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A B S T R A C T   

The vulnerability of gas pipeline networks to physical and cyber-attacks calls for a resilience analysis based on 
models, capable of quantifying the network robustness and recovery from failures. 

This work proposes an original resilience analysis framework for a complex gas pipeline transmission network, 
considering the cybernetic interdependence of the physical gas pipeline network with the SCADA system. The 
maximum flow algorithm computes the gas network supply capacity and when a failure occurs, the pressure of 
the network nodes and the gas supply capacity change, leading to dissatisfaction of customer demands. The 
framework allows quantifing the value of resilience through specific performance metrics. 

The SCADA communication network, implemented in Network Simulator®, provides the necessary informa
tion regarding the delay of data packets coming from the sensors located along the pipelines. The packet delay 
value allows to evaluate the actual time at which the SCADA system blocks the remote control valves, ready to 
keep the pipelines under pressure when a failure occurs. 

Important insights on the resilience model are obtained through a systematic sensitivity analysis (SA) 
framework, customized for gas pipeline transmission networks. Specifically, we investigate the influence of 
model inputs to the network robustness and recovery uncertainty. The effects of individual parameters and 
groups formed by inputs with similar functionalities provide useful information, such as to what extent the 
supervisory SCADA system interconnection affects the degradation and the recovery process of the physical gas 
pipeline network. 

The results of the case study confirm, as expected, that gas transmission networks are vulnerable to both cyber 
and physical failures, pointing at the need for systemic methods of analysis for managing the system resilience.   

1. Introduction 

The natural gas pipeline transmission network is a Critical Infra
structure (CI) (Zio & Sansavini, 2013). The interruption or shortage of 
natural gas supply could bring significant damage to economy and so
cietal stability of a Country (Ebrahimy, 2014). In operation, the Super
visory Control and Data Acquisition (SCADA) system monitors and 
controls the conditions of the system, such as temperature, flow rate and 
pressure inside the pipelines. A SCADA system is made of computers, 
controllers, instruments, actuators, networks and interfaces that manage 
the control of automated industrial processes and allow analysis through 
data collection by monitoring sensors (Kim, 2010; Hildick-Smith, 2005). 

The interconnection between gas pipeline networks and SCADA 
communication networks ensures continuity of service, safety moni
toring and prevention of economic loss. If on one hand, the 

interconnection brings significant benefits, on the other hand, they can 
channel-in vulnerabilities in the system. The dependency of the natural 
gas service on Internet information technology has caused vulnerabil
ities to cybernetic attacks. 

One of the most famous cybernetic attacks date back to the year 2000 
in Maarochy Shire, where 800,000 L of raw sewage have been released 
into local parks and rivers, causing death of marine life and discoloration 
of water. More recently, in 2016, cyber attacking of the Smart Grid Units 
(SGU) has caused the Ukraine’s blackout where for three hours, 80,000 
customers did not benefit electricity (Abrams & Weiss, 2008; Sayfayn; 
Queiroz et al., 2011). 

The main concern for critical infrastructures is, then, their resilience. 
Resilience is defined as the ability to resist or absorb damages in a way to 
maintain acceptable levels of system performance and to quickly recover 
the nominal functionality (Attoh-Okine, 2016; Filippini & Silva, 2014; 
Wadhawan & Neumann, 2018). 
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Several works have considered the analysis of resilience systems with 
interdependence between physical and communication networks. The 
works of the authors in (Korkali, Veneman, Tivnan, Bagrow, & Hines, 
2017) and (Chopade & Bikdash, 2012), for example, model interde
pendence of an electric power network and a communication network. 
Specifically, authors in reference (Korkali et al., 2017) analyze three 
cascading failures models to evaluate the interdependent network 
resilience: Erdos-Renyi (ER) model, Small World (SW) model and Scale- 
free (SF) model. 

The authors in (Chai et al., 2016; Gao et al., 2015; Hu et al., 2011; 
Michael et al., 2016), use percolation theory to analyze the robustness of 
CIs and evaluate the importance of the different network nodes by 
means different centrality measures. The author in (Carvalho et al., 
2009), using the percolation theory (Linkov et al., 2019; Goel et al., 
2011; Huang et al., 2015), performs the robustness analysis of the trans- 
European gas pipeline network from a topological point of view. The 
author proposes an analysis model based on the maximum flow method 
to estimate the tolerance of the network to failures. In these works, the 
approach by graph theory leads to neglecting the physical details of how 

the pressure and the gas flow change in the network pipelines. 
Also, inevitably, models based on graph theory cannot fully consider 

important functional parameters of the information transmission pro
cess like the bit rate, the type of transport layer protocol (UDP or TCP), 
the radio frequency of the sensors and the type of routing algorithm, 
such as the AODV protocol. Many efforts have been done to overcome 
this problem. Reference (Wadhawan & Neuman, 2016) attempts to 
present a more realistic model of the interdependence between the gas 
pipeline network and the SCADA system, using Network Simulator® to 
represent a more realistic communication network. The authors propose 
the Time to Criticality (TTC) to quantify the time for an event to reach 
the failure state, considering the process response of the SCADA system; 
a resilience analysis method for a gas pipeline network is provided but 
considering only cyber attacks while ignoring physical failures. 

Another approach taken for modeling the complexity of interde
pendent networks, is based on agent-based models. Reference (Gonzalez 
De Durana, Barambones, Kremers, & Varga, 2014) proposes an agent- 
based model to capture the complexity of interaction of the power 
grid with other energy networks. Similarly, reference (Kremers, 

Nomenclature 

AODV Ad-hoc On-demand Distance Vector 
Aor Cross sectional area of the orifice (m2) 
bij Recovery speed parameter of the pipeline (i,j) 
CD Dimensionless discharge coefficient 
CBR Constant Bit Rate 
CDF Cumulative distribution function 
CI Critical Infrastructure 
d Base knowledge about a model input parameter 
d’ Alternative knowledge about a model input parameter 
Dij Diameter of the pipeline (i,j) (m) 
DDOS Distributed Denial Of Service 
E Expected value symbol 
gdeg Network degradation function 
grec Network recovery function 
GRecCap(Trec) Capacity recovery function output computed at Trec 

(m3) 
GRobCap(Tdet) Capacity robustness function output computed at Tdet 

(m3) 
K Promptness parameter of the SCADA system to detect 

failures 
Lij Length of the pipeline (i,j) (m) 
MCM/d Million cubic meter per day 
M(Ev) Magnitude of the event Ev 
m Pressure degradation rate parameter (psi/s) 
ṁhole Mass flow rate (kg/s) 
mft=0 Initial maximum flow of the gas transmission network 

(MCM/d) 
mpd Maximum packets delay parameter (s) 
MAOP Maximum allowable opearting pressure (psi) 
NS Network Simulator 
Ns Number of samples of each input parameter 
Pdetect Degradation pressure detected by the SCADA system (psi) 
Pfin.real Effective pressure retained in the pipeline before recovery 

(psi) 
Pinitial Node pressure before failure in a steady-state condition 

(psi) 
P(initial(i,j)) Pressure of the pipeline (i,j) before degradation event (psi) 
PDF Probability density function 
Pr(Ev) Probability of occurence of the event Ev 
PSA Probabilistic Safety Assessment 

Qij (t) Pipeline (i,j) transmission capacity (Nm3/h) at a generic 
time t 

Qij,0 Pipeline (i,j) initial transmission capacity at time t =
0 (Nm3/h) 

RCV Remote Control Valve 
RPI Resilience Performance Index 
RTU Remote Terminal Unit 
SA Sensitivity Analysis 
SCADA Supervisory Control and Data Acquisition 
Tcont Temperature inside the pipeline (K) 
τ Time constant (s) 
t Time (s) 
tdest Time that gas takes to reach the delivery node (s) 
teffective Effective SCADA failure detection time (s) 
tr Time step (s) 
Tdet Mean detection time of the failure (s) 
Tdet (i,j) Detection time for the pipeline (i,j) (s) 
Trec Recovery observation Time (s) 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
Var Variance symbol 
Vgas Natural gas recovery speed (m/s) 
Xi ith model input parameter 
qα Quantile q of order α 
xj

i jth sample of the ith input parameter 
Y Generic model output 
Z Gas compressibility factor 

Greek letter parameters 
δ Conversion coefficient for pipeline capacity calculation 
γ Isontropic coefficient 
λ Pipeline pressure increase logarithmic rate (psi/s) 
μ Mean value of a generic probability distribution 
η2

grj 
Closed-order sensitivity index of the jth group of 
parameters 

η2
i First-order sensitivity index of the ith input parameter 

η2
Ti Total-order sensitivity index of the ith input parameter 

φ(t) System performance function at time t 
Ψ Dimensionless factor for gas velocity 
σ Standard deviation of a generic probability distribution 
θ Pipeline pressure increase linear rate (psi/s)  
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Gonzalez De Durana, & Barambones, 2013) proposes an agent-based 
model of a smart microgrid. Inevitably, in this approach the results 
are dependent on the assumptions on the behavior of the agents, whose 
modeling difficulty increases with the complexity of the systems and 
their interactions. 

In this work is developed an innovative resilience model that con
siders the complexity of gas networks, capable to predict system 
response (Iooss & Saltelli, 2015) and to quantify the value of resilience 
using performance metrics (Ganguly, Bhatia, & Flynn, 2018). The 
method integrates thermal–hydraulic simulation, graph theory and 
wireless network simulation. Specific functions are introduced to model 
the pipelines degradation and recovery. 

The analysis method proposed in this work aims to link mathemat
ical theoretical models and the complex physical reality of critical in
frastructures. The method consists of four modules: the complex 
network modeling module, the physical failure scenarios modeling 
module, the cybernetic failure scenarios modeling module and the 
complex network resilience analysis module. 

The goals of these modules are:  

(1) complex network modeling: to build the physical gas pipeline 
transmission network and to simulate the response of the SCADA 
system under normal conditions and under DDoS attack;  

(2) physical failure scenarios modeling: to model the network evolution 
if physical failure scenarios occur in the network and to evaluate 
the magnitude of the consequences to proceed with a resilience 
analysis.  

(3) cybernetic failure scenarios modeling: to model the complexity of a 
pressure integrity cyber attack, evaluating the magnitude of the 
most threatening consequences.  

(4) network resilience analysis: to assess the resilience of the network 
for the most severe failures. 

Sensitivity analysis can be exploited to extract information from 
resilience models allowing to obtain useful information on the bottle
necks of the systems and understanding which parameters have a 
dominant effect on the system response. Such information can guide 
decision making for planning and system operation (Lv et al., 2019; di 
Maio et al., 2014; Makowski, 2013; Pianosi et al., 2015; Saltelli et al., 
2004). One of the main goals of SA is to determine the key uncertainty 
drivers of the model output uncertainty (Saltelli, 2007). Various sensi
tivity measures have been developed. One of the most commonly used 
global sensitivity analysis methods is the variance-based sensitivity 
approach of Sobol (Sobol, 1993), which has achieved great success in 
various applications, such as nuclear safety assessments (di Maio et al., 
2014, 2017; Zio and Pedroni, 2010; Zio and Pedroni, 2012) and 
ecological models (Perz et al., 2013; Cariboni et al., 2007). 

Applying sensitivity analysis methods to resilience models for gas 
pipeline transmission networks can be challenging because they are 
inherently dynamic, time-dependent models that involve various pa
rameters characterizing both the physical pipeline network and the 
complex SCADA cyber-system that governs its functioning. Although 
some SA works have been developed for gas transmission networks 
(Zeng et al., 2018; Homma and Saltelli, 1996), to the best of our 
knowledge, sensitivity analysis on resilience models for complex net
works has not yet been considered. 

In this work is developed a comprehensive sensitivity analysis for the 
resilience model of gas pipeline transmission networks. Guidelines are 
provided to categorize groups of parameters and to study dynamic 
models using the variance-based SA method. 

The framework for the sensitivity analysis is divided into four stages: 
analysis of the model outputs, parameter prioritization, trend identifi
cation and “what-if” analysis of the modified value of information in 
terms of mean and quantiles. The goals of these stages are:  

(1) analysis of the model outputs: to give insights about the network 
resilience by looking at the output distribution;  

(2) parameter prioritization: to identify single parameters and groups 
of parameters that, given the input uncertainty distributions and 
ranges, would lead to the greatest reduction in the variability of 
the model output (Saltelli & Tarantola, 2002);  

(3) trend identification: to provide model insights to understand if the 
increase or decrease of an input parameter has positive or nega
tive effects on the outputs (Borgonovo, Lu, Plischke, Rakovec, & 
Hill, 2017);  

(4) “what-if” analysis: to give indications on what happens to the 
outputs of the resilience model when acquiring more knowledge 
on the inputs (Schreider et al., 2015; Koch et al., 2009; Peterson 
et al., 2009). 

The overall methodogy framework for natural gas pipeline trans
mission networks is shown in Fig. 1. 

To summarize, the research objectives of this work are:  

• Develop a resilience analysis framework to quantify the robustness 
and the recovery of a complex gas pipeline transmission network, 
considering the interdependence with a SCADA system.  

• Develop a sensitivity analysis framework to get important insights on 
the network resilience model for supporting the decision making.  

• Assess whether the proposed frameworks are flexible and adaptable 
to gas transmission networks composed by many nodes and 
pipelines.  

• Overcome the complexity of the time-dependency of the gas network 
recovery to estimate the Sobol sensitivity indices of the first-order 
and the total-order for the parameters of the gas pipeline network 
recovery model. 

2. Complex network modeling 

2.1. SCADA communication network model 

The communication network model is developed to simulate the 
SCADA system functioning. Pipelines are divided in segments and each 
of them can be isolated due to maintenance or failures, by shutting down 
block valve stations situated every 20/30 km from each other. In each 
segment of pipeline there are many sensors that transmit by RTUs the 
pipeline gas information, such as pressure, flow and temperature, from 
the pipeline to the master control center (NetSCADA, 2010). 

For the development of the communication network, we used the 
WLAN technology to link the SCADA monitoring center to the RTUs 
located on the segment of the pipeline. For a clear illustration, Fig. 2 
shows a segment of pipeline that transmits information to a host com
puter situated at the SCADA control center via communication path
ways. The letters “f,p,t” represent the functions of the RTU of monitoring 
flow, pressure and temperature, respectively; “a” is the alarm function 
of the RTU. 

To develop the SCADA network, a wireless mesh network approach is 
adopted (Mohamed et al., 2008; Fall and Varadhan, 2011) using 
Network Simulator® (NS2). NS2 is an open-source event-driven simu
lator designed specifically for communication networks. It is one of the 
most widely used open-source network simulators (Issariyakul & Hos
sain, 2012). It contains modules for numerous network components such 
as routing, transport layer protocol and application protocol. To inves
tigate network performance, researchers can simply use an easy-to-use 
scripting language to configure a network and observe results gener
ated by NS2. 

The input parameters to be included in the model are:  

a. Number of RTUs to be considered  
b. Number of communication nodes used as pathway nodes  
c. Data rate 
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d. Radio frequency for each RTU  
e. Type of transport layer protocol  
f. Type of traffic generation  
g. Distance of the communication nodes by each other  
h. Routing Protocol  
i. Time horizon for the simulation 

The input parameters are obtained from the analysis of real SCADA 

networks and used in the proposed model. The simulation results are 
obtained using an application, called NSwireless®. 

This software package considers wireless networks developed in 
Network Simulator® and allows getting important information on the 
packets sent by the RTUs to the control center, such as the average 
packets delay, the maximum packets delay and the percentage of 
dropped packets during the simulation. If a failure occurs on the 
network, an alarm signal is transmitted by the RTUs for avoiding the 

Fig. 1. Methodology framework for gas transmission networks integrated assessment.  
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depressurization of the pipelines involved. 
Through remote control, the SCADA control center must intervene 

on the block valves for keeping pipelines under pressure. Considering 
the delay of the data packets allows to evaluate the real intervention 
time of the SCADA system on the block valves, calculating the final 
pressure retained inside the pipeline. In our analysis the type of dealy 
assumed is the maximum packets delay, for conservative reasons. 

The alarm information in this work is the indication that the pressure 
has dropped by − 10% compared to the initial pipeline set point pres
sure. The final pressure inside the pipeline, then, depends also on the 
efficiency of failure detection of the SCADA communication network: 
the greater the delay of the information, the lower the pressure inside 
the pipeline will be, when the system acts on block valves. 

2.1.1. Modeling DDoS black hole cyber-attack 
Black hole attack is a type of DDoS attack that concerns the wireless 

sensor networks (Pelechrinis, Iliofotou, & Krishnamurthy, 2011). Some 
of the malicious nodes enter in some transmission paths and start 
dropping the legitimate packets. In this way, such nodes play the role of 
black holes. In this work the modeling of a black hole DDoS computer 
attack is composed of two parts:  

(1) modeling the compromise of a percentage of the communication 
nodes  

(2) extract the information concerning the maximum packets delay. 

2.1.2. Pressure integrity and DDOS black hole cyber-attack scenario 
description 

The pressure integrity attack scenario (Wadhawan and Neumann, 
2018; Gonzalez De Durana et al., 2014) is a type of cyber-attack that 
aims to damage the pipelines due to overpressure. The description of the 
attack is as follows:  

(1) First, the attacker compromises the RTUs and blocks the RCVs 
present along the pipeline, preventing the correct information 
from reaching the SCADA control center. While the pipeline 
pressure increases, the attacker sends a misleading message with 
wrong pressure information to the SCADA system. Operators at 
the control center will not be able to know the real pressure inside 
the pipeline under attack.  

(2) After a certain time that the attacker has blocked the RCVs, the 
delivery pressure at the destination node changes. The pressure 
inside the pipeline increases due to the RCVs closure and the 
delivery pressure of the downstream node decreases. SCADA 
system believes that the pressure decreasing of the delivery node 
is due to an increase of the gas demand in the network. The 

consequence could be catastrophic, because at this point the 
SCADA sends a message to the compressor station to increase the 
delivery pressure for guaranteeing the supply of gas in the 
network. If MAOP is reached, the pipeline breaks due to 
overpressure.  

(3) After a certain time, the SCADA detects that something is wrong 
because the pressure at the delivery node does not grow. The 
SCADA system sends signals to RTUs and compressor station to 
increase the information about the pipeline segment. However, 
the information flow is not efficient because the attacker has 
performed a DDoS black hole attack. 

Operators at the SCADA control center must call the operator at the 
compressor station to take safety procedure (Gas Pressure Regulation 
and Overpressure Protection). 

2.2. Physical network model 

2.2.1. Network capacity model 
A network capacity model has been developed in a similar way of (Su 

et al., 2018) to describe its structure and transportation capacity. The 
model is a directed weighted graph, in which pipelines are represented 
as arcs of given capacity weights and connect nodes representing 
compressor stations, LNG terminals, natural gas storages and demand 
nodes. 

The directions of gas flow and the values of the pressure at the nodes 
are obtained using the Pipe Flow Expert® software, based on a steady- 
state thermal–hydraulic simulation. 

The input values (Su et al., 2018) to insert in Pipe Flow Expert® are:  

(1) Data of customers demands  
(2) Gas pressure at the source points  
(3) Pipeline diameters 

The capacity weigths of the arcs are calculated in accordance to the 
GTE report in (Linkov et al., 2019; Transmission Europe), based on the 
relationship between the pipeline capacity Q and the pipeline diameter 
D: 

QD δ̃ (1)  

where D is the diameter of the pipeline, in meters; Q is the estimated 
capacity of the pipeline, in MCM/h; δ is a constant conversion coefficient 
equal to 2.59. 

Fig. 2. Schematic overview of pipeline computer-based monitoring system (McAllister, 2005).  
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2.3. Transmission capacity calculation 

The capacity of the gas pipeline transmission network is computed 
through the maximum flow method by the Ford-Fulkerson algorithm 
(Lloyd, Bondy, & Murty, 2007). In this work, the maximum flow is a 
metric to measure the supply capacity and the system performance of 
the network due to its extensive application in practice and its simplicity 
to adapt to other problems. 

Consider a directed network G (V, E), where V denotes the set of 
vertices and E represents the set of arcs in G. Each link (i,j) ∈ E is 
associated with a nonnegative flow variablefij. The capacity of each link 
(i,j) is denoted by uij. 

Let o and d (o, d ∈ V) be the origin node and the destination node of 
network G, respectively. The maximum flow problem is to send as much 
flow as possible from o to d, while the flow fijalong the link (i,j) cannot 
exceed its capacity uij. 

Mathematically, the problem can be formulated in the following 
form: 

max fod

s.t.
∑

(i,j)∈E

fij −
∑

(i,j)∈E

fji = 0 for each j ∈ V\{o, d}

0 ≤ fij ≤ uij, ∀(i, j) ∈ E.

Generally, in gas networks there are multiple sources and sinks. The 
maximum flow method can be extended by considering a “supersource” 
and a “supersink” node, which are connected respectively to all the 
sources and sinks by edges of infinite capacity; introducing a super
source o (virtual source node) with edges (of unlimited capacity) 
directed to all source nodes o1,o2,…, okand a supersink d (virtual sink 
node) with edges (of unlimited capacity) connected to it from all sink 
nodes d1,d2,…, dk. The problem of maximising the total value of the flow 
from all sources is the same as that of maximising the value of the flow 
from o to d (Praks, Kopustinskas, & Masera, 2015). 

3. Modeling of physical failure scenarios 

The capacities of the pipelines involved in a failure could decrease 
during degradation. When a failure occurs, the transmission capacity of 
the network is reduced if it is not robust to that failure. The maximum 
flow algorithm allows to compute the transmission capacity of the 
network also during degradation conditions. To quantify the conse
quences, it is first necessary to model the failure of the nodes and 
pipelines. The probabilistic network component failures model is 
developed based on references (Gas Pressure Regulation and Over
pressure Protection). 

3.1. Probabilistic models for network units 

3.1.1. Probabilistic model of pipelines failure 
Pipelines may fail due to spilling (small or large leakage) and 

interruption (rupture or wrong operations). A pipeline failure conse
quence is here modelled as the reduction of the pipeline capacity to zero 
(SCADA detects failure and blocks the pipeline) (Praks et al., 2015). 
According to the EGIG report (EGIG, 2011, 2011), the average failure 
frequency of a European gas transmission pipeline is 3.5 × 105/ 
(km⋅year). 

3.1.2. Probabilistic model of compressor stations failure 
The failure of the compressor station refers to the failure of the 

compressors inside it. When degeneration leads to a failure of a 
compressor, the compressor station continues working but the sur
rounding pipelines capacity is reduced. More precisely, a compressor 
station failure reduces the inlet pipeline and the outlet pipeline capacity 
by 20%. This estimate is based on known operational cases (Praks et al., 
2015). It is assumed that the annual failure probability of a compressor 
station is 0.25. 

3.1.3. Probabilistic model of natural gas storages failure 
Capacity reduction and supply interruption of gas storages are 

mainly caused by facility failure and continuous withdrawal. In case of a 
gas storage failure, it is assumed that the capacity of the pipeline con
nected to the gas storage is reduced to zero (Kopustinskas & Praks, 
2014). According to expert knowledge (Ouyang, 2014), we set the 
annual failure probability of the gas storage to 0.10. 

3.1.4. Probabilistic model for LNG terminals 
Capacity of a LNG terminal is mantained within a normal range but 

in a few situations significant reduction of supply capacity, even inter
ruption, may happen. In case of a LNG component failure, it is assumed 
that the capacity of the pipeline connected to the LNG terminal is 
reduced to zero. According to literature indications (Jung, Cho, & Ryu, 
2003), we set the annual failure probability of the LNG terminal to 0.15. 

3.2. Risk matrix modeling 

Risk matrix model is a well defined model in risk assessment 
(Ganguly et al., 2018; Wilkinson and David, 2009). It is used to define 
the level of risk R considering the probability Pr(Ev) of occurrence of 
hazardous events Ev and the magnitude M(Ev) of the consequences. 

Fig. 3 shows a risk matrix 5 × 5, where each cell contains a risk value 
calculated as the product M(Ev) × Pr(Ev). The values of the probability of 
Pr(Ev) and M(Ev) are partitioned into five categories, based on proba
bility ranges and loss of network capacity, respectively. 

In this work, to assess the failure scenarios to be considered for the 
resilience analysis, the probability examined in the risk matrix is the 
probability of failure of the network units; the value of magnitude, 
instead, is the value of the transmission capacity of the network when 
the network is in a state of degradation due to the unit failure under 
analysis.** 

4. Modeling cybernetic failure scenarios 

Pressure integrity cyber-attack is one of the most feared cyber- 
attacks in the Oil & Gas field. Attackers affect the gas delivery by ma
liciously increasing the gas pressure through a pipeline (Zhang, Maha
devan, Sankararaman, & Goebel, 2018). If the pressure reaches the 
maximum allowable overpressure (MAOP), significant economic losses 
due to the non-provision of the service or, in the worst case, environ
mental disasters can take place. 

4.1. Pressure reaction model of the compressor station 

We considered different models of pressure increasing inside a 
pipeline linked to a compressor station where the latter has been 
instructed to increase the gas delivery pressure (Zhang et al., 2018). 

Different types of curve are reported in Fig. 4 assuming linear and 
logarithmic responses. We suppose that the compressor station can in
crease the pressure inside an adjacent pipeline linearly or logarithmi
cally with different types of rate (θ and λ for linear and logarithmic 
assumption, respectively). 

4.2. Evaluation of reaching the MAOP 

Until the natural gas reaches the delivery node with high pressure, 
the SCADA system is unable to find the network irregular functioning. As 
said in Section 2.1.2, after a certain time, network operators expect that 
the pressure at the delivery node increases but this does not happen due 
to the malicious closure of RCVs. After this period, the compression 
station decides to implement safety procedures. 

Given the pipeline length between the compressor station and the 
delivery node, Pipe Flow Expert® computes the gas velocity inside the 
pipeline. The delivery time is calculated as the pipeline length divided 
by the gas velocity. If the pressure reaches the MAOP, the pipeline, then, 
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fails. 
It is important to highlight that the loss of service, and therefore the 

economic loss due to the reduction in supply, does not constitute the 
most significant damage. The loss of service may lead to serious eco
nomic damages but the reaching of the MAOP can lead to loss of human 
life as well as an environmental disaster. 

Among the events that may occur, the most significant are:  

(a) Spilling  
(b) Jet Fire  
(c) VCE (Vapour Cloud Explosion) 

For provideing some information to increase the cyber-robustness of 
the networks from cybernetic failures, it is necessary to analyze what 
could be the consequences of these accident events. 

4.2.1. Spilling 
The mass flow rate of gas through an orifice can be calculated using 

the following expression, obtained from the mechanical energy balance 
by assuming isoentropic expansion and introducing a discharge coeffi

cient (Casal, 2008c): 

ṁhole = Aor CDPcont ψ

⎛

⎜
⎜
⎝γ

(
2

γ + 1

)

(
γ+1
γ− 1

)

CD

Z Tcont R 103

⎞

⎟
⎟
⎠

1/2

(2)  

where  

– mholeis the mass flow rate (kg s− 1)  
– γ is the isentropic coefficient (1.4 for natural gas)  
– C(D)is a dimensionless discharge coefficient  
– A(or)is the cross-sectional area of the orifice (m2)  
– Z is the gas compressibility factor at the inlet pressure Pcont (Pa) and 

temperature Tcont (K) of the pipeline. For ideal gas, Z = 1  
– Ψ is a dimensionless factor that depends on the velocity of the gas. 

For sonic gas velocity, Ψ = 1 

A pipeline rupture is assumed, according with (Grossel, 2001), as 

Fig. 3. Risk matrix model.  

Fig. 4. Different types of pressure increasing functions inside the outgoing pipeline adjacent to the compressor station (dash line is the MAOP).  
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20% and 100% of the pipeline diameter. In a conservative way, natural 
gas is assumed as an ideal gas (Z = 1) and flow is sonic (Ψ = 1). 

4.2.2. Jet fire 
The immediate ignition of a pipeline release may generate a jet fire, 

which produces significant heat irradiation effects. 
Danegerous irradiation values due to fire exposure are:  

(1) 2.5 kW/m2 for the equipment  
(2) 12.5 kW/m2 for the people. 

It is necessary to calculate the distance of exposure to these values of 
irradiation, to evaluate the danger of the jet fire accident event. The 
spilling diameter is assumed about 20% of the pipeline diameter. In the 
reference work (Casal, 2008a), the reader can find the appropriate for
mulas to model a jet fire. 

4.2.3. Vapor Cloud Explosion (VCE) 
Explosions are associated with a very fast release of energy. In case of 

VCE a vapor cloud is formed due to the loss of containment of a certain 
mass of a flammable gas. 

For an explosion to occur, there must be a delay in ignition; if there is 
a significant delay, it is possible that a sufficiently large cloud of a fuel – 
air mixture will develop. In this work, for conservative assumptions, the 
time spent to form a mixture of natural gas with the surrounding air has 
been taken equal to the time of detection of the exceedance of the MAOP 
in the pipeline. 

If an explosion occurs, the mechanical energy of the explosion con
stitutes a blast wave that moves at a certain velocity through the ath
mosphere. This phenomenon causes an overpressure. To obtain the 
values of overpressures at a distance of 100 m from the origin of the 
explosion, the Viekema Method is adopted (Casal, 2008b). 

5. Resilience modeling 

5.1. Resilience function 

To quantify the system resilience R, we introduce a system resilience 
function φ(t)to describe the system behavior at time t (Henry & Ramirez- 
Marquez, 2012). In this work, we adopt a resilience function φ(t) based 
on the maximum gas supply capacity to measure the system perfor
mance. The distinct stages to characterize the transition of the system 

over time are shown in Fig. 5. 
The area underlying the function identifies the network capacity to 

absorb and recover failures. 

5.2. Gas pipeline network robustness model 

The robustness of a gas pipeline transmission network is here inter
preted as the ability to maintain its basic functionality even under fail
ures of some components and systems (Su et al., 2018). The network 
robustness capacity is the amount of natural gas that the network is still 
capable of processing under the failure scenario. 

Some accident scenarios involve multiple pipelines, which are 
blocked by RCVs to avoid their depressurization (Johansson, Östling, & 
Jagschies, 2018). Each pipeline involved in the failure event is blocked 
when a certain threshold level of depressurization is reached. The time 
at which the depressurization level inside the pipeline is detected by the 
SCADA network is called failure detection time. For simplicity, the mul
tiple failure detection time is assumed as the average of the failure 
detection times of the involved pipelines. The lack of information about 
the rate of depressurization inside pipelines leads us to consider a linear 
depressurization, for simplicity. 

Let S denote the set of the pipelines and (i,j) the generic pipeline link 
where i and j ∊ S . The failure detection time for a generic pipeline 
whose initial and final nodes are i and j, respectively, is computed as 
follows: 

Tdet(i, j) =
K⋅Pinitial(i,j)

m
+mpd (3)  

where  

– P(initial(i,j))is the initial pipeline pressure (psi) for pipeline link (i,j); 
– m is the linear (constant) pressure degradation rate inside the pipe

line (psi/s);  
– K is the promptness parameter of the SCADA system; when the initial 

pressure drops by( − K⋅P(initial)), an alarm is sent by the communica
tion network, and the pipeline is blocked and kept under pressure. In 
this work, we want to remind the reader, a K value of 0.1 is assumed;  

– mpd is the maximum packets delay (s); when the pressure inside the 
pipeline drops by( − K⋅P(initial)), it is assumed that the alarm message 
has a delay equal to mpd before the SCADA system acts on the 
blocking valves. 

Fig. 5. System resilience function over time (Zhang et al., 2018; Henry and Emmanuel Ramirez-Marquez, 2012).  
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Obviously, we must consider the pressure drop inside the pipeline. 
Therefore, the value of the pipeline (i,j) pressure is assumed to have the 
value of the end node j to simplify the problem. The pressure drops of the 
pipeline are automatically taken into consideration by Pipe Flow 
Expert®. This assumption avoids the development of too complex 
equations. 

Considering a constant depressurization, the degradation function 
gdeg(t) is defined as follows: 

gdeg(t) = mft=0⋅

⎛

⎝ −
t

Tdet
+ 1

⎞

⎠ (4)  

where  

– t is the time (s)  
– mft=0 is the maximum flow of the network (MCM/d) before the 

failure event  
– Tdet is the average detection time (s) which represents the time at 

which the SCADA communication system closes the pipelines 
through remote control valves (RCV) when the failure is revealed. 

The integral of gdeg(t)is the robustness capacity model function 
GRobCap- expressed in m3- evaluated between 0 and T(det)as follows: 

GRobCap

(

Tdet

)

=

∫ Tdet

0
gdeg(t) dt (5) 

For simplicity, a linear function is introduced to model the pipeline 
delivery node pressure degradation over time (Gonzalez De Durana 
et al., 2014): 

dP
dt

= m (6) 

The SCADA network detects the pressure decreasing inside the 
pipeline when it drops by K% of the initial value. The final pressure 
retained in the pipeline depends on the delay of the information from the 
central SCADA node to the RTUs. 

5.3. Gas pipeline network recovery model 

The recoverability of a gas pipeline transmission network is here 
interpretated as the network ability of returning to a normal state after 
degradation or failure events (Platt, Brown, & Hughes, 2016). When a 
pipeline fails, through repair, it recovers over time until its nominal 
capacity is re-gained. 

To model the pressure recovery inside a pipeline, for simplicity, we 
adopted the recovery function explained in (Zhang et al., 2018) as 
follows: 

Pij(t) = Pinitial(i,j) +
(
Pinitial(i,j) − Pfin.real(i,j)

)
⋅
(
1 − exp

(
− bij⋅t

))
(7)  

where P(initial(i,j)) and P(fin.real(i,j)) are the initial and the real final pressures 
of the pipeline (i,j) after the degradation phase and bij is a semi-empirical 
parameter representing the recovery speed of the pipeline. The problem 
of Eq. (7) is that we don’t have the availability to evaluate bij in order to 
estimate the pipeline (i,j) pressure response. By definition of first-order 
systems, the time constant τ is related to the pipeline recovery speed 
parameter by the relation bij = 1/τ. We know, however, that bijdepends, 
accordingly to empirical observations and hydraulic simulations, on the 
length of the pipeline under analysis and on the set point pressure 
P(initial(i,j)). The longer the pipeline and the higher the P(initial(i,j)) value to 
reach, the greater the transient will be. 

To provide a rough estimate of the value of bij, we consider Fig. 6 to 
explain the assumptions. 

The two curves in the Figure represent the pressure response ac
cording to Eq. (7) and to ideal linear response condition. It is therefore 
important to analyze the stationary response, when 98% of the set-point 
pressure is reached. 

The two curves show different trends but the stationary condition is 
the same at the time 4τ. Due to the fact that we don’t know enough 
information to estimate τ, we suppose that when the gas reaches the 
terminal node j at the time tdest, a time of 4τ has elapsed. When the 
system reaches 4τ, 98% of the system pressure has been recovered. 

Fig. 6 suggests that in the case of a shorter pipeline or in the case of a 
lower set point pressure, the steady state is reached faster. The value of 

Fig. 6. Pressure response for a generic pipeline. The Figure shows that assuming an ideal linear pressure response with the same regime time 4τ of the real pressure 
one, the value of dP

dt is an indication of the speed of pressure recovery inside the pipeline. 
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the time constant τ will take on a lower value while dP/dt for the ideal 
linear pressure response will be higher due to the upward translation. 
The dP/dt value for an ideal pressure response provides an estimation of 
bij. To semplify the analysis, we assume that after the failure is repaired, 
the gas is processed inside the involved pipelines at a constant speed 
(vgas) less than 30 m/s to avoid erosion problems under excessive gas 
velocity (Neacşu, Suditu, & Stoica, 2013). The value of tdestis, then, 
calculated dividing the pipeline length by (vgas). 

The recovery speed parameter bij for a pipeline (i,j) is, then, calcu
lated as follows: 

bij ∼
Pinitial(i,j) − Pfin.real(i,j)

4τ (8) 

By definition, P(fin.real(i,j)) is computed through Eq. (7). 
At each time instant t, according to (Zhang et al., 2018), it is assumed 

that a failed pipeline recovers its transport capacity as follows: 

Qij(t) = Qij,0⋅
[
1 − exp

(
− bij⋅t

)]
(9)  

where Q(ij)(t) is the transmission capacity of the pipeline (i,j) at time t, 
Q(ij,0)is the original initial transmission capacity of the pipeline (i,j) 
before the failure event and b ij is the recovery speed parameter of the 
pipeline (i,j). 

By rearranging the previous equation we get: 

Qij(t) = Dδ
ij⋅
{

1 − exp
[

−

(
vgas⋅

(
K⋅Pinitial(i,j) + mpd⋅m

)

Lij

)

⋅t
]}

(10)  

where  

– Dijis the diameter of the pipeline (i,j) in meters (m)  
– δ is an adimensional conversion coefficient for pipeline capacity 

calculation  
– Vgas is the recovery gas speed (m/s) at which the gas is processed 

within the network to recover nominal performance. 

The other parameters are the same as explained in Section 5.2. 
The area below the recovery function – called grec(Qij(t), t)- is the 

network recovery capacity GRecCap(Trec), which represents the amount of 
natural gas processed during the network recovery, expressed in m3. 

GRecCap is defined as follows: 

GRecCap(Trec) =

∫ Trec

0
grec

(
Qij(t), t

)
dt (11)  

where  

– t is the time (s)  
– grecis the network recovery function, which depends on the capacity 

of the pipelines at the recovery time t  
– Trec is the observation time during recovery (s). 

5.4. Resilience performance indices 

Robustness and recoverability indices have been developed to 
quantify the network resilience (Tierney & Bruneau, 2007). These 
metrics are based on the integration of the area under a resilience 
function between different time intervals t1 and t2. 

5.4.1. Network robustness performance index 

R1 = 1 −
φ(t0)⋅(td − te) −

∫ td
te

φ(t)dt
φ(t0)⋅(td − te)

(12) 

R1 provides a percentage of the performance maintained after fail
ure. This performance index identifies the percentage quantity of gas 
that is supplied in the network despite the failure compared to the 

maximum capacity. 

5.4.2. Network recoverability performance index 

R2 = 1 −
φ
(
tf
)
⋅
(
tf − tr

)
−
∫ tf

tr
φ(t)dt

φ(t0)⋅(td − te)
(13) 

R2 is an index that indicates the percentage quantity of gas that is 
recovered during the recovery time Trecwith respect to the quantity of 
gas that would be supplied if the failure did not occur during the same 
time Trec. 

R2 is “memoryless”, in that its value at a given time does not take 
into account the information before the time at which the recovery starts 
(Barker, Ramirez-Marquez, & Rocco, 2013). 

6. Sensitivity analysis framework 

Sensitivity analysis aims to give insights on model behavior, on its 
structure and on its response to changes in the models inputs (Lloyd 
et al., 2007; Oakley). In this Section, a sensitivity analysis framework is 
developed to analyze the resilience model for extracting relevant in
formation, understanding it and eventually supporting decision-making. 

6.1. Context 

We follow the framework of global sensitivity analysis and assume to 
have a r-dimensional input random vector σ* = (X1,X2,X3⋯,Xr) ∈ X . A 
generic function f :X →Y maps the input space X ⫅Rr to the output 
space Y ⫅R. In this work, f is deterministic. The input uncertainty 
propagates through f , so that the output Y becomes a random variable. 

6.2. Analysis of the output distribution 

In this work, we consider various statistics including mean and 
quatiles as a summary of the output distribution (Pete Loucks, 2017, 
2017). In general, the α-quantile of a continuous random variable X is 
defined as the smallest value q(α)such that X has a probability α, that is: 

FX(qα) = α =

∫ qα

− ∞
fX(x) dx (14)  

where FX is the cumulative distribution function (CDF) and fX(x) is the 
corresponding probability density function (PDF) of X (Zio, 2007, 2007). 

Frequently reported quantiles are the first, second and third quan
tiles (q0.25, q0.50, q0.75, respectively). The interquartile range [q0.25, q0.75] 
provides a quick description of the range of values. 

From a practical point of view, in the field of gas pipeline trans
mission network resilience, it is important to understand the following 
information: the probability that at a certain time the network has 
recovered 70, 80 or 90% of its nominal performance and the probability 
that the network continues to process a certain quantity of gas despite 
the occurring failure scenario. Such information can be obtained by 
computing the quantiles of the output distributions. 

One of the main objectives of sensitivity analysis is parameter pri
oritization, which involves the quantification of the influence of each 
input to the model outputs by sensitivity indices (Morio, 2011). 

6.3. Parameter prioritization 

In general, sensitivity analysis methods can be classified into local 
and global (Lv, Tian, Wei, & Xi, 2019). Local sensitivity analysis 
methods investigate the importance of inputs in a specific area in the 
input space, whereas global sensitivity analysis methods consider the 
entire input distribution. In this work, we consider one of the most 
popular global sensitivity indices, the variance-based sensitivity indices, 
also called Sobol indices (Sobol, 1993). 
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6.3.1. Sensitivity indices estimation for single input parameters 
Sobol indices rank importance input variables based on their 

contribution to the model output variance. The main advantage of 
variance-based sensitivity measures is that they do not impose any hy
pothesis on the model structure. 

The first-order Sobol sensitivity index for the ith input is defined as 
follows (Cariboni et al., 2007; Peterson et al., 2009): 

η2
i =

Var[E(Y|Xĩ)]

Var[Y]
(15)  

where Var[Y] is the unconditional variance of the model output Y and 
Var[E(Y|Xi)] is the variance of the conditional expectation computed 
fixing Xi (Borgonovo and Plischke, 2016; Borgonovo, 2017; Zio, 2009; 
Most, 2012). 

The total-effect index η2
Toti accounts for the total contribution of input 

Xi to the output variation, i.e. its first-order effect plus all higher-order 
effects (interactions) involving Xi. Two input parameters are said to 
interact when their effect on Y cannot be expressed as a sum of their 
single effects. 

The total-order sensitivity index for the ith input is defined as 
follows: 

η2
Toti = 1 −

Var
[
E
(

Y
⃒
⃒
⃒X→ĩ

)]

Var[Y]
(16)  

where X→ irepresents the vector of the inputs except the ith input 

parameter, so that Var[E(Y
⃒
⃒
⃒
⃒X
→

i)] measures the variation in the model 

output when all inputs vary except Xi. 
By definition, η2

Toti is greater than, or equal to η2
i in the case that Xi is 

not involved in any interaction with other input parameters. The dif
ferenceη2

Toti − η2
i measures how much Xi is involved in interactions. A 

value η2
Toti = 0 implies that Xi is non-influential and can be fixed to any 

value of its distribution, without affecting the variance of the output. 
The sum of all η2

i is equal to 1 for additive models and less than 1 for non- 
additive models. The difference 1 −

∑
iη2

i is an indicator of the presence 
of interactions in the model. 

To adapt variance-based sensitivity measures to the capacity recov
ery model GRecCap(Trec), which is a dynamic model, the sensitivity indices 
are considered as time dependent, i.e. η2

i for each time trin observation 
time interval [0,T]; at each time tr, the unconditional variance Var[Y(tr)]
can be decomposed into two parts: 

Var [Y(tr)] = Var
[
E
(

Y(tr)

⃒
⃒
⃒X→ĩ

)]
+E

[
Var

(
Y(tr)

⃒
⃒
⃒X→ĩ

)]
(17) 

The first-order sensitivity index ηi
2 for Xi at the time step tr, is 

computed as follows: 

η2
i (tr) =

Var[E(Y(tr)|Xi)]

Var[Y(tr)]
(18) 

Similarly, the total-effect index η2
Toti for Xi at the time step tr, is 

computed as follows: 

η2
Toti (tr) = 1 −

Var
[
E
(

Y(tr)

⃒
⃒
⃒X→ĩ

)]

Var[Y(tr)]
(19) 

To assess the importance of an input over a given observation time[0,
T], the mean of ηi

2 over [0,T]is considered as: 

η2
i =

∫ T

0
η2

i (tr) dtr (20) 

Similarly, the total-effect sensitivity index is computed as follows: 

η2
Toti =

∫ T

0
η2

Toti (tr) dtr (21) 

In practice, the above quantities are approximated by Monte Carlo 
integrals: 

η2
i ≈

∑NT
r=1η2

i (tr)

NT
(22)  

η2
Toti ≈

∑NT
r=1η2

Toti (tr)

NT
(23)  

where t1, t2,…, tNT constitute an equal-length grid on time interval 
[0,T]and NT is the number of sub-intervals inside [0,T]

6.3.2. Monte Carlo estimation for the first- and total-order sensitivity 
indices 

The estimation of variance-based sensitivity measures can be chal
lenging. Considering a model output function Y = f(X1,X2) : R2→R 

with just two input variables X1 and X2, the brute force approach re
quires N2

s model runs where Ns is the sample size of X1and X2 (Saltelli, 
Tarantola, Campolongo, & Ratto, 2004). To reduce the high computa
tional cost, the authors proposed a method that requires Ns⋅(k+2) runs, 
where k is the number of input parameters (Saltelli et al., 2004). This 
method calculates the sensitivity indices (Eq. (22) and Eq. (23)) at the 
generic time tr. 

6.3.3. Monte Carlo estimation for groups of input parameters 
The definition of the variance-based sensitivity index of one single 

input parameter is easily extended to the sensitivity index of the group of 
input parameters considering a group grj with W inputs X→grj =
{

Xj1,Xj2,⋯,XjW

}
. The sensitivity index of the jth group of input pa

rameters called the “Closed-order sensitivity index” is computed as 
follows (Anstett-Collin, Goffart, Mara, & Denis-Vidal, 2015): 

η2
grj

=

Var
[

E
(

Y
⃒
⃒
⃒
⃒X→grj

)]

Var[Y]
(24)  

where Var[Y] is the unconditional variance of the model output and 

Var[E(Y
⃒
⃒
⃒
⃒X
→

grj )] is named the variance of the conditional expectation 

computed fixing the parameters related to the jth group X→grj , and 

Cgrj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(1)r+1 x(1)r+2 ⋯ x(1)b ⋯ x(1)e ⋯ x(1)q ⋯ x(1)2r

x(2)r+1 x(2)r+2 ⋯ x(2)b ⋯ x(2)e ⋯ x(2)q ⋯ x(2)2r

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
x(Ns − 1)

r+1 x(Ns − 1)
r+2 ⋯ x(Ns − 1)

b ⋯ x(Ns − 1)
e ⋯ x(Ns − 1)

q ⋯ x(Ns − 1)
2r

x(Ns)
r+1 x(Ns)

r+2 ⋯ x(Ns)
b ⋯ x(Ns)

e ⋯ x(Ns)
q ⋯ x(Ns)

2r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)   
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measures the first-order effect of X→grj on the model output. 
The operative estimation scheme for the closed-order sensitivity 

index is similar to that explained in Section 6.3.2; the columns of the 
matrix Ci are formed by all columns of B except for the columns related 
to the group of parameters, which are taken from A. 

As an example, let us consider a generic model of Ns input parameters 
Y = f(X1,X2,⋯,XNs )and a given vector group j of the input parameters 
X→grj

=
{
X1,X2,⋯,Xb,⋯,Xe,⋯Xq,⋯Xr

}
. The matrix Cgrj

is the following:   

Cgrj is composed by all the columns of B except the bth, eth and qth 
columns which are taken from A. 

6.4. Trend identification analysis of model outputs 

Trend identification allows us to understand:  

(1) whether an increase or a decrease in an input leads to an increase 
or a decrease in the model output;  

(2) whether the dependence of the function output is monotonic or 
not on the parameters;  

(3) regional contribution in the uncertainty range (Borgonovo, Lu, 
Plischke, Rakovec, & Hill, 2017). 

The most intuitive method for understanding the trend is partial 
derivatives. The sign of the partial derivatives of the output function 
Y = f(⋅)– computed with respect to each input variable - can be used as a 
sensitivity measure for trend identification and displayed through par
tial derivative scatterplots (D-scatterplot) (Borgonovo et al., 2017). The 
partial derivative sensitivity measure is defined as follows: 

∂Y
∂xi

= lim
Δxi→0

f (x1, ..., xi− 1, xi + Δxi, xi+1..., xr) − f (x1, ..., xi− 1, xi, xi+1..., xr)

Δxi

(26) 

In this work, we estimate Eq. (26) by considering Δxi =
xi(max) - xi(min)

Ns
, where xi(max) and xi(min) are the maximum and mini

mum values of Xi. In this work, we set Ns to be large, for the sake of 
accuracy, equal to 106, so that Δxi = 10− 6(xi(max)-xi(min)). The partial 
derivative scatterplot is constructed as follows: first, sample input ob

servations 
{

x→(i)
}Ns

i=1
according to the joint input distribution; then, 

evaluate ∂Y
∂xi

using Eq. (26) at each x→(i)with small variation Δxi; finally, 

visualize the estimated partial derivatives ∂Y
∂xi

⃒
⃒
⃒
⃒
{ x→

(i)
}

Ns

i=1

along the support 

of Xi. 
For a partial derivative plot, we consider a positive contribution if 

the point is above and a negative contribution if it is below the value of 
zero. 

6.5. What-if analysis in terms of mean and quantiles 

The variability of the output could be so large that further analysis 
needs to be conducted to investigate the model. For this purpose, a 
“what-if” analysis (Golfarelli and Rizzi, 2008; Golfarelli et al., 2007) is 
carried out in order to better understand what happens to the output if 
the range of parameters uncertainty is reduced. 

In this work, we define a new measure to quantify the variation of the 
output in different failure scenarios. The proposed index borrows the 
idea from the value of information (Strong Mark Jeremy Oakley, xxxx), 
and enable focusing on commonly-used statistics like mean and quan
tiles. Specifically, we define the modified value of information index as: 

D
(
di, d

′

i

)
=

Is
[
Y, d′

i

]
− Is[Y, di]

Is[Y, di]
⋅100% (27)  

where Is denotes the statistics of the output Y sample, e.g. the quantile q; 
di and di

′ are the characteristics of the input distribution in the base and 
alternative scenarios. 

The index D(di,di
′) is an indication of how much in percentage an 

output statistic varies due to an update of information on the input 
distribution. To estimate Eq. (27), we simulate Y with respect to di and 
di

′, and compute the corrisponding Is. In this work, we consider mean 
and quantiles as statistics Is of the outputs as they provide the infor
mation of interest about the output distribution. 

7. Case study 

7.1. Part 1: Resilience analysis 

The developed framework of resilience analysis has been applied to 
an artificial natural gas transmission network, through the use of 
network information presented in the reference work (Praks et al., 
2015). Gas trasmission network is shown in Fig. 7. In total, there are 4 
supply nodes: 2, 10, 11 and 19 (see Table 1). Node number 1 and node 
number 55 (not reported in the network) are fictitious nodes, specif
ically the supersource node and the supersink node. The maximum flow 
of the network is computed using the Ford Fulkerson algorithm. The 
physical limits of gas sources, capacities of connected elements and node 
demands are used as constraints for the maximum flow algorithm. 

Gas sources information (Table 1), data of pipeline network 
(Table 2), deterministic customer demands (Table 3), and components 
failure probabilities are provided. Pipeline capacities and gas demands 
are expressed in MCM/d (million cubic meters per day). 

Transportation capacities of pipelines reported in Table 2 and the 
demand of the nodes in Table 3 are the same of reference (Praks et al., 
2015). Pipeline flows and pressures of the nodes have been calculated 
with Pipe flow Expert®. 

The pressure values reported in Table 4 are estimated assuming:  

(A) Source pressure nodes of 75 bar (1087 psi).  
(B) Gas methane at the temperature of 293 K, whose density is 7.398 

kg/m3 and viscosity of 0.010 cP.  
(C) Carbon Steel pipelines with internal roughness of 0.070 mm.  
(D) Using the gas route information provided by Pipe Flow Expert®, 

42.66 MCM/d is the network maximum flow found by Matlab® 
after having constructed the directed weighted graph, whose 
weights are the values of the pipeline capacities. 

Table 5 reports the relevant network components analysis found 
through the risk matrix model of Section 4.2. Pipelines and compressor 
station failures give low risk (risk matrix reports values of risk between 1 
and 3). The case is different for gas storage and LNG terminal, which 
have high risk categories. 

The network resilience is, then, assessed considering three risk sig
nificant scenarios:  

(A) Gas storage failure at node 19  
(B) LNG terminal failure at node 10  
(C) Compressor station shortage due to DDoS black hole attack.  
(D) SCADA network was simulated using Network Simulator® and 

NSG 2.1® as script generator for the first one. 

The model of the communication network has been presented in 
Section 2 and Table 6 reports the empirical SCADA data considered in 
the simulation. We chosen the UDP protocol and not the TCP based on 
the assumption that when a packet is loss, it is not necessary to recover 
that packet but just to know the current state of the pipeline despite the 
loss of previous information. For the encoding, the CBR (Constant Bit 
Rate) has been preferred to VBR (Variable Bit Rate) supposing that in
formation packets are sent at regular intervals over time, for simplicity 
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of modeling. The average and maximum packets delay computed in case 
of normal functioning are 0.63 and 13.40 s and, under black hole DDOS 
attack, no information arrives at the SCADA control center starting from 
the RTUs, due to the absorpition of legitimate packages by compromised 
nodes that act as black holes. 

For failure scenarios A and B, Eq. (7) has been applied to obtain the 
real pressure values retained inside each pipeline involved after the 
RCVs blocking. For the failure scenario C, instead, the degradation 
pressure of the pipeline (11, 12) was calculated through the simulation 
in Pipe Flow Expert® since it is not possible the application of the 
pipeline pressure degradation model. Inside the pipelines surrounding 
the compressor station, gas flow continues to be processed and it is not 
blocked by RCVs. 

Eq. (11) was also applied to simulate the delivery node pressure re
covery for the failed pipelines of each failure scenario. For the calcula
tion of the recovery speed parameter b, Eq. (9) was used for each 
pipeline under analysis. 

Table 7 reports the results the analysis of the failure scenarios for the 
assumptions of pressure degradation rate m of 0.577 psi/s and 1 psi/s. 
Pressure values of the pipelines, SCADA detection times and recovery 
speed parameters are reported for each failure scenario event. 

In the failure scenario A there is more time to detect the fault than in 
scenario B, because the pressure inside the pipeline reaches the 
threshold value of − 10% of Pinitialin a longer time. 

The SCADA detection times for the failure scenario C reports null 
values, since the SCADA system does not actually have to detect any 
failures: the operator in the compressor station reduces the gas pumping 
to safety values to avoid the MAOP achievement. The pipeline (11, 12) is 
not blocked by the block valve station and the gas continues to flow 
inside, it even though with a lower flow rate (80%). 

To increase the responsiveness of the SCADA system, the threshold 
for detecting the fault should be reduced to a lower value, e.g. as 8%. 
This would improve the efficiency of the SCADA system by almost 22%, 
ensuring a faster recovery. 

Robustness and recoverability performance indices were used to 
quantify network resilience, whose values are reported in Table 8. The 
recoverability performance index R2 was evaluated for a recovery time 
of 20, 60 and 120 s. According to the results of Table 8 it can be observed 
that the gas pipeline transmission network has a greater robustness to 
the failure of the LNG terminal than to that of the gas storage. Despite 
this, the network recovers its starting performance in a shorter time 
when the gas storage failure occurs rather than that of the LNG: after 
about 120 s the stationary condition can be considered reached for the 
first fault event while the second is still recovering. Scenario C is 
different due to the rapid weakening of the compressor station. The 
transport capacity of the network collapses instantaneously, albeit at a 
limited level of 41.24 MCM/d. Due to the dependence of the recover
ability index R2 on the observation recovery time Trec, we report in Fig. 8 
the trend of the same index for several Trec. 

For the failure scenario C, a further analysis was carried out on the 
MAOP robustness of the network, as explained in Section 4. According to 
(Pipeline Pressure Limits), 1200 psig is the MAOP of high pressure 
transmission pipelines. 

The pipeline length between the compressor station and the delivery 
node number 12 is assumed as 23,000 m. Using Pipe Flow Expert®, we 
computed a gas velocity inside the pipeline of 27.87 m/s. The delivery 
time is, therefore, 822 s: this time represents the time that operators 
realize that the natural gas has not reached the destination node. In the 
event of spilling, a 20% and 100% diameter break in the pipeline was 
assumed, obtaining outgoing flow rates of 5.54 kg/s and 222 kg/s 
respectively, in accordance with Eq. (3). In the case of the modeling of a 
jet fire, it was reasonable to consider a break of the pipeline of 20% of 
the diameter: the gas burning velocity is then 5.54 kg/s. 

The distances calculated by the jet fire that produce significant 
damage for equipment (12.5 kW/m2) and for people (2.5 kW/m2) are 
41.12 m and 8.06 m, respectively. 

The VCE consequence analysis is developed considering different 
types of pressure increasing inside the pipeline linked to the compressor 
station, as said in Section 4.1. 

Fig. 7. Layout of the fictious gas transmission network.  

Table 1 
Properties of the gas network sources.  

Gas network node Type Limit Capacity (MCM/d) 

2 Immission Source 31 
10 LNG terminal 10.5 
11 Immission Source 7.1 
19 Gas Storage 25  
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Table 9 reports the values of overpressures for different types of 
compressor station pressure increasing using the Wiekema method. 
According to (Casal, 2008d), at a distance of 100 m the obtained pres
sure values would produce only an annoying noise. In the case that 
structures were present within 100 m, the effects would be worse with 
the possibility that these are destroyed by the pressure wave generated 
by the explosion. 

Let us assume another scenario event D which concerns the elec
tricity shortage of a thermoelectric power plant which is a large gas user 
that produce electricity. Assuming the demand node 36 of the network is 
a thermoelectric power plant, it is interesting to know whether the 
interruption of electricity due to a physical or possibly cybernetic failure 
could affect the performance of gas distribution in the transmission 
network. 

Table 2 
Properties of the gas network pipelines.  

Starting Node Destinationnode Capacity (MCM/d) Length (km) Starting node Destination node Capacity (MCM/d) Length (km) 

2 50 31 23 18 23 49.16 43 
3 4 49.16 0.1 18 34 2.83 43 
3 5 12.11 32 18 40 5.05 148 
3 11 12.11 29 19 20 12.11 60 
3 46 17.13 22 19 23 12.11 0.1 
4 5 12.11 32 20 21 49.16 90 
4 47 2 22 20 22 12.11 0.1 
4 48 12.11 2 21 22 12.11 90 
5 43 5.05 5 21 28 12.11 86 
6 7 12.11 80 22 23 7 60 
6 8 5.05 80 22 24 12.11 86 
6 35 5.05 30 24 25 0.83 86 
6 44 5.05 11.16 25 26 12.11 46 
7 8 49.16 0.1 25 27 49.16 100 
7 51 12.11 200 27 31 5.05 0.1 
8 9 2.83 25 27 32 5.05 70 
8 51 12.11 200 28 29 49.16 50 
9 10 2.83 162 29 32 49.16 195 
10 53 1.34 144 30 31 5.05 70 
10 54 5.05 144 30 32 0.47 0.1 
11 12 2 103 30 33 0.47 60 
11 43 12.11 34 32 33 2 60 
11 50 49.16 31 33 38 5.05 60 
12 13 49.16 85 34 37 2.83 200 
12 17 49.16 62 36 46 5.05 24 
12 52 12.11 10 37 47 5.05 24 
13 14 30.6 0.1 39 50 1.34 106 
13 53 2 30 40 41 5.05 32 
14 15 5.05 85 40 42 12.11 63 
14 54 5.05 30 44 45 5.05 1 
15 16 12.11 62 44 46 17.13 23 
15 43 12.11 132 44 47 2 23 
16 17 25 0.1 46 47 49.16 0.1 
16 34 4 24 49 54 0.83 40 
17 34 12.11 24 53 54 49.16 0.1 
18 19 12.11 43      

Table 3 
Properties of the customer demand nodes of the gas network.  

Demand 
Node 

Customer Demand 
(MCM/d) 

Demand 
Node 

Customer Demand 
(MCM/d) 

5 3.43 33 0.4 
6 0.57 34 1 
7 0.66 36 1.74 
13 1.03 37 1.3 
17 0.46 39 1 
18 8.4 41 0.4 
21 0.54 42 0.5 
25 0.6 43 1.06 
26 0.8 44 2.82 
27 3.5 47 0.68 
28 6 48 1.17 
30 0.4 52 0.98  

Table 4 
Results of pressure nodes of the gas transmission network using Pipe Flow 
Expert®.  

Node Pressure (psi) Node Pressure (psi) 

2 1087 28 127 
3 924 29 125 
4 924 30 118 
5 924 31 94 
6 875 32 118 
7 875 33 94 
8 875 34 118 
9 903 35 875 
10 1087 36 877 
11 1087 37 203 
12 943 38 114 
13 944 39 55 
14 944 40 982 
15 948 41 979 
16 943 42 980 
17 943 43 965 
18 1065 44 877 
19 1087 45 877 
20 840 46 890 
21 807 47 890 
22 840 48 924 
23 1087 49 965 
24 836 50 1087 
25 94 51 875 
26 90 52 942 
27 94 53 965   

54 965  
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By simulating through Pipe Flow Expert® the interruption of natural 
gas at node 36, the network must adapt the flow direction of some 
pipelines. The pipelines that reverse their flow are: (3,5), (4,5), (6,7), 
(6,8) and (36,47). Using the Ford-Fulkerson algorithm to calculate the 
maximum gas flow in Matlab® of the adapted network, its value doesn’t 
change remaining at 42.66 MCM/d. 

Due to the interruption of gas supply due to the thermoelectric plant 
failure, the pressure of the network nodes increases slightly up to a 
maximum of 4 bar. Through regulator stations the pressure of the nodes 
will be decreased up to the value in normal conditions. 

7.2. Part 2: Sensitivity analysis 

In this Section, the proposed sensitivity analysis framework for the 
resilience analysis model has been applied to the gas storage failure that 
it is the worst scenario. Table 10 reports the features of the pipelines 
involved in the gas storage failure event and Table 11 presents, instead, 
the input distributions for the resilence model. 

The maximum packets delay (mpd) value of a segment of pipeline 
depends on the number of Remote Terminal Units (RTUs) and on the bit 

rate of the communication channel in the cyber-network. The mpd dis
tribution is obtained by performing 200 simulations using the Network 
Simulator® software. According to measurement theory (Cowan, 2019), 
the geometrical features of the pipelines, such as their diameters and 
lengths, are assumed to have a normal distribution, here considering a 
mean measurement error of 1% and 1.5% respectively, for conservative 
reasons. For the sake of simplicity, it has been assumed that Vgas has a 
triangular distribution with mode of 27 m/s and a minimum value not 
less than 20 m/s, to avoid slow recovery of the network performance. A 
uniform distribution is considered for the remaining parameters. 

7.2.1. Analysis of the model output 
In this chapter, we mainly study the distribution of the network 

robustness GRobCap and the network recovery GRecCap. For a general 
analysis of the network robustness, we conduct 106 simulations to 
approximate the output distributions. 

Fig. 9 shows the empirical PDF and CDF of GRobCap

(

Tdet

)

,where Tdet 

is the avarage detection time calculated for each simulation. Fig. 9 

shows that, since the empirical PDF of GRobCap

(

Tdet

)

is skewed right 

Table 5 
Revelant gas network components analysis.  

Type Max flow degradation (MCM/d) Annual unreliability MTTF (Years) Maximum flow performance drop (%) Risk Value 

Pipeline (2,50)  41.32  0.000805  1241.77  3.14 1 
Pipeline (10,54)  37.61  0.00504  197.91  11.83 3 
Pipeline (19,18)  41.88  0.001505  663.96  1.82 1 
Pipeline (19,20)  41.88  0.0021  475.69  1.82 1 
Pipeline (19,23)  41.88  3.5x10-7  2857142.85  1.82 1 
Pipeline (20,21)  41.88  0.00315  316.96  1.82 1 
Pipeline (50,39)  41.32  0.00371  269.04  3.14 1 
Compressor Station  41.24  0.25  3.476  3.32 3 
Gas Storage  17.66  0.10  9.496  58.60 10 
LNG Terminal  33.44  0.15  6.153  21.61 9  

Table 6 
Network Simulator® parameters for SCADA network simulation.  

Communication network parameter Type/value 

Total number of nodes 112 
Number of RTUs 10 
Data Rate 10 Mb 
Command Size 500 bytes 
Radio Frequency 900 MHz 
Transport Layer Protocol UDP 
Traffic Generator CBR 
Sensor Range 250 m 
Routing Protocol AODV 
Simulation Time 60 s  

Table 7 
Results analysis of degradation pressures, SCADA detection times and recovery speed parameters for pipelines involved in the failure scenarios.  

Scenario event Pipeline 
involved 

− 10% Pinitial (Tdet) for m =
0.577  

− 10% Pinitial (Tdet) for 
m = 1  

Recovery speed parameter (b) for m 
= 0.577 

Recovery speed parameter (b) 
for m = 1 

(A) Gas storage Failure Pipeline 
(18,19) 

950 psi (198 sec) 945 psi (120 sec)  0.095  0.099  

Pipeline 
(19,20) 

748 psi (159 sec) 743 psi (98 sec)  0.046  0.049  

Pipeline 
(19,23) 

971 psi (200 sec) 966 psi (122 sec)  34.8  36.3  

(B) LNG failure Pipeline (10,9) 805 psi (170 sec) 799 psi (170 sec)  0.018  0.019  
Pipeline 
(10,53) 

860 psi (168 sec) 854 psi (111 sec)  0.022  0.023  

Pipeline 
(10,54) 

860 psi (168 sec) 854 psi (111 sec)  0.022  0.023  

(C) Compressor station 
shortage 

Pipeline 
(11,12) 

939 psi (NULL) 939 psi (NULL)  0.001  0.001  

Table 8 
Resilience performance indices results for the three types of scenario events 
considering different times of recovery.  

Resilience Performance 
Index (RPI) 

Scenario A 
Gas Storage 
Failure 

Scenario B 
LNG Terminal 
failure 

Scenario C 
Compressor Station 
Shortage 

Robustness (R1)  0.7070  0.8919 0 
Recoverability (R2) 

[20sec]  
0.8655  0.7818 0.8334 

Recoverability (R2) 
[60sec]  

0.9552  0.8635 0.9126 

Recoverability (R2) 
[120sec]  

0.9776  0.9148 0.9515  
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significantly, it is interesting to look at the quantiles which are reported 
in Table 12. 

From an engineering point of view, the results in Table 12 and Fig. 9 
higlight that the outcome of the degradation process under the input 
settings in Table 11 possesses large uncertainity, which means that the 
network ability to resist and absorb can be unstable. With a probability 
of 0.15, the network robustness is less than 4.4536e+04 
(q0.15= 4.4536e + 04). The same consideration may be confirmed by the 
other quantiles. The interquartile (q0.75 − q0.25) of the gas network 

robustness GRobCap

(

Tdet

)

is as large as 62759 m3, showing the extent of 

the network robustness uncertainity. 
GRecCap(Trec) is a dynamic function which depends on its observation 

time Trec. It is not very significant from an engineering perspective 

studying GRecCap(Trec) but it is better to focus on the rate of recovery. In 
this work, we mainly focus on the beginning and the close-to-end of the 
recovery process, specifically Trec equals to 5 and 60 s. The network 
recovery rate is defined as FR =

Maximum flow (Trec)
Maximum flow (t=0) where t = 0 is the time 

right before the failure event. 
Fig. 10 shows the PDFs of the network recovery rate at Trecof 5 and 

60 s. The shape of the two distributions varies significantly: the PDF of 
FR(Trec = 60) is skewed left at the time 60 s, while the PDF of FR(Trec =

5) behaves symmetrically. Fig. 10 shows also that at Trec = 60, the 
network has a larger probability to recover almost 97% of functionality. 
The difference in the two PDFs is that at the initial time the pipelines - 
previously blocked by the RCVs - will have a much faster transient than 
the situation at the steady state of 60 s. 

The quantile information of FR(Trec = 5) andFR(Trec = 60) are re
ported in Table 13. The interquartiles (q0.75 − q0.25) of the gas network 
recovery FR(Trec = 5) andFR(Trec = 60)are as large as 2.89% and 2.11% 

Fig. 8. Network recoverability performance index R2 evolution over time for the failures of gas storage and LNG terminal.  

Table 9 
Overpressure results for different types of compressor station pressure 
increasing.  

Rate of pressure increase 
inside the pipeline due to 
different compressor 
station response 

ΔTime Of 
spilling 
(Seconds) 

Overpressure 
(Pa) forṁ = 5.54 
kg/s  

Overpressure 
(Pa) forṁ = 222 
kg/s  

Linear increase (θ =
0.577) 

241  40.1976  137.5565 

Linear increase (θ = 1) 209  42.1525  144.2363 
Logarithmic increase (λ 
= 80) 

1298  73.8884  252.8467 

Logarithmic increase (λ 
= 90) 

83  29.5468  101.1095 

Logarithmic increase (λ 
= 100) 

364  48.3636  165.5006  

Table 10 
Features of the pipelines involved in the gas storage failure.  

Pipeline (i,j) L(i,j) (m) Pinitial(i,j) (psi) D(i,j) (m) 

(18,19) 43,000 1087  0.768 
(19,20) 60,000 840  0.768 
(19,23) 100 1087  0.768  

Table 11 
Distributions of the input parameters of the resilience model.  

Input 
Parameter 

Unit Type of 
distribution 

Lower value Upper value 

δ # Uniform 2.40 2.65 
m Psi/ 

s 
Uniform 0.10 1 

K # Uniform 0.08 0.12  

Input 
Parameter 

Unit Type of 
distribution 

Mean µ Standard 
deviation σ 

Pipeline 
length L (i,j) 

m Normal L (i,j) (Table 10) 0.015 L(i,j) 

Pinitial (i,j) psi Normal Pinitial (i,j) ( 
Table 10) 

0.1 Pinitial (i,j) 

mpd s Normal 12.011 1.778 
Diameter D (i, 

j) 
m Normal D (i,j) (Table 10) 0.01 D (i,j)  

Input 
Parameter 

Unit Type of 
distribution 

Range Mode 

Vgas m/s Triangular (Goel et al., 2011; 
Makowski, 2013) 

27  
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respectively, showing small uncertainties for both the recovery times. 
The tail distribution that identifies the probability 

Pr
[
FRz,t > FRZ

]
that at a certain instant time t of the recovery, the 

network has recovered a level FRZ of its initial performance is reported 
in Fig. 11. The Figure shows the probability that the network has 
recovered 70, 80 and 90% of its original capacity at the generic recovery 
time t. The probability is almost 1 that the network recovers 70% of its 
original functionality after around 20 s; the probability of recovering 
80% of the initial network capacity grows after 17 s and reaches 1 after 
35 s; the network probability to recover to 90% presents a slower trend, 
reaching a value close to 1 after about 60 s. 

7.2.2. Parameter prioritization analysis 
In this Section, we assess the influence of input parameters onto the 

uncertainity in the model output, using the variance-based sensitivity 
measures as explained in Section 6.3. Both individual and group effects 
are investigated. The communication network input parameters are set 

Fig. 9. PDF (top) and CDF (bottom) of the network robustness output GRobCap(Tdet) obtained performing 106 simulation runs.  

Table 12 
Mean and quantiles of the empirical PDF of the network robustness 
GRobCap(Tdet).  

Statistic of the GRobCap(Tdet) pdf  Estimation Value (m3) 

E[GRobCap

(

Tdet

)

]
9.4074e+04 

q0.15 4.4536e+04 
q0.25 4.9441e+04 
q0.50 6.7986e+04 
q0.75 1.1220e+05 
q0.90 1.8939e+05 
q0.975 2.9179e+05  
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to guarantee the network control. For instance, the promptness param
eter K is the percentage of the initial pressure that can be detected by 
SCADA and it is adjustable by network operators. For evaluating the 
importance of the adjustable communication network parameters, we 
group them and compute their contribution to the model output vari
ance. The sensitivity indices are estimated via the Monte Carlo-based 
estimation procedure explained in Section 6.3.2. 

7.2.2.1. First-order and total-order effects. Table 14 reports the first- 
order and total-order sensitivity index results for the robustness 
model, calculated by 106 model runs per input parameter. Results show 
that the uncertainity in the output of the robustness model is dominated 
by the degradation pressure rate parameter m. Adopting the difference 
η2

toti − η2
i as a measure, one finds little interactions in the robustness 

model. 

Fig. 10. Probability density functions of the rate of recovery FR at the recovery time of 5 and 60 s.  

Table 13 
Mean and quantiles of the empirical PDFs of the rate of recovery capacity FR 
evaluated at the recovery times of 5 and 60 s.  

Statistic of the rate of 
recovery distribution FR 

Estimation Value (m3) 
after Trec of 5 s  

Estimation Value (m3) 
after Trec of 60 s  

E[FR] 0.4887  0.9591 
q0.15  0.4672  0.9430 
q0.25  0.4742  0.9497 
q0.50  0.4884  0.9613 
q0.75  0.5031  0.9708 
q0.90  0.5154  0.9769 
q0.975  0.5253  0.9818  

Fig. 11. Empirical tail distribution of the rate of recovery for FR = 70, 80 and 90%.  

A. Marino and E. Zio                                                                                                                                                                                                                          



Computers & Industrial Engineering 162 (2021) 107727

19

The recovery model – unlike the robustness one – is a dynamic 
model, whose sensitivity indices vary over time. We report the average 
sensitivities over a time interval [0,T = 60] and the evolution of the 
importance of the key drivers over time. Table 15 reports the mean first- 
order and the mean total-order sensitivity indices of the recovery ca
pacity model obtained with 106 samples of each input parameter for 
each time interval tr considering T = 60 seconds and NT = 60, in Eqs. 

(22) and (23). 
Over the recovery period [0, T = 60], the parameters δ, K and Vgas 

have a significant influence on the uncertainity of the output of the 
model; in contrast, mpd and the lengths of the pipelines have negligible 
effects. Note that, although m is the most influential parameter for the 
robustness model, it is much less influential to the recovery model. 
Network recovery depends little on the speed at which the pipelines 
have depressurized and much more on the SCADA detection promptness 
for blocking pipelines through RCVs, which is expressed by the param
eter K. Again, the fourth column of Table 15 shows that interaction 
values have a limited contribution to the network recovery variability. 

The analysis of the temporal evolution of the importance of the input 
parameters is crucial and provides an important insight to understand 
dynamic models. 

Fig. 12 shows the evolution of the first-order sensitivity indices of the 
most significant parameters over a 60 s observation period (Trec = 60 
seconds). The total-order sensitivity indices evolution are not reported 
in this work due to the little interaction values, which make the total- 
order values similar to those of first-order. One observes that some pa
rameters can be predominant in some moments but less influential in 
others. 

As can be seen from the “horizontal symmetry” of Fig. 12, the 
importance of δ and diameter D of the pipeline (19,23) grows after 
having touched the minimum approximately after 10 s. Vgas and K have 
the opposite trend than δ and the diameter D of the pipeline (19,23) 
which grows at the beginning and, then, falls. These two parameters 
reach the same importance after about 43 s. Note that at around 8 s, the 
four parameters change their behaviors due to the fact that from a 
mathematical point of view, after the quick transitory, the parameters 
inside the exponential terms of Eq. (11) become more important than 
the term Dδ

ij. The other unshown parameters are almost static, with 
values close to zero. 

Table 14 
First-order and total-order sensitivity indices of the input parameters of the 
robustness model.  

Robustness model input 
parameter 

η2
i (First- 

order)  
η2

toti (Total- 
order)  

η2
toti -η

2
i (Interaction 

measure)  

mpd 0  0.0228 0.0228 
Pinitial (18,19) 0.0043  0.0043 0 
Pinitial (19,20) 0.0143  0.0143 0 
Pinitial (19,23) 0.0040  0.0042 0.0002 
m 0.9588  0.9765 0.0177 
δ 0.0027  0.0027 0 
K 0.0105  0.0387 0.0282 
D (18,19) 0.0036  0.0037 0.0001 
D (19,20) 0.0011  0.0011 0 
D (19,23) 0  0.0242 0.0242  

Table 15 
Average first-order and total-order sensitivity indices of the input parameters of 
the recovery capacity model computed using Eqs. (22) and (23), respectively.  

Recovery model input 
parameter 

η2
i (First- 

order)  
η2

toti (Total- 
order)  

η2
toti -η

2
i (Interaction 

measure)  

mpd  0.0020  0.0040  0.0020 
Pinitial (18,19)  0.0115  0.0157  0.0042 
Pinitial (19,20)  0.0179  0.0207  0.0028 
Pinitial (19,23)  0.0008  0.0009  0.0001 
m  0.0271  0.0312  0.0041 
δ  0.2356  0.2450  0.0094 
K  0.3253  0.3291  0.0038 
D (18,19)  0.0410  0.0462  0.0001 
D (19,20)  0.0298  0.0310  0.0012 
D (19,23)  0.0787  0.0857  0.0070 
L (18,19)  0.0008  0.0021  0.0013 
L (19,20)  0.0179  0.0207  0.0028 
L (19,23)  0.0008  0.0009  0.0001 
Vgas  0.1910  0.1920  0.0010  

Fig. 12. Recovery capacity model: first-order sensitivity indices of the most important input parameters over 60 s of recovery.  

Table 16 
Closed-order sensitivity indices of groups of parameters of the robustness model.  

Group of parameters of the robustness model η2
gr (Closed-order)  

System Geometry Group  0.0022 
Gas Degradation Rate Group  0.9602 
Communication Network Group  0.0228 
Pipeline Pressure Group  0.0034  
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7.2.2.2. Group effects. For the robustness model, we partition the inputs 
into four groups based on the network features such as the communi
cation network properties, the geometry properties of the pipelines and 
the pysical properties of the failure event (that is the pressure degra
dation rate m). In particular the four groups are:  

a. System Geometry Group: D (18,19), D (19,20), D (19,23), δ 
b. Gas Degradation Rate Group: m 
c. SCADA Network Group: mpd, K 
d. Pipeline Pressure Group: Pinitial (18,19), Pinitial (19,20), Pinitial (19,23)  

The estimated closed-order sensitivity indices for the above groups are 
shown in Table 16. 

The gas degradation rate group consisting of parameter m shows 
again a clear predominance, contributing to 96% of the variance of 
output GRobCap. The communication network is slightly more important 
than the system geometry group and the pipeline pressure group. 

The group effect results show that the degradation of a gas pipeline 
transmission network is a very complex process to manage: the key 
driver m, unfortunately, is a physical characteristic of the failure that 
cannot be altered artificially. 

The ability of the network to guarantee a good level of performance 
during a failure depends essentially on the decreasing rate of the pres
sure inside the pipelines, i.e. the m parameter. 

Until the gas reaches the threshold pressure, the SCADA system does 
not reveal any failure. Even if the performance is degrading, the network 
continues to process the natural gas until the pipelines are blocked. To 
further illustrate this concept, suppose having two pipelines that have 
failed, one with a break of 5% of its diameter and another that has led to 
a 100% break. In the first pipeline, the pressure will have a much slower 
decrease than the second one, until it reaches the threshold pressure 
value and, then, it will be made safe by blocking its sections. This con
firms the difficult controllability of the process. 

For the recovery model, we consider the following groups:  
a. System Geometry 

Group: 
D(18,19), D(19,20), D (19,23), δ, L(18,19),L(19,20), L 
(19,23) 

b. Gas Rate Properties 
Group: 

m,Vgas  

c. SCADA Network Group: mpd, K 
d. Pipeline Pressure Group: Pinitial (18,19), Pinitial (19,20), Pinitial (19,23)  

Table 17 shows the corresponding closed-order sensitivity indices for 
the recovery model. 

The geometry of the pipelines contributes almost to 40% of the 
output variance, with η2

gr(geom.charact.) = 0.4187, which is much more 
than that of the robustness model. The geometric characteristics, such as 
the pipeline length, play an important role in the recovery: the longer 
the pipeline, the slower the recovery. The communication network, 
instead, contributes to almost 32% of the output variance with 
η2

gr(SCADA) = 0.3241. Thanks to the possibility of controlling the 
communication parameter settings, whose closed-order index registers a 
value of 0.3241, the network recovery turned out to be a more 
manageable process than the degradation process. 

7.2.3. Trend identification 
Trend identification analysis is performed to understand whether the 

key drivers (m for the robustness model and K and δ for the recovery 
model) found in the parameter prioritization stage have positive or 

negative effect on the model outputs. 
Fig. 13 displays the partial derivative scatterplot (Section 6.4) of the 

m parameter for the robustness model, where each point represents one 
of the estimated ∂Y

∂xi 
using Eq. (26) with Δxi equal to 10− 6 of the range of 

m parameter values. Fig. 13 shows that m always has negative effect to 
the robustness capacity, implying that if the pressure degradation rate 
increases, the robustness model output decreases; especially, the values 
between 0.1 and 0.3 psi/s generate strong effect, being associated with 
larger absolute partial derivatives. 

Scatterplots of Fig. 14 and Fig. 15 report the trend identification 
analysis of parameters K and δ, for the recovery model, at the times of 5 
and 60 s, respectively. Fig. 14 shows that parameter K has positive effect 
on the model output at both times, meaning that if the promptness of the 
SCADA communication network decreases – caused by an increase of the 
K parameter - the recovery model output increases both for Trec of 5 and 
60 s. 

It should not be confused that increasing the promptness of the 
SCADA system also increases the amount of gas recovered. If the re
covery rate increases, the amount of recovery, instead, decreases due to 
a higher pressure retained in the pipelines. The computed positive 
partial derivative of GRecCap(Trec) with respect to K decreases much 
quicker at 60 than at 5 s. 

Fig. 15 shows that an increase in the δ parameter, will lead instead to 
a decrease in the quantity of gas processed in the recovery phase, both 
for Trec of 5 and 60 s. 

Recall that δ is a mathematical parameter that allows to calculate the 
transport capacity of a pipeline knowing its diameter. If this parameter 
increases, the pipeline capacity also increases (see Eq. (10)) and the 
network achieves the nominal performance faster than if the pipeline 
capacity were lower causing a less amount of natural gas recovered due 
to an overestimation of the initial pipeline capacities. 

7.2.4. “What-if” analysis 
To understand to what extent the resilience of the network changes if 

there is a reduction of the uncertainty interval of the key uncertainty 
drivers, a “what-if” scenario analysis is conducted. From an engineering 
point of view, the “what-if” analysis results offer practical information to 
the operation managers. 

From the previous analysis, we know that the m parameter is a key 
driver for the robustness capacity GRobCap of the network. The “what-if” 
analysis is, then, performed by reducing the uncertainty in parameter m, 
while keeping its mean as the same. 

Considering the robustness model, the different assumptions of the 
support range of the pressure degradation rate parameter m could lead 
to take an operational decision over another one. Reduction in the range 
of support of m simulates the situation that network operators attribute 
different assumptions to the pressure degradation rate, leading to 
various GRobCap estimations. Specifically, in the base scenario, we have 
m u(0.1,1); then, consider an alternative scenario m u(0.145,0.955), 
where each end of the range is reduced by 5% compared to the base 
interval (0.1,1) keeping the same mean. In latter case, the mean of 
GRobCap has a value of D(d, d’) equal to − 3.572%. The meaning of this 
value is that the mean of GRobCap decreases its value respect with the 
mean of the base scenario where m u(0.1,1). 

If another operator considers each end of the range of m reduced by 
10% and 20%, i.e., m u(0.190,0.910) and m u(0.280,0.820), the mean 
of GRobCap assumes a value D(d, d’) of − 5.9070% and − 8.8777% for 
d’equal to 10% and 20%, respectively. 

Fig. 16 shows changes of GRobCap in distribution when considering 
different case scenarios. Starting with the base scenario, the variance of 
the robustness capacity GRobCap decreases from 3.32⋅107 to 1.76⋅107, 
1.045⋅107 and 4.23⋅106, for d’ equal to 5%, 10% and 20%, respectively. 

Let us consider the quantile q0.15 for the different knowledge of the 
range of support of m for m u(0.1,1) and for d’ equal to 5%, 10% and 
20%. The quantile q0.15 assumes the values of 4.4536 + 04 m3 for 

Table 17 
Closed-order sensitivity indices of group of parameters of the recovery model.  

Group of parameters of the recovery model η2
gr (Closed-order)  

System Geometry Group  0.4187 
Gas Rate Properties Group  0.2501 
Communication Network Group  0.3241 
Pipeline Pressure Group  0.0151  
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m u(0.1,1) and 5.1635e + 04 m3, 5.1972e + 04 m3, 5.2615e + 04 m3 for 
m u(0.145,0.955), m u(0.190,0.910) and m u(0.280,0.820), respec
tively. The quantile q0.15 expresses the probability of 0.85 that, consid
ering a determined range of m, the network is still able to process at least 
the corrisponding level of natural gas during the degradation process 
accordingly with the definition of tail distribution (1 − FX(qα) = 1 − qα). 

The quantiles values explain that if the uncertainity range of m re
duces, keeping the same mean value, the forecast of the natural gas 
processed in the network despite the gas storage failure increases. 

To satisfy the gas demand of the network when gas storage fails, due 
to equipment failure or to the fact that it is empty, it is necessary to 
supply the natural gas to the demand nodes exploiting the other gas 

Fig. 13. Trend evolution analysis of the m parameter for the robustness model.  

Fig. 14. Trend identification scatterplots for the K parameter at the recovery time of 5 (above) and 60 (below) seconds, respectively.  
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Fig. 15. Trend identification scatterplots for the δ parameter at the recovery time of 5 (above) and 60 (below) seconds, respectively.  

Fig. 16. Variation of the PDF of the robustness model for d’ equals to − 5,-10 and − 20% of the m parameter range.  
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sources for ensuring the maximum level of satisfaction of the network 
demand. 

Considering the daily demand of the network (see Table 3) of 39.43 
MCM/d, we want to analyze the economic loss during the degradation 
phase to evaluate the possibility to increase the natural gas imported 
from other countries. Comparing the costs of the partial loss of the de
mand with those of a possible increase of the natural gas supply from 
abroad, makes it possible to take accurate decisions to limit any eventual 
losses. To estimate the costs and the steady gas demand during the 
degradation process, it is necessary to consider the failure detection time 
Tdet extracted from Eq. (3) for each different choice of the uncertainity 
range of m. The quantile q0.15 of the output GRobCap, for a conservative 
reason, is a measure of the amount of natural gas that the network 
continues to process during the failure event. Table 18 shows the 
network demand not satisfied, the relative economic loss (€) and the 
failure detection time Tdetfor each uncertainty range of m. For this 
analysis we considered a reasonably natural gas cost for a customer use 
of 0.85€/m3. The gas demand not satisfied is computed as the difference 
between the gas network demand during Tdet and the amount of natural 
gas processed in the network (the quantile q0.15) despite the failure. 

Considering a wholesale price of the natural gas of 148 €/kcm 
(Egging, Gabriel, Holz, & Zhuang, 2008) where kcm is the notation of 
“thousands of cubic meters”, Table 19 shows the relative costs to be 
faced to avoid the loss of gas supply to network customers when gas 
storage facilities fail and the pipelines have not been blocked yet by the 
SCADA system. The analysis highlights how the increase of the 
contractual amount of natural gas from other countries it is an advan
tageous choice in terms of economic terms. 

In the same way, different knowldge of the support range of K could 
lead to different forecasts of the amount of natural gas recovered during 
the recovery time Trec. Decreasing the support range of K, mantaining 
the same mean value, implies to increase the accuracy of the measur
ments by the instrumantation involved in the detection of the pressure at 
which the pipelines are blocked by RCVs. From the values D(d, d’)of the 
quantile q0.90 of K, increasing the accuracy of the instrumentation 
choosing the best pressure sensors, leads to slighly better forcast of the 
amount of natural gas processed during the recovery phase. One can 
deduce that increasing the accuracy of the instrumentation does not 
involve significant forecast changes of the natural gas recovered during 
the recovery phase. 

Due the fact that δ is a mathematical parameter that allows to 
compute the network pipeline capacities knowing the respective di
ameters, it is not possible to get engineering practice considerations. In 
spite of everything, it is however possible to affirm that by restricting the 
range of δ, mantaining the same mean value, there is a slight improve
ment in the forecast of the gas recovered during the recovery phase. In 
other words, different knowledge of the pipeline capacities, restricting 
the uncertainity range of δ, is irrelevant for engineering forecasts. 

8. Conclusions 

Nowadays the vulnerability of critical infrastructures has led to the 
development of frameworks for resilience analysis, including both 
physical and cyber risks. In this work, we have developed an integrated 

framework to analyze the resilience of gas pipeline transmission 
networks. 

Appropriate RPIs are provided to assess the resilience of the gas 
transmission network and to indicate to the system designers and op
erators, ways to increase the robustness and recoverability of their 
networks by taking appropriate precautions in the event of cyber-attacks 
and physical failures. Pressure integrity attacks have been considered 
due to the great threat of cyber attacks in the Oil & Gas sector, providing 
an integrated view by analyzing the possible failure events and their 
impact on the gas network resilience. 

An original framework for resilience analysis has been proposed that 
combines different mathematical and simulation models to capture the 
complexity of the gas pipeline networks, especially the complex SCADA 
communication network functioning and structure. 

The application of the integrated resilience framework on a resilistic 
case study higlights how the gas pipeline transmission network is 
vulnerable to the failure of the gas storage but has a good robustness to 
that of the LNG terminal. 

The recoverability of the network instead, has an opposite trend. The 
network recovers its initial performance faster when a gas storage failure 
occurs rather than when it occurs at the LNG terminal, as can be 
observed by the trend of the network recoverability index performance 
R2. 

Furthermore, a novel sensitivity analysis framework for the resil
ience model of gas pipeline transmission networks has been proposed, to 
provide comprehensive insights of the complex critical infrastructure for 
decision-making. 

Model output analysis, parameter prioritization, trend identification 
and a what-if analysis in terms of mean and quantiles have been per
formed. Due to the time dependence of the recovery model, a conceptual 
readjustment of the individual and group variance-based sensitivity 
indices has been necessary. 

In the case study considered, the model output analysis results of the 
tail distribution show that the gas pipeline transmission network re
covers 70% of its initial performance very quickly and after 60 s the 
probability to recover up to 90% is almost 1. 

Besides, the sensitivity indices for the pressure degradation rate 
parameter have pointed out that the degradation of a natural gas 
transmission network is not easily manageable due to its highly 
dependence on the speed at which the pressure decreases within the 
pipelines. 

Furthermore, network recovery is a process that can be sped up if 
good pressurization by RCVs is guaranteed. The individual effect of the 
K parameter - which represents the promptness of the SCADA system – 
highlights that the recovery is highly conditioned by this parameter. An 
increase in the value of K leads to a slow recovery, with a greater 
quantity of gas being recovered in this phase. The trend identification 
analysis has discovered the negative effect of the δ parameter during all 
the recovery phase and points out that overestimating the pipeline 

Table 18 
Cost analysis considering different assumptions of the uncertainty range 
parameter m.  

Uncertainty range 
of m 

Tdet(min)  Gas demand not 
satisfied (m3) 

Cost related to the gas 
demand not satisfied (€) 

m u(0.1, 1) 2.165 14,741 12,530 
m u(0.145,0.955) 2.465 15,518 13,190 
m u(0.190,0.910) 2.481 15,957 13,564 
m u(0.280,0.820) 2.512 16,163 13,739  

Table 19 
Convenience analysis of purchasing gas from other countries, considering 
different assumptions of the uncertainty range parameter m.  

Uncertainty range 
of m 

Amount of 
natural gas 
needed to 
avoid 
economic 
losses (m3) 

Cost 
related to 
the 
eventual 
gas 
demand 
not 
satisfied 
(€) 

Cost related 
to the gas 
purchased 
from other 
countries to 
avoid 
economic 
losses (€) 

Convenience 
of purchasing 
gas from other 
countries (€) 

m u(0.1, 1) 14,741 12,530 2182 +10348 
m u(0.145, 0.955) 15,518 13,190 2297 +10893 
m u(0.190, 0.910) 15,957 13,564 2362 +11202 
m u(0.280,0.820) 16,163 13,739 2392 +11347  
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capacities leads to an underestimation of the amount of natural gas 
recovered. 

The “what-if” analysis of the robustness model highlights the 
changes in the output distribution when knowledge of inputs improves, 
providing additional information to the network owners. The results 
show that, due to the high dependence of the output on the degradation 
rate parameter m, the statistics of the network robustness capacity 
GRobCap vary rapidly if the uncertainty range of m is reduced from 5% to 
20% of the initial uncertainty range. 

The same analysis on the recovery model, shows a small variability of 
the statistics of GRecCap if different assumptions are made on the uncer
tainty range of the parameters K and δ. 

It has been highlighted how the “what-if” analysis has great rele
vance from the engineering point of (Cavallaro et al., 2014) view. 
Different knowledge of the parameter m relating to the degradation rate, 
can lead to different decisions on the supply of gas from other countries 
sources. A correct identification of the range of support of the variability 
of the m parameter allows to better manage the network resources by the 
operators during the degradation process, satisfying the demand of the 
network as much as possible. 

At the end of this work, we conclude that:  

• The framework proposed to quantify resilience of gas pipeline 
transmission networks is flexible, adaptable to any complex gas 
network regardless of the number of nodes and pipelines thanks to 
the low computational cost of the maximum flow algorithm imple
mented in Matlab®.  

• The resilience analysis framework can be extended for any network 
degradation and recovery function. Several simplifying hypotheses 
have been made in this work to facilitate the calculation of the 
network robustness. More accurate simulations on pipeline depres
surization would allow more accurate results on network resilience 
to specific failures.  

• The interdependence model for complex gas networks proposed, 
although it is only at the first stage, offered results in agreement with 
the practice. In particular, the model confirms that the degradation 
process depends very little on the SCADA network settings and very 
much on the characteristics of the failure. Furthermore, the ability to 
recover the network, through a bottom-up approach, depends on the 
time required to bring the pressure of the pipelines to a steady state. 

• The Monte Carlo-based algorithm of the sensitivity analysis frame
work has a low computational cost that allows us to adopt a resil
ience model with many input parameters considering 106 resilience 
model runs to compute the Sobol’s sensitivity indices.  

• The “what-if” analysis, included in the four stages of the sensitivity 
analysis framework, demonstrated the importance of sensitivity 
analysis in the decision-making process.  

• The method of estimating the Sobol sensitivity indices of the first- 
order and the total-order for the network recovery model can also 
be extended to other dynamic models. Thanks to the low computa
tional cost of the algorithm proposed for estimating the indices, 
based on the Monte Carlo method, this work aims to provide support 
for the sensitivity analysis of dynamic models, a topic little devel
oped in literature. 
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