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Elastic orbital angular momentum transfer from an
elastic pipe to a fluid

Gregory James Chaplain® '™ Jacopo Maria De Ponti? & Timothy Andrew Starkey® '

Research into the orbital angular momentum carried by helical wave-fronts has been
dominated by the fields of electromagnetism and acoustics, owing to its practical utility in
sensing, communication, and tweezing. Despite the huge research effort across the wave
community, only recently has elastic orbital angular momentum been theoretically shown to
exhibit similar properties. Here we experimentally observe the transfer of elastic orbital
angular momentum from a hollow elastic pipe to a fluid in which the pipe is partially sub-
merged, in an elastic analogue of Durnin's slit-ring experiment for optical beams. This
transfer is achieved by coupling the dilatational component of guided flexural waves in the
pipe with the pressure field in the fluid; the circumferential distribution of the normal stress in
the pipe acts as a continuous phased pressure source in the fluid resulting in the generation
of Bessel-like acoustic beams. This demonstration has implications for future research into a
new regime of orbital angular momentum for elastic waves, as well providing an alternative
method to excite acoustic beams that carry orbital angular momentum that could create a
paradigm shift for acoustic tweezing.
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ver the past three decades, investigation into the orbital

angular momentum (OAM) carried by helical waves has

largely been reserved for light and sound!. The realisation
by Allen et al2 that electromagnetic Laguerre-Gaussian (LG)
beams, satisfying the paraxial wave equation’, carry a well-defined
OAM sparked a resurgence in interest in exploiting this
mechanical property of light for optical tweezers*. The cele-
brated success of utilising LG beams comes, in part, from the ease
in which they can be generated; a variety of simple devices can
form these modes, for example spiral phase plates, q-plates, and
spatial light modulators®0. The orbital angular momentum is
associated with the spatial distribution of the beam, and not with
the polarisation (that determines the intrinsic spin angular
momentum)?; the inclined phase-fronts give rise to a well-defined
OAM about the beam axis that is proportional to the azimuthal
index, or topological charge, m. The azimuthal variation of phase
forms a helical profile varying as e*9, for azimuthal angle 6 with
the sign of m determining the handedness of the helix. In general
any optical beam with inclined phase fronts can carry a well-
defined OAM!!L Since this realisation other forms of optical
beams that carry OAM have been investigated, by interference and
superposition, such as higher-order Bessel beams!'%13, and more
general vortex structures (knots) with non-integer OAM!4-17.

Translations of the phenomena surrounding OAM beams
have been shown to hold for sound!$, with the transfer of
torque for scalar waves within the non-paraxial regime being
considered!®20, Similar applications in acoustic tweezers exist for
micro-scale biological manipulation and communication, to
name a few?!-24, Conventionally the excitation of acoustic OAM
modes rests on acoustic analogues of phase plates?>29, resonant
devices and antenna concepts?’~2%, or by discrete phased
arrays0-32, Utilising discrete phased arrays is indeed a favoured
method for the excitation of higher-order OAM acoustic modes,
that carry topological charge m > 133. Importantly, such higher-
order modes exhibit an instability phenomenon: a vortex of
charge m > 1 is not stable and degenerates into |m| vortices (screw
dislocations) of charge m/|m|03%3>,

Recently OAM has been extended further into the realm of
elasticity, where both the spin-phonon coupling in elastic media
and the intrinsic spin of elastic waves have been investigated36-37.
The orbital angular momentum associated with only the com-
pressional potential of flexural waves in elastic pipes has also been
considered’®, with the complete theory shown by Bliokh%,
proving that the total angular momentum (the sum of spin and
orbital contributions) is quantised, as in electromagnetism and
acoustics. In this paper we experimentally verify the experiment
proposed in38, showing that the elastic OAM-associated flexural
waves can be coupled to a fluid, thereby observing its transfer
through the excitation of acoustic pressure fields that carry OAM.
Guided ultrasonic modes in pipes are considered, specifically
flexural modes with a natural circumferential variation of phase.
The coupling to the acoustic pressure in a fluid is achieved by
partially submerging one end of the pipe in the fluid, in a set
up resembling an elastic analogue of Durnin’s slit-ring
experiment!340, We show that the generation of Bessel-like,
higher-order acoustic OAM modes is possible, with clear agree-
ment between simulation and experiments, highlighting specifi-
cally the features associated for an m =3 topological charge.
Before introducing the flexural modes and the pipe structure we
recall the governing equations of elastic materials and the asso-
ciated compressional OAM.

An isotropic, homogeneous linear elastic material supports
waves governed by the Navier-Cauchy equations*!, following the
Einstein summation convention:

uddE + (A + wdd,, = pk;, @

and the constitutive law
0; = Cijue = Aéijskk + 2ue;;, )

with &; the displacement and ¢, its double time derivative; Lamé’s
first and second parameters are denoted A, y respectively with p
being the material density; 0;; and Cjj; are the stress and stiffness
tensors respectively; and ¢; = =3(&; j T ¢&) is the strain tensor
(comma notation denotes part1a1 differentiation, and o0, = ai)

The displacement comprises both shear and compressmnal
motion, described by an equivoluminal vector potential ¥; and
scalar dilatational potential @ respectively such that, by Helm-
holtz decomposition, & = 0;® + €;0;¥,. Elastic waves with
inclined phase-fronts naturally occur as flexural modes in pipe
walls®8. Choosing cylindrical coordinates oriented with z along
the pipe axis the potentials take the form

® = ¢(r)exp [i(m@ + k,z — wt)},

Y, =y, (r)exp [i(m@ +k,z — wl‘)}7 S

where a =71, 0, z. k, is the wavenumber along the pipe axis and w
the radian frequency. Stress-free boundary conditions are
imposed on the inner and outer radii r,, r;, respectively, such that
0,y =0,9=0,l, =0, along with the infinite cylinder gauge
condition V-¥ = 0. The resulting radial distribution of the dila-
tational and shear potentials (¢(r) and y,(r)) are then described
by a linear combination of Bessel functions and their
modifications*2. We consider the coupling of elastic waves in a
pipe with pressure fields in a fluid by partially submerging the
pipe in the fluid. At the solid-fluid boundary the acoustic pressure
induces a fluid load on the solid structure, and the structural
acceleration acts as a normal acceleration across the solid-fluid
boundary. The boundary conditions then manifest as the
dynamic continuity of traction, and the kinematic continuity of
the normal particle displacement at the interface between the
solid and fluid, such that*3

oyt = —pIijnj, @)
iy = u;ny,

where p is the acoustic pressure, I;; is the unit tensor, u; is the
particle displacement in the fluid and #; is the surface normal. In
the fluid domain, the governing equations follow the standard
linearised Euler equations. For harmonic motion these read

0;p — wppu; =0,

P+ppcpdu; =0,
for fluid density pr with the acoustic wavespeed in the fluid
denoted cp. The coupling boundary conditions of the elastoa-

coustic problem can then be expressed in the pure displacement
formulation*4:

(©)

0jj chFakukI,] ;. =0,
(6)
Ny — un; =0
These equations are solved numerically throughout via the Finite
Element Method (FEM)45.

The vector system of elasticity supports two body waves,
compression and shear, that travel with distinct wavespeeds given
by ¢, = \/(A+2u)/p and ¢, = \/p/p respectively. Clearly, in the
fully coupled elastic system, longitudinal (compressional), trans-
verse (shear) and hybrid components all contribute to the orbital
angular momentum, and thus to the total angular momentum
(orbital and spin)3°. The splitting of the displacement vector into
the dilatational and shear potentials, as done in38, is not required;
however, the OAM associated with the compressional potential
(that is proportional to the azimuthal index m) motivated this
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Fig. 1 Experimental Set-up. a Elastic Spiral Phase Pipe: L =900 mm, d; =40 mm, d, = 60 mm, hs = 63 mm, hg = 95 mm, p; =12 mm and the thickness at
the spiral region, t; = 4 mm (shown in zoom, the spiral region has been made partially transparent). Also shown is a view of the capped end with piezo disk,
of diameter 35 mm, and attaching screws. b Acoustic Measurement Centre: Schematic of close-up of the submerged end of the pipe showing orientation of
the hydrophone. The measurement plane is approximately 20 mm below the end of the pipe, intersecting the detector at its “acoustic centre'. Shown too is
an example experimental profile after frequency domain analysis. ¢ Water tank and xyz scanning stage. d Close-up of suspended pipe and scanning arm.

experimental work as fluids only support compressional waves
and not shear.

Optical and acoustic tweezing are primary applications for the
transfer of OAM, where particles can be trapped and manipulated
at the vortex singularity at the beam centre?!46, In the case of
elastic OAM carried by flexural modes in pipes there is no such
singularity as the pipe is hollow - a direct analogy cannot be
drawn in this case as there is no elastic medium to suspend
particles with at the pipe centre, along its axis. However, it is well
known that vibrating solids radiate sound waves in fluids, and it is
this coupling we leverage to excite an acoustic OAM mode via
the flexural displacement field carried in the elastic pipe. We
utilise the so-called elastic spiral phase pipe?” to efficiently gen-
erate flexural pipe modes and include qualitative comparisons
with both Finite Element Method (FEM) simulations and
Dynamic Mode Decomposition (DMD), and a comparison to
classical discrete phased sources. We experimentally validate this
OAM transfer, thereby developing a new continuous-phased
acoustic source in the form of flexural modes in pipes; Bessel-like
beams are generated by the radial distribution of the compres-
sional potential.

Results and discussion

Guided flexural modes in pipes. Guided ultrasonic waves in
pipes have long been studied, with the first analytical description
being posed by Gazis in the late 1950s*>48, for infinitely long
pipes. They fall into three modal classes: longitudinal (L), tor-
sional (T), and flexural (F), with a naming convention attributed
to Silk and Bainton®® such that they are written L(m, n), T(m, n)
and F(m, n). The integers m, n denote the circumferential and
group order respectively; the circumferential order being analo-
gous to the topological charge of optical vortex beams. The
generation and inspection of these guided waves has found much
success in non-destructive techniques and evaluation®®>!, The
focus of this paper is to observe the coupling between non-
axisymmetric flexural modes F(m >0, n) in pipes and acoustic
waves in a fluid. As such we require a device to ensure their
efficient generation.

The recent advent of the elastic spiral phase pipe (eSPP)*’
achieves this. This structure removes the necessity to rely on
conventional means of complex arrangements of transducers or
phased arrays (e.g by comb arrays or non-axisymmetric partial
loading®>>3). Advantages of the eSPP include passively exciting
arbitrary flexural modes with, crucially, single-handedness (i.e.,
only one sign of m) by mode converting longitudinal modes (e.g.,
L(0, 2)) that can be easily to excited in isolation®*. This is a
particularly attractive property as a candidate for using flexural
modes that are sensitive to axial cracks, where the conventional
longitudinal and torsional modes are weakly sensitive>>°°.

In Fig. 1 we detail the eSPP used in the experimental
verification of the transfer of elastic OAM. In Fig. la we show
the elastic spiral phase pipe that endows incoming axisymmetric
waves with a helical phase profile, similar to OAM generation by
optical and acoustic analogues?>2657. The spiral pipe used here
has already been characterised®’, comprising an aluminium pipe
of density p=2710kgm~3, Young’s Modulus E= 70 GPa and
Poisson’s ratio v=10.33. The inner and outer diameters of the
pipe are d; =40 mm and d, = 60 mm, respectively. One end of
the pipe is open (to be submerged in fluid), while the other is
capped with an aluminium disk of diameter d, and thickness
10 mm, attached by six screws. The total length of the pipe
is L=900mm. The spiral region of the pipe is specifically
designed to convert L(0, 2) modes to F(3, 2) modes at 62 kHz, and
is formed by CNC milling a thickness of 6 mm from the pipe into
three spiral steps of length h;=63 mm. This step profile is
determined via the method in ref. 47, where an effective refractive
index relates the two speeds of the incoming and converted waves
through

2nm
" kG- @

where m is the modal index of the desired flexural mode (m = 3,
here) and 71 = ¢;/c; is the ratio of the wavespeeds of the converted
flexural and incident longitudinal waves respectively, with k; the
wavenumber of the incident mode along the pipe axis. To reduce
the length of the step size the spiral is partitioned into three turns
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Fig. 2 Results and Comparisons. Frequency domain real pressure field (left column) and phase (right column), at 58 kHz. The measurement plane is in the
fluid at a depth 20 mm from the submerged end of the pipe for a, b FEM Simulation, ¢, d Experiment and e, f Dynamic Mode Decomposition (performed on
experimental data set—see Methods). A portion of the time domain experimental data is available in Supplementary Movie 1.

such that hy = h/3. The wavespeeds of each mode are determined
by calculating the modal dispersions supported by the pipe,
evaluated by spectral collocation?”-8.

Transfer of elastic OAM. To experimentally confirm the transfer
of elastic OAM, we consider the coupling of the compressional
component of a guided flexural F(3, 2) mode in an elastic pipe, to
the acoustic pressure field in a fluid (water) in which the pipe is
partially submerged. Extensive time-gated acoustic characterisa-
tion of the fluid-field pressure distributions were made using a
scanning tank facility, shown in Fig. 1b-d. We show, in Fig. 2, the
experimental observation of elastic orbital angular momentum
transfer by an elastic spiral phase pipe. The time-series data
obtained (see Methods) is analysed by way of the Fast Fourier

Transform (FFT), giving the spatial-frequency components
comprising the acoustic signal in the fluid. Figure 2a, b show the
real pressure field and the phase, respectively, of the FFT of FEM
simulations (see Methods) at 58 kHz, 20 mm below the sub-
merged end of the pipe. The discrepancy between the design
frequency and the shown frequency arise due to imperfections in
the eSPP milling procedure, as a consequence of the finite size of
the drill head, as well as the effect of real damping and viscous
properties of the materials at high frequencies. This results in a
slight rounding of the spiral tips causing a step profile that causes
a small change from the design frequency; the device is not purely
monochromatic and works over a range of frequencies near the
design frequency, with varying efficiency?’. The corresponding
experimental pressure fields are shown in Fig. 2¢, d; there is clear
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qualitative agreement between simulation and experiment: we
observe the predicted triple-helix phase profile with three phase
singularities in the form of acoustic vortices. The splitting of
the central vortex into three first-order charges results from the
instability of higher-order OAM modes®%. Similar to optical
beams, these modes are vulnerable to perturbation by any
coherent background®?, that itself does not require any disloca-
tion lines (vortices)®%; unconverted compressional waves form
such a background resulting in the observed decay of the high-
order screw dislocations on a sum of dislocations of charge one.
These are clearly visible in the simulations and experimental data.
Additionally, in the experiment, there is an amplitude modulation
due to the physical eSPP only approximating the exact circular-
helicoid structure.

Figure 1b shows a zoom of the measurement area, with
example experimental result superimposed, highlighting that due
to both the parallax associated with refraction in the alignment,
and the physical dimensions of the hydrophone, only an
approximate depth of the relative position of the acoustic centre
of the hydrophone (i.e., the plane where the pressure is accurately
mapped) can be determined. The matching of the field profiles
is observed at a depth of 20 mm below the pipe. This is,
approximately, the closest possible approach of the acoustic
centre of the hydrophone. The implications of this are highlighted
in Fig. 3. For an acoustic Bessel-like beam carrying OAM, one
expects a zero in acoustic intensity due to the phase singularity at
the centre of the beam, here the intensity in given by

I=—(pv* +p*v), 8)

]

where, in the frequency domain, the velocity, v is related to the
pressure p through v = ﬁ Vp and * denotes the complex

conjugate. At the observable depth this is obscured due to the
background field excited from the compressional mode that is
unconverted by the eSPP, since it is not perfectly efficient*’. As
such at the measurement plane, marked by the dash-dotted line
in Fig. 3b, there is an amplitude modulation of the Bessel-like
nature resulting from modal interference. However, close to
the end of the pipe, e.g., at the plane marked by the dashed line in
Fig. 3b, the doughnut-like profile of the beam is unperturbed; this
is seen in Fig. 3a that shows the Fourier-analysed FEM acoustic
intensity and phase as a hued colourmap.

To confirm that the observed pressure field in the fluid is the
dominant mode within the system, despite the pipe being modally
rich, we perform Dynamic Mode Decomposition (DMD) on the
experimental data set (see Methods). This is a technique
popularised by Schmid®! that extracts the singular values of a
matrix representing the time-evolution of the complete data set,
and thus determines the dominant dynamics of the system. In
Fig. 2e, f we show the results of the DMD on the experimental
data, corroborating the assertion that the helical pressure field
propagating through the fluid is dominant, as a direct result of the
coupling from the compressional component of the incident
F(3,2) mode designed to be excited by the eSPP.

We further explain the amplitude variation of the pressure field
in the fluid by considering the superposition of the OAM beam
with background sources. We do so by an analogy to amplitude-
modulated-discrete-phased acoustic sources that are convention-
ally used for exciting acoustic beam shapes that carry OAM.

Analogy to discrete phased arrays. Conventional methods for
exciting acoustic beams that carry orbital angular momentum rely
on discrete phased sources, such as circular arrays of loudspea-
kers. The interference of the monopolar-like sources then
approximates a beam with a helical phase-front. Often acoustic

waveguides are used to enable the beam waist to be formed a
desired distance away from the sources3%32. In Fig. 4 we show the
discrete phased analogy via a frequency domain FEM simulation
for two cases; (I) a ring of 12 phased point acoustic sources with
equal amplitude, and (II) the same ring but with additional
central source and amplitude variation. We include this model
purely as a qualitative analogue to the acoustic OAM mode
excited by the pipe; the vector elastic system cannot be reduced to
a purely scalar (monopole) source as higher order vector com-
ponents (e.g., dipole) contribute®263. The geometry considered is
such that the point sources lie on a ring of diameter 50 mm, as if
placed at the mid-point of the pipe thickness, lying atop a
cylindrical volume of water 0.1 m deep and 0.15m in diameter,
akin to the FEM simulations of the main experiment (see
Methods). Each source is coloured to represent the relative phase
shift (of 7/4 radians) to the adjacent sources, and has an ampli-
tude represented by their relative size. The array is chosen so that
a topological charge of m =3 is achieved. Figure 4c, d show, for
case (I), the real pressure field, phase, and acoustic intensity
respectively for an excitation frequency of 58 kHz at a distance
20 mm from the source plane. As there is no other sources pre-
sent this well approximates an acoustic beam carrying OAM. For
case (II), an additional source is present at the centre of the ring,
and the amplitude of three sources is also modified.

The eSPP considered throughout can be seen to act as a
continuous phased acoustic source, with the phase profile
determined by the circumferential order of the flexural mode,
as shown in Fig. 3a. The analogy to the additional source in case
(IT) represents the amplitude modulation in the experiment due
to the background provided by the unconverted compressional
wave, and other modes present in the pipe. This intuitive analogy
gives qualitative agreement to the experimental fields. As such we
pose that the pipe acts as an amplitude-modulated-continuous-
phased source for acoustic OAM beams.

We additionally show in Fig. 5 a comparison between FEM
modelling and experimental results through the absolute pressure
field at 63kHz, and in Fig. 6 show (at 53 kHz) similar
comparisons at different depths, demonstrating the divergence
of the acoustic beam with propagation depth (shown in
Methods).

Conclusions

Generating acoustic vortex beams that carry OAM has been
instrumental to the development of optical and acoustic tweezers.
Specifically in acoustics, the generation of these modes con-
ventionally relies on discrete phased arrays. By considering the
elastic orbital angular momentum associated with compressional
motion we have demonstrated the experimental observation of
elastic orbital angular momentum transfer from guided flexural
modes in a pipe to acoustic waves in a fluid, verifying the
experiment proposed in ref. 38, and thus providing a new avenue
to generate acoustic OAM beams.

The applications of this phenomena are therefore aligned with
those of acoustic tweezers, including sensing, communication and
microfluidic control. Extensions of this new methodology are
anticipated to fluid-filled pipes, where there exist attractive
applications in, for example, non-destructive testing in pipe-
networks.

Methods

Experimental setup. Measurements were performed in a water tank without wall
or surface treatments, with dimensions 3.0 x 1.8 X 1.2 m (L x W x D). The pipe was
suspended vertically above the tank using nylon fishing line attached to a mount so
that the end of the pipe was submerged approximately 20 mm into the fluid

(Fig. 1d); the partial seal on the capped end of the pipe ensures fluid is present
within the pipe, up to the same depth of submersion. A piezoelectric PZT-8 disc of
thickness 12 mm and diameter 35 mm was glued to the centre of the cap to provide
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Fig. 3 FEM simulation on the effect of measurement depth. Fourier analysed time domain simulation with a Intensity (hue) and phase (colour) showing
typical “doughnut” acoustic beam indicative of OAM at a plane close to the pipe end (1mm below). b Normalised acoustic Intensity along x—z plane
(y = 0): data extracted along the dashed yellow line is used in a and the dash-dotted line in Fig. 2a, b (20 mm below the pipe). The acoustic vortex is
obscured at the lower plane due to interaction with other modes present in the pipe, the cross-section of which is shown by the grey rectangles.

excitation with a 5-cycle pulse centred on 60 kHz. The piezoelectric excites the L(0,
2) mode which then efficiently excites the F(3, 2) mode via mode conversion in the
spiral region as outlined in ref. 47.

To obtain pressure field maps of sound radiated from the submerged end of the
pipe, the signal at the detection hydrophone (Briiel & Kjaer 8103 hydrophone) was
scanned in space using an xyz scanning stage (in-house built with Aerotech
controllers). The hydrophone was vertically mounted to a perforated perspex arm,
to match the propagation direction of the acoustic field. The acoustic propagation
was then spatially mapped in 2.5 mm steps across a 75 x 75 mm? area centred
beneath the pipe; the voltage, V, from the detector was recorded as a function of
time, t, at each position in the scan. At each spatial point, the acoustic pressure field
is averaged over the detecting area of the hydrophone head and the signals were
averaged in time over 20 repeat pulses to improve the signal-to-noise ratio. The
detector was sampled with sample rate f; =9.62 MHz to record the signal for
5.2 ms at each point. The resulting usable frequency range for this source-detector
response function was between 26—90 kHz. The resulting signals are time-
windowed corresponding to the time-of-flight of the flexural wave packet so that
the pressure field excited by the F(3, 2) pulse is isolated in the fluid. We then
confirm this is a dominant mode of the system through Dynamic Mode
Decomposition.

In Figs. 5 and 6, we provide two further qualitative comparisons between FEM
simulations and experiment, at 63 kHz and 53 kHz, respectively, showing the
variation in acoustic mode shape in the fluid that is dictated by the dominant mode
in the pipe at these frequencies. Additionally, in Fig. 6 we show the effect of
propagation distance by presenting the results at deeper measurement planes. As
expected the dominant mode propagates in the fluid and the acoustic beam
diverges with propagation depth. Experimental data set available at ref. 64.

Dynamic Mode Decomposition. Dynamic Mode Decomposition is a technique
developed by Schmid®! that enables a data set, be it numerical or experimental, to
be analysed so that the dominant dynamics can be observed. This is a particularly
attractive method here given the large number of modes excited within the pipe.
Here we briefly outline the methodology following®!.

DMD rests on representing an original time-series data set D as a sum of n
mode shapes associated with the radian frequency w, such that

D =32(, exp(iw,t), )

where (,, is the n" mode shape. The data we analyse is the temporal evolution of
the acoustic pressure at a series of grid-points in space. The data is rearranged into
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Fig. 4 Analogy to Discrete Phased Acoustic Sources. a FEM geometry showing ring of 12-point acoustic sources (coloured spheres), with relative phase
and amplitude shown by their colour and size respectively, atop cylindrical region of water with cylindrical radiation conditions on all boundaries.

b geometry of case (I) for conventional approximation of acoustic OAM beams; real pressure, phase, and acoustic intensity are shown in

¢, d, e respectively for this case at a depth of 20 mm below the source position. f geometry of case (1), where amplitude modulation is incorporated by an
additional central source and by altering the amplitudes of three of the sources around the ring. g-i are analogous to c-e respectively for case (ll), showing

the amplitude modulation of the acoustic OAM beam.

E o
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Fig. 5 Additional results at 63 kHz. Absolute Pressure (|P|2) of a FEM simulation and b Experimental results, evaluated under the same analysis and at the
same plane as in Fig. 2, showing qualitative agreement of the acoustic mode shape in the fluid. The dashed white circles show the positions of the inner and

outer radii of the pipe.

a single matrix such that each column represents on frame of the data:
X = [x,%y, ... ,.xy], (10)

Where X is the complete data set and x; is the data at times i = 1,...,N. As the
governing equations for the acoustic propagation are linear, the data at each time
step can be related by a matrix A such that

X = Ax;, an
and thus

X= [xl,Ax17 ,AN’lxl]‘ (12)
The dynamics of the system are then governed by the eigenvalues and eigenvectors
of A, which can be approximated by several numerical methods. Here, as in
Schmid’s original paper®!, we use singular value decomposition (SVD). We shall
also consider the shifted matrix

X:AX:[xz,xz,,..A,xNH]; (13)

for sufficiently large N (i.e., a long time signal) X and X will have a near identical
structure. By SVD, we write

X = Usvt, (14)

where U and V contain the left- and right-singular vectors respectively, with the
singular values along the diagonal of S. If the relative size of successive singular
values to the first few is small, then the size of the matrices can be reduced, with the
reduced forms subsequently written as e.g., U. The matrix U contains the so-called

principal directions, that are used to rewrite the data in a new basis and define
A=UTAU. (15)
Using the reduced forms, (13) then becomes
X ~A4A (USVT)
T 1 o)
= A ~U XVS .
This approximation of A then contains all the information needed to take one

frame of the data to the next. The eigenvalues and eigenvectors of A then are
obtained by converting back to the original basis such that

¢, =Un,, 17)

where ¢, is the n" mode for the nth eigenvector 7,. The results of this
decomposition on the time-series data obtained in the experiments is shown in
Fig. 2e, f, showing that this is a dominant mode shape.

Finite Element Modelling. The commercial FEM software COMSOL Multi-
physics® was used to perform time-domain simulations of the suspended pipe
geometry. The acoustics and structural mechanics module were used with acoustic-
solid interaction to couple the displacement field in the pipe with the acoustic
pressure fields in the air and water. A schematic of the simulation domain is shown
in Fig. 7, with cylindrical wave radiation conditions on the dashed boundaries. The
same 5-cycle tone burst, centred on 60 kHz excitation was used and applied as a
boundary load to the top cap of the pipe (area marked with magenta circle in
Fig. 7) to simulate the effect of the piezoelectic disc source (not actually modelled in
the geometry). The numerical pressure field was then extracted in the fluid, with
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Fig. 6 Results at 53 kHz at different depths. Frequency domain real pressure field (left column) and phase (right column), at 53 kHz. a, b FEM Simulation
with x—y measurement plane at z=0.9 m (according to the coordinate system adopted in Figs. 3b & 7) i.e., at the submerged end of the pipe.

¢, d Experimental results at the acoustic centre of the microphone, z=0.92m as in Fig. 2. e, f, g, h are subsequent measurements at x—y planes 6 mm
deeper: z=0.926 m and z= 0.932 m, respectively. The dashed black circles show the inner and outer radii of the pipe, highlighting the divergence of the
acoustic beam as it propagates deeper in the fluid.
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Fig. 7 FEM Simulation domain. Fully coupled acousto-elastic equations are
solved for between the aluminium pipe and air, the pipe and the water, and
the air and water. The boundary load applied at z= 0 to top surface of the
pipe represents the excitation from the piezoelectric disc, shown as
magenta circle of diameter 35 mm. Dashed lines correspond to cylindrical
radiation boundaries.

the same spatial resolution as used in the experiment. Fourier analysis was then
performed via the Fast Fourier Transform to obtain the spatial-frequency spectra,
as done in the experiment. The results were analysed at several planes beneath the
pipe to determine the position of the acoustic centre of the hydrophone and used to
show the excitation of a LG-like acoustic beam near the submerged surface of the
pipe (Fig. 3).

For the comparison with a discrete phased acoustic array, only the acoustics
module was used, with the simulation domain shown in Fig. 4, using monopolar-
like point acoustic sources. The simulation domain here matches the region of
water in the main simulation.

Data availability

The experimental data that support the findings of this study are available at https://doi.
org/10.24378/exe.4205. All other data are available from the corresponding author upon
reasonable request.
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