actual solution of the cell problem at a lower
computational cost than using a standard uniformly refined mesh. This
point is addressed in the following section.

5.3. Statistical homogenization of random composites

The present section is devoted to the application of the proposed
and validated adaptive mesh refinement strategy to the crucial issue of
numerical estimation of the RUC size for random lattices, assuming sta-
tistically homogeneous microstructures, yielding an isotropic effective
behaviour.

In this view, a quantitative estimation of the RUC size plays an
important role from accuracy and computational efficiency standpoints,

since the effective modulus G#, obtained by Eq. (15) is a random vari-
able depending on the specific realization of the RUC D. 1 For homoge-
nization purposes, the RUC size is determined in order to ensure a given
relative accuracy 𝜖 of G#. Based on statistical arguments, in order to
avoid use of large RUCs requiring heavy computational effort, use of
smaller RUCs might be compensated by averaging over higher numbers
of realizations of the microstructure to get a prefixed accuracy [21].
Indeed, recalling that the width of the 95% confidence interval is twice
the standard deviation 𝜎G# of G#, i.e. 2𝜎G#∕𝜇G# ≤ 𝜖, where 𝜇G# denotes
the mean value, the standard deviation of G# resulting from n indepen-
dent realizations D is given by 𝜎n

G# = 𝜎G#∕
√

n, so that n could be chosen
according to

n ≥ 4 CV2
G#∕𝜖2, (35)

where CVG# = 𝜎G#∕𝜇G# is the coefficient of variation.
The idea is then to solve any of these n realizations, for a given RUC

size, using the effective adaptive mesh refinement procedure previously
developed and compare with a standard uniform mesh refinement strat-
egy, for the relevant case under consideration where a large number of
material domain realizations are needed in order to reach a desired

1 If the RUC were a representative volume element (RVE), the dispersion of
G# would theoretically vanish.
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Fig. 6. Adaptive mesh refinement strategy for the cell function components 𝜒 s, s = 1-left column, s = 2-right column. Square lattice, interfaces with 𝛿 = 10.
Left column: isotropic homogeneous fibres with 𝜉 = 500, f = 0.6, k = 2 with Voronoi discretization. Right column: isotropic exponentially graded fibres with
𝜉 = 500, 𝜔 = 8, 𝛿 = 10, f = 0.2, k = 3 with quadrilateral discretization. Upper row: 2− nd refinement iteration. Lower row: 6− th refinement iteration.

accuracy on the overall material quantities.
To do so, for any given RUC domain realization taken into account

in a Monte Carlo simulation (which indeed requires to be meshed and
solved), with the aim of comparing computational costs of the two pro-
cedures, starting from one initial coarse mesh, we perform a preliminary
mesh discretization, adopting, respectively, uniform and adaptive mesh
refinements, pursuing a global error level (cf. Eq. (28) and Fig. 5) lower
than a prescribed threshold, fixed in 10−3 for the current analysis. We
then perform Monte Carlo simulations with the two mesh families, com-
paring accuracy and efficiency of the two approaches. The above statis-
tical homogenization procedure, which follows the line in Ref. [21], is
implemented in an in-house numerical toolbox and sketched as follows:

• Set the random composite properties: volume fraction, material
parameters of fibres and matrix, grading profile. Set the tolerance
for a statistical homogenization procedure convergence, here fixed
in 0.5%;

• For each RUC size, determine independent realizations with a num-
ber of inclusions with constant radius, according to the pre-set vol-
ume fraction and random disposition of fibre centres;

• Initialize meshes by means of the uniform mesh refinement and
ACVEM procedure, respectively, for an initial error of 10−3;

• For both meshes corresponding to a random realization, solve the
homogenization problem and compute the homogenized shear elas-
tic tensor G#

• Repeat until the obtained mean value and variance of the discrete
distribution for G# do not vary any longer up to the preset tolerance.

The two procedures are then compared in terms of the computa-
tional cost to reach the statistical homogenization convergence. In the
presented numerical simulation, we consider square RUCs with equal,
isotropic, exponentially-graded fibres with volume fraction f = 0.4,
0.6, stiffness ratio 𝜉 = 500, 𝜔 = 8, 𝛿 → ∞. The RUC side-to-fibre
diameter ratio S ranges from 3.96 to 15.85, meaning that the number
of fibres included into a RUC ranges from 8 to 128.

Fig. 7 shows the normalized mean value 𝜇G#∕Gm and the dispersion
of G# as a function of the RUC size resulting from k = 2, quadrilateral
and Voronoi discretizations, obtained with the two meshing strategies.
In terms of accuracy, both discretizations seem to converge and it is
observed that even a square RUC with S ≥ 8 (hence, comprising at
least 32 fibres) can be used to obtain a fair estimate of 𝜇G# in the present
case. Table 1 shows the coefficient of variation CVG# as a function of the
RUC size for the two approaches, together with the ratio between the
computational cost of the adaptive mesh refinement (A.M.R.) solution
and the uniform mesh refinement (U.M.R.) as a function of RUC size,
referring only to the actual computational time of the steps involved
in solving the cell problem and computing the effective modulus for
the whole realizations examined for a given value S (i.e. without taking
into account the computational cost of pre-tuning the mesh).
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Fig. 7. Statistical homogenization of random composites: determination of RUC size for random graded composites, f = 0.4 (quadrilateral - left), f = 0.6 (Voronoi
- right), for k = 2. Normalized mean value 𝜇G# ∕Gm and dispersion of G#, comparing adaptive vs. uniform mesh refinement strategies as function of the RUC size.

Table 1
Statistical homogenization of random composites: determination of RUC size
for random graded composites, f = 0.4 (quadrilateral), f = 0.6 (Voronoi),
for k = 2. Coefficient of variation and computational cost ratio of adaptive
vs. uniform mesh refinement strategies as function of the RUC size.

RUC size S1 S2 S3 S4 S5
CVG# - f = 0.4 - Quad

U.M.R. 0.053 0.050 0.037 0.026 0.015
A.M.R. 0.065 0.055 0.039 0.028 0.018

comp. cost ratio (A.M.R./U.M.R.)
79.4% 75.2% 70.5% 66.8% 61.3%
CVG# - f = 0.6 - Poly

U.M.R. 0.049 0.046 0.033 0.023 0.016
A.M.R. 0.073 0.059 0.039 0.024 0.015

comp. cost ratio (A.M.R./U.M.R.)
88.1% 85.2% 79.5% 72.9% 67.3%

6. Conclusion

In this work we proposed an adaptive curvilinear Virtual Element
method of higher order for the asymptotic homogenization of random
fibre-reinforced composite materials. The presented approach is based
on an a-posteriori error estimator which can drive adaptive mesh refine-
ment of the representative unit cell domain to be studied for a given
material setup. Both the curvilinear virtual element technology and the
adaptive mesh refinement procedure have been validated on a num-
ber of numerical benchmarks taking into account various microstruc-
ture configurations. In application to the relevant case of randomly dis-
tributed fibres within the composite, following a statistical approach,
the aforementioned procedure has been shown to grant accurate and
cost-effective homogenized quantities with respect to the standard uni-
form mesh refinement results.
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