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Abstract—This paper proposes a general method to model
and simulate the process of magnetic field mapping; aim of
our work is the combination of the effect of the bench position
uncertainty with the magnetic measurements’ uncertainty. The
method is based on the study of the positioner kinematics using
a multi-body system approach. The geometrical errors of the
manipulator, including the manufacturing tolerances and the
assembling non-idealities are included in the model using the
homogeneous transformation matrix, to numerically estimate
the end effector positioning uncertainty Up. The positioning
uncertainty is then combined with the magnetic measurement
uncertainty using the magnetic field gradient as a sensitivity
coefficient; in presence of strong field non-linearities, the combi-
nation can be performed using Monte Carlo simulations in order
to estimate how Up propagates to the magnetic measurement
uncertainty Uf at different positions. The method has been
validated in the specific case of the Compact Field Mapper, a
bench featuring a Cartesian robot and a triaxial Hall sensor
used to measure flux density maps in the accessible region of
interest of the magnets of the Swiss Light Source, with an
uncertainty below 0.5 %. The method allowed to define, during
the design phase, the characteristics of the positioning system (i.e.
the mechanical positioning uncertainty Up) in order to obtain the
desired magnetic measurement uncertainty Uf . Simulations and
experiments in the case of a reference quadrupole are presented
and discussed.

I. INTRODUCTION

The quality of non-homogeneous field profiles generated
by particle accelerator magnets can be assessed with point-
like measurements in the region of interest [1]. Miniaturized
3D magnetic sensors are supported by lightweight mechanical
structures and afterwards moved to obtain 3D maps of the
magnetic field. The relative contributions of the magnetic sen-
sor and of the positioning system to the overall measurement
uncertainty has never been studied in the scientific literature.
To date, the effects of the mechanical performances of the
scanning system on the magnetic measurement are often
neglected and not fully investigated. The commonly adopted
approach consists in the initial selection of a 3D magnetic
sensor with the desired accuracy, followed by the design of
a scanning robot with a positioning accuracy in the order of
1µm [2 – 4]. The positioning errors are then experimentally
characterized during the commissioning procedure, as for
example [5, 6]. In the specific case of particle accelerator
magnets, the measurement bench consists of miniaturized 3D
probes supported by thin and lightweight mechanical struc-
tures, designed to keep the motors and position sensors outside
the magnetic field. The deflection of the probe holder due
to the gravity, the probe vibration under external stimuli and

the positioning accuracy can be minimized only by designing
bulky mechanical structures. In addition, the small magnet
aperture requires selecting miniaturized 3D Hall probes, whose
uncertainty is larger than the one of larger magnetic sensors.
In an uncertainty driven design, the starting point is the defini-
tion of the desired magnetic field uncertainty Uf . By knowing
the mathematical model which describes how Uf depends
on the magnetic sensor uncertainty Us and the positioning
system uncertainty Up it is possible to determine the magnetic
and positioning uncertainties allowing to reach the desired
performances. Measurement uncertainties can be determined
starting using the ISO GUM [7, 8] or with more complex
numerical methods during the design phase [9].
The uncertainty of the positioning system has been largely
studied in the case of machining centres, in order to quantify
the effects of geometric errors, thermal drifts and cutting
forces during manufacturing [10]. The common approach
in this field is the development of a model describing the
bias error components and the definition of a bias error
compensation strategy [11]. The kinematics model can be
built using different strategies: Xiang [12] proposed the use
of the screw theory to model a five axis machine and simplify
the inverse kinematics equation; Fu [13] used the differential
motion matrix to obtain the influences of each axis on the
tool positioning performances; exponential models are used
by Fu [14] to avoid singularity problems in complex robot
chains. Finally, a general method consists in modelling the
machine as a Multi Body System (MBS) composed by a series
of rigid bodies connected by prismatic or rotational joints
[15, 16]. Then, to describe the location of the end effector
in a usable frame, a Homogeneous Transformation Matrix
(HTM) is defined between each adjacent joint pair taking into
account their relative position and orientation. Once the bench
kinematic model is obtained, it can be used to simulate and
forecast the final volumetric error [17].
Magnetic sensors are based on the transduction of differ-
ent physical phenomena, as for instance the Electromag-
netic Induction, Hall Effect, Tunnel Magnetoresistance (TMR),
Giant Magnetoresistance (GMR), Anisotropic Magnetoresis-
tance (AMR) and Giant Magnetoimpedance (GMI), [18]. The
knowledge of the three Cartesian components of the magnetic
field at the same time with a single miniaturized transducer is
a great challenge for the semiconductor industry, [19], [20],
[21]. In literature, detection techniques such as AMR or GMI
are preferred for high-frequency magnetic field, due to their
larger bandwidth, and for low magnetic fields (less than 1 mT).
For static fields, Hall probes are preferred since they show
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better resolution (especially for fields above 1 mT) but shorter
bandwidth. Finally, Hall probes are a good compromise be-
tween uncertainty and cost compared to the other technologies
mentioned above, which are generally more expensive.

As already mentioned, to date, magnetic and positioning
uncertainties have always been considered independently. This
paper proposes a general method to identify and quantify
the impact of the mechanical system performances on the
magnetic field measurement uncertainty by coupling the bench
kinematic model with the magnetic field one and performing
Monte Carlo simulations to propagate positioning error distri-
butions to Uf . The scope of this analysis is the development of
a comprehensive measurement model that allows to forecast
the final measurement uncertainty, including the mechanical
structure in early considerations about the system behaviour
and using this study to guide the design choices. With this
approach, it is possible to optimize the final positioning
uncertainty to concur to the error budget with a non-dominant
weight with respect to the magnetic sensor contribution, thus
optimizing the cost of the structure without investing on
precise components that are not entailing uncertainty benefits.
The method has been developed for the upgrade of the storage
ring of the Swiss Light Source (SLS-2) at the Paul Scherrer
Institute (PSI), that requires the characterization of 800 mag-
nets before their installation. The SLS-2 upgrade aims at the
reduction of the beam emittance from 5000 pm to 137 pm
keeping the same storage ring foot-print (i.e. same building)
and undulators locations [22]. With these requirements, a
new set of high-gradient magnets based on permanent blocks,
normal-conducting coils and super-conducting ones is under
the design phase. Among them, a superconducting dipole
providing a longitudinal gradient has been designed, reaching a
peak field of 6T [23, 24]. The performances of these magnets
have to be assessed before installation in the machine. Thus,
a new magnet survey stand is currently in use for the thermal,
mechanical and magnetic characterization of superconducting
magnets in operating condition [25]. Due to the need of
inspecting non-homogeneous field profiles, it is necessary to
measure maps of all the three components of the magnetic
induction vector with a relative uncertainty Uf of 0.1− 0.5%
of the maximum generated field, corresponding to 10-50 units
(1 unit being 10−4 of reference field) [26].

II. PROPOSED METHOD

The first step necessary to estimate the mapping uncertainty
is the definition of a measurement model; for this purpose, the
uncertainty sources affecting the final magnetic measurement
process performances are analysed. As represented schemati-
cally in figure 1, two main elements are present: magnetic sen-
sor performances Us and positioning system ones, identified
as Up. The first contribution affects directly the final process
yield in the form of non-linearities of the sensor, presence of
noise on the voltage output or non-compensated bias errors due
to disturbances. On the other hand, the positioning uncertainty
weight depends on the local field gradient, thus it is necessary
to consider the field distribution to know the effect of Up on
Uf .

Fig. 1. Contributions to the total magnetic measurement uncertainty.

The uncertainty analysis is split in two parts: first, only the
mechanical system performances are analysed and modelled,
then they are combined with the magnetic field distribution in
the region to be scanned.

A. Mechanical effects
Six degrees of freedom are necessary to describe the posi-

tion of a rigid body in space. Considering a general linear axis,
when the carriage moves, its position will be affected by three
linear errors and three angular ones. As shown in figure 2, for
Z-axis, δz(z) describes the positioning error along the motion
direction, δx(z) and δy(z) are the straightness errors along the
other two directions, while εz(z), εy(z), εx(z) are respectively
the roll, yaw and pitch angular errors. Considering a three-axis

Fig. 2. Linear and angular errors for a linear axis moving in Z direction.

machine, each axis is described by six errors and, additionally,
three more parameters are required to include the orthogonality
error between each axis pair. Thus, 21 geometric parameters
are required to model the machine. Considering a generic point−→
P1 in space, which coordinates are expressed in the local frame
1, it can be referred to the global frame knowing the relative
orientation and location of the two reference systems. This
transformation can be formulated as in equation 1:

−→
P0 =

−−→
T0,1 +R0,1

−→
P1; (1)

where
−→
P1 and

−→
P0 are respectively the expression of point

−→
P = [x, y, z] in local and global frames,

−−→
T0,1 is the location

vector containing the coordinates of the local frame origin
with respect to the global one and R0,1 is the 3D rotation
matrix to identify their relative orientation. This transformation
can be put in matrix form, as in equation 2, to obtain the
Homogeneous Transformation Matrix (HTM) of the first pair,
named M0,1:

M0,1 =

[
R0,1 T0,1

0 0 0 1

]
. (2)

Equation 1 can be then rearranged in a more compact form
as: −→

P0 =M0,1
−→
P1, (3)
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where
−→
Pi = [x, y, z, 1] are the homogeneous coordinates of

the point. For the sake of clarity, the 3D rotation matrix is
obtained by successive multiplication of zyx rotations of ψ, θ

and ϕ angles, resulting in the following matrix (where c and
s are short for cos and sin):

Rn−1,n =

c(ψ)c(θ) c(ψ)s(ϕ)s(θ)− c(ϕ)s(ψ) s(ϕ)s(ψ) + c(ϕ)c(ψ)s(θ)
c(θ)s(ψ) c(ϕ)c(ψ) + s(ϕ)s(ψ)s(θ) c(ϕ)s(ψ)s(θ)− c(ψ)s(ϕ)
−s(θ) c(θ)s(ϕ) c(ϕ)c(θ)

 . (4)

In case of more complex kinematic chains, as in the case
of a multi body system shown in figure 3, the transformation
from the global reference system to the nth-frame can be easily
achieved by multiplying in order the consecutive HTMs:

M0,n =M0,1M1,2...Mn−1,n. (5)

Fig. 3. Example of open kinematic chain with global frame identified as 0
and local frames placed on each consecutive body.

For each body, it is possible to write the HTM according to
equation 2, knowing the relative locations and orientations of
each pair. By multiplying the HTMs following the kinematic
chain order, it is possible to obtain the description of end-
effector position in space with respect to the selected global
frame. In case of parallel kinematics, the same formalism can
be applied by analysing each closed kinematic loop and adding
to equation 5 the required constraints on links dimensions.

Using these formulations, it is possible to calculate the end-
effector location in all the points the measurement volume.
This error is formulated as the difference between the target
position

−→
Pt and the actual reached one

−→
Pr, according to the

following equation for each axis:

Ep = ∥
−→
Pt −

−→
Pr∥. (6)

The actual measurement point
−→
Pr can be obtained using the

complete HTM Mn,0 for each point −→xi reached by the robot
end-effector in the working volume:

Ep,i = ∥Mn,0(
−→xi,0) · −→xi,0 −−−→xi,n∥. (7)

The HTM Mn,0 is composed by position independent errors,
such as the linear and angular geometric errors shown in
figure 2, and position dependent ones, mainly the non-perfect
orthogonality among axis which leads to deviations linearly
dependent on the travel length. For this reason, Mn,0 in
equation 7 is function of the target point coordinates. Fur-
thermore, it is possible to indicate with M∗

n,0 the theoretical
transformation from frame n to the global reference 0; this

matrix contains only the rigid offsets between the two frames,
thus no error is taken into account. Equation 7 can be re-
written in global coordinates as:

Ep,i = ∥Mn,0(
−→xi,0) · −→xi,0 −M∗

n,0
−→xi,0∥. (8)

where −→xi,0 =M∗
0,n

−−→xi,n. In addition to the geometrical errors,
vibrations play an important role in the definition of the
positioning uncertainty of the end-effector. The oscillation
amplitude ∂−→xi is a time-dependent function and it will depend
on the stimulated mode and on the system dynamic charac-
teristics. Finally, errors on the position reading can be caused
by the motion controller: in case the reading is time-delayed
with respect to the real state of the system, an additional
positioning error is present. This error is directly proportional
to the scanning speed and it can be seen as the space travelled
by the system while waiting for the position reading. Assuming
constant velocity, ∆−→x can be computed as:

∆−→xi = vs · τ ; (9)

where vs is the system speed and τ the reading delay in time
and it can be included in 7 together with the oscillation error
as

Ep,i = ∥Mn,0(
−→xi,0)·(−→xi,0+∂−→xi,0+∆−→xi,0)−M∗

n,0
−→xi,0∥. (10)

Equation 10 represents the positioning error model that in-
cludes the kinematic, dynamic and motion controller sources.

B. Magnetic effects

A model of the magnetic field in the robot working volume
has been developed to investigate the mechanical positioning
effect onto magnetic field measurement error. In domains free
of currents or magnetized materials, as the inside of the magnet
aperture and sufficiently away from the coil ends, the field can
be represented with its 2D multipole expansion according to
the following equation in complex form [27, 28]:

B(w) = B(x, y) = By+ iBx =

N∑
n=1

(Bn+ iAn)
(x+ iy

RRef

)n−1

;

(11)
where w = x + iy, Bx and By are the induction vector
Cartesian components, Bn and An are the normal and skew
multipoles, Rref is the reference radius at which the harmonics
are evaluated (or measured) and N is the number of discrete
components considered in the field representation. The expan-
sion coefficients, the field multipoles, represent the harmonic
components of the field which contribute to the field shape
and they can be normal or skew, meaning real or imaginary
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contribution for each n.
Sensor performances (regardless of the sensing technology) are
included in the model using the factor SP accounting for the
noise of the transducer and all the bias errors not compensated
and included in the uncertainty budget. In case of a generic
probe, SP can be computed by combining, according to the
ISO GUM indications, the random error components and the
systematic ones that cannot be compensated.

Concerning the spatial contribution in equation 11, it is then
affected by the robot positioning errors, thus next equation
shows the full coupled measurement model:

B(w) = SP

N∑
n=1

(Bn + iAn)
(MP,0(w) · w

RRef

)n−1

; (12)

where MP,0(w) · w is the actual probe position. The spatial
error contributions are explicitly indicated in:

B(w) = SP

N∑
n=1

(Bn+iAn)
(MP,0(w) · (w + ∂w +∆w)

RRef

)n−1

;

(13)
where w are the nominal sampling points, ∂w is the vibration
effect and ∆w is the time delay induced reading error. These
coordinates are referred to the global reference system as
described in the previous section. The magnetic measurement
error is formulated as deviation, in units, of the measured field
component from the nominal one obtained from the multipoles
expansion in equation 11:

Ef,i =
Bi,nom −Bi,meas

Bi,nom
, (14)

where Bi,nom is the nominal field component in the target
point and Bi,meas is the measured field component in the
actual probing location.

C. Coupled model

Following the formalism in [7], a measurand η can be
estimated by the central value of the distribution that can be
attributed to it according to the measurement equation:

η = g(ξ1, ξ1, ..., ξk), (15)

where ξk are the input quantities influencing the output η
value. The function g defines the relationship between inputs
and output and it is used to propagate the input quantities prob-
ability density functions to the measurand, with the final aim
to obtain the standard uncertainty of η. The law of propagation
of uncertainty is applied to outputs which are characterized by
a Gaussian or t-distribution, for which linear dependence exists
between the influence quantities and the measurand. Even in
cases where the g function is linearized (i.e. by means of
Taylor series approximation), it is important that the central
limit theorem can be applied otherwise the measurement
uncertainty defined confidence intervals are not representative.
The supplement 1 of the ISO GUM, [8], suggests the usage of
the Monte Carlo method to overcome the limitations imposed
by the law of uncertainty propagation: with this technique the
probability distributions of the influence quantities are com-
bined by numerical simulations generating random variables

according to specified distributions. By random sampling the
PDFs and knowing g, it is possible to obtain numerically the
measurand PDF; normally, to have sufficient samples to get
a valid estimate and standard deviation for η, the simulation
requires more than 105 runs. The Monte Carlo method can
be used to forecast the uncertainty of the magnetic scanning
system using equation 7: according to the indications in [8], a
PDF is assigned to each input quantity to simulate by high-rate
sampling the achieved end-effector position PDF and compare
it with nominal values. Input quantities for the kinematic
model are the spatial coordinates and the geometrical errors
of each body composing the motion chain; their PDFs are
combined to get the estimate of the positioning error and
its standard uncertainty. Considering the coupled magnetic-
mechanical model built in previous section and represented in
equation 12, the measurand B is depending on the following
influence quantities: Hall probe characteristic factor, spatial
coordinates, geometrical errors effect through the kinematic
chain, bench dynamics and measurement equipment. From this
result and knowing the nominal field, it is possible to obtain
the estimate and the standard uncertainty of the measurement
error described in 14.

III. CASE STUDY

The proposed method for the identification of the combined
uncertainty requires the knowledge of the magnetic field to
be scanned; for current purposes, FEM models of the SLS-2
magnet apertures have been developed. FEM results consist of
data-sets comprising the mesh nodes coordinates x, y, z and
the corresponding field components Bx, By, Bz . The nodes’
coordinates xi,nom have been perturbed with a Gaussian
distribution N(0,Up) with zero mean and uncertainty Up to
simulate the probe positioning uncertainty.

xi,meas = xi,nom +N(0, Up). (16)

In this notation, xi is a generic coordinate x, y or z, in the mea-
surement or the nominal sets according to the subscripts meas

and nom. The measured magnetic field is then interpolated
at the position xi,meas, and its difference from the magnetic
field at the position xi,nom is considered as non-compensated
bias error to be added to the uncertainty budget. Simulations
were run for different Up, in order to obtain the maximum
uncertainty allowing to respect the uncertainty budget. Up has
been varied between 0 and 50µm with a step size of 10µm;
results of simulations are shown in figure 4, that represents
the extended uncertainty (with 95% confidence interval) in
the magnet longitudinal plane, where the field exhibits the
strongest gradient.
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Fig. 4. Simulated magnetic measurement uncertainty map (at 95 %) for
variable positioning uncertainty. The colour bar shows the magnetic field
uncertainty at the specific position.

Positioning uncertainties of 20µm and 50µm allow achiev-
ing magnetic measurement uncertainties Uf of 10 units and
25 units, respectively. The final uncertainty will be determined
as a combination with the uncertainty of the magnetic sensor,
discussed in the next paragraphs.
The further step was the design of the scanning system
(hereinafter referred to as Compact Field Mapper, CFM). The
selected geometry (figure 5) consists of a three-axis Cartesian
robot based on three stacked linear stages; the magnetic sensor
is mounted on a carbon fibre arm in correspondence of the
robot end effector.

Fig. 5. SLS-2 measurement bench assembly with 1: commercial linear stages,
2: rotation and tip-tilt stages, 3: slide, 4: sensor support, 5: rotary encoder, 6:
motor, 7: ball screw, 8: linear guides.

1) Motion system: The motion of the bench end effector
can be analysed considering it as the assembly of three rigid
bodies (numbered as 1→ Z-axis, 2→ X-axis, 3→ Y-axis,
in figure 6), on which local frames are placed, and using
a global frame placed on the bench foundation (identified
as 0 in figure 6). The coordinate transformations from one
local frame to the other can be expressed by means of
HTM multiplication so that also mechanical errors (linear and
angular) can be included. X and Y axis are commercial high-
precision stages (Newport M-ILS150CC) while the Z-axis has
been opportunely designed to cover a stroke of 800 mm. The
assembly procedure has been step by step verified with the

Fig. 6. Global and local reference frames used to describe the mechanical
system kinematic.

Leica Laser Tracker: special attention is focused on the Z-
axis rails mounting to verify their co-planarity (function on
the plate grooves flatness specifications) and their parallelism
(function of grooves sides orthogonality). Afterwards, X stage
is mounted on Z-slide and, finally, Y-axis is stacked on X one.
Their mutual orthogonality is checked and adjusted iteratively
thanks to the optical measurements.

2) Magnetic sensor: The selected sensor is a 3-axial Hall
probe, whose performances allow accomplishing the design
requirement. The sensor characteristics are summarized in
table I.

TABLE I
SENIS 3D S-HALL PROBE WITH ANALOG TRANSDUCER SPECIFICATIONS

[29, 30].

Sensor dimensions 10 · 10 · 1.4 mm
Magnetic field sensitive volume per axis 150 · 150 · 1µm
Mutual orthogonality of axes 35 mrad
Range ±2 T
Sensitivity 5 V/T
Tolerance of sensitivity 0.02 %
Non-linearity 0.05 %
Offset (at zero field) ±1 mT
Instrumental uncertainty 0.15 %

3) Control software: The stages are driven by Newport
XPS-D motion controller for which a LabVIEW software is
developed and its interface is shown in figure 7; the user
can specify the scanning settings in terms of number of
points along each axis, setup the communication parameters
with the controller and the Hall probe acquisition device and
define offsets to the display the results in magnet frame. The
control and acquisition software has a QMH architecture to
simultaneously execute different threads exchanging data and
commands with the XPS and, in parallel, to acquire and log
the voltages from the Hall probe using a multifunction NI
DAQ card. Voltage sampling is regulated by evenly spaced
triggers generated by XPS according to the mapping mesh
specified by the operator. Furthermore, a trajectory manager
is developed so that it is possible to select among scanning
of lines, planes or volumes. The block diagram is shown in
figure 8: the central message handling loop (MHL) controls
all the top level threads, including the user interaction with the
graphical interface and the display of measurement data; the
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Fig. 7. LabVIEW interface of CFM control and acquisition software.

motion control MHL instead generates trajectories and directly
communicates to XPS control loop. The acquired voltage and
position are logged in text files for post processing.

Fig. 8. LabVIEW software block diagram: each subVI has its message
handling loop (MHL) and execute different tasks (trajectory planning, com-
munication with the XPS, data acquisition...).

A. Numerical analyses

After creating the robot kinematic model from equation 5,
equations are coded in Matlab to simulate the positioning error
in the working volume: for each required point of the target
scanning mesh, it is possible to obtain the real reached node
coordinates, giving as input the entity of geometric errors.
Knowing the probability density function of each geometric
error, it is possible to run the Monte Carlo (MC) simulation to
have the PDF of Ep and extract the expected value (systematic
part of Ep) and its standard deviation (Up). The MC simulation
iteration number is set to 106 , sampling the geometric errors
at each run from their PDFs and repeating the loop for 936
points distributed in the robot working volume. Table II shows
all the influence variables with their PDF: uniform distribution
is assigned to values given by the metrology reports of
commercial stages, while normal distribution to the in-house
performed inspections. Vibration effects ∂−→x are introduced
in the analysis as zero-mean normal distribution with standard
deviation of 2.5µm, obtained from a dynamic model of the
bench; similarly, position reading delay effect ∆−→x is modelled
with a normal distribution, zero-mean and standard deviation

of 1µm. These effects have been added to the simulation but
their contribution can be considered negligible with respect to
the impact of kinematic errors.

TABLE II
PARAMETERS DEFINITION AND PROBABILITY DISTRIBUTION FUNCTION

ASSOCIATED IN MONTE CARLO SIMULATION.

Axis Geometric definition PDF
X-Axis Linear positioning error δx(x) U(−1.5, 1.5) µm

Straightness error in Y δy(x) U(−2.5, 2.5) µm
Straightness error in Z δz(x) U(−2.5, 2.5) µm
Roll error εx(x) U(−18.5, 18.5) µrad
Yaw error εy(x) U(−10, 10) µrad
Pitch error εz(x) U(−18.5, 18.5) µrad

Y-Axis Straightness error in X δx(y) U(−2.5, 2.5) µm
Linear positioning error δy(y) U(−1.5, 1.5) µm
Straightness error in Z δz(y) U(−2.5, 2.5) µm
Pitch error εx(y) U(−18.5, 18.5) µrad
Roll error εy(y) U(−18.5, 18.5) µrad
Yaw error εz(y) U(−10, 10) µrad

Z-Axis Straightness error in X δx(z) N(5.5, 7.8) µm
Straightness error in Y δy(z) N(3.2, 6.1) µm
Linear positioning error δz(z) N(8.4, 9.6) µm
Pitch error εx(z) N(15.1, 18.0) µrad
Yaw error εy(z) N(15.3, 15.4) µrad
Roll error εz(z) N(10.2, 16.5) µrad
Orthogonality X and Y αxy N(32.3, 12.8) µrad
Orthogonality X and Z αxz N(51.4, 11.0) µrad
Orthogonality Y and Z αyz N(16.5, 7.2) µrad

The largest positioning error was obtained along the X axis,
with a systematic error of 16µm and a standard uncertainty
of 13µm. The combination of these two quantities led to an
uncertainty Up of 21µm.

The global measurement model is then studied by coupling
the kinematic and the magnetic ones. Transducer performances
have been derived from the manufacturer data-sheet (table
I). Temperature effects, that are generally relevant for Hall
transducers, have not been considered because of the online
sensitivity compensation implemented in the sensor. A similar
consideration applies to the inductive effects due to planar Hall
effect. SP was therefore computed from the data declared by
the manufacturer that already included the sensor noise and
the residual non-linearities. Performances of the Hall probe,
hereinafter referred to as SHP , were simulated by a uniform
probability distribution with standard deviation equal to 0.15%
and centred on the nominal unit value.
The MC simulation is performed also in this case with
106 iterations and the PDF of Ef is processed to get the
expected value (systematic part of Ef ) and its standard de-
viation (Uf ). Concerning the multipoles, this study is applied
to a quadrupole magnet which has been fully characterized in
the past at PSI for the SwissFEL project. The magnet, called
QFDp4 and shown in figure 9, has a main quadrupole compo-
nent and its first 15 harmonics are measured with the rotating
coil technique [31] and listed in table III. The simulated
magnetic measurement resulted in 4 units of systematic error
and a standard uncertainty of 5 units, which are combined to
calculate the magnetic field measurement uncertainty Uf as
6.5 units.
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Fig. 9. Quadrupole QFDp4.

TABLE III
HARMONIC CONTENT OF QFDP4 MEASURED WITH ROTATING COILS.

Index Bn An

1 (T) 5.80× 10−8 9.11× 10−9

2 (T) 6.96× 10−2 0
3 2.85× 10−1 1.25
4 −3.76× 10−1 −1.28× 10−1

5 −7.94× 10−1 6.91× 10−1

6 −5.55 5.61× 10−1

7 −3.29× 10−2 3.85× 10−2

8 −8.37× 10−2 −7.19× 10−2

9 −1.36× 10−1 1.70× 10−1

10 3.60× 10−1 −5.59× 10−1

11 3.62× 10−2 3.43× 10−2

12 −1.45× 10−2 −1.66× 10−2

13 −2.12× 10−2 −6.96× 10−3

14 1.96× 10−1 −1.29× 10−1

15 1.09× 10−2 1.00× 10−2

B. Experimental results

The volumetric error is mapped using a Leica Laser Tracker
to investigate the positioning performances of the CFM; The
metrological performances of the Tracker are declared by the
manufacturer, and include a maximum error of 10µm and
a standard uncertainty of 5µm. The target retro-reflector is
mounted on the bench end effector and 936 target points are
commanded to the robot in 10 repetitions: these locations are
spaced along each axis to cover the whole working volume.
The software commands the robot to reach the target points
and their actual coordinates are measured with the Laser
Tracker using a 2 s time-average. The scanning time was
selected as a trade-off between a reasonable test duration
and the increase of the reference position accuracy deriving
from the averaging procedure. Figure 10 shows the average
of the positioning error obtained as difference between the
nominal target position and the coordinates acquired by the
Laser Tracker in the volume.
Table IV reports the comparison of the positioning error
components (bias and random) between experimental results
and simulations; in this case, the largest error was obtained
along Z axis, with a systematic error of 11µm and a standard

uncertainty of 14µm. The combination of these two quantities
led to an uncertainty Up of 18µm. Experimental results

TABLE IV
SYSTEMATIC AND RANDOM POSITIONING ERROR COMPONENTS

OBTAINED IN SIMULATIONS AND EXPERIMENTS.

Experiments Simulation
Ep [µm] X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis
Systematic 7 11 11 16 8 8
Uncertainty 13 13 14 11 11 13

are compatible with the simulation ones along all the three
Cartesian axes; the larger difference occurs along X axis,
where the systematic error component measured during the
experiments is lower than that expected from simulations. This
is reasonable due to an overestimation of X-related values
reported in Table II; the identification of the reasons that led
to the discrepancy between experiments and simulations could
be performed using factorial design of experiments techniques
and Monte Carlo methods, as in [9].
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Fig. 10. Average systematic component of CFM volumetric positioning error.

The QFDp4 quadrupole is used then to test the accuracy
of the CFM and to validate the measurement model. The
magnet is installed in the measurement area and its orientation
in space is adjusted thanks to mechanical jigs and checked
with the Laser Tracker. After this alignment, the orientation
and location of the magnet frame are defined with respect
to the Hall probe ones. Maps of the generated field in the
magnet aperture are acquired with 30 repetitions and figure
11 shows an example of 2D magnetic map. The plot shows
the dependence of the magnet field component along the Y
axis from the x and z coordinate and is a representative
situation of use of the CFM, with strong gradients along
different axes. The measured field is then compared with the
reference values obtained with the rotating coil system and
reported in section III-A; systematic error and experimental
standard uncertainty of the magnetic measurement experiments
and simulation are reported in table V. For the experimental
case, bias and random components can be combined as Uf

reaching 7.5 units.
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Fig. 11. Example of a typical magnetic field measured by the CFM: 2D map
of magnetic field y-component generated by QFDp4 on its mid-plane.

TABLE V
SYSTEMATIC AND RANDOM MAGNETIC ERROR COMPONENTS OBTAINED

IN SIMULATIONS AND EXPERIMENTS.

Experimental Ef [units] Simulated Ef [units]
Systematic 4 4
Uncertainty 6 5

C. Method validation

This section compares the results obtained in the
simulation and in the experimental environments to validate
the measurement model and assess the final performances
of the CFM. Figure 12 shows the systematic positioning
error and its uncertainty with 95 % confidence intervals
obtained from simulation and experiments for each axis.
The plot shows the compatibility of results, thus validating
the kinematic model of the robot. The CFM positioning
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Fig. 12. Comparison simulated and experimental positioning error, indicated
with MC (Monte Carlo) and Laser Tracker (LT) respectively. The uncertainty
is reported with a confidence interval of 95 %.

uncertainty Up is verified to be 36µm, with a coverage factor
of 2.

Figure 13 shows the 95 % confidence intervals for the
simulated and the experimental scans of the induction vector
produced by QFDp4 in its aperture. Also in this case, the
intervals are overlapped showing good agreement and finally

the magnetic measurement uncertainty Uf is 15 units, with a
coverage factor of 2.
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Fig. 13. Comparison of simulated and experimental total measurement error
for the CFM; the systematic component of Ef is reported together with its
uncertainty extended to 95 % confidence interval.

Both the kinematic model and the coupled mechanical-
magnetic ones are validated with the experimental campaign
and, finally, it is proven that Uf is well below 50 units as
required for the SLS-2 upgrade.

IV. DISCUSSION

A. Model validity

As presented in the previous section, the results obtained
from numerical estimation of the magnetic measurement un-
certainty are coherent with the experimental ones, thus proving
the method validity. With this technique, it is possible to
forecast the final process yield and adjust the design param-
eters to achieve the target measurement performances. This
result can be obtained only with a deep understanding of the
positioner kinematic, that, as in the analysed case, is simplified
by a serial chain, but can show high complexity in more
articulated robots. Furthermore, the magnetic model used to
complete the measurement function is only bi-dimensional,
neglecting the field distribution variation along the particle
direction due to fringe effects caused by the yoke and the
coils ends. These two limitations do not represent a violation
of the method applicability but require further efforts to model
the mechanical and the magnetic elements. In this work,
the interferences caused by the magnetic field on the bench
mechanical components are neglected due to the design of
a long measurement arm. Generally, these effects should be
considered by modelling and measuring the motor torque
variation when put in proximity of a magnet to be tested.

B. Recommendations

The design of a magnetic field scanning system should
target the minimization of the design efforts, to avoid re-
quirements stricter than necessary. This step requires the
knowledge of the magnetic field gradients. In presence of
limited gradients, or if the magnetic field is constant, the
uncertainty of the positioning system is not affecting the
magnetic measurement, given that a position error does not
entail an error in the magnetic field magnitude. In this case, the
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sensor performances are driving the uncertainty budget, thus
requiring less restrictive mechanical constraints on tolerancing.
In case of high gradients, the mechanical structure becomes
crucial in the instrument design, since a small error on the
position causes a large error on the magnetic field magnitude;
rigid structures, in these situations, ensure limited static de-
flections and acceptable dynamic effects. Slender structures, in
fact, increase the jitter generated by the mechanical vibrations
induced by the probe motion. Another limit arises as a con-
sequence of the larger static deflection, that requires complex
compensation techniques and time-consuming calibration. In
all the intermediate cases, the coupled mechanical-magnetic
model is a fundamental tool to have a good tuning between
the two contribution and fulfil the Uf requirement.

V. CONCLUSIONS

This paper proposed a method to investigate the effect of
mechanical positioning uncertainty on magnetic field maps.
The method allows the a priori estimation of the final measure-
ment uncertainty according to the mechanical design choices.
This study has been applied to the Compact Field Mapper
developed for SLS-2 magnets: having a target measurement
uncertainty for the system under design, the weight of the
position uncertainty with respect to the magnetic sensor one
is opportunely tuned to avoid to spoil the sensor performances.
For a stated magnetic sensor uncertainty of 15 units (0.15 %),
the CFM propagated measurement uncertainty Uf is within the
sensor limit. Currently, the bench is installed in the magnetic
measurement laboratory at PSI and it is ready for serial
measurements.

NOMENCLATURE AND UNITS

Quantity Symbol Unit
Positioner coordinates x, y, z mm
Positioning error Ep µm
Positioning uncertainty Up mµm
Magnetic flux density Bi T
Normal and skew multipoles Bn, An T
Magnetic measurement error Ef Magnetic units [28]
Magnetic measurement uncertainty Uf Magnetic units
Magnetic sensor instrumental uncertainty SP 1
Hall probe instrumental uncertainty SHP 1
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