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A B S T R A C T

The growing prominence and emphasis of renewable energy to decrease carbonization in the power system and
reduce the dependability of fossil fuel for energy needs play an important role in the development of smart
grids. Many technological advancements are integrated into smart grid to optimize the power system and
renewable energy sources. Smart grid leverages electricity and energy consumption data exchange to establish
a significantly advanced, automated, and decentralized electricity network. However, this brings numerous
vulnerabilities to the power system, including cyber-attacks, grid blackouts, and electricity theft. While the
most significant concern is energy theft, where some culprit’s consumers manipulate their energy meters to
reduce their readings. This destabilizes the country’s electricity utility and economic development and causes
a high tariff on energy for consumers who pay the bill. Therefore, developing an advanced framework for
electricity theft detection is necessary. To address this problem, we propose a machine learning-based stacked
framework to detect malicious activity in the smart grid. The proposed data-based stacked ensemble model
detects honest and anomalous consumers in two stages. In the first stage, the model employs four individual
classifiers at the base level to analyze data and a single classifier at the meta-level to classify the results
of the base learners for the second stage classification. Furthermore, the Borderline SMOTE and Principle
Component Analysis techniques are employed to address the class imbalance and curse of dimensionality
issues respectively. Through experimental analysis, we proved the effectiveness of the proposed framework in
detecting suspicious activity in four different experiments, including preprocessed data, feature extracted data,
balanced data, and lastly, both feature engineering and data balancing. The simulation outcomes demonstrate
that our proposed framework enhanced energy security and overcomes the impact of theft attacks on the smart
grid.
1. Introduction

Carbonization in power systems increases the prominence and em-
phasis of renewable energy sources (RES). The integration of RES
in power systems by leveraging smart grid helps in the optimization
of energy. Smart grid integrates many modern technologies such as
big data and Artificial Intelligence (AI) to optimize the RES. From
another aspect, on account of energy importance and less availability
of resources, the secure and efficient distribution of electricity is a
crucial aspect of social and economic development in every country.
Smart grid has the potential to provide a secure alternative of energy
distribution and monitoring, surpassing the limitations of conventional
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grid systems. It integrates various sensors and computers that monitor
energy distribution, consumption, control and manage consumer usage.
This enables bidirectional power and information flow in the smart
grid (Palahalli et al., 2019). It optimizes both the renewable energy
source (solar or wind parks) and energy utilization (smart homes,
smart cities, industries and charging stations) as illustrated by Fig. 1.
The advancements in electrical grid systems have enabled both energy
companies and consumers to monitor their energy consumption in real-
time. The sensors transfer electricity consumption readings to energy
utility and bill the consumers. The system’s primary aim is to minimize
energy losses and provide a reliable and pragmatic electricity supply.
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Fig. 1. Illustration of Smart Grid Eco-System.
Advanced metering Infrastructure (AMI) is an advanced version of
a conventional disk type meter that measures and reports electricity
consumption. It plays a very crucial role in the measurement of elec-
tricity usage and loss in the smart grid. AMI offers many advantages
to electricity utilities, including real-time monitoring of consumers
through electricity and information flow. It is the main component of
the smart grid which gathers a huge amount of electricity consumption
data, which is further utilized by electricity utility for load forecast-
ing (Al-Turjman and Abujubbeh, 2019; Zhang et al., 2021) and demand
response (Bizzozero et al., 2016). Nevertheless, due to its electronic and
networking capabilities, AMI is susceptible to cyber-attacks, which can
lead to blackouts, grid failures, and energy theft (Shukla et al., 2023;
Shehzad et al., 2023).

The energy theft is the most severe concern for both energy users
and electricity utilities. Energy theft refers to Non-Technical Losses
(NTL) which include meter bypassing, false meter reading injection and
network invasion (Yan and Wen, 2021). The main reason for energy
theft is illegal consumers. They manipulate energy meters to lower their
meter readings, with the primary objective of paying less for electricity
bills. NTL jeopardizes the overall long-term viability and stability of
the SG. It increases the per-unit cost of electricity for domestic and
industrial consumers, which results in high production costs.

A recent study (Northeast Group, L.L.C., 2018) indicated that the
world faces $96 billion of loss due to electricity theft annually as of
2018. Additionally, this is not just a problem in impoverished nations;
relatively significant income losses brought on by energy theft also
happen in developed nations. For instance, the revenue losses from
electricity theft in the United States and China reach 6 billion dol-
lars and 20 billion CNY respectively (Nes, 2020), Lin et al. (2021).
Moreover, the steady operation of SG and consumers are both severely
1236
threatened by NTL consumers’ experiences of periodic voltage dips
and occasional power disruptions in locations where energy theft is
prevalent, particularly during peak load hours.

These issues can lead to fires and endanger public safety in extreme
circumstances. So, it is necessary to take effective measures to detect
the behavior of anomalous consumers in order to protect the SG and
energy utility.

The main contributions of our research are summarized below.

1.1. Contributions

• The computation overhead is a major concern when working on
large datasets. So, we integrated a statistical approach called Prin-
ciple Component Analysis (PCA) to extract latent features from
the dataset. This reduces the computation overhead by reducing
redundant information and aiding in improving efficiency and
interpretability.

• In electricity consumption data, class distribution issue reduces
the model efficiency and causes it to be biased towards the
dominant class. We utilized Borderline SMOTE to counter the
class distribution issue.

• The selection of optimal combination of the classifiers for first
and second order in a stacked structure is a challenging issue.
Our comprehensive experiments and results led us to the best
combination of stacked models that provides the outstanding theft
classification results.

• The experiment is performed in four distinct case studies to
observe the behavior of the proposed system; First, the structure
is assessed without Data Balancing (DB) and Feature Engineer-
ing (FE) to deeply analyze the behavior of structure only with
preprocessed data.
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• Second, only FE is performed on the dataset using PCA to analyze
the experimental values on an imbalanced dataset.

• Third, we perform solely DB with BorderlineSMOTE on the
dataset to investigate the behavior of introduced structure on
balanced data and the breakdown of computation overhead.

• Finally, both FE and DB are leveraged on the dataset to get the
proposed structure’s experimental findings to deeply assess both
methodologies’ behavior.

he introduced model aims to contribute to the current research by
roviding an efficient framework for suspicious activity identification
n SG. Through its demonstration of the efficiency of a stacked model
n enhancing the precision of energy theft, the study also aims to
ontribute to the development of data-oriented approaches for SG
ystems. The rest of this research is structured as follow: Section 2
onsists of related work, and the problem statement is disclosed in
ection 3. Further, Sections 4 and 5 explain the proposed system model
nd simulation results. Finally, a conclusion is presented in Section 6.

. Related work evaluation

NTL in power systems compromises the stability of the smart grid.
he author proposed a model in Lee et al. (2022), data analysis-based
lectricity theft detection is one of the best solutions to reduce the
ssues of NTL. The fundamental issue with data-based NTL detection
s that the collected energy usage data set is imbalanced. Deep rein-
orcement learning is applied to solve the data imbalance problem of
TL. However, compared to the conventional NTL algorithms, there

s no need for extra pre-processing steps to balance the data set. The
valuation of the proposed system model is done using the True Positive
ate (TPR), False Positive Rate (FPR), False Omission Rate (FOR), and
1-score.

In Ramos et al. (2016), proposed Binary Black Hole Algorithm
BBHA) to combat NTL in Brazil. The study achieved prominent results
s compared to Genetic Algorithm (GA) and Particle Swarm Optimiza-
ion (PSO). However, there is a lack of reliable performance metrics,
s it is crucial while working in binary classification on imbalanced
atasets. The model is evaluated on the Brazilian electricity utility’s
ndustrial and commercial datasets.

In this study (Rajiv and Choe, 2019) authors performed a compar-
tive analysis of three updated Gradient Boosting Classifiers (GBCs),
xtreme Gradient Boosting (XGB), Categorical Boosting (Catboost), and
ight Gradient Boosting Machine (LGBM). Furthermore, the authors
ntegrated six theft cases to conduct experiments with a novel feature
reprocessing module. The simulation results demonstrate that the
roposed method effectively detects theft from consumers.

In Aldegheishem et al. (2021), authors introduced two novel Elec-
ricity Theft Detection (ETD) methods. In the first method, a Synthetic
inority Oversampling with Edited Nearest Neighbor (SMOTEEN) and
hybrid over-sampling approach are proposed. Additionally, AlexNet

s adopted to separate useful information and dimensionality reduction
n energy usage data. Finally, LGBM is applied for classification of theft
nd normal consumers. In the second model, a Conditional Wasser-
tein generative adversarial network with gradient penalty is utilized
o record the actual distribution of energy usage data. Additionally,
oogLe-Net architecture is adopted to minimize high dimensionality of
nergy consumption data. Afterwards, Adaptive Boost (ADB) is imple-
ented for classification of theft and honest users. The experiment was

arried out for both models on actual electricity usage data provided by
tate Grid Corporation of China (SGCC). Finally, findings demonstrate
he superiority of the introduced approach in detecting theft consumers
ffectively, as compared to established models such as XGB, Support
ector Machine (SVM), and Convolutional Neural Network (CNN).

The author in Buzau et al. (2020), present a hybrid solution which
elf-learns the features and for NTL detection in SG. This hybrid method
1237

s based on Long Short-Term Memory Network (LSTM) and Multi-Layer
Perceptron (MLP). In this strategy, MLP incorporates non-sequential
data, like geographical location or contractual electricity, while LSTM
analyze the electricity consumption. However, the proposed model has
achieved 54.5% PR-AUC due to class imbalance issue in the dataset (see
Table 1).

The research in Huang and Xu (2021), introduced a Stacked Sparse
Denoising Autoencoder (SSDAE) based approach for NTL. Technically,
the auto encoder uses the power consumption data of honest consumers
as training samples, learns useful features, and rebuilds the inputs.
The detector captures the theft consumers by comparing the input
features of honest consumers with malicious consumers. Additionally,
this method employed PSO to optimize the hyperparameters of SSDAE
to enhance the efficiency and robustness of the model further.

A Deep Learning (DL) based model is used to solve the curse of
dimensionality issue in Li et al. (2019). This study developed a hybrid
random forest and CNN (RF-CNN) based model, where CNN captures
latent features from EC data. Further, the back propagation method and
dropout layer are used to update the parameters at the training stage
and overcome the effect of overfitting respectively. Finally, RF classifier
is used for the classification of theft and normal consumers.

Tehrani et al. (2022), presents a ML based hybrid approach to
control real time large amount of SG data to combat energy theft. The
research addressed the issue of imbalanced data classes by introducing
an extra theft attack in addition to the six previously recognized
patterns, leading to more precise classifiers. This framework is designed
to boost the FPR and accuracy. However, it only achieves 88% accu-
racy and disregards the FPR, although it is not enhanced as typically
achieved in many research works.

Research in Nazmul Hasan et al. (2019), presented a hybrid CNN-
LSTM based approach. The approach is based on wide and deep CNN
model to solve the one dimensional and periodicity usage problem. The
wide component of CNN applied to convert the 1-D daily electricity to
2-D weekly electricity consumption data. Moreover, deep component of
CNN used to solve the periodicity of normal and non-periodicity of ab-
normal users, which is based on 2-D energy consumption. Finally, LSTM
network is applied for classification of theft and normal consumers.
However, this research employed SMOTE for class imbalance issue,
which causes overfitting of classifier due to similar synthetic samples
generated by SMOTE.

Authors in Jokar et al. (2015), introduced a Consumption Pattern
Based Energy Theft Detector (CPBETD) which leverages the normal and
theft consumers profile to train the model. The proposed methodology
is verified by integrating real electricity usage data of 5000 consumers
and achieved good performance. NTL is major concern for power
industries it compromises overall stability of the system. A Decision
Tree (DT) and SVM based detector was implemented to detect malicious
samples. Simulation results depicts that more than 80% of malevolent
samples was correctly identified by the system (Jindal et al., 2016).

In Qu et al. (2021), proposed an ensemble DL network based on
Adaboost (ADB) to counter electricity theft. Moreover, SOMTE and
PCA employed to counter class imbalance and curse of dimensionality
issue. The presented method outperforms the traditional classifiers such
as Artificial Neural Network (ANN), RF and SVM in term of AUC on
SGCC dataset. Another investigation suggested a two-step electricity
theft detection system to predict the Potentially stolen electricity (PSE)
to increase economic benefits in Cui et al. (2021). In the first part, a
Convolutional Autoencoder (CAE) utilized to detect PSE and extract the
features behavior of abnormal consumers. In second part, a transfer
Xgboost (Tr-Xgboost) and transfer adaptive boosting (Tr-Adaboost)
employed to learn the correlation between PSE of each consumer and
extracted features by the first part.

The research in Zidi et al. (2023) introduced a dataset (ETD2022)
for binary classification of theft and honest samples. This method
examined sixteen types of users by using different ML techniques (KNN,
DT, RF, Bagging ensemble, ANN). In Shi et al. (2023), the global

features of consumption data were calculated by a Transformer Neural
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Table 1
Related work.
Existing problem Proposed methodology Validations performed Limitation

Class distribution. DRL (Lee et al., 2022). Accuracy, Precision,
F1-score , PR-AUC

Less generalization of
DRL.

Low detection rate,
Manual inspection

Black hole algorithm,
PSO, HS (Ramos et al.,
2016)

Accuracy, convergence
rate, execution time

Local minima, No
preprocessing applied
on data, Class
distribution problem

High dimensionality GBDT, weighted
feature-importance
(Rajiv and Choe, 2019)

Detection rate, false
positive rate

insufficient performance
metrics

Curse of Dimensionality LSTM-MLP (Buzau
et al., 2020)

AUC-ROC, precision
recall curve

High FPR and
execution time

Computation overhead,
detection rate

SSDAE and PSO
(Huang and Xu, 2021)

Detection rate and FPR Low generalization
ability, less
performance metrics
used

Low generalization CNN-RF (Li et al.,
2019)

AUC-ROC curve,
precision, recall and
f1-score

RF is prone to
over-fitting

High FPR Gradient boosting
classifier (Tehrani
et al., 2022)

Accuracy, AUC, PR
Curve

Low accuracy

Curse of dimensionality CNN-LSTM
(Nazmul Hasan et al.,
2019)

Precision, F1-score Smote causes
overfitting

Low DR and high FPR Multi class SVM and
one class SVM (Jokar
et al., 2015)

Detection rate, FPR Low generalization on
noisy data

Low detection rate SVM-Decision Tree
(Jindal et al., 2016)

Accuracy, FPR Low generalization on
sudden changes

Low AUC score Ada-boost and deep
neural network (Qu
et al., 2021)

AUC, Accuracy,
sensitivity

Smote causes
over-fitting

Low Accuracy incremental
Optimum-Path Forest
classifier (Iwashita
et al., 2021)

Accuracy insufficient performance
metrics used

High computation Tr-AdaBoost and
Tr-XGBoost (Cui et al.,
2021)

Accuracy, Global error Insufficient evaluation
metrics, ada-boost
prone to over-fitting

Low generalization and
DR

RF-CNN-KNN (Zidi
et al., 2023)

Accuracy, AUC-ROC,
F-Measure

RF is too slow and
Ineffective on real
world data

Low TPR and High FPR Transfer Network (Shi
et al., 2023)

TPR-FPR Insufficient data for
training and lack of
performance metrics

Capture 1-D data CNN-XGB (Nawaz
et al., 2023)

Accuracy, Precision,
Recall, F-Score

Low AUC score, High
computation

Curse of dimensionality Ensemble Methods
(Gunturi and Sarkar,
2021)

Precision, Recall, AUC Smote causes
over-fitting
Network (TNN) which further utilized for classification of suspicious
and legitimate samples. The experimental results depict that proposed
method provides high TPR and low FPR. The simulation results con-
ducted on Irish dataset. The study presented in Nawaz et al. (2023),
used CNN to extract the meaning full information from the data. Where
the one dimensional and two dimensional electricity consumption data
were fed to the CNN. Further, the extracted information was passed to
the XGB ensemble model for classification. However, the XGB prone to
overfitting.

The study in Almazroi and Ayub (2021) proposed a shallow network
and SMOTE technique to solve low detection rate issue and class im-
balance respectively. However, the integration of SMOTE causes over-
fitting of classifier. Further tabular literature review can be observed in
1238

table Table 1.
3. Problem statement

In literature review, different models are introduced for ETD in SG.
After understanding the models, some of the problems are identified
and need to be fixed. Energy consumption data contain missing and
erroneous values which reduces classifiers accuracy, it is necessary to
fill the missing values. Study presented in Jokar et al. (2015), intro-
duced a consumption pattern based energy theft detection approach to
detect suspicious patterns of theft consumers to counter NTL. However,
the study inadequately addressed the issue of missing values. In similar
study (Jindal et al., 2016), introduced SVM with decision tree algorithm
for NTL detection. However, missing values are not filled properly.

Energy consumption data is commonly utilized in data based ap-
proaches for electricity theft detection in smart grid. Smart meters in
AMI are employed to collect such type of data for data driven ap-

proaches. Electricity consumption data in real world cases has massive
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Table 2
Data description.

Time Frame Normal
consumers

Theft
consumers

Total
consumers

Jan-01-2014 to
Oct-31–2016

38757 3615 42372

class distribution issue, where benign samples are easily available,
while theft events are rarely occurred. However, training a model on
imbalance dataset, the model learns majority class samples whereas;
it neglects the minority class samples. As a result, the model biased
towards majority class, which causes high FPR. For the sake of unbiased
and productive results, it is necessary to train the model on balanced
dataset. In this study (Gunturi and Sarkar, 2021; Nazmul Hasan et al.,
2019), authors utilized Synthesis Minority Oversampling Technique
(SMOT) to combat unequal class distribution issue to achieve reason-
able accuracy. However, SMOT algorithm randomly oversamples the
theft class samples, which causes low generalization of the classifier
and over-fitting.

Authors in Buzau et al. (2020), employed under sampling technique
to counter the class imbalance issue. In this method some samples
from majority class is discarded to balance the class distribution. How-
ever, discarding samples causes considerable information loss which
reduce the overall accuracy of the proposed NTL detection architec-
ture. Moreover, the real world electricity consumption data has high
dimensionality issue means high number of features, which increases
computation overhead and decreases accuracy of the classifier. In
addition, the research in Gunturi and Sarkar (2021),Buzau et al. (2020)
and Li et al. (2019) did not perform any feature engineering to address
the curse of dimensionality in the dataset. The high dimensional data
set increase computational overhead decreases the model’s accuracy.
In this study (Nawaz et al., 2023), a CNN model is utilized to extract
the latent features from electricity consumption data. However, CNN
model is designed to work with grid-like topology and works best in
images data, and not suitable for time series electricity consumption
data as it has sequential structure.

4. Proposed system model

We proposed an Ada-boost based ensemble stacked model to detect
electricity theft in smart grids. Fig. 4 exhibits proposed system model,
which comprises six modules: data acquisition, pre-processing, feature
engineering, data augmentation, data splitting finally classification and
evaluation of proposed system model. A detailed overview of these six
modules are as follows. Fig. 2 presents the flow of proposed framework.

4.1. Data acquisition

The preliminary experiments were carried out on verified electricity
usage data of 42,372 energy consumers over 1035 days. As presented
in Table 2, the energy consumption data comprises 38,757 honest users
labeled as ‘‘0’’, while the rest of 3615 users are anomalous and labeled
as ‘‘1’’. The ‘‘FLAG’’ column in the dataset contains labels for electricity
theft and normal consumers. The class difference depicts that there
is a significant class imbalance issue which, results in unsatisfactory
experimental results. So, it is necessary to resolve the class imbalance
issue by employing adequate techniques. In order to investigate the
distinctive patterns of energy consumption for honest and theft users,
separate curves for both consumers are plotted by examining the data
for 30 days from the energy consumption data (Zheng et al., 2018).
Fig. 3a represents the pattern for normal user which varies between 4 to
8 kwh and exhibits a constant periodicity. Furthermore, the pattern for
theft consumers shows enormous variations throughout 30 days’ period
in Fig. 3b. Furthermore, the dataset contains missing and erroneous
readings, making pre-processing of the data is essential in order to
adequately investigate the underlying hidden patterns in the dataset
1239

(see Fig. 3). a
4.2. Pre-processing

The data pre-processing step is particularly important in data be-
cause the realistic EC data consists of missing values which degrade
the performance of the classifier.

• Handling Missing Values: The data set contains some missing
values which are replaced with not a number (NaN) or empty
space. This happens due to smart meters failure fault in distribu-
tion line and data storage system. Data set with missing values
highly affects the performance of model. The simple imputer
technique is applied to remove the missing values. This study
recovers missing values by integrating simple imputer method
in Zheng et al. (2018). Following equation (1) represents the
working of simple imputer technique.

𝐹 (𝑥𝑖,𝑡) =

{ 𝑥𝑖,𝑡−1+𝑥𝑖,𝑡+1
2 , 𝑥𝑖,𝑡 ∈ 𝑁𝑎𝑁,

𝐹𝑥𝑖,𝑡, 𝑒𝑙𝑠𝑒,
(1)

• Data Scaling: The primary goal of data scaling is to transform
data into a specific range as ML and DL methods are sensitive to
diverse dataset. Make sure that all attributes are standardized to
a consistent scale, while preserving the relative differences in the
values within dataset while, performing data scaling process. The
following formula is used for data scaling.

𝐹𝑥𝑖,𝑡 =
𝑥𝑖,𝑡−1 + 𝑥𝑖,𝑡+1

𝑚𝑎𝑥(𝑥𝑥𝑖,𝑇 ) − 𝑚𝑖𝑛(𝑥𝑥𝑖,𝑇 )
(2)

• Outliers Treatment: There are some erroneous values in raw
data such as outliers, and these values correlate to the peak
hours of energy usage. These values occurred due to high usage
of energy during holidays. In this research we employed Local
Outlier Factor (LOF) (Yeckle and Tang, 2018) to remove the
erroneous values in the raw data. This method considers the
density of the given sample and the density of the data sample in
the k-nearest neighbor set. Outliers are found by contrasting each
samples local density with that of its neighbors. It is significant to
remember that the choice of k affects the output factor and that
LOF computations work effectively.

.3. Feature engineering using principle component analysis

The energy consumption data consists of large number of features
hich refers to curse of dimensionality. This increase the computation
verhead and reduces the generalization ability of classifier. PCA is a
idely used technique in image processing, data compression and time

eries analysis. In SG, PCA (Musleh et al., 2019), is used to reduce
he high dimensionality of data to improve the generalization ability
f classifier and reduces computation overhead. Generally, a real-life
ata set contain high number features, and this makes difficult for a ML
lgorithm to process the whole data set. It makes the classifier slow and
reates over-fitting problem. However, it is very important to minimize
he high dimensional data to make our classifier faster and enhance
erformance. Data scaling and data normalization is performed before
pplying the PCA on the data set. Data scaling is performed to scale
he data in a specific range while data normalization is performed to
hange the shape of data distribution. This approach best demonstrated
he variance distribution by revealing the hidden, intricate, and internal
tructure of the measurements set. The primary benefit of PCA is
he ability to reduce measurement set dimensions while maintaining
ariance between measurement points. PCA can provide a lower dimen-
ional representation of that space because each variable is associated
ith an axis in the higher dimensional data space. Afterwards, the value
f covariance matrix, eigenvalues and eigenvectors are calculated. This
tep performed to select the components from original features vectors
o form a new feature vector. By forming principal components with

ll the calculative values this process comes to an end.
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Fig. 2. Flowchart for Proposed System Model.
Given a data matrix X with m samples and n features, we aim
to analyze the covariance structure between n features. PCA is used
to generate n PCs, where each PCs is a linear combination of the n
features. All PCs are mutually orthogonal and the primary objective
of using PCA is that the first few PCs capture a significant portion of
the variance in data matrix X enabling us to assess the relationships
among the features in the data matrix X. Initially, we focus on the linear
function 𝑎𝑇1𝑋 that depicts the highest variance between features.

𝑎𝑇1𝑋 = 𝑎11𝑥1 + 𝑎12𝑥2 +⋯ + 𝑎1𝑛𝑥𝑛 =
𝑛
∑

= 𝑎1𝑗𝑥𝑗
1240

𝑗=1
Where, vector 𝑎1 is composed of a set of n features (𝑥11, 𝑥22, . . .𝑥1𝑛),
and 𝑇 denotes transposition of vector 𝑎1. Using a similar approach, we
identify the second linear function X with highest variance and it is
orthogonal to the first linear function X.

𝑎𝑇1𝑋 = 𝑎11𝑥1 + 𝑎12𝑥2 +⋯ + 𝑎1𝑛𝑥𝑛 =
𝑛
∑

𝑗=1
= 𝑎1𝑗𝑥𝑗

Where, vector 𝑎1 is composed of a set of n constants (𝑥11, 𝑥22,
. . .𝑥1𝑛), and 𝑇 denotes transposition of vector 𝑎1. As a result, the second
PCs preserve the second highest variance and the coefficients w2 are
orthogonal to w1. We compute n PCs in ascending order according
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t
a

Fig. 3. Electricity consumption of normal and theft consumer.
o highest variance. The detailed working of the PCA are shown in
lgorithm 1.

Algorithm 1 Principle Component Analysis
Initialize Algorithm
1: Input: Training data
Output: Results

2: Load data set
3: Training samples S =𝑆1,𝑆2,...,𝑆𝑛 ⇒ S = Number of Samples
4: covariance matrix ∑

𝑧
5: while new samples received, do
6: Calculate the mean 𝜇
7: for i = 1-n, do
8: Calculate (𝑧𝑖 − 𝜇)(𝑧𝑖 − 𝜇)𝑇 ∕𝑛
9: Add (𝑧𝑖 − 𝜇)(𝑧𝑖 − 𝜇)𝑇 ∕𝑛 to covariance matrix

∑

𝑧
10: end for
11: Return covariance matrix ∑

𝑧
12: Calculate eigenvectors V from ∑

𝑍 V = 𝑉 ∧
13: Find the score of anomalies 𝜓
14: end While
15: Return score of anomalies 𝜓

4.4. Addressing class imbalance

It is the key feature of smote to over-sample the minority class
samples. However, SMOTE overlap samples between theft and normal
class and it causes erroneous classification of normal and suspicious
consumers. However, in scenario where minority data points projected
entirely in the majority class, borderline smote consider these data
points as noise and exclude them from oversampling process. Typically,
in real world electricity data honest samples are easily accessible
whereas, dishonest users are seldom encountered. However, training
a classifier on imbalance data, the classifier is inclined to dominant
class while ignoring the minority class samples. This leads to high False
Positive Rate (FPR) and compromises the classifier’s overall perfor-
mance (Yao et al., 2021). The following outlines the working steps of
smote borderline.

Step1: For each sample 𝑥 in the positive sample set, euclidean
distance is calculated between it and each other sample in the positive
sample set and negative sample set, and m nearest neighbor samples
are found, marked as 𝑥𝑖, i 𝜖 1,2,3, . . . ,m;

Step2: Divide positive samples into different types. For positive
sample x, assuming that n out of m nearest neighbor samples belong to
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negative samples, if n = m, sample x is considered as a noise sample;
if 0 ≤ n ≤ m/2, then sample 𝑥 is regarded as a safe sample; if m >
n ≥ m/2, 𝑥 is a boundary sample. Boundary sample set is border =
𝑏1, 𝑏2,… , 𝑏𝑛𝑢𝑚;

Step3: For 𝑏𝑖 in Border, calculate its k nearest neighbor samples in
positive sample set and randomly select s samples 𝑝1, 𝑝2,… , 𝑝𝑠 from its
k nearest neighbor samples. Then, s random numbers between 0 and 1
𝑟1, 𝑟2,… , 𝑟𝑠 are generated for synthesizing s new samples:

bij = 𝑏𝑖 + 𝑟𝑗 ⋅ (𝑏𝑖 − 𝑝𝑗 )
Step4: Combine new samples into training set. Though Borderline

SMOTE method does not synthesis new samples for noise, greatly
reducing the probability of introducing new noise, some boundary
samples may still synthesize the noise samples.

The above working steps only over-sample instances from minor-
ity class which are projected in borderline. The Borderline SMOTE
employed SVM algorithm to select the best hyperplane that separate
both classes with maximum margin. The optimal hyperplane is only
found based on a few samples called support vectors. The Borderline
SMOTE incorporates interpolation and extrapolation to over-sample
minority class examples that projected near the borderline. The algo-
rithm calculate the degree of oversampling based on the number of
nearest neighbors of the majority class near the support vectors of
minority class. This method creates synthetic samples using SMOTE
interpolation, if the majority class makes up the majority of the m
nearest neighbors of the selected minority support vector. However, the
technique uses extrapolation to apply SMOTE over-sampling if fewer
than half of the m nearest neighbors belong to the dominant class.
Further, deep working of Borderline SMOTE can be found in Han et al.
(2005).

5. Proposed methodology for NTL detection

This section of research summarizes the comprehensive overview of
the proposed method for stacked generalization.

This structure is followed by NTL detection in the SG. The EC data
are cleaned, normalized, balanced and finally ready to train the model.
In context of model selection, an ensemble stacked model are selected,
contestable it is the best model compared to the previously available
models, by proving its ability by winning many classification competi-
tions of Netflix and Kaggle recently (Džeroski and Ženko, 2004), Tang
et al. (2014). Furthermore, the appropriate selection of base-classifiers
for first stage and meta-classifier for second stage classification are

involved.
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Fig. 4. Illustration of proposed system model for electricity theft detection.
5.1. Key concept of ensemble stacking

Ensemble stacking performs Machine Learning (ML) tasks by as-
sembling and combining many learners and often referred to as two
stage architecture. Essentially, a group of single learners is constructed
for first stage classification at base level, and these results are then
combined for second stage classification using a specific strategy. The
initial step is to gather the predictions from each model at base level
to form a new dataset. This dataset consists the previous first stage
predictions with their actual labels for second stage classification. The
newly formed data is considered as a new learning problem and a
model is employed to solve this problem (Ting and Witten, 1997). The
integration of stacked ensemble model for learning problems, offers
frequently better generalization performance and accuracy compared to
the single learner based approach. Fig. 5 represent the typical structure
of ensemble stacked architecture.
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Fig. 5. Typical framework of ensemble learning.

5.2. Integrated stacking architecture

The research in Ting and Witten (1997) introduced a novel method
for combining a group of single learners at base level and train a
single classifier at meta level on the predictions of base level. This
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Fig. 6. Structure of stacked ensemble method.
method has three primary stages, first stage is involving with splitting
the preprocessed dataset Dn = (Yn, Xn), n=1, . . . , N, into training and
testing set, where Yn represents the class labels and Xn corresponds to
the feature vector of 𝑛th samples. The training dataset Sn = (Yn, Xn), n
= 1,2, . . . , N is further partitioned into L-fold cross-validation (L1, L2,
. . . , Ln), while the test dataset 𝑇 = (Xq), q=1, 2, . . . , Q is further used
for testing the meta classifier. Fig. 6 shows the architectural working
of stacked ensemble method.

In the second stage, a number of H single learning algorithms are
selected for the base level (often denoted as level-0 classifiers), which
are used to train the base level model of the stacked generalizer.
For each base classifier H1, H2, . . . , MP, a separate training process
k is carried out. During each iteration of the training phase for the
base level classifiers, 1/k of the samples are separated for the testing
phase to make predictions for the meta level classifier. Let Vk(X) be
the predictions of base level classifiers (Hk) on data X, and Zkn =
(Vk)(Xn) be the data acquired from the predictions of the H models
after completing the cross-validation process, given by

𝐽𝑐𝑣 = 𝑌 𝑛, 𝑧1𝑛,… , 𝑧𝑘𝑛, 𝑛 = 1,… , 𝑁 (3)

This data is then used for meta level classification. For the meta level
classification, a single model 𝑁 is employed to complete the final
classification. A simple classifier is used for the final classification,
while strong models are used at base level to avoid over-fitting. In
this framework, the Ada-boost classifier is employed for meta level
classification. The algorithm Xia et al. (2022) represents the working
of ensemble stacked generalization (Xia et al., 2022).
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Algorithm 2 Ensemble Stacking
Input: Training dataset D = (X1,Y1), (X2, Y2), ... , (X𝑛, Y𝑛);
Base Level Classifier L1, L2, ... , Ln; Meta Level Classifiers
J.
1: for t = 1,2, ..., T do
2: h𝑡 = L𝑡(D);
3: end for
4: D’= 𝜙
5: for i = 1,2 ... ,m do
6: for t = 1,2 ... ,T do
7: z𝑖𝑡 = h𝑡(x𝑖);
8: end for
9: D’= D’ U ((𝑧𝑖1, 𝑧𝑖2, ...., 𝑧𝑖𝑇 ), 𝑦𝑖);

10: end for
11: h’= L (D’)
Output: H(x) = h’ (ℎ1(𝑥), ℎ2(𝑥), ..., ℎ𝑇 (𝑥))

6. Base level classifiers

6.1. Naive Bayes

Naive Bayes (NB) is a famous supervised ML algorithm (Gupta
et al., 2021), widely used for classification and regression problems.
NB make assumption that all features in the dataset are independent,
meaning that each feature is not influenced by any other feature in
the whole dataset. The algorithm’s primary working depends on the
target variable’s posterior probability. It works on bayes theorem and
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represented by the following equation.

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴) ∗ 𝑃 (𝐴)

𝑃 (𝐵)
(4)

Algorithm 3 Naive Bayes Algorithm
Input: Training data
Output: Results
1: Initialize Algorithm;
Step 1

2: Let D be a training set of a tuple and their associated class la-
bels. In our case, a tuple is a packet and it is represented by an
n-dimensional attribute vector X = (x1, x2, x3,. . . , xn).
Step 2

3: The number of class m is equal to 2 as we have attack class and
normal class. Given a tuple or a packet X, NB will predict that X
belongs to the class with the highest posterior probability. In other
words, X belongs to Ci if and only if:
(𝑃 (𝐶𝑗 |𝑋) > (𝑃 (𝐶𝑗 |𝑋)𝑓𝑜𝑟1 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 𝑖
So we maximize the 𝑃 (𝐶𝑖|𝑋)which is given by the bayes theorem:
𝑃 (𝐶𝑗 |𝑋) = 𝑃 (𝑋|𝐶𝑖).𝑃 (𝐶𝑖)

𝑃 (𝑋)
Step 3

4: Because P(X) is constant for all classes, we remove it then maximize
only the P(X|Ci).P(Ci). The prior probability P(Ci) is given by:
𝑃 (𝐶𝑖) = |𝐶𝑖 ,𝐷|

|𝐷|

5: Where |𝐶𝑖,𝐷| is the number of training tuple of class 𝐶𝑖 in D.
Step 4

6: As NB assumes that there is no relationship among child nodes or
attributes, the P(X|Ci) is given by:
𝑃 (𝑋|𝐶𝑖) = 𝛱𝑛𝐾=1 𝑃 (𝑋𝑘|𝐶𝑖)

7: Where 𝑋𝑘 is the value of attribute 𝐴𝑘 for tuple X. As the attributes
𝐴1, 𝐴2 … .𝐴𝑛 in the data set are categorical, the 𝑃 (𝑥𝑘|𝐶𝑖) is the
number of tuples of class 𝐶𝑖 in D having the value𝑋𝑘 for 𝐴𝑘, divided
by |𝐶𝑖, 𝐷|.

We convert the above equation for clearer perception by replacing
with X (input attributes) and A with 𝑦 (target variable) to solve the

ccurrence of y, given the input attributes X.

(𝑦|𝑋) =
𝑃 (𝑋|𝑦) ∗ 𝑃 (𝑦)

𝑃 (𝑋)
(5)

For simplifying Naïve assumption that all features are independent,
regardless of which class they belong, so P(X|y) can be expressed as:

𝑃 (𝑦|𝑋) = 𝑃 (𝑥1|𝑦) ∗ 𝑃 (𝑥2)|𝑦 ∗ ... ∗ 𝑃 (𝑥𝑛|𝑦) (6)

In a probabilistic algorithm, the primary objective is to find the
probability of target variable 𝑦 given input variable. So, input feature
P(X) is a constant and the above equation be defined as:

𝑃 (𝑦|𝑋) ∝ 𝑃 (𝑦) ∗ 𝛱𝑛
𝑖=1𝑃 (𝑥𝑖|𝑦) (7)

The main objective of NB is to find the maximum probability 𝑦
target class. Here, argmax function is a mathematical operation that
determines the input that results in the maximum output value of target
function.

The algorithm Gupta et al. (2021) delineates the detailed working
of NB algorithm.

6.2. Light Gradient Boost Machine (LGBM)

LGBM algorithm is a famous boosting algorithm, presented by
Guolin Ke in 2017 (Ke et al., 2017). LGBM is an improved version of
gradient boosting algorithm that integrates the capability to prioritize
electricity consumption samples with larger gradients and execute fea-
ture selection (Brownlee, 2021). LGB algorithm splits the tree leaf-wise
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rather than depth wise, which increases the prediction accuracy and
improve the training speed of the classifier. Gradient One Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB) techniques enables LGB
more efficient compared to the other boosting technique. GOSS exclude
samples having low gradients and emphasizes the samples with higher
gradients in order to approximate the information gain from training
instances.

Algorithm 4 Light Gradient Boosting Machine
Input: Training data
Output: Results
1: Load dataset
2: Combine samples that are mutually exclusive by EFB
3: Set 𝜃0(X) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐

∑𝑁
𝑖 𝐿(𝑦𝑖, 𝑐);

for m = 1 to M do
4: Calculate gradient absolute values:
𝑟𝑖 = |

𝛿𝐿(𝑦,𝜃(𝑥))
𝛿𝜃(𝑥𝑖)

|𝜃(𝑥)=𝜃𝑚−1(𝑥) , i = 1,...,N
5: Resample data by GOSS process: high N = f * len (T); randN = z *

len(T); sorted = GetsortedIndices(abs(r));
6: Calculate information gain by:

𝑉𝑗(d) = 1
𝑛 (

(
∑

𝑋𝑖𝜖𝐹 𝑙 𝑟𝑖+
1−𝑎
𝑏

∑

𝑋𝑖𝜖𝑍𝑙
𝑟𝑖)

𝑛𝑗𝑙 (𝑑)
)2 + (

(
∑

𝑋𝑖𝜖𝐹 𝑙 𝑟𝑖+
1−𝑎
𝑏

∑

𝑋𝑖𝜖𝑍𝑙
𝑟𝑖)

𝑛𝑗𝑙 (𝑑)
)2

7: Create a novel decision tree 𝜃𝑚 (X)’ on Set T’
8: Update 𝜃𝑚(X) = 𝜃𝑚−1(X) + 𝜃𝑚 (X)
9: End For]
0: Return 𝜃 (X) = 𝜃𝑚 (X)

As the samples with higher gradient plays a vital role in information
gain’s approximation. By prioritizing examples with higher gradients,
GOSS accelerates learning process and reduces the computational over-
head. EFB technique is employed for feature bundling of commonly
same samples in the data set. Basically, EFB reduces the effective
samples from training data and improve efficiency and reduce dimen-
sionality. The working of LGB (Taha and Malebary, 2020) is presented
in Algorithm 4.

6.3. Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis (QDA) is a ML algorithm used to
classify observations into their separate classes based on their input
variables (Mabunga et al., 2020). QDA is a generative model that
models the Probability Density Functions (PDF) of each class using a
quadratic function. The PDF of each class indicates the likelihood of
an observation belonging to that class, given the values of its input
variables. In QDA, the class-specific prior is simply the proportion of
data points that belong to each class. Following is the working steps of
QDA:

• Using a quadratic function, calculate the probability density func-
tion P(X|y) for class labels 𝑦 given a training dataset with input
features X and class labels y.

• Calculate each class’s prior probability P(y).
• Determine the posterior probability for each class p(y|x) using

Bayes’ theorem:

𝑃 (𝑦|𝑋) =
𝑃 (𝑋|𝑦) ∗ 𝑃 (𝑦)

𝑃 (𝑋)
(8)

• Predict the class label 𝑦∗ that increases the posterior probability
of the input sample X:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝑦|𝑥)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 (9)

It creates complex decision boundaries because of it non-linearity
function. However, it might experience over-fitting, when the number
of training examples are lower in comparison to the number of input
variables. Detailed working of QDA technique can be observed in
algorithm 5 (Anagnostopoulos et al., 2012).
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Algorithm 5 Quadratic Discriminant Analysis
Input: Training data
Output: Results
1: Load dataset
Step 1

2: Training Data samples S and target variable V
3: Assumption of class-conditional densities of Gaussian

distribution 𝑃 (𝑥|𝑡 = 𝑐, 𝜇𝑐 ,
∑

𝑐 ) = 𝑁(𝑥|𝜇𝑐 ,
∑

𝑐 ) 𝐻𝑒𝑟𝑒𝑐𝑙𝑎𝑠𝑠 −
𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑎𝑡𝑟𝑖𝑥 =

∑

𝑎𝑛𝑑𝑐𝑙𝑎𝑠𝑠 − 𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑚𝑒𝑎𝑛𝑣𝑒𝑐𝑡𝑜𝑟 = 𝜇
Step 2

4: Find posterior probability using Bayes theorem,
5: P(t= 𝑐|𝑥, 𝜇𝑐 ,

∑

𝑐)=
𝑃 (𝑥|𝑡=𝑐,𝜇𝑐

∑

𝑐 )𝑃 (𝑡=𝑐)
∑𝐾
𝑘=1 𝑃 (𝑥|𝑡=𝑘,𝜇𝑘 ,

∑

𝑘 𝑃 (𝑡=𝑘)
6: separate class by x

h(x) = argmax 𝑃 (𝑡 = 𝑐|𝑥, 𝜇𝑐 ,
∑

𝑐 ) (3)
7: 𝑙𝑜𝑔(𝑃 (𝐶 = 𝑐|𝑋 = 𝑥))𝑙𝑜𝑔(𝑃 (𝐶 = 𝑐)) − 1

2 𝑙𝑜𝑔
∑

𝑐 −
1
2 (𝑥−𝜇𝑐 )

𝑇 ∑−1
𝑐 (𝑥−𝜇𝑐 )

Output: Decision Boundreies

6.4. Extreme gradient boosting

XGB is an ML based supervised learning algorithm introduced by
Tianqi Chen and Carlos Guestrin Anon (2023b). It is a tree-based
ensemble technique used for classification and regression. As shown
by name the XGB is boosting algorithm and widely adopted by real-
world applications (Hu et al., 2019). Like other boosting algorithm XGB
make powerful model by creating the week learners strong. In boosting
algorithms weak learners become more powerful by improving the
residual of previous week learners using loss function. It overcome
the residual in the predictions by creating new trees from existing
weak learners in the model. Succinctly, XGB create trees sequentially
to overcome the residuals in the model. It calculates the average of the
target function and find prediction of the target variable. Afterwards,
it calculates the residual of target feature using average of the features
and construct new weak learner for the attribute and splits the tree. A
detailed introduction of XGB as follows (Choi, 2019).

a. Objective function of XGB Commonly, the sum of loss function
(L) (which differentiate between predicted and actual values) and regu-
larization terms (w) (which automatically defined) over the parameters
(0) are the general objective functions in ML.

𝑂𝑏𝑗(𝜃) = 𝐿(𝜃) +𝑊 (𝜃) (10)

The objective function for XGB is derived from above equation
which combines the sum of certain L which evaluated over all samples
and the sum of regularization term for all DT.

𝑂𝑏𝑗(𝜃) =
𝑛
∑

𝑖=1
𝑙(𝑦𝑖, �̂�𝑖) +

𝐾
∑

𝑘=1
𝜔(𝑓𝑘) (11)

Where 𝑦𝑖 is the actual labels of total labels, �̂�𝑖 is the predicted
outcomes and 𝑓𝑘 is the number of decision tree. The primary objective
of the algorithm is to reduce the objective function in the equation as
low as possible. The regularization term controls the tree’s complexity
by varying the tree structure’s depth, size, and other characteristics.

b. Base Learner
Boosting algorithms are begins with base learner. It is referred to

as a ‘‘base’’ because the ensemble algorithms start with first model
and a ‘‘learner’’ because all other models learn from residuals of itself.
All boosting algorithms work on residual, this makes the weak learner
strong simultaneously by reducing the residual.

c. Addictive model training
Typically, model optimization is performed after training but in XGB

the model is trained after every iteration and this method is called
addictive way of model training. The addictive way of training makes
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XGB more robust as compared to other ML algorithms. 𝑊
Algorithm 6 Extreme gradient boosting
Input: Training data
Output: Results
1: Load dataset
2: Initialize 𝑓0(x);
for k = 1,2,...,M do

3: Calculate gk = 𝛿𝐿(𝑦,𝑓 )
𝛿𝑓 ;

4: Calculate hk = 𝛿2𝐿(𝑦,𝑓 )
𝛿𝑓2

;
5: Determine the structure by choosing splits with maximized gain
6: A = 1

2 [
𝐺2
𝐿

𝐻𝐿
+

𝐺2
𝑅

𝐻𝑅
− 𝐺2

𝐻 ];

7: Determine the leaf weights 𝑤∗ = − 𝐺
𝐻 ;

8: Determine the base learner𝑏(𝑥) = ∑𝑇
𝑗=1𝑤𝐼 ;

9: Add trees 𝑓𝑘(𝑥) = 𝑓𝑘−1(𝑥) + 𝑏(𝑥);
0: End for
1: Output: 𝑓 (𝑥) = ∑𝑀

𝑘=0 𝑓𝑘(𝑥)

d. Ideal selection of tree structure
The scoring function below is used to determine the optimal DT

structure among an infinite number of possible structures.

𝐺𝑎𝑖𝑛 = 1
2
[

𝐺2
𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 +𝐻𝑅 + 𝜆
] − 𝛾 (12)

Where, 𝐺2
𝐿

𝐻𝐿+𝜆
and 𝐺2

𝑅
𝐻𝑅+𝜆

are the values of left and right leaf after

plitting the node respectively; (𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
is the values of left and right

eaf with out splitting. The tree with maximum gain is selected to select
he ideal tree structure.

. Meta level classifiers

.1. Adaptive boosting

Adaptive boosting (Ada-Boost) algorithm is a famous boosting algo-
ithm. It can be used for both classification and regression problems.
asically, it creates decision stumps with two stages to avoid over-
itting problems. The records are classified on the base of decision
tumps. These decision stumps consist of only two nodes, the parent
ode, and the child node. Initially, ada-boost (Zeng et al., 2020)
reate decision stumps for all samples and assign equal weights by

1
𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑁 ). Afterwards, it makes predictions and calculate

total error between predicted and actual values of all stumps.

Algorithm 7 AdaBoost
Input: Training data
Output: Results
1: Load dataset
Assign initial weight to all samples (S) in dataset 𝑤𝑖 = 1/N, i=
1,2,...N. ⇒ S = Number of Samples

2: For m = 1 to M:
3: Pass the training data 𝐺𝑚 (x) to the classifier
4: Compute

𝐸𝑟𝑟𝑜𝑟𝑚 =
∑𝑁
𝑖=1𝑤𝑖𝐼(𝑦𝑖 ≠ 𝐺𝑚(𝑥𝑖))

∑𝑁
𝑖=1𝑤𝑖

(1)

5: Compute [𝛼𝑚 = log((1- 𝐸𝑟𝑟𝑜𝑟𝑚)/𝐸𝑟𝑟𝑜𝑟𝑚)]
6: Set 𝑤𝑖 ← 𝑤𝑖. 𝑒𝑥𝑝 (𝛼𝑚 . I (𝑦𝑖 ≠ 𝐺𝑚 𝑥𝑖)), i = 1,2,...,N.
7: Output G(x) = sign(∑𝑁

𝑖=1 𝛼𝑚 𝐺𝑚 (x))

Then it updates the weights of misclassified samples by (𝑤𝑖 =
× 𝑒+1) and update the weights of the right classified samples by
𝑖−1
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(𝑤𝑖 = 𝑊𝑖−1×𝑒−1). Normalize the updated weight and create next stump.
y normalizing the weight, create a new data set based on same size,
his increases the likelihood of selecting the misclassified records. The
etailed algorithm of ada-boost can be found in Anon (2023).

. Performance metrics

Selecting appropriate performance metrics for evaluation of ensem-
le model is essential and challenging task. However, following are
ifferent performance metrics we use to evaluate our system model.

• Accuracy It is most important metric while Classifying between
two classes. It is the ratio between true positive and true negative
to the total predictions of the classifier. The value of accuracy is
calculated by Eq. (13).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

(13)

• Precision It is calculated by number correct positive predictions
divided by total number of positive predictions (true positives and
true negatives). Mathematically, it is calculated by Eq. (14).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(14)

• Recall It is the percentage of correctly classified samples by the
model from class of interest (Positive class) out of total samples in
the positive class and calculated by the following formula. (15).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(15)

• F1-Score F1-measure is the harmonic mean of precision and
recall; it gives equal weight to the precision and recall. It means
the model obtain high f1-measure if both values are high.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(16)

• Area under the curve (AUC) AUC (Bradley, 1997) is the most
important metric and widely used method while dealing with
imbalanced dataset. It is the likelihood of randomly selected
negative sample ranks lower then a randomly selected positive
sample. Mathematically, it is follows as:

AUC =
∑

𝑖∈ rank𝑖 −𝑀 (1 +𝑀) ∕2
𝑀 ×𝑁

(21)

Where, M and 𝑁 are the theft and honest consumers respectively;
rank_i is the rank value of sample i. F is the set of positive samples.

• AUC-ROC Curve
The Receiver Operator Characteristic Curve (ROC Curve) is a
graph that displays how well a classification model performs
across all classification thresholds. This graph shows two param-
eters (TPR and FPR).

• Area under the Precision Recall Curve (PR-AUC)
The precision (positive prediction) is calculated by dividing the
total number of positive predictions by the proportion of true
positive. Precision measures the percentage of accurate positive
predictions. However, recall determines the ratio between posi-
tive (theft) samples classified as positive (theft) from all positive
samples. PR curve shows that how good a model at classifying
between two classes.

• Confusion Matrix It presents predicted values and actual values
by 𝑁 x 𝑁 matrix to evaluate the performance of classifier, where
𝑁 is the actual number of target classes. Following are the main
components of confusion matrix as shown in Table 3.
True Positive (TP): It shows the number of positive samples
correctly classified as positive. If the consumer profile is labeled
as 1 and model predict as 1, then this type of outcomes considered
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as ‘TP’. c
Table 3
Confusion matrix.

Binary classes Actual positive
label (1)

Actual negative
label (0)

Predicted Positive
label (1)

TP FP

Predicted Negative
label (0)

FN TN

True Negative (TN): Represents the number of negative samples
identified as negative. If the model predict the outcome as 0 and
the actual label of sample is 0, then it is represented as ‘TN’.
False Positive (FP): The model predicts incorrectly a sample from
negative class as positive sample. It represents type 1 classifica-
tion error and is the opposite of ‘TN’.
False Negative (FN): It represents that how many sample model
incorrectly identified as negative from positive class. If the actual
sample label is 1 and model predict as 0, then this type of
predictions considered as ‘FN’.

• Mathew Correlation Coefficient (MCC):MCC is used to measure
the prediction quality of binary classification model. It presents
the combination of all four values employed in confusion ma-
trix and provide a balanced model evaluation while working on
imbalanced datasets. The MCC ranges between −1 to 1, where
1 denotes a perfect model prediction, 0 represents random pre-
diction and −1 shows the utter discrepancy between predictions
of the model and actual class label. It is considered as trustwor-
thy indicator, especially working with imbalanced dataset and
calculated by following formula.

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

True Positive Rate (TPR) It shows the proportion of actual
positive sample that detected by the classifier as positive and
calculate by Eq. (17).

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(17)

False Positive Rate (FPR) It is the ratio between the number of
negative samples wrongly classified as positive and calculated by
given formula (18).

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑁 + 𝑇𝑁

(18)

TPR vs FPR are plotted on a ROC curve at various classification
thresholds. More samples are classified as positive when the
classification threshold is lowered, which raises the number of
both False positive and true positive. In binary classification, the
thresholds are various probability thresholds that separate the
two classes. It employs probability to calculate that how model
performs at distinguishing between two classes.

• Execution time: The time take by the model to process the input
data, perform classification or regression task.

. Simulation setup and results discussion

.1. Study configuration

The proposed framework was developed in Visual Studio Code using
he Python programming language as delineated in Section 4. The
ntirety of our different four case studies are performed on windows 10
64 with an Intel i5-8350U 1.90 GHz and 16 GB Ram. The electricity
oad profiles are obtained from SGCC. The load profiles are contains
2372 consumers in which 38757 are normal users and the rest of 3615

onsumers labeled as theft represented in Table 2.
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Table 4
Only subjected to preprocessed data.
Classifiers Accuracy AUC-Score F1-Score Precision Recall MCC AUC-ROC PR-AUC Execution time

NB 76 63 26 18 47 17 62 34 1 s

LGBM 92 58 27 70 17 31 57 46 28 s

QDA 90 53 13 29 10 12 53 23 16 s

XGB 92 55 17 67 18 31 54 46 50 s

ADB 91 54 14 45 08 16 53 31 11 min 32 s

Proposed 92 58 26 72 18 31 57 47 8 min 37 s
Table 5
Only experiencing PCA for feature engineering.
Classifiers Accuracy AUC-Score F1-Score Precision Recall MCC AUC-ROC PR-AUC Execution time

NB 82 62 27 21 37 19 61 32 1 s

LGBM 92 54 16 64 10 22 54 41 7 s

QDA 82 64 30 23 42 22 64 35 3 s

XGB 92 54 14 71 10 23 53 38 16 s

ADB 91 54 16 52 9 18 53 33 3 m 25 s

Proposed 92 55 20 63 11 23 57 40 3 m 1 s
9.1.1. Impact of preprocessed data on proposed framework
Adequate performance metrics for the testing of the proposed model

are most important. However, the evaluation of a framework in terms
of accuracy cannot provide a real assessment. The most suitable per-
formance metric for Electricity Theft Detection (ETD) is Area Under
the Curve (AUC) while dealing with imbalance dataset (Bradley, 1997).
This shows the actual score of the positive class, which is most con-
cerned with electricity utility. It represents the connection between
True Positive Rate (TPR) also known as sensitivity and the rate of false
positives (specificity) for samples detected by proposed approach. The
classifier with a higher AUC has greater ability to distinguish between
theft and normal class.

In this experiment, only preprocessed data is fed to the framework
and experiment is performed as presents in Fig. 2 and Section 4 . As
no feature engineering and oversampling method is applied on dataset,
therefore results are not considerable. We can see in Table 4, accuracy
is slightly high for all classifiers including the proposed except NB.
However, the values of precision, recall, F1-score, and MCC for both the
individual classifiers and the proposed model presents unsatisfactory
results

Moreover, the proposed system slightly performs better in term
of precision, AUC-ROC and PR-AUC as compared to the base level
classifiers but the values are still unsatisfactory. As the proposed model
achieves only 57% AUC-ROC and 47% PR-AUC; which clearly exhibits
the absence of not having balanced proportion of both classes. It takes
8 min and 37 s to process all data which shows that proposed scheme
is facing computational problem and lack of no feature engineering.
Fig. 7(c) depicts the PR-AUC curve for proposed framework. The find-
ings in Table 4 reveal that the proposed framework, along with all
individual classifiers, gives a marginally higher level of accuracy. How-
ever, working with imbalanced dataset, accuracy is not a evaluation
metric as it only shows the accurately classified samples by the model.
While working with electricity consumption data, it is important to
detect the theft samples.

The confusion metric for preprocessed data is presented in Fig. 7(d),
which shows the difference of suspicious users by integrating True
Negative (TN), False Positive (FP), True Positive (TP), False Negative
(FN). The lower TP rate clearly shows that proposed method is not
accurately detecting the class of interest (theft class). In conclusion, we
can understand that the model presents unsatisfactory results without
feature engineering and data balancing. In contrast, as represented in
Figs. 7(b) and 7(c), the AUC and PR-recall curves proved that the
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achieved outcomes are influenced by the imbalanced nature of the data.
Additionally, Table 4 demonstrates that the proposed model’s execution
time is longer due to the absence of feature engineering.

We have calculated FPR, FDR, FNR and FOR values for proposed
and base level classifier to get better understanding of the classifier
interpretability can be seen in Fig. 7(e). The obtained high FNR and
FDR values indicates that the proposed model incorrectly fails to detect
positive classes as positive and often detects benign samples as legiti-
mate samples respectively. While, the smaller values of FPR (0.01) and
FOR (0.07) clearly indicates that model performs well in these aspects.
While these values further confirmed our statement that model poorly
performs on preprocessed data.

9.1.2. Effect of dimensionality reduction (DR) using PCA on proposed
framework

In this case study, we exclusively employ PCA for feature extraction
only to analyze the performance of our proposed framework on im-
balanced dataset as no oversampling is performed in this experiment.
The experimental results with only feature engineering are presented
in Table 5.

The simulations values are quite similar with slight change as
compared with previous case study and can be observed in Table 4 and
Fig. 8(a) due to only feature extraction performed. Nevertheless, the
utilization of feature engineering has resulted in a reduction of almost
70% in the execution time compared to the previous experiment.

This advantage of feature engineering in resolving computational
complexity is crucial as real-time data often consists of thousands of
samples and redundant information. It takes 03 min and 01s to process
all the data, which is highly lower than previous with 08 min 37s. We
achieve this by incorporating PCA for dimensionality reduction in the
dataset. It transform original features into new uncorrelated variables
known as principle components. These mathematical principal compo-
nents are ordered in terms of variance in highest to lowest order in the
dataset.

The performance graphs, AUC-ROC curve, and P-R curve of both the
individual classifiers and meta classifier are presented in Figs. 8(a), 8(b)
and 8(c). Furthermore, these outcomes are also biased and substanti-
ated and can be verified by AUC-ROC and PR-Recall curves, as there is
a huge class distribution issue due to absence of data balancing method.
Moreover, the values in confusion matrix is slight better than previous
case study. We can see a little increase in the values of FN, TN and FP.
However, these values are still unacceptable and unsatisfactory. The
Fig. 8(d) presents the values of confusion matrix for this experiment.
Furthermore, the values of FPR, FDR, FNR and FOR values clearly

verified that the performance of proposed model is almost similar with
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Fig. 7. Simulation results of preprocessed data on proposed framework.
previous case and proved that results are biased as no oversampling
method is performed. Fig. 8(e) displays the curves for FPR, FDR, FNR,
and FOR.

9.1.3. Effect of oversampling using borderline SMOTE on proposed frame-
work

In this case, we employed Borderline SMOTE for balancing the ma-
jority and minority class samples. As Borderline SMOTE generate syn-
thetic samples of minority class examples to counter the issue of class
1248
distribution. The findings presented in Table 6 and Fig. 9(a) provide a
comprehensive comparison between the impact of data balancing and
feature engineering.

The results exhibited in Fig. 9(a) demonstrate that the proposed
model surpasses the base standalone classifiers in terms of accuracy
90%, AUC score 92%, F1-score 92%, and precision 92%. While these re-
sults obtained after applying borderline SMOTE on dataset to equal the
class distribution between theft and suspicious consumers. Further, the



Energy Reports 12 (2024) 1235–1253M. Hashim et al.
Fig. 8. Effect of dimensionality reduction (DR) using PCA on proposed framework.
model achieves 88% MCC score, which clearly indicates that classifier
is accurately classifying the minority and majority class samples.

However, this improvement in performance comes at the cost of
increased computational overhead, with the proposed approach re-
quiring an additional 38 min to complete its execution, which is not
considerable. The AUC-ROC and P-R curve illustrated in Figs. 9(b) and
9(c) respectively further confirm the superiority of our proposed model
over the base classifiers. Furthermore, 9(d) illustrates the confusion
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matrix for proposed scheme. This matrix provides better results in terms
of lower FN and high TP.

9.1.4. Effect of dimensionality reduction using PCA and oversampling using
borderline SMOTE on proposed framework

In this scenario, Borderline SMOTE and PCA is applied for oversam-
pling and dimensionality reduction. The classification is then carried
out at the base level using four individual classifiers and single clas-
sifier at meta level. Table 7 represents the simulation values of NB
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Fig. 9. Effect of oversampling using Borderline SMOTE on proposed framework.
techniques; while NB has a fast classification speed of one second for
the entire dataset, it assumes that all attributes are independent of each
other and do not contribute to each other. This is a limitation of NB
for real-world cases, as such independence between attributes rarely
happens in real-world cases. The simulation values in Table 7 indicate
that NB has poor performance, achieving only 55% accuracy, 55% AUC
score, 39% f1-score, 59% precision and only achieve 16% MCC.

LGBM and XGB, on the other hand, offer good simulation results,
as they are famous boosting method. Both techniques employ multiple
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weak learners to form a strong learner by reducing the gradient of
the previous weak learner this slightly improves the results. However,
LGBM splits the tree leaf-wise, which can lead to overfitting. These
techniques achieve 88%, 89% accuracy, 88%, 80% AUC score, 88%,
79% F1-score, 87%, 80% precision, and 76%, 87% MCC respectively.
QDA, the fourth base-level classifier used for first-stage classification,
offers 70% accuracy, 70% AUC score, 76% f1-score, 63% precision and
46% MCC. However, in Fig. 10(a), QDA gives slightly better recall than
the proposed, as the multivariate normal distribution of independent
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Fig. 10. Effect of dimensionality reduction using PCA and oversampling using Borderline SMOTE on proposed framework.
variables used as the classification rule for QDA leads to slightly better
recall value.

Ada-boost classifier is then used for second-stage classification of the
results obtained from base-level techniques. Considering accuracy, AUC
score, f1-score, precision, and execution time, the proposed approach
outperforms all base level techniques, achieving 90% accuracy, 90%
AUC score, 89% F1-score, and 90% precision respectively. However, it
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takes 2 min and 35 s for procession the data, which is greater than all
base level classifiers.

The poor performance of base-level classifiers can be attributed
to several factors. NB assumes that all attributes are independent of
each other, which is rarely the case in real-world scenarios. QDA,
on the other hand, relies on the assumption of multivariate normal
distribution of independent variables, which might not always hold
true. LGBM, while offering good results, it splits the tree leaf-wise,
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Table 6
Only subjected to over sampling using Borderline SMOTE.
Classifiers Accuracy AUC-Score F1-Score Precision Recall MCC AUC-ROC PR-AUC Execution time

NB 65 65 61 69 54 29 64 72 3 s

LGBM 89 90 88 89 91 80 90 90 41 s

QDA 79 79 81 73 91 59 78 84 24 s

XGB 81 81 82 81 93 88 81 90 1 min 9 s

ADB 76 76 76 76 76 51 75 81 19 min 29 s

Proposed 93 91 93 92 94 88 91 91 13 min 4 s
Table 7
Experiencing borderline SMOTE oversampling and PCA dimensionality reduction.
Classifiers Accuracy AUC-Score F1-Score Precision Recall MCC AUC-ROC PR-AUC Execution time

NB 55 55 39 59 28 16 54 61 1 s

LGBM 88 88 88 87 89 76 88 90 16 s

QDA 70 70 76 63 93 46 69 80 3 s

XGB 89 80 79 80 93 87 79 90 31 s

ADB 75 75 75 75 74 50 76 82 8 min 18 s

Proposed 94 94 94 95 94 88 92 92 4 min 30 s
leading to overfitting. Furthermore, XGB suffers with overfitting and
model complexity, which leads to worse performance.

The superior performance of the meta-level classifier, on the other
hand, can be attributed to its ability to combine the results of mul-
tiple base-level classifiers, effectively capturing the strengths of each
classifier while mitigating their weaknesses.

The proposed framework achieved better results as compared to the
base level classifiers. It achieves 93% accuracy, 92% AUC score, 95%
precision and 88% MCC which is superior to all base classifiers and
many existing approaches in literature review namely; wide and deep
CNN (Zheng et al., 2018). Moreover, it takes 4 min and 30 s to process
all data which remarkable achievement of the proposed scheme.

Additionally, working with electricity theft both AUC-ROC curve
and PR-AUC curve is very crucial for power utility. The proposed model
performs well in both AUC-ROC curve and PR-AUC curve, which is
very important while working on ETD. The framework presents strong
performance, as proved by a higher area under the curve for both AUC-
ROC and PR-AUC curves. This exhibits that the framework effectively
achieves TPR and maintains higher precision. It outperforms in term
of AUC-ROC and PR-AUC scores for both with 92% and beats all other
existing models presented in existing literature. Figs. 10(b) and 10(c)
shows AUC-ROC and PR-ROC curves respectively.

Moreover, we can see the difference of positive predictions in
Fig. 7(d), and Fig. 10(d) after and before applying the PCA and Bor-
derline SMOTE on the dataset.

For this case, the proposed model performs relatively balanced
performance for FPR, FNR, FDR and FOR. After mitigating class im-
balance and improve the model ability to learn from the features have
contributed to this balanced performance. As we can see in Fig. 10(e)
model predict 6% FPR that clearly indicates that model classify 6%
of benign samples as theft samples. The smaller FPR rate indicates
the robustness of our proposed framework. Further, 6% of FDR clearly
indicates that prediction of model is incorrect 6% of times. Similarly,
6% of FNR indicates that models predict 6% of theft samples as honest
samples from all predictions and 6% of FOR rate represents that all neg-
ative predictions are actually positive. From all these results, it can be
concluded that the performance of proposed stacked ensemble method
were relatively high. This proves that the integration of oversampling
method and feature engineering method contributes to improve the
models interpretability and reduces simulation time.

In conclusion, feature engineering and data balancing technique
are utilized on the dataset for proposed approach, which significantly
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improves the classification performance. The strengths and limitations
of each classifier used in the study were discussed, and the impor-
tance of working with AUC-ROC and PR-AUC curves in power utility
applications is highlighted.

10. Conclusion

In this research, we proposed stacked ensemble method for the
detection of electricity theft to secure smart grid. In this framework,
Borderline SMOTE is employed for data balancing and PCA for feature
engineering. Furthermore, a stacked model with base layer and meta
layer are proposed for the classification of theft and honest consumers.
Four individual classifiers, NB, XGB, QDA and LGBM are used at base
layer. A single Ada-boost is used at meta layer to further classification
of the results at second stage. The proposed framework were evaluated
in four different scenarios; in first, with only preprocessed data to
observe the performance of the framework, in second, only feature
engineering is performed on the dataset to observe the credibility of the
framework in the absence of data balancing method. In third case, only
data balancing with BDSmote is performed on the dataset to observe
the simulation values of the method, and lastly both feature engineering
and data balancing is performed on the preprocessed dataset to observe
the experimental values.
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