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Abstract—Degradation modeling and prognostics serve as the
basis for system health management. Recently, various sensors
provide plentiful monitoring data that can reflect the system status.
A multitude of feature fusion techniques based on multisensor data
have been proposed to generate a composite health index (HI) for
prognostics, which can represent the underlying degradation mech-
anism. Most existing methods have used linear fusion models and
neglected the practical requirements for HI construction, which
are insufficient to reveal the nonlinear relations among features and
difficult to obtain accurate HIs for complicated systems. This study
proposes a novel feature fusion-based HI construction method with
deep learning and multiobjective optimization. Multiple degrada-
tion features are fused by a deep neutral network (DNN). Several
desired properties that the HIs should have for prognostics are
adopted to formulate the objective functions of DNN training.
To balance the spatial complexity and performance of the fusion
model, a multiobjective optimization model is generated for train-
ing the DNN. Then, a generalized nonlinear Wiener process model
is used to predict the remaining useful life with the resulted HIs.
Finally, two cases are analyzed to illustrate the effectiveness and
robustness of the proposed method.

Index Terms—Deep learning, feature fusion, health index (HI),
multiobjective optimization, remaining useful life (RUL).

NOTATIONS

hij Constructed HI of unit i at time tj.
Mon(·) Monotonicity.
Tre(·) Trendability.
Rob(·) Robustness.
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Sca(·) Scale similarity.
Con(·) Consistency.
xq,j The qth degradation feature at time tj.
w Vector of weights of DNN.
b Vector of bias of DNN.
L Number of the hidden layers of DNN.
dl Number of neurons at layer l of DNN.
J1(w, b) Objective function for representation performance.
J2(L, d) Objective function for spatial complexity.
A(·) Cost-effectiveness ratio function.
μ(t; θ) Drift function.
T First passage time.
Rj The remaining useful life at time tj.

I. INTRODUCTION

R EMAINING useful life (RUL) prediction has a vital role
in prognostics and health management, which becomes

an effective technique to reveal the health status of industrial
systems and reduce the losses of production and economy [1],
[2]. Since the status of many systems, such as machinery and
electronic devices, degrades gradually, the RUL is commonly
defined as the residual time when the irreversible accumulation
of damage reaches a critical threshold from the current state.

With the rapid development of sensing techniques, a great deal
of sensor data can be collected from the condition monitoring
system. The sensing data related to degradation processes is
known as the degradation signals [3]. These signals can reveal
the system health states directly or indirectly. Many studies
modeled the degradation processes with a single raw signal, such
as crack length, vibration amplitude, and battery capacity [4],
[5]. If the failure mechanism is clear, a single direct signal may be
capable of revealing the underlying degradation characteristics
of the system status. However, in many industrial systems with
complicated structure and under changeable operating environ-
ment, a single raw degradation signal cannot completely contain
sufficient information for degradation modeling and RUL pre-
diction.

Accordingly, multiple monitoring signals have been com-
monly used to extract degradation features [6], [7]. Based on the
extracted multiple features, there exist two types of methods for
the RUL prediction. The first type, known as end-to-end manner,
is directly modeling the relationships between the RUL and
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multiple degradation features [8]. In recent years, deep learning
technology grow rapidly and exhibit its excellent performance
in the RUL prediction [9], [10], [11]. Liu et al. [12] developed a
feature-attention-based end-to-end approach to predict the RUL.
Ma and Mao [13] stacked multiple convolution-based long short-
term memory network and formed an encoding-forecasting
architecture for RUL prediction. Jin et al. [14] used a bidi-
rectional long short-term memory (LSTM)-based two-stream
network for RUL prediction. All these methods are supervised
methods, where multiple features were taken as model inputs
and the occurred lifetime or RUL percentages were directly
used as model outputs, i.e., labels. This means that the predicted
RULs would linearly decreases to zero and be used to represent
the system status. However, the real degradation processes in
practice are commonly nonlinear and complex. Additionally, as
the progression of the underlying status is also not provided, it
is challenging for engineers to rely on the predicted RUL for
making further decisions (e.g., spare part logistics, inventory
control, and maintenance).

The methods of the second type employ feature fusion tech-
niques to construct a composite health index (HI) and then
predict the RULs by degradation models [15]. As the one-
dimensional (1-D) HI provides a straightforward visualization
and intuitive interpretation of the underlying degradation status
of a system [16], this type of methods is promising to better
capture the evolution mechanism of degradation and improve
the decision-making in practice. Then, the RUL prediction can
be facilitated by using various existing univariate prognostics.
Furthermore, compared with the second type of methods, it is
difficult for the first type of methods to perform well in the early
stage of the system operation, when degradation phenomenon
is always not noticeable. Although the degradation features
are almost unchanged in the early stage, the predicted RUL
reduces linearly. That is, the corresponding starting point of rapid
degradation stage is hard to be identified and the first type of
methods has no ability to predict the RUL at the early stage [17].

Many previous studies have considered feature fusion tech-
niques for the HI construction [18], [19], [20], [21]. However,
most of these studies ignored the actual requirements and desired
properties of degradation modeling and prognostics in the HI
construction. To achieve more accurate RUL predictions by sim-
pler prognostics, some researchers have indicated some desired
properties, which the constructed HI is expected to have [22].
Khanh and Kamal [23] summarized five intrinsic natures of HI
and three extern correlations for the HI construction, such as
monotonicity, trendability, robustness, and mutual information.
Several evaluation criteria were also presented to measure the
performance of the prognostic results. Some studies only consid-
ered a part of the abovementioned essential properties in the HI
construction step. Liao [24] used genetic programming which
formulates the fitness function with monotonicity to generate
the HI for bearings. Liu et al. [15] developed a composite HI
based on monotonicity and variance by using a linear weighted
sum of multiple features. Furthermore, Liu et al. [25] defined a
consistency property to optimize the constructed HIs. Yan et al.
[26] proposed a linear programming-based feature fusion ap-
proach to generate the HI with the monotonicity, trendability, and

robustness properties. Wang et al. [27] proposed a deep learning-
based data fusion framework with the properties of monotonicity
and range information. Furthermore, involving more essential
properties may yield more efficient HI construction results. To
achieve an HI that represents the degradation processes more
accurately, Nguyen and Medjaher [23] used a simple combi-
nation of all eight properties as one fitness function of genetic
programming for feature fusion. The results also showed that
the HIs based on multiple essential properties performed best
in prognostics than those based on simpler construction criteria.
Additionally, more scholars preferred using these properties in
feature selection or HI evaluation [28], instead of discovering
the most appropriate HIs by optimization [29]. This cannot
ensure the resulted HIs to characterize the failure progression
effectively.

Besides the consideration of multiple desired properties of
HI, how to select an appropriate fusion function is another key
issue. The weighted linear combination of multiple features is
most used fusion function [15], [26]. Chen et al. [30] adopted a
nonlinear function to fuse the weighted sum of multiple features
for formulating a composite HI. Since the failure mechanisms
of systems are complex and the relationships among multiple
features are not clearly revealed, it is difficult for those common
functions (linear weighted function, exponential function, sig-
moid function, etc.) to accurately fuse the features and further
represent the underlying degradation status. Due to the great
nonlinear approximation ability of deep learning algorithms
[31], Wang et al. [27] established a deep neural network (DNN)
to fuse multiple sensor data for degradation modeling. Li et al.
[32] proposed a shape-constrained neural network for data fu-
sion and HI construction, where the loss function was formulated
based on both the monotonicity and the failure time variability.
Wang et al. [17] used a generic indirect deep learning algorithm
for the HI construction with multiple features based on the con-
cept of monotonicity and failure threshold. However, only two
desired properties were considered in those previous studies and
the topological parameters of deep networks were determined
by cross validation, which significantly affected the application
accuracy and efficiency. By far the deep learning-based fusion
models have been not researched thoroughly.

To address all abovementioned concerns, this study develops
a novel HI construction framework with DNN and multiob-
jective optimization. Several desired properties that an HI is
expected to have in prognostic tasks are used to formulate the
function of representation performance. Considering that the
representation performance of HI and the spatial complexity
of DNN simultaneously, a multiobjective optimization model
(MOM) is developed to train the DNN model. To verify the
predictability of the constructed HIs, a generalized nonlin-
ear Wiener process (WP) model based on kernel functions is
built.

Note that, since the actual health status is often unavailable
and cannot be directly measured from sensor data, the applica-
tion range and accuracy of most supervised end-to-end methods
are limited, which often use manually labeled values instead of
actual RULs as the response variable. Obviously, the proposed
method is apparently distinct from the supervised algorithm. On
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the other side, the proposed method also differs from the unsu-
pervised task. The reason is that some domain knowledge, which
reveals the underlying degradation mechanism is introduced into
the HI construction, such as monotonicity and failure threshold.
However, exiting deep learning-based end-to-end methods are
black-box models regardless of domain knowledge. Song and
Liu [33] proposed an indirect supervised learning method that
although the underlying degradation mechanism was unavail-
able, the failure time of historical units, domain knowledge and
monitoring data were used to determine the unobservable labels
indirectly.

The main contributions of this article are as follows.
1) A DNN-based feature fusion model is developed to con-

struct composite HIs based on multiple degradation fea-
tures, which can represent nonlinear characteristics and
complex relationships among different feature sequences
effectively.

2) The MOM is formulated to estimate the topological pa-
rameters and unknown coefficients of DNN, which con-
siders the representation performance of HI and the spatial
complexity of DNN simultaneously.

3) To discover the most suitable HIs, the domain knowledge
including five key properties are used to formulate the
objective of the MOM rather than evaluation metrics. A
hierarchical self-adaptive differential evolution (HSADE)
algorithm is also developed.

4) A generalized nonlinear WP model with kernel functions,
that has higher generality and flexibility in nonlinear mod-
eling without prior information, is proposed to predict the
RUL distributions with the constructed HIs.

The rest of this article is organized as follows. Some desired
properties of HIs for prognostics are introduced in Section II.
Section III proposes a methodology of HI construction and prog-
nostics. Section IV presents two illustrative examples. Finally,
Section V concludes this article.

II. DESIRED PROPERTIES FOR HI

Some desired prosperities of HI have been presented in pre-
vious studies to construct an appropriate HI for prognostics. In
addition, some metrics for assessing the HI performance have
also been widely studied. This section aims to summarize the
HI intrinsic prosperities and the evaluation metrics, which can
be used for the HI construction and prognostic applications.

A. Desired Properties

When constructing an HI for describing the degradation pro-
cess, the time-dependence characteristic and degradation evolu-
tion mechanism, and the accuracy and robustness goals of prog-
nostics need to be considered. Motivated by these requirements,
the intrinsic properties that desired for HI construction and
their corresponding computational formulas are summarized as
follows.

Property 1. Monotonicity: To capture a system’s degradation
mechanism more accurately and clearly, the trend of the HI
should be monotonically increasing and decreasing.

Property 2. Trendability: As the system gradually degrades
over time, an appropriate HI should be associated with the
operation time. This property is called as trendability.

Property 3. Robustness: Due to sensor noises and variations
in operating conditions, the degradation processes inevitably
fluctuate. The robustness is employed to measure the stability
or uncertainty of the HI.

Due to the randomness and noise, the monitoring signals are
usually nonmonotonic. Thus, the constructed HI is expected
to present an obvious trend for easily predicting the system’s
RUL. A higher trendability means the failure propagation over
time can be charactered well by the HI, and thereby the HI has
better prognosticability. Let h(i)

1:mi
= [hi,1, . . . , hi,mi

]T denote
the ith HI trajectory, where hi,j is the HI at time tj for sam-
ple i, i = 1, …, n, j = 1, …, mi. Let Mon(h), Tre(h), and
Rob(h) denote the monotonicity, trendability, and robustness,
respectively, whose range values are all [0, 1]. Their calculation
formulas can be found in [30]. Mon(h) = 1 means that all HI
trajectories are strictly monotonic, while Tre(h) = 1 indicates
that the HI trajectories are totally relevant to the system lifetime.
The robustness score is expected to be close to 1 for lower
fluctuating trajectories.

Property 4: Scale similarity. To enhance the generalization
of constructed HIs, the range scales of all trajectories should be
closer. The formulation of scale similarity is

Sca (h)=1− 1

n

n∑
i=1

hmax −max
(
h(i)
)− hmin +min

(
h(i)
)

hmax − hmin +max
(
h(i)
)−min

(
h(i)
)

(1)
where hmax and hmin are the maximal and minimal values

of all HI trajectories, respectively. Sca(h) ∈ [0, 1].
Property 5: Consistency. Considering different HIs under

the same operational condition, their failure thresholds should
keep consist. The formulation of consistency is given by

Con (h) =
n exp (−σ (hm))∑n

i |hi,mi
− hi,0| (2)

where σ(hm) is the standard deviation (SD) of the terminal
points of all HI trajectories, and hi,0 is the initial value of ith
trajectory. If all trajectories have the same initial and the same
terminal points, the consistency reach its maximum, i.e., Con(h)
= 1.

Even if all the units are under the same operational condition
or have the same load profile, they may have different initial
health states and degrade with different rates and variations
due to unit-to-unit variability. This kind of uncertainties can
be caused by the randomness of operation environment, and the
inherent variations in raw materials or manufacturing processes.
It is obvious that the heterogeneity can affect the modeling and
prediction accuracy. Besides these five properties, the failure
time of historical units is also considered in the HI construc-
tion. The first passage time (FPT) of the degradation trajectory
exceeding a prefixed critical threshold is generally regarded
as the failure time. The threshold is determined according to
engineering practice and expert knowledge. For example, a
lithium-ion battery is defined to fail when its capacity decreases
to 70%–80% of the initial capacity. Thereby, the failure time
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of identical units are probably different, which lead to another
source of uncertainty. This type of uncertainty could affect the
stability of prediction. To reduce the effects of these uncertainties
on the prognostics, the properties 4 and 5 should be considered
in the HI construction.

The scale similarity is used to represent the unit-to-unit het-
erogeneity. If the maximal and minimal values of different HI
trajectories are the same, Sca(h) is equal to 1. It suggests that
when the degradation processes of different units are projected to
the constructed HI space, the change amplitudes of degradation
are the same. Then, when we construct the HIs for testing units,
their degradation trajectories will be fall into the same interval.
That is, there is no difference in the severities of degradation
for different units under the same operational condition and the
heterogeneity can be decreased. This constraint can markedly
enhance the generalization of the proposed HI construction
method.

On the other side, the consistency represents the uncertainty
resulted from the failure time of different units. In practice, the
failure thresholds of identical systems are commonly the same.
Moreover, some anomaly detection techniques can be used to
identify the initial degradation points (IDPs) of historical units.
Then, we can truncate the data of historical units to ensure
only the observations from the initial degradation to failure
are selected as training data. To ensure the HI values at the
initial timepoint and at the final timepoint of all training units
to respectively be 0 and 1, the data normalization need to be
conducted to the constructed HIs for final output. Thus, the IDPs
of the testing units can be detected which can make the initial HI
equal to 0, and the testing units are expected to have the same
failure threshold that corresponds to the HI value equal to 1.
This makes Con(h) tending to 1. By using the data truncation
and normalization, the consistency property is realized and the
uncertainties will be sharply reduced.

Furthermore, to achieve the maximums of these properties,
the optimization is essential. In most previous studies, a part of
or all those above intrinsic prosperities are usually used to assess
the HI performance after the construction phase, rather than
incorporated into the HI construction step. Hence, the obtained
HIs may be not optimal and accurate. To make up for this
shortcoming, we will take these five properties as the objectives
in the construction and optimization of HIs.

B. Performance Evaluation Metrics

Once the HIs are constructed, they will be substituted into
the degradation models for predicting the RULs. Then, the most
concern is the prognostic accuracy. There are several evaluation
metrics that have been discussed in numerous studies.

Mean absolute relative error (MARE): Measuring the accu-
racy of the RUL prediction. Its calculation formula is

MARE =
1

m

m∑
j=1

∣∣Rj −R∗j
∣∣

R∗j
(3)

whereRj andR∗j denote the predicted and the actual RUL values
at time tj , respectively.

Root mean square error (RMSE): Evaluating the mean root
squared difference between the predicted and the actual RUL
values, i.e.,

RMSE =

√√√√ 1

m

m∑
j=1

(
Rj −R∗j

)2
. (4)

Mean absolute deviation (MAD): Measuring the variability
of the differences between the predicted RULs and their average
values, i.e.,

MAD =

√√√√ 1

m− 1

m∑
j=1

(
ΔRj −ΔR̄

)2
(5)

where ΔRj = Rj −R∗j and ΔR̄ are the mean value of ΔRj .
The MAD can reflect the robustness of the predictions.

Prognostic score (PS): Since later predictions could result in
serious system malfunctions in practical applications, the later
predictions should be penalized more than the earlier predic-
tions. Based on this preference, the formula of the PS metric is
defined by an exponent function as follows

PS =
1

m

m∑
j=1

γ (ΔRj) (6)

where γ(z)=exp{|z|/a2} − 1, if z ≥ 0; γ(z) = exp{|z|/a1}
− 1, if z < 0, a1 > a2 > 0.

All abovementioned metrics tend to be zero when the prog-
nostics based on the constructed HIs are perfect. As these
performance metrics rely more on the validity of the degradation
models, they are only considered in the evaluation step rather
than the HI construction step in the following.

III. METHODOLOGY

A DNN-based feature fusion method is proposed here to
construct a composite HI with multiple features. A multiob-
jective optimization problem based on the desired prosperities
and the model spatial complexity is formulated to optimize the
constructed HIs. To further illustrate the effectiveness of this
method, a generalized nonlinear degradation model for the RUL
prediction is built.

A. Feature Extraction

The degradation features that reveal the system’s underly-
ing health status can be extracted from the raw sensor sig-
nals. To obtain effective features, signal processing techniques,
correlation analysis, or other statistical approaches are em-
ployed. Time-domain analysis, frequency-domain analysis, and
time-frequency domain analysis are the common signal pro-
cessing techniques for feature extraction [34]. Although the
time-frequency domain has the best capacity for processing the
nonstationary signals with noise, it requires high computational
time and is not suitable for online prognostics. Moreover, the
frequency domain analysis is mainly effective for anomaly
detection and not suitable for RUL prediction. For the time
domain analysis, it can be used for various systems because of
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Fig. 1. Multilayer DNN architecture for feature fusion.

the simplicity and fast computation time. Considering that this
study aims to propose a generalized HI construction method,
only the time domain analysis is investigated.

Since the raw monitoring signals are usually noisy due to
the external interference, some pretreatment techniques, such
as smoothing methods, filter algorithms, and singular spectrum
analysis, are used for noise-reduction. Assume that s features
related to the degradation process can be extracted from the
noise-free signals. Let xq,j be the qth feature at tj , q = 1, …, s.
As the features from different sources can have different scales,
all features need to be standardized before the feature fusion.

B. DNN-Based Feature Fusion Architecture

In this section, we propose a DNN-based feature fusion model
to construct a 1-D HI based on the extracted degradation features.
A nonlinear mapping f : x ∈ Rs → h ∈ R from the feature
space to the HI space is developed. Without loss of generality,
Fig. 1 shows a multilayer DNN architecture with fully connected
hidden layers. The input of DNN at time tj is the s degradation
features, i.e., xj = [x1,j , x2,j , . . . , xs,j ]

T . The output of DNN
is the constructed HI.

Letwl
i ∈ Rdl−1 and bli denote the weight and the bias between

layer l−1 and the node i at layer l, respectively. The output of
neuron i at the first hidden layer is η1i = δ(w1

ixj + b1i ), where δ
is the sigmoid activation function for nonlinear transformation.
Furthermore, the output of the node i at layer l is denoted as
ηli = δ(wl

iη
l−1 + bli), where ηl−1 ∈ Rdl−1 is the input vector

of layer l, l = 2, …, L. Let hj = δ(whηL + bh) be the output
of DNN, where wh ∈ RdL denotes the weight vector between
layer L and the output layer, ηL ∈ RdL is the output of layer L
and bh is the bias of the output layer.

The next task is to determine the topological parameters and
unknown coefficients of DNN. Different from many previous
deep learning-based methods that took the HI construction as
supervised regression problems, this work converts it to an
indirect supervised optimization task with unlabeled features
by plugging the desired properties into the DNN-based feature
fusion model. In this way, some desirable properties acted as
the domain knowledge can be involved in the HI construction

Fig. 2. Architecture of the DNN-based feature fusion model for HI construc-
tion.

step to enhance the interpretability. A possible formulation of
this optimization problem is to define one objective function by
constructing a representation performance indicator of HI based
on the weighted combination of those properties [21]. Then, the
parameters can be estimated by single-objective optimization.

As DNNs with longer depths and widths may have better
nonlinear fitting capability, the spatial complexity of the fusion
model would increase rapidly when the representation perfor-
mance achieves the optimum. However, an overly complex
model could lead to overfitting and time-consuming which might
be not suitable for practical applications. In addition, as we can
see in [8], [17], and [32], the structures of the DNN-based fusion
models are selected artificially or determined by cross validation.
The former may result in a nonoptimal fusion model, while the
latter would increase the computational burden. To address this
issue, the spatial complexity can be set as another objective
function for the optimization task besides the representation per-
formance. Then, the model structure can be determined through
multiobjective optimization.

Note that, the two objectives based on representation perfor-
mance and spatial complexity conflict with each other. To make
tradeoff between two or more conflicting objectives, a multi-
objective problem is formulated. Then, the network coefficients
(weights and bias) and the topological parameters (number of
layers and number of neurons for each layer) can be estimated
by the multiobjective optimization simultaneously. The obtained
DNN-based feature fusion model is expected to have simpler
structure and generate acceptable HIs.

The architecture of the proposed DNN-based fusion model
is displayed in Fig. 2. The network coefficients and topological
parameters are the same throughout all the sub-DNNs.

C. Multiobjective Optimization for Model Training

In this section, a multiobjective optimization problem for
training the DNN-based fusion model is formulated. The rep-
resentation performance of HI is evaluated by a composite
indicator based on the weighted combination of the desired
properties. We consider monotonicity, trendability, robustness,
and scale similarity in the formulation of objective functions for
the MOM. The last property, i.e., consistency, will be realized
by data truncation and normalization as stated in Section II-A.
The MOM is widely used in the HI construction [35] and in
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the model training for deep learning-based prognostics methods
[36], [37], [38].

The first objective function of MOM for the representation
performance is formulated as follows:

J1 (w, b)=λ1Mon (h) + λ2Tre (h) + λ3Rob (h) + λ4Sca (h)
(7)

wherew ∈ RdL+
∑L

l=1 dldl−1 andb ∈ R1+
∑L

l=1 dl are the vectors
of weights and bias of the DNN-based fusion model. λk > 0, k=
1, 2, 3, 4 are the hyperparameters for balancing the importance of
the four properties and

∑4
k=1 λk = 1. When there is no specific

requirement, we can assign the same value to λk or determine λk

by cross validation. If one specific property is preferred accord-
ing to the engineering requirements, its corresponding λk is set to
a larger value. For example, if the monotonicity is preferred for a
more significant trend of HIs, λ1 can be set to 0.5, which is larger
than other λk �=1. Therefore, by tuning the hyperparameters, the
representation performance of the DNN-base model can adapt
to various scenarios.

If both the monotonicity and consistency approach to their
maximums, the scale similarity based on the maximal and
minimal values of all HIs would also tend to its maximum.
The value range of J1 is confined in [0, 1]. J1 = 1 suggests
that the constructed HIs achieve the best desired properties, i.e.,
the best representation performance. Since regularization can
reduce the variance of solutions and avoid overfitting, L2-norm
regularization is employed here. Then, (7) becomes

J ′1 (w, b) = λ1Mon (h) + λ2Tre (h) + λ3Rob (h)

+ λ4Sca (h)− λ̄ ‖w‖22 (8)

where λ̄ is the tuning factor and usually set to be higher enough.
The spatial complexity of DNN can be measured by the

topological parameters. Thus, the second objective function of
the MOM for the spatial complexity is formulated as follows:

J2 (L,d)=

L∑
l=1

dl (dl−1 + 1) + dL + 1 (9)

where d = [d1, . . . , dL] ∈ RL.
By combining (8) and (9), the formulation of MOM can be

expressed as

maxJ ′1 (w, b) ,minJ2 (L,d)

s.t. L ∈ N ≥ 2,d ∈ NL

w ∈ R
dL+

L∑

l=1

dldl−1
, b ∈ R

1+
L∑

l=1

dl

. (10)

The stochastic optimization algorithms are usually used to
trained DNNs. However, these algorithms which minimize the
expected loss function are mostly for single-objective optimiza-
tion. Furthermore, since the values of L and d determine the
dimensions of w and b, the MOM in (10) is an uncertainty
optimization problem. Hence, most common multiobjective
optimization algorithms, such as strength pareto evolutionary
algorithm, nondominated sorting genetic algorithm-II, multiob-
jective evolutionary algorithm, and multiple objective particle
swarm optimization [39], [40], [41], are also not suitable for

Algorithm 1: Framework of HSADE.

Input: The ranges of L and dl, i.e., [L0, L1] and [d0, d1]; NP

(population size).
Output: The optimal solutions w∗, b∗, L∗ and d∗.
1: For L ∈ [L0, L1], dl ∈ [d0, d1]do:
2: Set g = 0 and initialize a population

P g = {ξg1, · · · , ξgNP } via uniform sampling, where
ξgi = [wg

i , b
g
i ].

3: while the termination rule is not satisfied do:
4: for i = 1: NP

5: Mutation: Randomly pick three individuals ξgi,1,
ξgi,2 and ξgi,3 from P g , and construct a new
individual ρg

i for ξgi
ρg
i = ξgi,1 + Sfg

i × (ξgi,2 − ξgi,3) ,
where scaling factor Sfg

i is updated by
Algorithm 2. ξi,1 and ξi,3 are the best and the
worst individual in the three samples,
respectively.

6: Crossover: Conduct binomial crossover
between ρg

i and ξgi to yeild a trial vector
Ug

i = [ug
i,1, u

g
i,2, . . . , u

g
i,DL

] with

ug
i,j =

{
ρgi,j , randj(0, 1) ≤ Crgi orj = jrand

ξgi,j , otherwise

where crossover rate Crgi is updated by
Algorithm 2, and jrand is an integer and randomly
sampled from {1, 2, · · · , DL}. The dimension is
DL = dL +

∑L
l=1 dldl−1 +

∑L
l=1 dl + 2 + L.

7: end for
8: Selection: Sample two individuals from

{ξg1, · · · , ξgNP ,U
g
1, · · · ,Ug

NP } randomly, i.e., ξ′1
and ξ′2; the new individual is selected as

ξnew =

{
ξ′1, ifA(ξ

′
1) > A(ξ′2)

ξ′2, otherwise
9: Repeat step 9 to obtain a new population Pnew. Set g

= g +1.
10: end while.
11: end for
12: (w∗, b∗ ,L∗, d∗)← Return the optimal (ξ, L,d)∗

with the best A(·)

solving (10). To search the optimal solutions and train the
DNN-based model more effectively and rapidly, we first define
a cost-effectiveness ratio function as follows:

maxA (w, b, L,d)= max
J ′1 (w, b)

J2 (L,d)
(11)

whereA(·) can be interpreted as the benefit of representation per-
formance per unit spatial complexity. Thereupon, the MOM is
reformulated to a single-objective optimization problem, which
integrates two considerations. An HSADE algorithm is proposed
for solving (11). Compared with the basic differential evolution
algorithms, the HSADE has a less computational cost and a
faster convergence property. The detailed procedure of HSADE
is presented in Algorithm 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 09,2023 at 13:29:30 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: DEEP LEARNING FEATURE FUSION BASED HEALTH INDEX CONSTRUCTION METHOD 7

Algorithm 2: Self-adaptive Strategies for the Parameters in
HSADE.

Input: Individual ξgi , ξgi,1, ξgi,2 and ξgi,3, Population P g .
Output: Sfig+1 and Crig+1
Self-adaptive updating of Sf
1: Calculate Ai,1 = A(ξgi,1), Ai,2 = A(ξgi,2) and

Ai,3 = A(ξgi,3).
2: Calculate the multiplier

Ras = (Ai,2 −Ai,1)/(Ai,3 −Ai,1).
3: Update Sfig+1 by

Sfg+1
i = Sfl + (Sfu − Sfl)×Ras , where Sfu and

Sfl denote the upper and the lower limits of the scaling
factor, respectively.

Self-adaptive updating of Cr
5: Calculate Ai = A(ξgi ), Amax = max

i
A(ξgi ),

Amin = min
i

A(ξgi ), and the average objective

function A =
∑

A(ξgi )/NP .
6: Calculate the multiplier

Rac = (Ai −Amax)/(Amin −Amax).
7: Update Crig+1 as follow

Crg+1
i =

{
Crl + (Cru − Crl)×Rac,Ai ≤ Ā
Crl, Ai > Ā

,

where Cru and Crl are respective the upper limit and
lower limit of the crossover rate

In order to maintain a better balance between the proximity
and diversity of the individuals, the self-adaptive strategies of
scaling factor and crossover rate in HSADE are developed by
simultaneously utilizing prior and posteriori knowledges in the
evolutionary process, which are presented in Algorithm 2.

The training data from historical units should be run-to-failure
data, so that the scale similarity and consistency properties can
be formulated. By substituting the extracted feature data into
the DNN-based fusion model, the optimal HI can be obtained
through the MOM and HSADE. Note that, given specific values
of L and d, the dimensions of w and b are determined and their
estimates can be searched by the Steps 2–12 of HSADE. When
traversing L and dl in their value ranges, we can obtain a set
of candidate solutions for w and b. Then, the final optimal
network coefficients and topological parameters with the best
cost-effectiveness ratio are selected from the candidate solu-
tion sets. This solving process is obviously a multihierarchical
strategy, which is the reason for naming the proposed algorithm
as hierarchical SADE. After the training process, uncomplete
degradation data of the testing units is substituted into the trained
DNN-based fusion model, the HI sequences of the testing units
can be achieved.

D. RUL Prediction

The constructed HIs are substituted into a degradation model
for prognostics. WP [42], [43] is commonly used as a degrada-
tion model to describe the failure propagation, i.e.,

h (t) = h0 + μ (t;θ) + σBB (t) (12)

where μ(t;θ) is the drift function, θ is the parameter vector, σB

is the diffusion parameter, and B(t) is the standard Brownian
motion. For convenience, the initial HI h0 is set to 0, i.e., h0 =
0. If the initial HI is not equal to 0, h0 can be subtracted from
h(t) at the outset. To describe the nonlinearity of the degradation
processes, the power-law form and the exponential law form are
commonly used to formulate μ(t; θ), i.e.,

μ (t;θ) =

{
α1t

α2

α1 exp (α2t)
. (13)

Although (13) can model an enormous number of common
nonlinear degradation trajectories, they might struggle to de-
scribe some complex degradation processes which are both
nonconvex and nonconcave. To improve the generality and
flexibility of degradation modeling without prior information,
a novel method is developed. The basic idea is to introduce the
kernel tricks into the drift function as follows:

μ (t;θ) =

m∑
k=1

θkκ (t, tk) + θ0 (14)

where κ(t, tk) is the kernel function, θk is the weight, θ0 is
the bias, m is the sample size, and θ = [θ0, θ1, . . . , θm]T . The
Gaussian kernel function is usually selected in nonlinear model
prediction [44]. Then, a generalized nonlinear Wiener process
degradation (GNWP) model is formulated by combining (12)
and (14) as follows

h (t) = h0+μ (t;θ)+σBB (t) · μ (t;θ)=
m∑

k=1

θkκ (t, tk) + θ0.

(15)
The degradation increments of His at tj are denoted as

Δhj = h (tj)− h (tj−1) =
m∑

k=1

θkΔκj,k + σBΔBj (16)

where Δκj,k = κ(tj , tk)− κ(tj−1, tk) and ΔBj = B(tj)−
B(tj−1). Based on the properties of WP, the increment Δhj
follows a Gaussian distribution. Assume the sensor signals
are observed with equal sampling interval, i.e., τ = tj − tj−1,
j = 1, 2, . . . ,m. Then, the likelihood function of the complete
data Δh can be given by

p (Δh |θ, σB )=
(
2πσ2

Bτ
)−m

2 exp

(
−‖Δh−Φθ‖2

2σ2
Bτ

)
(17)

where Δh = [Δh1, . . . ,Δhm]T , Φm×(m+1) =

[φ(t1), . . . , φ(tm)]T , and φ(tj) = [1,Δκj,1, . . . ,Δκj,m].To
implement the parameter estimation, a zero-mean Gaussian
prior is defined over θ as

p (θ |β )=
m∏

k=0

√
βk

2π
exp

(
−θ2kβk

2

)
(18)

Where β = [β0, β1, . . . , βm]T is the hyperparameter vector.
Based on the conjugate distribution, the posterior distribution
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Algorithm 3: RUL Prediction.
Input: History of the HI values up to time tj,
h1:j = [h1, · · · , hj ]

T.
Output: The PDF of the RUL at tj, fRj

(r).
1: Select the kernel function in (14).
2: Calculate the posterior estimate of θ and the estimate

of σB based on the HI values and the method
presented in Appendix A.

3: Predict the degradation increment Δhj+1 at time tj+1

by (A4).
4: Calculate the PDF of the RUL at tj, fRj

(r|θ, σB) by
(22), which θ is replaced by its posterior mean, i.e.,
fRj

(r) = fRj
(r|θ, σB)|θ=v.

5: Set j = j + 1 and return to step 2.

of θ is derived as follows:

p (θ |Δh,β, σB ) = (2π)−
m+1

2 |Σ|− 1
2

× exp

[
− (θ − v)TΣ−1 (θ − v)

2

]

(19)

where the posterior mean and covariance are, respectively

v = σ−2B τ−1ΣΦTΔh,Σ =
(
σ−2B τ−1ΦTΦ+Λ

)−1
where Λ=diag(β). The optimal estimates of θ and σB can be
calculated by maximizing the marginal likelihood in (A1). The
details for parameter estimation are given in Appendix A.

The lifetime T is generally defined as the FPT of h(t) exceed-
ing a prefixed threshold Df , i.e.,

T = inf {t : h (t) ≥ Df |h0 < Df } . (20)

According to (20), the RUL at tj can be defined as the residual
time for the HI value exceeding Df from hj , i.e.,

Rj = inf {r : h (tj + r) ≥ Df |hj < Df } . (21)

Under the assumption in Section III-C, Df = 1.
From the results in [27], given the HI hj , the probability

density function (PDF) of Rj for GNWP is approximated with
an explicit form as

fRj
(r |θ, σB ) ∼= 1√

2πr
exp

{
−S2

j (r)

2r

}

×
(
Sj (r)

r
+

1

σB

dμ (tj + r;θ)

dr

)
(22)

where Sj(r) = (Df − hj − μ(tj + r;θ) + μ(tj ;θ))/σB .
The procedure of the RUL prediction is summarized in Algo-

rithm 3. Moreover, we elaborate the flowchart of implementing
the HI construction and RUL prediction in Fig. 3.

IV. CASE STUDIES

This section presents two case studies to illustrate the superi-
orities of the proposed framework.

Fig. 3. Flowchart of implementing the HI construction and RUL prediction.

A. Lithium-Ion Battery Datasets

The lithium-ion battery datasets were from the NASA Ames
Prognostics Center of Excellence [45]. The battery charge–
discharge experiments were conducted to collect the health
parameters of batteries. The signals of temperature, capacity,
voltage, and current, etc., were measured with the running cy-
cles. The failure of a battery is defined to occur once its capacity
declines below 1.4 Ah. Four batteries #5, #6, #7, and #18 are
selected in this case, where batteries #6 and #18 are used as
training samples and the other two are used as testing samples.

Most existing studies focused on using the capacity as the
HI for the battery RUL prediction [46]. However, considering
that it could be difficult to measure the capacity in some online
scenarios and directly monitoring some internal state informa-
tion of batteries through regular sensors may be expensive, it is
more practical to use the common monitoring data of batteries
for extracting some effective features that can depict the battery
performance. Hence, we extract four features from the raw sen-
sor data. The definitions of these four features can be referred to
[30]. The battery capacity is normalized with the initial value and
the failure threshold, which is called as state-of-health (SoH).
The SoH is usually taken as the actual HI of batteries. Then, we
make comparisons between the SoHs and the constructed HIs
to validate the proposed method.

After obtaining the degradation features, all these feature
data are first truncated before the batteries approach the failure
threshold, and second normalized to ensure the value ranges of
all features fall within [0, 1], i.e.,

x′q,j =
xq,j − xq,min

xq,max − xq,min
(23)
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Fig. 4. Optimization results of the parameter estimation for the DNN-based
feature fusion model. (a) Cost-effectiveness ratio versus the spatial complexity.
(b) Representation performance versus the topological parameters.

Fig. 5. Cost-effectiveness ratio A and representation performance J1 under
different values of L where dl = 3.

Fig. 6. Cost-effectiveness ratio A and representation performance J1 under
different values of dl where L = 2.

where xq,max and xq,min are the highest and the lowest values of
the qth feature, respectively. Then, the preprocessed feature data
are substituted into the proposed method to generate composite
HIs. The hyperparameters λ1, λ2, λ3, and λ4 in (7) are assumed
to be 0.25, 0.25, 0.25, and 0.25 respectively. Based on the feature
datasets of batteries #5 and #6, the optimization results of the pa-
rameter estimation for the DNN-based model by Algorithm 1 are
shown in Fig. 4. The cost-effectiveness ratio function declines as
the spatial complexity increases in Fig. 4(a). This suggests that a
simpler DNN-based fusion model is preferred. This conclusion
is also supported by Fig. 4(b). It can be found that when the
topological parameters of the DNN-based feature fusion model
are set as L = 2 and dl = 3, the cost-effectiveness ratios achieve
its maximum. Under this configuration, the resulted model can
have a higher representation performance with a lower spatial
complexity.

Furthermore, we explore the optimal results of the MOM
under different topological parameter configurations. It can be
found from Figs. 5 and 6 that the effectiveness ratios decline as

TABLE I DEFINITION OF THE FEATURES FOR LITHIUM-ION BATTERY

Fig. 7. Training results of the DNN-based feature fusion model based on the
training datasets. (a) #6. (b) #18.

L and dl increase, which indicates the DNN-based fusion model
with simpler structure is preferred. Both the representation per-
formance indicators increase first and then decrease as L and dl
increase. That is, the optimal solution is a compromise between
these two objective functions.

To illustrate the superiority of the proposed method, other
two HI construction methods are used for comparison. One is
adopting the Box–Cox transformation technique to extract the
HIs (HI-BC) from a single feature (discharging voltage differ-
ence of equal time interval) of lithium-ion batteries [47]. The
other one linearly fused the four features of batteries presented in
Table I to obtain the composite HIs (HI-LN) by a single-objective
optimization, whose objective function was formulated based on
three desired properties [21].

Fig. 7 displays the training results of the DNN-based fusion
model based on the datasets of batteries #6 and #18. HIC denotes
the composite HIs constructed by the proposed method. The
actual SoH is set as a benchmark. It can be seen from Fig. 7 that
both the constructed composite HIs for two batteries perform as
well as the actual SoHs, which verifies the proposed method.
Then, the trained DNN model is applied to the testing datasets.
Fig. 8 shows the testing results of the constructed HIs by different
methods. Obviously, both the trends and values of HICs are
closer to the SoHs than those of HI-BCs and HI-LNs. By
comparing the HICs with HI-BCs, we can conclude that more
degradation information is included in more features and thus
the constructed HIs can reveal the underlying health status of
batteries better. Through the comparison of HICs and HI-LNs,
it can be ascertained that a more complex model with higher
nonlinear fitting ability can capture both the trends and the
fluctuations of heath states more precisely than the linear feature
fusion model.

Additionally, to further compare those different HI construc-
tion methods, the absolute errors between the values of actual
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Fig. 8. Comparisons of the HIs constructed by different methods for the testing
battery datasets. (a) #5. (b) #7.

Fig. 9. Comparisons of the errors between the actual SoHs and the HIs
constructed by three different methods for the testing battery datasets. (a) #5.
(b) #7.

SoHs and constructed HIs for batteries #5 and #7 are calculated.
Fig. 9 presents the corresponding results. At the early cycles, the
errors of the three methods are close. While at the later cycles,
the errors of HICs are significantly lower than those of HI-BCs
and HI-LNs. Therefore, as more and more monitoring data
are obtained, the proposed method outperform other methods
more significantly. Furthermore, Table I presents the RMSEs
between the actual SoHs and the values of constructed HIs
by different methods for batteries #5 and #7. The comparative
results indicate the proposed HI construction method achieves
the smallest RMSE values for both batteries than other methods.

Besides validation of the proposed method, this section also
analyzes whether the multiple desired properties are necessary to
construct the HI or one simple property is enough. To generally
investigate the effects of multiple desired properties, we first use
only one property to formulate the objective function of MOM
for the HI construction. Then, the representation performance of
constructed HIs based on this property is evaluated through the
other properties and also by the weighted sum of all properties
(Mul) as shown in (7). Fig. 10 shows the HI performance based
on the property given in the corresponding row, which is evalu-
ated through individual property or multiple properties presented
in columns. For example, in the first row of Fig. 10(a), the HIs
based on the Mon property have the highest score of trendability
on both two datasets. From Fig. 10(a) and (b), the HIs based on
only one property, such as monotonicity or robustness, can also
have high scores of the other properties. Besides, when using
the combination of all the properties, the constructed HIs have
the highest scores of the Mon property and the Mul, and achieve
excellent performance in Tre, Rob, and Sca properties for both

Fig. 10. Representation Performance of the constructed HIs under different
combinations of the desired properties. (a) Training dataset. (b) Testing dataset.

Fig. 11. Comparisons of the RUL predictions for battery #5 by the constructed
HIs and the actual SoHs. (a) at cycles 100. (b) at cycles 110.

two datasets. Therefore, it is worth considering multiple desired
properties in the HI construction, and thereby more monotonous
and accurate HIs can be generated for prognostics.

Fig. 11 further validates the performance of the constructed
HIs for the RUL prediction. The predicted PDFs of the RUL at
different starting timepoints by the constructed HIs and by the
SoHs for battery #5 are shown. According to the comparisons,
both the predicted distributions cover the actual RULs well.
Although the PDF peaks based on the SoHs are higher than
those by the constructed HIs, the mean values of the former are
far away from the actual RULs more than those of the latter. This
indicates that the proposed HI construction method can generate
HIs which represent the underlying health status effectively,
when the internal health status is unavailable.

B. Rolling Bearing Datasets

The rolling bearing datasets are collected from PRONOSTIA
platforms [48]. The datasets of Bearings 1-1 and 1-2 (run-to-
failure data) are selected for model training, and the datasets
of Bearings 1-3 and 1-4 (truncated data) are used for model
testing. There are 12 time domain features extracted from the
raw horizontal vibration signals, whose calculational formulas
are listed in Table II. The last feature SF is used to extract the
signal trend and remove signal noises with a polynomial fitting
function. Since the RUL prediction is a long-term task, the time
window is set to 10 s, which means all the features are extracted
every 10 s.
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TABLE II
RMSES BETWEEN THE VALUES OF CONSTRUCTED HIS AND ACTUAL SOHS

FOR TWO BATTERIES

Fig. 12. Illustration of extracted degradation features and their trends of
Bearing 1-1.

Fig. 13. Comparative training results of the HIs constructed by different
methods. (a) Bearing 1-1. (b) Bearing 1-2.

Exponential smooth methods are used to remove the noise
in all twelve extracted features. Fig. 12 shows the extracted
degradation features for Bearing 1-1. The trends of most features
are conspicuous and approximately monotonic, and present two
distinct stages (normal stage and degradation stage). To improve
the efficiency and accuracy of the HI construction and RUL
prediction, only the datapoints of features at the degradation
stage are selected. According to [7], the IDPs of Bearings 1-1and
1-2 are 14620 s and 8260 s, respectively. To eliminate the
influence of the dimensions of different features, all the truncated
feature data are Z-score standardized. The hyperparameters λ1,
λ2, λ3, and λ4 in (7) are also assumed to be 0.25, 0.25, 0.25, and
0.25 respectively.

The preprocessed training datasets are substituted into the
DNN-based fusion model and the unknown parameters are
estimated by the MOM and Algorithm 1. Then, the topological
parameters are determined as L = 2 and dl = 6, respectively.
Fig. 13 shows the HIs (HIC) of Bearings 1-1 and 1-2 con-
structed by the proposed method. Time 0 denotes the IDP. To

Fig. 14. Comparative results of the constructed HI and IDP detection by
different methods for (a) Bearing 1-3. (b) Bearing 1-4.

demonstrate the superiority of the proposed method, we conduct
a comprehensive comparison between different methods. Chen
et al. [30] considered the properties of monotonicity, trendability,
and robustness for HI construction (HI-NW) with a nonlinear
weighted sum of multiple features. A deep learning-based data
fusion approach was developed in [27] for HI construction (HI-
DL) with only two desired properties (monotonicity and range
information), whose topologies were determined through cross-
validation and parameters were estimated by single-objective
optimization. Note that the actual health states or HIs of bearings
are always unknown. Some researchers used the reciprocal of
failure time (RoT) as the underlying HI. However, the RoT only
considers the monotonicity property and ignores the nonlinearity
and stochasticity of degradation. The comparative HI results by
different methods are presented in Fig. 13. All these methods
adopt the same feature sequences.

From Fig. 13, we can observe that the HICs overall perform
best on the training datasets when compared with the HI-NWs
and HI-DLs. The HICs have more remarkable monotonic trends
and can covers the RoTs better than HI-NWs or HI-DLs. This
is possibly because the HI-NW just uses a nonlinear weighted
sum of multiple features to construct the HI, which cannot
capture complicated relationships among features. Since only
two desired properties are considered and some vital information
is ignored, the HI-DL does not perform as well as the HIC.
Moreover, the nonlinear characteristics of degradation, such as
stochasticity and volatility, are also captured by HICs. This
indicates the proposed method accounting for multiple desired
properties can be efficient in the prognostic tasks.

The datasets of Bearings 1-3 and 1-4 are then used to test
the trained DNN-based fusion model. Fig. 14 shows the HIs
constructed by different methods for these two bearings. Note
that, all these HI trajectories present a normal stage and a
degradation stage. The proposed method cannot only distinguish
the two different heath stages accurately, but also generate
effective HIs for prognostics. To compare the separability of
different HI trajectories, all their IDPs are calculated by using
the 3σ-criterion [7]. Since the IDPs of Bearings 1-1 and 1-2 in
the training datasets are determined according to [7], the IDPs
of Bearings 1-3 and 1-4, which were obtained based on RMS in
[7], are taken as benchmarks for model testing. Table III shows
the comparative results. It can be found that both the IDPs of
HIC for Bearings 1-3 and 1-4 are slightly earliest than those of
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TABLE III
TIME DOMAIN FEATURES OF VIBRATION SIGNALS

Fig. 15. Predicted RUL distriutions for (a) Bearing 1-3, (b) Bearing 1-4.

HI-NW and HI-DL. The IDPs of HIC and RMS for Bearing 1-4
are close, while the IDP of HIC for Bearing 1-3 is significantly
earlier than that of RMS. It suggests that the HIs by the proposed
method have the highest sensitivity and generality and the most
notable separability. Hence, we can conclude that the occurrence
of degradation of different bearings can be identified timely by
the proposed method even if they are in the incipient failure
stages.

Next, the HI sequences after IDPs are input into GNWP for
the RUL prediction. The start timepoints of bearings 1-3 and 1-4
for prognostics are 18010 s and 11380 s, respectively. When the
value of HI crosses 1, the bearing fails. The RUL predictions are
displayed in Fig. 15, which verify the proposed GNWP model
based on HICs. The actual RULs close to the peaks of the PDFs
can be well covered by the predicted distributions. It indicates
that the proposed method can be not only used to characterize
the degradation process effectively, but also provide accurate
uncertain quantification for the RULs.

Furthermore, some existing methods are selected for compar-
isons with the evaluation metric summarized in Section II-B. A
WP degradation model is used to predict the RUL distributions

TABLE IV
DETECTION OF THE IDPS OF THE CONSTRUCTED HIS BY DIFFERENT METHODS

FOR TESTING BEARING DATASETS

TABLE V
COMPARATIONS OF THE RUL PREDICTIONS BY DIFFERENT METHODS FOR THE

TESTING BEARING DATASETS

based on the HI-NWs in [30], and a polynomial (Poly) degra-
dation model is adopted to fit the HI-DLs for RUL prediction
in [27]. As many prognostics methods with end-to-end manner
were studied in the recent years, some recent deep learning-
based methods are also selected for comparison, such as mul-
tiscale convolutional neural network (MCNN) [50], recurrent
neural network (RNN), and gated recurrent unit (GRU) [10]
are used here to predict the RULs, where multiple degrada-
tion features and the RUL percentages are used as the input
and output, respectively. The performance evaluation metrics
including MARE, RMSE, MAD, and PS of all these prognostic
methods for the testing datasets are calculated and the results
are presented in Table IV. As some predictions are in the form
of distributions, the maximum probable values are adopted as
the predicted RUL values.

We can intuitively find from Table V that the RMSEs and
MADs of the “HI-DL+Poly” method are significantly higher
than those of other two HI-based methods. It verifies that, due to
considering more desired properties, the proposed method and
the “HI-NW+WP” method perform better in prognostics. An-
other reason may be that the polynomial model without the con-
sideration of the degradation stochasticity has no capacity for de-
scribing complicated degradation processes and yielding higher-
accuracy predictions. Since the absolute RUL values are larger,
the differences among the MAREs of different methods account-
ing for the relative errors between the predicted and actual values
are smaller. Moreover, the PS values of the “HIC+GNWP”
method and the “HI-NW+WP” method are close, both of which
are far less than that of the “HI-DL+Poly” method. This indi-
cates the predicted RULs by the former two methods are rela-
tively ahead of those by the last method. Note that we generally
prefer proper earlier RUL predictions and making maintenance
actions in advance to avoid unnecessary failure loss. Moreover,
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by comparing the proposed method with the end-to-end models,
we find that the proposed “HIC+GNWP” method performs
better than RNN, compare beauty with MCNN, and slightly
inferior to GRU. However, since the end-to-end prognostics
methods always only provide the point estimates of RUL and
do not consider domain knowledge, the prediction task act
as a black-box, which cannot reflect the evolution of failure
propagation and cannot give a straightforward visualization of
the nonlinear degradation process. Moreover, the uncertainty
quantification that is an important issue in practice is also ignored
in those end-to-end methods. Therefore, the proposed method
which not only depicts the underlying degradation status clearly,
but also predicts the RUL distributions with analytic forms, can
have better generalization ability and efficiency to model the
underlying degradation mechanisms of various systems under
different scenarios. Then, prescriptive decisions can be made
more flexibly according to the engineering requirements.

V. CONCLUSION

This article has developed a feature fusion-based HI construc-
tion method with deep learning and multiobjective optimization.
The extracted features were used to construct the composite
HI by a DNN-based feature fusion model. Multiple desired
properties for the practical requirements of prognostics were
considered as the basis of the objective function in the DNN
training. To make a compromise between the representation
performance and the spatial complexity of DNN, a MOM is
developed. Then, the resulted HIs were input into a generalized
nonlinear WP model with kernel functions for the RUL predic-
tion. The comparisons with other methods in the two illustrative
examples demonstrate the effectiveness and applicability of the
proposed method.

Although the proposed method performs well in prognostics,
some future studies are worthy of investigating. The first one
is how to deal with nonmonotonic degradation signals under
dynamic operating environment. The other one is to extend the
HI construction to early fault detection.

APPENDIX A

The marginal log-likelihood of θ is calculated by

ln p (Δh |β, σB ) = ln

∫
p (Δh |θ, σB ) p (θ |β ) dθ

= − 1

2
{m ln (2π) + ln |Ψ|

+ ΔhTΨ−1Δh
}

(A1)

where Ψ = σ2
BτI+ΦΛ−1ΦT . Note that it is hard to calculate

the estimates ofβ andσB by maximizing (A1) in the closed form.
Hence, an iterative estimation method is proposed as follows.

Calculating the first partial derivatives of (A1) with respect to
β and σB yields

βnew
k =

1− βkΣk,k

v2k
(A2)

(
σ2
B

)new
=

‖Δh−Φν‖2
(m+ 1)−∑m

k=0 (1− βkΣk,k)
(A3)

where vk is the kth element of the posterior mean v , and Σk,k is
the kth diagonal element of the posterior covariance Σ in (19),
which are calculated with the current β and σB.

The procedure of the iterative estimation are as follows.

Step 1: Initialize β and σB.

Step 2: Calculate the posterior distribution of θ by (19).
Step 3: Re-estimate βnew

k and (σ2
B)

newby (A2) and (A3).
Step 4: Repeat Steps 2–3 until convergence.

As a result, the optimal estimates of θ and σB can be obtained,
which are denoted as θ∗ and σ∗B . According to [49], the iterative
estimation is equivalent to an expectation–maximization update
and so is guaranteed to locally maximize the marginal log-
likelihood in (A1). Utilizing (A2), the iterative process results in
faster convergence and we would not encounter any optimization
difficulties in practice [49].

When given a new timepoint tm+1, the posterior distribution
of Δhm is predicted with the estimated results of θ∗ and σ∗B .
Note that the posterior distribution of Δhm is also a Gaussian

p (Δhm+1 |Δh,θ∗, σ∗B ) ∼ N (v∗Tφ (tm+1) , σ
2∗
B τ

+ φ(tm+1)
TΣ∗φ (tm+1)

)
(A4)

where v∗ and Σ∗ are the posterior mean and covariance of θ∗.
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