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Abstract— We present the development of a novel smart ink
pen instrumented with force and motion sensors designed for the
quantitative and ecological assessment of daily-life handwriting.
This work aims at testing the pen’s sensors and algorithms
and the use of the smartpen to detect age-related changes in
writing and tremor parameters during daily-life handwriting.
A comparison against reference instruments was carried out to
validate the pen tip force during static and dynamic conditions,
the pen’s tilt angle, and the algorithm for the segmentation of the
force signal into strokes. The smartpen was tested on 43 healthy
adults divided into three age groups (young, middle-old, and
old) during unconstrained handwriting on paper. The validation
of the pen’s sensors and algorithms reported excellent results.
A solid test–retest reliability was found in the writing and tremor
indicators extracted from both young and old adults. As for the
age-related analysis, the older age groups were characterized by
an increase of temporal writing measures, a more uniform writing
pressure, and more repetitive and predictable tremor oscillation
components. The greatest accomplishment of our smart ink pen
is the ability to combine the advantages of the digitizing tablet
technology with the natural “feel,” the ease of use, and the
ecological validity of the traditional pen-and-paper approach.
The proposed solution represents an important step toward
a simple, ecologically valid, reliable quantitative assessment of
daily-life handwriting. Our smartpen is particularly suitable for
daily-life telemonitoring applications in a number of important
health-related fields.

Index Terms— Aging, handwriting, Internet of Things (IoT),
smart ink pen, smart objects, tremor.
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I. INTRODUCTION

HANDWRITING is a continuous cognitive-motor task
acquired during development that requires high skill and

cerebral activation [1]. Handwriting is a familiar and straight-
forward activity for almost all literate adults, which was proven
to be a very useful biomarker. Indeed, the motor performance
required for writing depends upon the coordinated function by
the brain, in combination with the neuromuscular and visual
systems. This deteriorates to some extent in all older adults
and even more so when the neurological disease is present [2].

For this reason, the analysis of this everyday activity has
been leveraged for assessing different conditions. As for
neurology, kinematic analysis of handwriting has been used
as a clinical tool highly sensitive to even subtle dysfunc-
tions, particularly useful in Parkinson’s disease (PD) [2],
Dystonia [3], and Huntington’s disease [4] evaluation. Given
its fine motor nature, handwriting analysis turned out to be
a very useful tool also for the investigation of tremor [5].
In addition, the handwriting was studied to discriminate dif-
ferent levels of severity in terms of age-related cognitive
decline [6]. Against this background, the characterization of
age-related changes in handwriting is key since it may allow
distinguishing physiological variation simply due to age, from
abnormal changes, possibly related to neurological conditions
or cognitive decline.

Early work used ink pen and paper notebook to register the
subject’s writing outcome [2]. On the one hand, this approach
can be considered worthwhile in the clinical environment,
due to its simplicity, since it does not require the support
of a technician. On the other hand, the assessment of the
paper-and-pen technique requires the expertise of a clinical
professional to evaluate the writing outcome without the
support of any quantitative data: such an approach does not
match the current needs of the health systems that count on the
achievements of telemedicine to solve problems, such as the
limited availability of specialists, the reduced time to conduct
such tests, and the difficulty for some patients—especially the
older ones—to reach the examination site [7]. For this reason,
in most of the recent studies, the paper-and-pen approach
was replaced by digitizers and tablets able to return the 2-D
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trajectory of the writing trace [6], [8], [9]. The digitalization
of data allows extracting quantitative parameters to objectively
assess handwriting and achieving remote monitoring of the
user’s performance. However, such an approach is questioned
since it constraints the user to write on a relatively small
surface (typically the one of a tablet) that is not the standard
writing surface; in this way, the naturalness of the gesture
is undermined [10]. As a consequence, this approach lacks
ecological validity since the experimental context does not
match the real-world phenomenon [11]. Moreover, the use of
such technology may not be so straightforward particularly
when dealing with elder users, thus requiring the technical
support of an operator.

To combine the ecological validity of the first approach and
the quantitative assessment achieved by current technologies,
we designed a novel smart ink pen that allows users to write
on a common piece of paper while acquiring motion and force
data. Indeed, the ink pen is instrumented with a force sensor,
to measure the normal force applied on the pen tip while
writing, and inertial sensors, to collect motion and tremor
information during writing task execution. To increase usabil-
ity, the pen was designed to autonomously record data when
used. To foster telemonitoring, an ad hoc software was created
to automatically download the writing data and compute
relevant handwriting and tremor indicators. Another element
of the newness of our approach is the ecological validity and
the transparency of the protocol. Indeed, different from the
vast majority of studies [6], [8], [9], in which handwriting is
studied under controlled conditions (with the subject copying
or writing previously defined text), we decided to propose
tasks mimicking daily-life writing without constraining the
writing modality or content.

This article is organized as follows. Section II presents the
design and development process, the validation of sensors,
algorithms, and indicators and the study of age-related changes
in handwriting and tremor parameters extracted during a
daily-life writing task. Results are reported in Section III and
discussed in Section IV. Section V draws the conclusions
of the work. A preliminary version of this work has been
reported [12], [13].

II. MATERIALS AND METHODS

A. Pen

To realize a smart writing object that resembles a common
ink pen, a careful design of the microarchitecture to sense
and transmit the data has been carried out. The developed
pen has the following dimensions: height: 147 mm, maximum
diameter: 14.65 mm, and weight: 48 g (see Fig. 1).

1) Hardware: The pen incorporates the internal electronic
components to acquire, store, and send the handwriting
data. The electronics are integrated into three printed circuit
boards (PCB) located in the upper part of the pen. PCB1
has a dimension of 28.5 × 8 mm2 and is the core PCB; it
includes an ultralow-power Cortex 32bit CPU (STM32L476)
to acquire, filter, and transmit the signal, a BlueNRG-MS
single-mode network processor (compliant with Bluetooth
specification v4.1) to implement Bluetooth Low Energy (BLE)
connectivity, and 1-MB flash memory for storage purposes.

Fig. 1. (a) Rendering image of the smart ink pen and its internal components.
(b) External view of the smart ink pen.

In terms of sensors, inertial signals are acquired through 3-
D linear accelerometers and gyroscopes (LSM6DSM iNEMO
6DoF), while the writing force exerted on the tip is measured
through a miniaturized load cell (FC8E by Forsentek; Ø 1.6
mm; 50-N capacity) mounted with the lower face pressing
on the refill stopper. PCB2 includes a rechargeable Li-ion
p-i-n-type battery by Panasonic Corporation, Osaka, Japan,
with a coaxial power connector accessible from the pen cap
and the battery protection circuit. PCB3, with a rounded
shape, is placed in the load cell holder and includes the
preamplification circuit for the load cell data. Pen functions in
self-operated through movement detection or BLE connection
request; therefore, no activation button is available for the end-
user. Nonetheless, a LED is visible to indicate the operating
mode and the battery state of the pen. All the electronics are
protected and securely fixed inside a 3-D printed plastic case.

Fig. 2 shows the signal conditioning circuit for the load
cell. The circuit comprises a low-noise instrumentation ampli-
fier (AD623RMZ (IC1) hosted by PCB3), connected to a
16-bit high-quality, low-noise, low-power fully differential
ADC (ADS1115I, (IC3) hosted by PCB1), both powered
by a 3.3VDC single supply low dropout voltage regulator
(LD3985M33R, (IC4) hosted by PCB1). The IC4 receives
energy directly from the battery (PCB2), thus reducing the
possible interference arising from digital and wireless parts of
the mainboard (PCB1).

The instrumentation amplifier (IC1) has a gain set at 101 and
a low-noise, low-power Rail-to-Rail Input and Output (RRIO)
dual operational amplifiers. The differential input filter has
been set to 1.5 kHz, to allow a first stage filtering before the
connection wires to the IC1. The output baseline (VREF) has
been set to VCC/3 by the IC2A, to allow a fully differential
analog to digital conversion without losing the possibility
to investigate possible preloading effects of the load cell
caused by the mechanic assembly. The output of IC1 and the
VREF signals coming from IC2 have been connected to the
mainboard (PCB1), respectively, to the positive (AIN1+) and
negative (AIN1−) channel inputs and of the ADC (IC3). The
ADC samples at 50 Samples/s. The internal pin grid array
(PGA) of the ADC has been programed to 2, providing a total
gain of 13.3 mV/N. An antialiasing filter has been placed near
0.1 Hz to preserve the signal information. The inductor L1 is a
ferrite bead with an impedance of 60 � measured at 100 MHz.
Multilayer ceramic capacitors were used.

2) Software: The firmware was designed with the aim of
maximizing battery duration and usability of the smartpen for
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Fig. 2. Conditional circuits of the smartpen.

Fig. 3. Block diagram of the firmware operating modes.

not expert users, such as older adults. To extend the possible
applications of the pen, two modalities of data transfer are
envisaged.

1) Online Data Transmission: The microcontroller reads the
data from the sensors and transmits them in real-time through
BLE.

2) Onboard Storage: When the object is used, sensor data
are sampled, saved on the flash memory, and downloaded
afterward. The firmware comprises six operating modes, and
Fig. 3 shows its block diagram representation. When, in the
standby state, the battery is set to saving mode and, just to
advise that the pen is available, a green LED blinks at a
low frequency. Only when a slight movement of the object
is detected by the accelerometer, and the charge level is over
a specific threshold (to prevent using the object when the
battery is too low), the BLE module of the object is switched
ON. In this Bluetooth ON-state, the pen is available for any
pairing connection within a certain time window. If a pairing
request is received within the time window, followed by a
start streaming command, the online transmission state is
enabled, and the object transmits the information packages at

a frequency of 50 Hz. The object returns to the Bluetooth ON-
state once a disconnection request is received. Otherwise, if (in
the Bluetooth ON-state) a pairing connection is not received
within the time window and the object is moved by the user,
the transition to the onboard storage state is triggered. At this
point, the object starts storing data packages onboard at 50 Hz
and stops when left stationery for 15 s, thus triggering a
transaction to the Bluetooth ON-state. When the battery level is
below a certain threshold, the object goes into the low battery
state in which a red LED blinks to notify the user that a charge
is needed. Every time the pen is connected to a charger, the
state moves to charging, with the red LED blinking at a higher
frequency.

The data package, sampled at 50 Hz, includes a timestamp,
the three-axis acceleration [m/s2], the three-axis angular veloc-
ity [rad/s], and the writing force signal exerted on the pen tip.

Finally, software was created to automate the data download
and processing procedures.

B. Pen Validation

This section includes the apparatus, the protocols, and the
analyses aimed at validating the pen sensors and algorithms.

1) Tip Force Static Calibration: This test has the twofold
aim of verifying the linearity of the writing force mea-
surements in the range of the force values exerted during
handwriting and estimating the optimal calibration parameters
for the conversion of the pen tip force signal to Newton
(N) units.

The setup shown in Fig. 4(a) was devised to keep the pen
in the vertical position and to place the test weights at the
top; it includes two 3-D printed arms to hold the device with
the minimum friction and a circular flat base to accommodate
the weights. From the pen load cell, we acquired the normal
component of the force signal, F , applied to the tip while
increasing the testing weight from 0 to 50 g, with steps of
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Fig. 4. Experimental setups for pen validation. (a) Static tip force calibration. (b) Dynamic tip force validation. (c) Tilt angle validation.

10 g, and from 50 to 500 g, with steps of 50 g. For each
weight increase, the related F measure was obtained as the
mean value of the signal over 50 samples after the transient
phase.

We computed the linear regression between the measure-
ments of the pen force F and the corresponding testing weights
placed on the top of the pen; the selected loss function was
the mean squared error (MSE) [14].

2) Tip Force Dynamic Calibration: We validated the writing
force signal in dynamic conditions (i.e., during the handwriting
activity), comparing the pen force signal F with an external
force reference signal Fext , obtained through the M01–500N
Golden Type (by Sunrise Instruments, Canton, MI, USA) load
cell sensor. The protocol consisted of a 2-min free writing test
performed by a healthy adult, who used the smartpen to write
over the load cell surface [see Fig. 4(b)]. The two signals were
synchronized using the peak of cross correlation. We evaluated
Pearson’s correlation coefficient ρd between F and Fext during
the writing task.

3) Tilt Angle Validation: We compared the tilt angle θpen

obtained from the pen’s motion sensors with a reference tilt
angle θext obtained from the optoelectronic motion capture
system SMART DX 400 (BTS SPA, IT). To this aim, a
3-D-printed tool with three retroreflective markers was built
and positioned on the top of the pen to record the orientation of
the pen body [see Fig. 4(c)]. The acquisition protocol included
two different trials performed by a healthy adult: in the first
one, the subject was requested to draw six straight lines on a
sheet of paper, three with the smartpen tilt kept approximately
at 45◦, and three at 70◦. In the second trial, the subject was
asked to write freely for three minutes, and no constraint on
the pen tilt was imposed.

In quasi-static conditions (i.e., when the pen is moved
very slowly), we computed the tilt angle, θpen, using the
approximation in

ϑacc = sin−1

(
az

g

)
(1)

where az is the z-axis acceleration signal and g = 9.81 m/s is
the gravitational acceleration; for small tilt angles (ϑ � 1◦),

we linearized the relation as in

ϑacc ≈ az

g
. (2)

The estimate tilt angle pen, θpen, corresponds to the approxi-
mation, θacc, for slow movements.

In nonstationary conditions, instead, we considered a low-
pass filtered (cut off 10 Hz) az in the computation of θacc

to get rid of the z-axis acceleration components not related
to the gravity load. Indeed, at high frequencies, the variation
of the tilt angle is coupled with nonnegligible accelerations
that lead to consistent errors in the estimation of the tilt
angle from the accelerometers [15]. Furthermore, to avoid
the estimate to diverge, we combined the estimate from the
accelerometer signal of the tilt angle with its rate estimate
from the gyroscopes signals, ϑ̇gyr, obtained by integrating (in
the time domain) the angular velocity in the x- and y-axes.
We used the sensor fusion filter in (4) [15] to obtain the
estimate of the tilt angle rate ϑ̇gyr

ϑ̇pen = k1ϑ̇gyr + k2(ϑacc − ϑpen) (3)

where k1 and k2 are two constants empirically set to 1.5 and
0.4, respectively, to achieve the minimum discrepancy between
the estimate and the measured tilt angle.

Finally, we compared the two tilt angle signals by calcu-
lating Pearson’s correlation coefficient ρt and the root-mean-
squared error (RMSE) between θpenand θext, during the writing
tasks.

4) Segmentation Into Strokes: The algorithm for the seg-
mentation of the signals into strokes is the preliminary step
for the calculation of the handwriting indicators; we define
stroke as an interval in which the pen writing force is
nonzero. For its validation, we compared the segmentation
into strokes computed from the pen force signal, F , with the
one extracted from the external load cell reference signal. The
signals were acquired using the experimental setup described
in Section II-B2 [see Fig. 4(b)] and repeated ten times with
different smartpen prototypes. We decided to use ten different
pen prototypes to validate the robustness of the segmentation
algorithm considering possible differences due to device con-
struction and assembly variabilities. The data acquired with
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the first three pen prototypes were employed to calibrate the
algorithm, while the rest of the data from seven pens was used
to evaluate the stroke segmentation algorithm.

For the segmentation into strokes, given the pen force
signals F , as a first step, we removed the bias from the force
signal; this is particularly important because the force bias
may differ between diverse prototypes due to various factors
(e.g., the tolerances of the 3-D printed components, the ink
refill replacement by the user, and the curvature of the load
cell wire during assembly). Since signal processing is fully
automated during unsupervised pen usage, we opted for an
automatic baseline removal. To do so, we first subtracted from
the signal a value corresponding to the mode of the median
filter computed over a 50-sample time window. After that,
we ran a baseline estimation and denoising using sparsity
(BEADS) [16]. Finally, we cropped to 0 all values below an
experimentally fixed threshold; this zero-cropping threshold
was chosen to optimize the agreement between the stroke
identification obtained from the pen (first three pen prototypes)
and the reference force signal.

As for the stroke segmentation of the reference force
signal, we considered the mean value of a manually selected
nonwriting tract as baseline; after baseline removal, we defined
the stroke segments as the nonzero parts in the signals.

We detected a total number of 452 strokes in the pen signals.
Through a Bland–Altman plot analysis [17], we evaluated the
agreement between the stroke durations obtained from the
smartpen (last seven prototypes) and from the external force
signal. We also computed the linear regression between the
stroke durations obtained in the two cases.

C. Handwriting Task

This section includes the protocol and the analysis aimed
at studying age-related changes in handwriting and tremor
parameters.

1) Protocol: After validation, the smartpen was used to
collect handwriting data on a population of healthy young
and older adults, with the aim of testing the reliability of the
writing and tremor indicators, and to study possible age-related
differences in handwriting and tremor features.

The study included voluntary subjects from different age
ranges: young adults (age < 50 years) and older adults (age
≥ 60 years). The exclusion criterion was any diagnosis of
neurological, vascular, or musculoskeletal disorder affecting
the upper limbs.

To maximize the ecological validity of the protocol,
we decided to propose a task mimicking daily-life writing,
without constraining the writing modality or content. Partici-
pants were seated at a table and asked to use the instrumented
pen with their dominant hand to write seven lines of free text
on a paper sheet [5]. Participants executed the task twice,
with a between-trial break of at least 4 h. To obtain an
ecologically valid test–retest reliability, no constraints on the
writing content or modality were imposed on the user.

The Ethical Committee of the Politecnico di Milano, Milan,
Italy, approved the study protocol (n. 10/2018).

2) Indicator Extraction: Data analysis was carried out with
MATLAB R2018b (Mathworks, Natick, MA, USA).

Starting from the stored data package defined in
Section II-A2, a set of writing and tremor indicators are
extracted for each subject.

For the writing indicators, as the first thing, we computed
the pen tilt over the entire writing period, following the
method presented in Section II-B3. The pen tilt during the
writing gesture has been included in studies investigating
handwriting in a number of conditions [18]–[20]. For this
reason, we computed and retained the mean (Tilt_mean) of
the pen tilt signal, not including the segments longer than 2 s,
which were considered pauses. To evaluate how pen tilt varied
during the writing gesture, we also computed and retained the
coefficient of variation (Tilt_CV).

After that, the signals were divided into strokes (see Section
II-B4). We defined the stroke segments as on-sheet and the
complementary nonwriting segments as in-air, not including
the segments longer than 2 s, which were considered pauses.
After that, since previous work reported irregular writing
rhythm with age [21], the following handwriting temporal
indicators were computed.

In-Air Time, tair [s] : The average duration of the nonwriting
segments, averaged over all in-air tracts during the writing task
execution.

On-Sheet Time, tsheet [s] : The average duration of the on-
sheet segments, averaged over all strokes during the writing
task execution.

In-Air/On-Sheet Ratio, ta/s : The ratio between tair and tsheet.
The force signal of every single stroke was low-pass filtered

at 4 Hz (fourth-order Butterworth filter) [22], and the following
force-related indicators were computed:

Mean Writing Force, F̄[N] : The mean normal force applied
to the pen tip in each stroke, averaged over all strokes.

Number of Changes in Force, NCF: The number of local
minima and maxima in pen force signal F in a stroke, averaged
over all strokes [22].

As for the acceleration signals, a three-axial gravity com-
pensation was carried out for every single stroke. A compen-
sation factor was computed, for each axis separately, as the
average of the low-pass filtered single-axis acceleration signal
(fourth-order Butterworth cutoff: 3.5 Hz) and then subtracted
from the signal itself [23]. After gravity compensation, the
signals were low-passed filtered at 4 Hz (fourth-order Butter-
worth filter), and the 3-D acceleration signal was computed
for all the strokes. As a measure of smoothness, which was
previously shown to decrease with age [2], we then calculated
the Number of Changes in Acceleration (NC A): the number of
local minima and maxima in the 3-D acceleration in a stroke,
averaged over all strokes.

To study tremor, we used the acceleration signals with-
out distinguishing between on-sheet and in-air tracts. The
acceleration signals were cut into 500-sample segments [24].
The acceleration data over the three axes were first band-
pass filtered at 0.5–24 Hz (fourth-order Butterworth filter)
[25]. The 3-D acceleration signal was then computed. For
each segment, the tremor was estimated using the Hilbert–
Huang transform (HHT), which consists of the empirical
mode decomposition (EMD), followed by the Hilbert spectral
analysis [26]. The EMD-based filters’ decomposition is based
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on the local timescale characteristics of the data since EMD
does not have any general analytical formulation, unlike other
conventional fixed cutoff filtering techniques. For this reason,
it was proven to be particularly suitable to study tremors in
presence of voluntary motion [27], and it was, thus, preferred
to the standard Fourier transform to study tremor frequency
components during our handwriting protocol. Once the HHT
was applied to the 3-D acceleration segments to estimate
tremor, the following indicators were extracted for all the
signal segments and then averaged over all segments.

Modal Frequency, fmod [Hz]: The tremor characteristic
frequency value that corresponds to the highest peak in the
tremor signal power spectrum [28] and has been shown to
change in the case of pathology [29].

Approximate Entropy, ApEn: The estimate of the entropy,
a regularity statistic measure that quantifies the unpredictabil-
ity of the fluctuations in a time series signal and returns a
value between 0 (high degree of short- and long-term pre-
dictabilities) and approximately 2 (completely random signal
such as pure white Gaussian noise). For the computation of
ApEn [30], “m” (the window length) was set to 2, and “r”
(the similarity criterion) was set to 0.2∗SD of the signal, as
in [25]. The regularity of tremor has been shown to change
with age and pathology [31].

After that, the recurrence quantification analysis (RQA) was
applied to the tremor data; it is a nonlinear data analysis
method that quantifies the number and duration of recur-
rences of a dynamical system presented by its phase-space
trajectory [32]. The 2-D binary map–recurrence plot (RP) is
computed for each tremor signal to visualize the recurrence
behavior of the phase-space trajectory of dynamical systems.
The following settings were adopted [33]: 1) the delay was
estimated with the mutual information method algorithm;
2) the embedding dimension was estimated with the false
nearest neighbor (FNN) chaotic algorithm [34]; and 3) the
critical radius was set to 20% of the maximum distance
(Euclidean distance matrix). From these maps, we obtained the
following indicators to describe the complexity of tremor [24].

Recurrence Rate,% RR [%]: It expresses the self-similarity
of the tremor time series during handwriting.

Determinism,%DET [%]: An index of the degree of %DET,
which expresses the predictability of tremor.

The higher these indicators, the lower the tremor complexity
[24].

3) Statistical Analysis: Statistics were run using RStudio
version 1.2.5033 (RStudio Inc., Boston, MA, USA). The
significance level was set at 5% for all tests.

The goals of our statistical analysis were to: 1) check the
reliability of the computed indicators in a test–retest design
and 2) study possible significant variations of these quantities
with age in healthy subjects.

Data acquired in the two sessions were used to evaluate the
relative and absolute reliability of the computed indicators,
for young and older adults, separately. To do so, for each
continuous indicator, we first conducted a Lilliefors test to
verify normality and a paired t-test to assess the absence of
systematic bias between the measurements in the first and
second sessions of the test. We evaluated the reliability by

Fig. 5. Linear regression between the test weights (x-axis) and the pen
measurements (y-axis).

computing the intraclass correlation coefficients (ICC two-way
mixed-effects model, absolute agreement), an index ranging
from 0 to 1; ICC values of 0.5, 0.75, and 0.9 indicate
moderate, good, and excellent reliabilities, respectively [35].
Absolute reliability was assessed computing the standard error
of measurement (SEM), as in

SEM = SD × √
1 − ICC (4)

where SD is the standard deviation of the indicator in the test–
retest. Given the SEM, the measurement error was estimated
through the minimal detectable change (MDC) calculated as
in

MDC = SEM × 1.96 × √
2 (5)

where 1.96 is the z-score associated with the 95% level of
confidence, and the square root of 2 reflects the additional
uncertainty introduced by using scores based on measurements
made at two time points [36]. On the other hand, for the
two count indicators (NCA and NCF), test–retest concordance
between the two test repetitions was investigated by computing
Kendall’s tau [37].

As for the second aim, we opted for nonparametric statistics
after verifying, with a Lilliefors test, that not all indicators
were normally distributed. For each indicator, we studied
possible between-group differences using the Kruskal–Wallis
test, followed by the Wilcoxon pairwise comparisons with the
Bonferroni correction in case of significance.

III. RESULTS

A. Pen Validation

1) Tip Force Static Calibration: A strongly significant pos-
itive linear regression was observed between the test weights,
in grams (g), and the pen measurements (nonscaled units)
with a R2 score of 0.99 (see Fig. 5). We found the linear
coefficients, m (slope) and b (intercept), for the force signal
calibration equal to 0.62 and −369.7 g, respectively.

2) Tip Force Dynamic Validation: The correlation ρd

between F and Fext was significant and equal to 0.96. Fig. 6(a)
shows the pen force signal and the external sensor force signal
superimposed acquired in the first 27 s of the writing task.
Both signals are normalized with respect to their maximum
value to better visualize the comparison. As noticeable, the
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Fig. 6. (a) Aligned and overlapped writing force signals acquired with the pen (blue) and with the external load cell used as reference (red). Below the
signals, the colored segments (blue for the pen and red for the external load cell) indicate the detected strokes. (b) Bland–Altman plot with the duration of
the strokes detected with the pen and the external load cell signals.

writing force signal F recorded with the pen accurately
matched the reference signal Fext from the load cell, with a
weak smoothing effect on the fastest components.

3) Tilt Angle Validation: Fig. 7 shows the results of the tilt
angle validation. The results in the first writing task reported
a significant correlation coefficient ρt of 0.89 and an RMSE
value of 6.3◦ between the estimate tilt angle from the pen and
the reference angle obtained with the optoelectronic system.
In the second task, the correlation was significant with ρt equal
to 0.78; an RMSE of only 3.8◦ was reported.

4) Segmentation Into Strokes: Fig. 6(b) shows the
Bland–Altman plot for the agreement between the stroke seg-
mentation obtained from the pen writing force signals F and
the reference signals from the external sensor Fext; the mean
stroke duration (in seconds) is presented in the x-axis, while
the difference between the stroke duration between F and Fext

is in the y-axis. A total number of 452 strokes were detected,
with a mean duration of 0.11 ± 1.96 s. As can be observed
from Fig. 6(b), there is an agreement between the stroke
duration obtained from the two signals: all data points except
three were located inside the confidence interval boundaries
of agreement, with no trends in the point distribution.

The linear regression between the stroke duration obtained
from F and Fext reported an R2 score of 0.99. A visual
representation of the stroke segmentation in a 27-s-long force
signals is shown through horizontal tracts placed below the
overlapped time series in Fig. 6(a).

B. Handwriting

A total of 43 subjects was recruited. The young adults
group (YY) included 20 subjects [age 28.5 (mean) ± 3.6
(standard deviation) years old; sex: ten male and ten female;
and dominant hand: 19 right-handed]; the older adults group
included 23 subjects [age 73.4 ± 8.9 years old; sex: eight
male and 15 female; and dominant hand: 22 right-handed].
To study how age affects handwriting, the subjects in the
older adults group were divided into two based on their age:
the subgroup of middle-old adults (EY) included 12 subjects
with an age between 60 and 69 years old [age 66.4 ± 2.1

Fig. 7. Tilt angle validation. Each figure shows the aligned and overlapped
tilt angle signals computed from the pen sensors (blue) and from the external
reference system (red), for both tasks.

years old; sex: six male and six female; and dominant hand:
12 right-handed]; the second subgroup (EE) was composed
by 11 old adults with an age above 70-year old [age 81 ±
6.9 years old; sex: two male and nine female; and dominant
hand: 10 right-handed]. The choice of separating subgroups in
the population over 60 enables a more accurate portrayal of
significant life changes. The 70-year old threshold was based
on published studies showing that the relationship between age
and handwriting movements is likely to be nonlinear with the
greatest decline in age-related motor function occurring after
the age of 70 [19], [20].

1) Reliability: Table I presents the reliability results for both
young and old adults. The test–retest reliability results on the
older adult group were computed from the data of 11 subjects
who performed the protocol twice. As shown in Table I,
excellent or good reliability emerged for all the indicators,
for both young and older adults, except for fmod for the old
adults, which showed moderate reliability (ICC = 0.68).

2) Age-Related Changes in Handwriting and Tremor: Table
II reports the results of the nonparametric statistical analysis
that we carried out to test the age effect on the handwriting
indicators. Significant between-group differences were found
for in-air time (tair), in-air/on-sheet ratio (ta/s), NCF, (ApEn),
%RR, and %DET. Pairwise comparisons highlighted signif-
icant changes for: the couples YY–EY and YY–EE for tair
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TABLE I

RELIABILITY OF THE HANDWRITING AND TREMOR INDICATORS

(increase with age); the couples YY–EE and EY–EE for ta/s

(increase with age),%RR, and %DET (increase with age); the
couple YY–EE for the ApEn (decrease with age) and Tilt_CV
(decrease with age) indicators; the couple EY–EE only for
NCF (decrease with age); and the couple YY–EY only for
Tilt_mean (decrease with age).

IV. DISCUSSION

This work presents the development, validation, and testing
of a smart ink pen instrumented with force and motion sensors,
designed for the quantitative and ecological assessment of
daily-life handwriting.

The device was designed to autonomously acquire, store,
and dispatch data related to the writing gesture. The pen
is instrumented with an inertial measurement unit and a
miniaturized load cell so that the combined analysis of data
collected through these sensors allows the extraction of rel-
evant handwriting and tremor indicators. The smart object
features both internal storage capacity and BLE connectivity
so that the collected data can be streamed to a remote device
either in real time or offline after being stored onboard.
To maximize usability and transparency, the pen functioning is
self-operated through movement detection or BLE connection
request; therefore, no activation button for the end-user is
needed; in addition, the sensor data download and processing
procedures are automated.

The greatest accomplishment of the devised technology is
that it enriches a traditional ink pen with the ability to achieve
quantitative reliable handwriting assessment, thus combining
the advantages of the digitizing tablet technology with the
natural “feel,” the ease of use, and the ecological validity of the

traditional pen-and-paper approach. These latter characteristics
are crucial desires for the end-user, especially when dealing
with the elderly population. Indeed, simplicity, intuitiveness,
and transparency are key requirements to increase acceptance
and reduce the technological anxiety that often characterizes
the elderly population [38]. This is even truer when the device
is envisaged within the framework of continuous home-based
monitoring, as in the case of the proposed technology; the
smart ink pen was indeed developed within the European
Movecare Project [39], which targets independent older adults
living at home with the final aim of detecting early signs of
cognitive and physical decline.

The devised smartpen was first successfully validated
against gold-standard references. As for the pen load cell,
the static tip force measurements calibration using testing
weights reported a coefficient of determination extremely close
to 1 (0.99), confirming the linearity of the sensor even when
constrained in a very tiny space that imposes a pronounced
bending of the cable. Comparison of the pen force signal with
the reference measurement obtained from an external load cell
reported a very strong correlation (ρd = 0.96) also in dynamic
conditions. The validated pen force signal was leveraged for
the segmentation of the writing signals into strokes, a critical
step of the data analysis process, since the computation of
important handwriting indicators relied on it. The validation
of the segmentation procedure conducted by comparing the
stroke durations obtained from the automatic stroke detection
algorithm and the reference segmentation was successful.
Indeed, the Bland–Altman plot showed a very good agreement
between the two sets of measurements, which were included,
for the most part, within the standard deviation boundaries;
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TABLE II

AGE-RELATED CHANGES IN HANDWRITING

in addition, an almost perfectly linear relation (R2 = 0.99)
emerged from the regression analysis between the two sets
of stroke durations. As for the pen inertial measurement unit,
it was leveraged to estimate the pen tilt angle; the pen tilt
was validated through the comparison with a reference angle
obtained by means of an optoelectronic system, reporting
strong correlation and low error.

After successful validation of the pen sensors and algo-
rithms, the smart object was tested on young and older adults
with the twofold aim of testing the reliability of the handwrit-
ing and tremor indicators and their sensitivity to distinguish
between age groups. Concerning test–retest reliability, results
were excellent, with values largely above the 0.75 thresholds
of good relative reliability [35], with the exception of the
modal frequency for the old adult group, which showed
moderate reliability. These high values are even more striking
if we consider that the writing content differed between the
two trials, importantly suggesting that the reliability of the
indicators is independent of the writing content. The MDC
was also computed to estimate whether a change between
the user’s repeated tests represents random variation or a true
change in performance. This measure is extremely important to
discriminate real changes in the values of the indicators when
monitoring users over time, and it is, thus, crucial for the user’s
longitudinal monitoring to highlight relevant deviations from
the standard performance. The reported measurement errors
were very low.

Concerning the ability of the writing and tremor indicators
to distinguish between different age groups (young adults YY,

middle-old adults between 60 and 69 years old EY, and old
adults over 70 years EE), our results are mostly in line with
previous literature.

As for the temporal handwriting measures, significant age-
related changes emerged for the In-air time and the In-air/on-
sheet ratio indicators, which increased with age. Our findings
confirm previous literature investigating writing copying tasks
using digitizers, which reported an increasing trend for these
indicators from healthy young to older adults [21] and from
healthy older adults to older adults with cognitive decline [6];
moreover, the assessment of in-air time during handwriting
was reported to have a major impact on disease classification
accuracy in PD [7]. On the other hand, our data showed how
the On-sheet time indicator was quite constant over different
age groups. As for the indicators related to the handwriting
force (Mean writing force), no age differences emerged. For
this indicator, contrasting results emerged in previous work
analyzing writing copying tasks using digitizers: while no
significant association between writing pressure and the frailty
phenotype was found by Camicioli et al. [9], some studies
reported that the writing pressure decreases with age [8] and
age-related cognitive pathology [6]. The lack of age-related
differences in writing force that emerged from our data is
unlikely to depend upon the force resolution of the pen load
cell. Indeed, from the static calibration, we obtained a force
measurement resolution of 0.02 N, which is two orders of
magnitude smaller than the MDC value found for the force
signal (equal to 1.5 N). On the other hand, our data showed
an effect of age for the NCF within a stroke, which was
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significantly decreased for the very old group (EE). Our
finding confirms the previous literature examining pen-and-
paper writing, which reported a more uniform pen pressure
for older writers [2].

Concerning tremor, no differences due to age emerged for
the modal frequency. While this indicator was shown to be
affected by the presence of neurological conditions (e.g., PD)
[29], a clear effect of age was not consistently shown in
the previous literature, which mainly investigated resting or
postural tasks [24], [25], [28], [31]. On the other hand, our
data revealed a neat age effect on nonlinear tremor acceleration
characteristics. Our results showed a decrease with age of
ApEn during handwriting, meaning that more repetitive and
predictable tremor oscillation components characterized the
older age groups. As for this indicator, the previous literature
showed a clear decrease in PD patients [31] and a slightly
less evident decreasing trend for older individuals, compared
with younger adults, in postural rather than in resting tasks
[25], [28], [31]. In line with the ApEn results, the indicators
related to the RQA-%RR and %DET presented a significant
increase for the very old group (EE), confirming once again
the augmented predictability of the tremor characteristics in
older writers. Also for these indicators, previous work revealed
a marked increasing trend following neurological conditions
(PD) [24], while no important changes simply due to older
age were consistently demonstrated, at least during postural
tasks [24].

To sum up, the results of the writing indicators obtained
during free text writing with our pen, especially those related
to temporal measures, are in line with the previous literature
investigating writing copying tasks with digitizing tablet tech-
nology. This result supports our choice of not constraining the
writing content or execution in order to increase the ecological
validity of the protocol. As for tremor, the nonlinear accelera-
tion characteristics examined in this study while writing with
the smartpen present a more marked effect of age compared
with the previous work investigating mostly postural tasks
[24]. This finding suggests that the study of tremor during
more complex activities entailing a blend of cognitive and
fine motor skills, such as handwriting, is more effective in
bringing out important differences due to aging compared with
more simple postural or resting tasks typically investigated
in previous work. To this end, the proposed technology, with
its combination of force and motion sensors, is key since it
allows the simultaneous study of writing and tremor character-
istics during handwriting tasks. This important advantage of
the smartpen paves the way toward fruitful applications of
the current technology in the field of PD. Indeed, signs of the
disease include not only tremor but also a series of handwriting
abnormalities grouped under the term of “PD dysgraphia” [40],
which supports the study of handwriting as a presymptomatic
neurobehavioral biomarker of PD [41]. In this framework,
it is clear that a technology that allows the combined study
of handwriting and tremor features perfectly suits the current
needs of the neurological research field. Indeed, the impor-
tance of studying handwriting is not restricted to PD but can be
extended to a variety of other neurological disorders, includ-
ing Dyskinesia [42], Huntington’s disease [4], and Multiple

Sclerosis [43], not only to support the diagnosis process but
also to quantify the severity of clinical signs over time and
to monitor and manage the risks associated with medications
[42]. In addition, a technology that allows quantitative, simple,
and ecologically valid evaluation of handwriting finds potential
and interesting applications also in the youngest population
since handwriting and text production skills assume a central
role in the children’s development process. In this framework,
handwriting difficulties are common in a number of childhood
disorders, including, dysgraphia [44], [45], dystonia [46]–[48],
and attention deficient hyperactive disorder [49].

In this work, test–retest reliability for the older adults was
computed over 11 subjects; future work should enlarge this
sample size to compute test–retest reliability on more sub-
groups of old adults (middle-old and old adults). In addition,
more subjects from different age ranges should be recruited
to gain more insight into the study of age-related changes of
handwriting and tremor from the very young to the old age; to
this end, the inclusion criteria should also be carefully defined
to avoid confusing factors. The pen force signal considered in
this work is the total writing force; future work should also
consider leveraging the tilt angle to obtain the force component
normal to the writing surface.

V. CONCLUSION

To conclude, this work presents the development of a smart
ink pen instrumented with force and motion sensors, designed
for the quantitative and ecological assessment of daily-life
handwriting.

The greatest accomplishment of the proposed smartpen is
the ability to achieve reliable quantitative assessment of hand-
writing, without neglecting simplicity and ecological validity.
As for quantitative handwriting assessment, different from
previous technological solutions, the smart ink pen allows
the combined study of writing and tremor characteristics,
thus unveiling possible fruitful applications including, but not
restricted to, the fields of aging and neurological research.
On the other hand, simplicity and ecological validity are
key aspects to increase user’s technological acceptance and
broaden the fields of application to situations in which trans-
parency and ease of use are necessary requirements (e.g.,
studies targeting older populations, home-based monitoring
applications, and clinical studies carried out by nontechnical
professionals).

We believe that the proposed smart ink pen represents
an important step toward simple, ecologically valid, reliable
quantitative assessment of daily-life handwriting, with possible
applications in several important health-related fields.
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