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ASYMPTOTIC SOLUTION FOR THE TWO BODY PROBLEM WITH
RADIAL PERTURBING ACCELERATION

Juan L. Gonzalo∗, and Claudio Bombardelli†

In this article, an approximate analytical solution for the two body problem per-
turbed by a radial, low acceleration is obtained, using a regularized formulation
of the orbital motion and the method of multiple scales. The results reveal that
the physics of the problem evolve in two fundamental scales of the true anomaly.
The first one drives the oscillations of the orbital parameters along each orbit. The
second one is responsible of the long-term variations in the amplitude and mean
values of these oscillations. A good agreement is found with high precision nu-
merical solutions.

INTRODUCTION

There is a great theoretical and practical interest in obtaining analytical solutions for the two body
problem subjected to perturbing forces. The motion of a spacecraft around a primary under continu-
ous thrust is studied in the classic astrodynamics book by Battin,1 for radial and tangential accelera-
tion: in the first case, an exact solution for initially circular orbits is reached in terms of elliptic inte-
grals; whereas for the second one, an approximate solution for low thrust acceleration is developed.
More recently, an asymptotic solution for low tangential acceleration was obtained by Bombardelli
et al.,2 using Dromo orbital formulation4 and a regular expansion in the non-dimensional thrust.
These approximate solutions can be applied to study several practical problems, such as the effects
of solar radiation pressure or comet outgassing3 in the radial case.

In this article, an approximate analytical solution for the two body problem perturbed by a small
radial acceleration is obtained, using the regularized formulation of the orbital motion known as
Dromo, and the method of multiple scales. Compared to the results by Battin,1 it has the main
advantage of not being restricted to initially circular orbits, requiring only small initial eccentricity.

It should be pointed out that an exact solution for the radial problem in the general case has
been recently obtained by Izzo et al.,10 in terms of a fictitious time introduced with a Sundmann
transformation and the Weierstrass elliptic functions. However, our asymptotic solution, despite
being less precise, has the advantage of being expressed in terms of much simpler functions, and
provides more insight about the underlying physics of the low thrust case.

First of all, the equations of motion for the two body problem perturbed by a small radial ac-
celeration of constant magnitude are posed, using Dromo orbital formulation. Dromo was initially
introduced by the Grupo de Dinámica de Tethers (now Space Dynamics Group-UPM), and has been
under active development.4, 5, 6 It has proven to be an excellent propagation tool, and its suitability
for the formulation of low thrust optimal control problems has been recently studied.7
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†Research associate, Space Dynamics Group, School of Aeronautical Engineering, Technical University of Madrid (UPM).
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Figure 1. Schematic representation of the radial thrust problem

In the next section, an asymptotic solution for the problem is obtained using a regular expansion
in the small perturbing acceleration. It is checked that this solution breaks for large values of the
independent variable, suggesting the use of more complex perturbation techniques.

The third section deals with the solution of the problem using the method of multiple scales.
The results obtained reveal that the physics of the problem evolve in two fundamental scales of the
independent variable. The first one drives the oscillations of the orbital parameters along each orbit.
The second one, scaled by the magnitude of the thrust, is responsible for the long-term variations
in the amplitude and mean values of these oscillations. Moreover, it is verified that the behavior is
periodic in both scales, with different periods; this shows that, provided the escape is not reached,
the orbital parameters of the perturbed orbit oscillate between certain limit values indefinitely.

Finally, the multiple scales solution is compared with high precision numerical propagations for
several cases, finding a good agreement between them. The asymptotic solution obtained through
the regular expansion is also included in these comparisons, highlighting the great gains in accuracy
and validity range of the asymptotic solution achieved through the method of multiple scales.

EQUATIONS OF MOTION

Let us consider a particle of mass m orbiting around a primary of gravitational constant µ. The
only forces acting on the particle are the attraction of the primary and a small radial acceleration of
constant magnitude A. Since this perturbation force is always contained in the osculating plane of
the orbit, the resulting motion will be planar. Moreover, given that all the forces are central, the
angular momentum remains constant; these properties will allow us to simplify the formulation for
the equations of motion. The initial distance between the particle and the center of the primary is
denoted as R0, while ν0 is the initial value of the true anomaly. All equations and variables consid-
ered hereafter are expressed in non-dimensional form: to this end, three characteristic magnitudes
are introduced for length (R0), mass (m) and time (n−10 ), where n0 is the angular frequency of the
circular orbit of radius R0 around the primary, n0 = (µ/R0)

1/2.

To describe the motion of the body, the Dromo orbital formulation developed by Peláez et al.4, 6, 5

is used. In this formulation, a fictitious time θ is introduced through a change of independent
variable given by a Sundman transformation. Then, the variation of parameters technique is applied
to obtain seven generalized orbital parameters q which, along the non-dimensional time t, describe
the state of the particle. These orbital parameters are constant in the unperturbed problem, but evolve
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in presence of perturbing forces; this property is very convenient for the mathematical developments
in this study. Moreover, it is important to note that three of these parameters describe the geometry
of the orbit in its plane, while the other four are related to the orientation of said plane. Therefore,
the later are constant for the planar case, and the motion of the particle can be described by a
4-dimensional state vector:

(t, q1, q2, q3) (1)

whose evolution is given by the following system of four differential equations:

dt

dθ
=

1

q3s2
(2)

d

dθ

q1q2
q3

 =
1

q3s3

 s sin θ (s+ q3) cos θ
−s cos θ (s+ q3) sin θ

0 −q3

[ar
aθ

]
(3)

with
s = q3 + q1 cos θ + q2 sin θ (4)

r =
1

q3s
(5)

where ar and aθ are the non-dimensional perturbing forces along the radial and transversal direc-
tions, and r is the non-dimensional orbital distance. Since Equations (2) and (3) are uncoupled, the
problem can be solved for (q1, q2, q3) without calculating t.

It is possible to establish several relations between the generalized orbital parameters and the
classical orbital elements:6, 5

q1 =
e

h
cos γ, q2 =

e

h
sin γ, q3 =

1

h
(6)

e =

√
q21 + q22
q3

, γ = tan−1
(
q2
q1

)
, h =

1

q3
, a =

1

q23 − q21 − q22
, E =

q21 + q22 − q23
2

(7)

where e is the eccentricity, h is the non-dimensional angular momentum, a is the non-dimensional
semimayor axis, E is the non-dimensional total energy, and angle γ is the difference between the
variations of the fictitious time and the true anomaly5

∆θ = ∆ν + γ (8)

In the planar case, γ coincides with the angle between the eccentricity vectors of the initial and of the
osculating orbit, and θ becomes the angular position of the particle measured from the eccentricity
vector of the initial orbit.

For the radial thrust problem, the non-dimensional perturbing acceleration takes the form:

a =

[
ar
aθ

]
=

[
ε
0

]
, ε =

A

R0n20
=

A

µ/R2
0

(9)

where ε is the non-dimensional acceleration parameter. Introducing these values into Equations (3)
yields:

d

dθ

q1q2
q3

 =
ε

q3s2

 sin θ
− cos θ

0

 (10)
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The third equation shows that q3 is always constant in the radial case; this result is equivalent to
the conservation of the angular momentum, since q3 = 1/h. Regarding the other two components,
approximate solutions for the low thrust case can be searched for using perturbation techniques.

To close the mathematical formulation of the dynamics, the initial conditions are obtained from
Equations (6), taking into account that θ0 = ν0, γ0 = 0:

q3(θ0) = 1/h0 = q3i , q1(θ0) = e0/h0 = e0q3i = q1i , q2(θ0) = 0 (11)

with h0 =
√

1 + e0 cos ν0. For simplicity and clarity sake, in the following developments the initial
value of the independent variable is assumed to be zero, θ0 = 0. The results can be generalized for
an arbitrary value of θ0 by introducing the corresponding integration constants.

REGULAR EXPANSION

An asymptotic solution for the low-thrust two body problem defined by Equations (10) and (11)
is now searched for, in the form of a regular expansion in the non-dimensional thrust parameter ε.
To this end, the state is expanded in power series of ε� 1 as follows:

qk(θ; ε) = qk0(θ) + εqk1(θ) + ε2qk2(θ) +O(ε3) k = 1, 2 (12)

Expanding also the initial conditions, with θ0 = 0, and identifying terms of equal power of ε:

q10(0) =
e0
h0

= q1i, q1l(0) = 0 l ≥ 1 , q2l(0) = 0 l ≥ 0 (13)

Introducing the expansion of the state into the first two Equations of (10), expanding in Taylor
series of ε and retaining terms of O(1) yields:

d

dθ

[
q10(θ)
q20(θ)

]
= 0 ⇒

[
q10(θ)
q20(θ)

]
=

[
q1i
0

]
That is, the zeroth order terms of the asymptotic solution∗ are constant and equal to their initial
values; this result was expected, since the limit ε = 0 corresponds to the unperturbed orbit, for
which Dromo orbital parameters remain constant.

To retain the effect of the thrust, it is necessary to consider the first order terms of the asymptotic
solution. The differential equations which describe their evolution with θ are obtained canceling
terms of O(ε) in the expansion of Equations (10):

d

dθ

[
q11(θ)

q21(θ)

]
=

1

q3i (q3i + q10 cos θ + q20 sin θ)2

[
sin θ

− cos θ

]
(14)

Since the previous equations are uncoupled, q11(θ) and q21(θ) can be obtained independently as
quadratures. Introducing the known results for q10 and q20, and taking into account the initial
conditions given by Equations (13), the solution for q11(θ) is straightforward:

q11(θ) =
1− cos θ

q3i(q3i + q1i)(q3i + q1i cos θ)
(15)

∗The order of each term in the asymptotic solution is denoted hereafter through the corresponding exponent of ε.
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The solution for q21(θ) is more complex. Assuming q3i > q1i
∗ and integrating yields:

q21(θ) =
− sin θ

(q3i + q1i cos θ)
(
q23i − q21i

) +
2q1i

q3i
(
q23i − q21i

)3/2 (θ2 + arctanK(θ)

)
(16)

with

K(θ) = −
sin θ

(
−q3i + q1i +

√
q23i − q21i

)
(1 + cos θ)

√
q23i − q21i + (1− cos θ)(q3i − q1i)

(17)

The second term of the expression for q21(θ) introduces a secular behavior in θ; as a result, εq21(θ)
becomes of O(1) for θ ∼ ε−1, and the regular asymptotic expansion breaks. This posses a clear
limitation to the applicability of this solution, and suggests the convenience of resorting to more
complex formulations.

It is not straightforward to give physical interpretations of Dromo generalized parameters. There-
fore, the previous results are now expressed in terms of more familiar orbital elements. Using the
first of Equations (7), introducing the asymptotic solutions for q1(θ; ε) and q2(θ; ε), expanding in
Taylor series of ε and retaining terms up to O(ε), the eccentricity e can be expressed as:

e(θ; ε) = e0 + εe1(θ) +O(ε2) with e1(θ) =
1− cos θ

q43i(1 + e0)(1 + e0 cos θ)
(18)

As a first approximation, eccentricity oscillates between e0 and e0 +2εq−430 (1−e20)−1, with a period
of 2π in the pseudo time θ. Note that, for this expansion to be valid, εe1(θ) must be a small
correction of e0; specifically, it fails for initially circular or quasi-circular orbits. This limitation in
e0 to the applicability of Equation (18) is not inherent to the asymptotic solution of the problem, but
rather associated to the additional expansion performed for e(θ; ε); in all cases, eccentricity can be
calculated using the first of Equations (7).

Proceeding in a similar manner with the non-dimensional orbital radius yields:

r(θ; ε) =
1

q3i (q3i + q1i cos θ)
+ εr1(θ) +O(ε2) (19)

r1(θ) =
−q1i sin θ (θ + 2 arctanK(θ)) + (1− cos θ)

√
q23i − q21i

q23i(q
2
3i − q21i)3/2(q3i + q1i cos θ)2

This expression is valid regardless the value of e0, but, same as q2(θ; ε), breaks for θ ∼ ε−1. From
a physical point of view, the presence of the secular term in θ would imply that the orbital radius is
unbounded for any value of e0 and ε, which is in contradiction with the results given by Battin.1

Finally, it is interesting to consider the evolution of the true anomaly ν with the fictitious time
θ. According to Equations (8) and (7), both variables are related through an angular drift γ whose
regular expansion up to O(ε) can be given as:

γ(θ; ε) = −ε
(

sin θ

q1i(q23i − q21i)(q3i + q1i cos θ)
− θ + 2 arctanK(θ)

q3i(q23i − q21i)3/2

)
+O

(
ε2
)

(20)

Same as with the eccentricity, the previous expansion is not valid for the case of initially circular or
quasi-circular orbits; in those cases, the general expression in Equations (7) must be used.
∗This assumption is valid as long as e0 < 1, since q1i = e0q3i.
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Initially circular orbit

For the particular case of an orbit with e0 = 0, the regular asymptotic solution presented in this
section takes a simpler form:

q1(θ; ε) = ε
1− cos θ

q33i
+O(ε2) , q2(θ; ε) = ε

− sin θ

q33i
+O(ε2) (21)

and from it:

e(θ; ε) = ε

√
2

q43i

√
1− cos θ +O(ε2) , r(θ; ε) =

1

q23i
+ ε

1− cos θ

q63i
+O(ε2)

γ(θ; ε) =
θ − π

2
+O(ε2)

The secular term in θ has vanished from the solutions, but this does not imply a good behavior
for large values of the independent variable θ. Certainly, the numerical results displayed in later
sections show that the approximation is still bad for θ ∼ ε−1.

MULTIPLE SCALES SOLUTION

The breakdown of the regular expansion for θ ∼ 1/ε suggests the existence of a slow ‘time’
scale in the independent variable θ. This hypothesis is further supported by the perturbation model
for the tangential case presented by Bombardelli et al.,2 and the solutions in terms of elliptic equa-
tions given by Battin1 for the radial problem. All those cases are characterized by a fast, periodic
evolution associated to the orbital period, and a slow, secular behavior whose characteristic period
depends on the magnitude of the thrust. Based on this, the following two ‘time’ scales are proposed:

τ = θ

T = ε θ

The derivative operator can be rewritten in terms of the new independent variables as:

d

dθ
= ∂τ

dτ

dθ
+ ∂T

dT

dθ
= ∂τ + ε∂T

and introducing it into Equations (10) yields:

∂τ

[
q1(τ, T )
q2(τ, T )

]
+ ε∂T

[
q1(τ, T )
q2(τ, T )

]
=

ε

q3s2

[
sin τ
− cos τ

]
(22)

The series expansions for q1(τ, T ) and q2(τ, T ) in ε� 1 up to first order terms are now of the form:

qk(τ, T ; ε) = qk0(τ, T ) + εqk1(τ, T ) +O(ε2) k = 1, 2 (23)

q10(0, 0) =
e0
h0

= q1i, q1l(0, 0) = 0 l ≥ 1 , q2l(0, 0) = 0 l ≥ 0 (24)

Substituting Equations (23) into Equations (22), expanding in Taylor series of the small parameter
ε and retaining terms of O(1) yields:

∂τqk0 = 0 ⇒ qk0(τ, T ) = qk0(T ) for k = 1, 2

with q10(0) = q1i , q20(0) = 0
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Consequently, q10 and q20 are no longer constants, but rather functions of the slow scale T . More-
over, q20(T ) 6= 0 in general, and the corresponding simplifications introduced in the derivation of
the regular solution cannot be made.

The zeroth order equations do not provide enough information to fully determine q10(T ) and
q20(T ). This is the expected behavior when applying the method of multiple scales; as shown in
many classic perturbation texts,8, 9 the equations to close the zeroth order solution will be obtained
from the cancellation of the secular terms in the next order solution (also known as secularity con-
dition). The equations for O(ε) are:

∂τ

[
q11(τ, T )
q21(τ, T )

]
+ ∂T

[
q10(T )
q20(T )

]
=

1

q3i (q3i + q10(T ) cos τ + q20(T ) sin τ)2

[
sin τ
− cos τ

]
Rearranging terms and integrating in τ , the first order solutions q11(τ, T ) and q21(τ, T ) are obtained
in terms of the unknown functions of the slow scale q10(T ), q20(T ), g11(T ) and g21(T ):

qk1(τ, T ) = P∗k1(τ, T ) + S∗k1(T )
(τ

2
+ arctanK∗(τ, T )

)
− τ∂T qk0(T ) + gk1(T ) k = 1, 2

Since the expressions for P∗k1(τ, T ), S∗k1(T ) and K∗(τ, T ) are rather long, they have been compiled
in the Appendix. Suffice to say that their dependence with τ is trigonometric, in sin τ and cos τ ,
while the slow time scale T only appears through the zeroth order terms q10(T ) and q20(T ). There
are two main differences between these solutions and those obtained for the regular expansion. On
the one hand, the coefficients of q20(T ) are retained, causing a secular term to appear for q11(τ, T ).
On the other hand, the amplitudes of the oscillations are no longer constant, but vary in the slow
scale with q10(T ) and q20(T ).

Imposing the cancellation of the secular terms in q11(τ, T ) and q21(τ, T ), the following ODE
system for determining q10(T ) and q20(T ) is reached:

dq10(T )

dT
=

1

2
S∗11(T ) = − q20(T )

q3i
(
q23i − q210(T )− q220(T )

)3/2 (25)

dq20(T )

dT
=

1

2
S∗21(T ) =

q10(T )

q3i
(
q23i − q210(T )− q220(T )

)3/2 (26)

q10(0) = q1i , q20(0) = 0 (27)

Dividing Equation (25) by Equation (26) and integrating, a first integral is found in the form:

q210(T ) + q220(T ) = q21i (28)

This result, combined with Equations (7), implies that the zeroth order terms of the asymptotic
solutions for the eccentricity, the semimayor axis and the energy remain constant and equal to the
unperturbed problem. In other words, the variations in e, a and E due to a small radial perturbing
acceleration ε are of O(ε).

Introducing the first integral into Equations (25)-(26), they can be integrated to reach:

q10(T ) = q1i cos
T

q3i
(
q23i − q21i

)3/2 , q20(T ) = q1i sin
T

q3i
(
q23i − q21i

)3/2 (29)
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These expressions represent the variations of the zeroth order terms due to the accumulation of
small effects during long times. Comparing them with the constant and secular terms in the regular
expansion, it is possible to identify the later as the approximation of q10(T ) and q20(T ) for T � 1;
consequently, the multiple scales formulation improves the solution by retaining more accurate in-
formation about the physics of the problem. Regarding the frequency of the solutions, it is important
to point out that it evolves from 1 for e0 = 0, since q3i(e0 = 0) = 1, q1i(e0 = 0) = 0, to∞ for
e0 = 1, since q3i(e0 = 1) = q1i(e0 = 1). As a consequence, the multiple scales solution will
behave badly for near escape orbit, where a singularity is found.

Taking the first integral into account, and canceling the secular parts, the equations for q11(τ, T )
and q21(τ, T ) assume simpler forms:

qk1(τ, T ) = Pk1(τ, T ) + Sk1(T ) arctanK(τ, T ) + gk1(T ) k = 1, 2 (30)

with Pk1(τ, T ), Sk1(T ) and K(τ, T ) given by Equations (39)-(43) in the Appendix. Since the
expressions for q10(T ) and q20(T ) are known, it only remains to determine g11(T ) and g12(T ) to
close the first order solution; same as before, this is done by imposing the secularity condition to the
next order solution. Introducing the expansions for q1(τ, T ; ε) and q2(τ, T ; ε) into Equations (22),
and retaining terms of O(ε2):

∂τ

[
q12(τ, T )
q22(τ, T )

]
+ ∂T

[
q11(τ, T )
q21(τ, T )

]
=

2 (q11(τ, T ) cos τ + q21(τ, T ) sin τ)

q3 (q3 + q10(T ) cos τ + q20(T ) sin τ)3

[
− sin τ
cos τ

]
(31)

Due to the complexity of the expressions for q11(τ, T ) and q21(τ, T ), it is not feasible to identify
all the components in Equations (31) which give raise to secular behaviors; to address this problem,
an approximate solution for the case of small initial eccentricity e0 is searched for instead. Writing
q1i = e0q3i, expanding in Taylor series of e0 up to the leading order terms, and forcing the cancel-
lation of the parts which introduce secular components in the quadrature, the following system of
ODEs is reached:

dg11
dT

= −g21(T )

q43i
(32)

dg21
dT

=
g11(T )

q43i
− 1

q73i
(33)

The initial conditions can be obtained imposing q11(0, 0) = q21(0, 0) = 0:

g11(0) =
2

q33i
(
1− e20

) =
2

q3i
(
q23i − q21i

) , g21(0) = 0

Then, the solution for Equations (32)-(33) is:

g11(T ) =
1

q33i
+

q23i + q21i
q33i(q

2
3i − q21i)

cos

(
T

q43i

)
(34)

g21(T ) =
q23i + q21i

q33i(q
2
3i − q21i)

sin

(
T

q43i

)
(35)

Note that q1i has been deliberately retained in the initial condition, despite being of O(e0), to
improve the behavior of the results. This approximate solution is only accurate for initially circular
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orbits, and its precision degrades rapidly with e0. Nevertheless, the numerical results in Figures 5
and 6 show that it is good enough for moderate values of the initial eccentricity e0 and the non-
dimensional thrust ε.

When applying the method of multiple scales, it is common to obtain a succession of increasingly
slower time scales, with the number of said scales depending on the order of the approximation.
Some of this scales may be associated with underlying physical properties of the problem, while
others are just mathematical corrections for the previous orders. In the solution developed so far,
since τ ∼ O(1) and qk has been expanded up to O(ε), the presence of a third, super slow scale
would be expected.9 This is also consistent with the numerical results in the following section, in
which a small angular drift between the reference and the asymptotic solutions can be observed as
θ grows. The absence of this scale in the previous developments stems from the approximation
made when determining gk1(T ), since it would be introduced by applying the secularity condition
to the exact system of ODEs for those functions. Nevertheless, although this third scale remains
unknown, the mathematical structure of the problem shows that any new slower scale would act
as a correction of the slow time scale, so the problem only shows two fundamental frequencies,
and their combinations. This is in correspondence with the recent developments by Izzo el al.,10

where an exact solution for r is obtained in terms of a fictitious time introduced with a Sundmann
transformation and the doubly periodic Weierstrass ℘ function. Moreover, the results by Izzo et al.
also include terms in the acceleration parameter up to order 2, which suggests that this term still has
a physical meaning. Comparing the formulation presented in this article with the one by Izzo et al.,
the later has the advantage of being exact and valid for any value of ε and e0, while the former can
be expressed in terms of simpler functions and provides a greater insight on the underlying physics
of the problem.

Same as for the regular expansion, it is interesting to express the previous results in terms of the
eccentricity, the non-dimensional radial distance and the true anomaly. Regarding the eccentricity,
it is noteworthy that the terms involving K(τ, T ) cancel each other in the expansion up to O(ε),
yielding:

e(τ, T ; ε) = e0 + εe1(τ, T ) +O
(
ε2
)

(36)

e1(τ, T ) =
1

q1iq3i
[q10(T ) (P11(τ, T ) + g11(T )) + q20(T ) (P21(τ, T ) + g21(T ))]

Note that this expansion is only valid if εe1(τ, T ) is a small correction to e(τ, T ), that is, if the
initial eccentricity is sufficiently large. Otherwise, the first of Equations (7) must be used.

The expression for the non-dimensional orbital radius takes the form:

r(τ, T ; ε) =
1

q3i (q3i + q10(T ) cos τ + q20(T ) sin τ)2
+ εr1(τ, T ) +O(ε2) (37)

r1(τ, T ) = − 2

q3i (q3i + q10(T ) cos τ + q20(T ) sin τ)3
(q11(τ, T ) cos τ + q21(τ, T ) sin τ)

Unlike the results obtained using the regular expansion, this expression for r is bounded, as it
should.1 It is also noteworthy that the terms q10(T ) cos τ + q20(T ) sin τ and q11(τ, T ) cos τ +
q21(τ, T ) sin τ introduce new frequencies in the problem, as combinations of the two fundamental
ones already obtained. This behavior is more clearly seen in the solutions for the initially circular
orbit, given bellow.
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Regarding the angular drift γ between the true anomaly ν and the fictitious time θ, expanding the
second of Equations (7) for the multiple scales solution yields:

γ(τ, T ; ε) =
T

q3i
(
q23i − q21i

)3/2 + εγ1(τ, T ) +O(ε2) (38)

γ1(τ, T ) =
1

q21i

[
q10(T ) (P21 + g21)− q20(T ) (P11 + g11) +

2q21i

q3i
(
q23i − q21i

)3/2 arctanK

]

The leading order term, which was absent from the regular expansion, now varies in the slow scale.
This can be compared with the regular expansion having a secular component in θ inside its first
order term. On the other hand, the first order term γ1(τ, T ) is now periodic and bounded.

Initially circular orbit

The particular case of initially circular orbit is specially interesting for this multiple scales solu-
tion, since the expressions given for g11(T ) and g21(T ) are then exact (the third scale, however, will
still be missing). Particularizing the previous results for e0 = 0 yields:

q1(τ, T ; ε) =
ε

q33i

(
cos

T

q43i
− cos τ

)
+O(ε2) , q2(τ, T ; ε) =

ε

q33i

(
sin

T

q43i
− sin τ

)
+O(ε2)

Note that, although the zeroth order terms no longer appear, the variation with the slow scale is
retained through g11(T ) and g21(T ). Comparing these expressions with those obtained for the
regular expansion, it is straightforward to check that the later coincide with the former particularized
for T = 0.

From this solution, it is possible to derive:

e(τ, T ; ε) =
ε
√

2

q33i

[
1− cos

(
τ − T

q43i

)]1/2
+O(ε2)

r(τ, T ; ε) =
1

q33i
+ ε

2

q73i

[
1− cos

(
τ − T

q43i

)]
+O(ε2)

γ(τ, T ; ε) = arctan
sin(T/q43i)− sin τ

cos(T/q43i)− cos τ
+O(ε)

Note that e and r now present a new period, resulting from the combination of those for the fast and
slow scales.

NUMERICAL EVALUATION OF THE RESULTS

In this section, the quality of the asymptotic solutions obtained so far is evaluated by comparing
them with reference numerical solutions, computed using a high-precision integrator. It will be
seen that the use of multiple scales not only improves the quality of the results, but also provides
interesting information about the physics of the problem.

Figures 2-4 show the evolution of Dromo parameters (q1, q2), eccentricity e, non-dimensional
orbital radius r, angular displacement of the eccentricity vector γ and non-dimensional semimayor
axis a for several values of the initial eccentricity e0 and the non-dimensional thrust acceleration
parameter ε. The values of e, r, γ and a have been calculated using Equations (7) and (5). The first
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Figure 5. Relative errors in the non-dimensional orbital distance r of the regular
and multiple scales asymptotic solutions, as a function of e0 and ε. The thin black line
marks the 5% error. The region to the left of the thick black line corresponds to orbits
which escape before completing one revolution. For easier comparison, the color scale
is the same in all the figures; the white areas correspond to relative errors lower than
10−6.

14



ε [ ]

e
0
[
]

Relative error in r for the regular expansion at θ = 10π

 

 

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e−06

1e−05

0.0001

0.001

0.01

0.1

0.5

1

ε [ ]

e
0
[
]

Relative error in r for the mult. scales expansion at θ = 10π

 

 

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e−06

1e−05

0.0001

0.001

0.01

0.1

0.5

1

ε [ ]

e
0
[
]

Relative error in r for the regular expansion at θ = 20π

 

 

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e−06

1e−05

0.0001

0.001

0.01

0.1

0.5

1

ε [ ]

e
0
[
]

Relative error in r for the mult. scales expansion at θ = 20π

 

 

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e−06

1e−05

0.0001

0.001

0.01

0.1

0.5

1

ε [ ]

e
0
[
]

Relative error in r for the regular expansion at θ = 40π

 

 

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e−06

1e−05

0.0001

0.001

0.01

0.1

0.5

1

ε [ ]

e
0
[
]

Relative error in r for the mult. scales expansion at θ = 40π

 

 

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e−06

1e−05

0.0001

0.001

0.01

0.1

0.5

1

Figure 6. Relative errors in the non-dimensional orbital distance r of the regular
and multiple scales asymptotic solutions, as a function of e0 and ε. The thin black line
marks the 5% error. The region to the left of the thick black line corresponds to orbits
which escape before completing one revolution. For easier comparison, the color scale
is the same in all the figures; the white areas correspond to relative errors lower than
10−6.
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set of results, Figures 2, corresponds to the case of ε = 0.005 and e0 = 0.2; using Equations (11),
the initial values of the Dromo variables associated to this e0 are q1i = 0.1826 and q3i = 0.9129.
The first conclusion is that the regular expansion fails very soon for q1(θ); the mean value remains
constant, so it cannot reproduce the evolution in the slow scale. Its behavior is better for q2(θ),
since it contains a secular term that approximately reproduces the sinusoidal slow scale evolution
for small values of θ. It is interesting to remember that the secular components in the regular solution
correspond to the first terms of the Taylor expansions of the expressions for q10(T ) and q20(T ) given
by the multiple scales method. The multiple scales solution turns out to be remarkably good, slowly
separating from the real one as θ grows. The results for e, a and r inherit the properties from q1(θ)
and q2(θ); since the reference solutions for e, a and r oscillate between fixed values, the evolutions
in the slow scale of q1(θ) and q2(θ) must compensate each other to obtain a good approximation.
This is not possible for the regular expansion, which only contains a secular term in q2(θ). As a
consequence, a spurious secular evolution appears for e and a, separating them from the reference
solution very soon; while the amplitude of r increases with θ instead of remaining constant. On the
other hand, the multiple scales formulation faithfully represents the real solution for the range of
θ shown in the figures. Finally, a good agreement is observed between the reference and multiple
scales solutions for γ, while the regular expansion slowly diverges from them.

Figures 3 correspond to an orbital propagation with ε = 0.02 and e0 = 0.1 (q1i = 0.09350,
q3i = 0.9535). Most of the comments made for the previous case still hold, only now the separation
between the reference and the multiple scales solutions grows faster with θ. It is checked that the
greater errors for the multiple scales solution come from the evolution of the mean values in the slow
scale, not the amplitude or period of the oscillations in the fast scale. Therefore, the agreement with
the reference solution is still very good for e, r and a, since in those cases the secular evolutions of
the mean values cancel. On the other hand, the values of γ and a given by the regular expansion
not only separate very soon from the reference solution, but are also incapable of reproducing the
amplitude of the oscillations. The figure for q2(θ) is particularly interesting, clearly showing the
sinusoidal evolution of the mean value this parameter in the slow scale.

A case of initially circular orbit is considered in Figures 4, for a non-dimensional perturbing
acceleration of ε = 10−2. This example is of special interest for the study of the multiple scales
solution, since the expressions used for g11(T ) and g21(T ) are now exact. It is observed that the
amplitudes of the oscillations in both the regular and multiple scales solutions are slightly smaller
than the amplitudes for the reference solution; this error is due to the order of the asymptotic ap-
proximation, and could be reduced by retaining terms of greater order in the expansion. Regarding
the period of the oscillations, the results for initially circular orbits developed in the previous section
suggested that said period is a combination of the characteristic periods for the fast and slow scales.
This behavior is confirmed by the excellent agreement between the oscillation periods of both the
reference and the multiple scales solutions, with a small drift driven by the slower time scales not
included in the formulation. Meanwhile, the regular expansion, which does not take into account
the slow time scale, shows a slightly shorter period than the order two

The particular cases considered so far have shown that the multiple scales solution behaves much
better than the regular expansion, giving a more accurate description of the physics of the problem.
Nevertheless, a systematic evaluation of the error of both methods is advisable. To this end, the
relative error in the non-dimensional orbital position, |rref − r|/rref, has been calculated for a sig-
nificant range in both the initial eccentricity and the non-dimensional thrust parameter.2 The results
are displayed in Figures 5 and 6, for several values of the independent variable θ. For those orbits
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Figure 7. Evolution of an orbit with e0 = 0.7 and ε = 0.001. The solid line corre-
sponds to the reference numerical solution, while the dashed orbit is computed using
the multiple scales solution.

which reach the escape before completing one revolution, the error is calculated at the last point of
the reference numerical solution; a thick black line delimits the area corresponding to this group of
orbits, which is associated with high values of e0 and ε. In general, the errors are notably smaller
for the multiple scales solution, and the difference between both asymptotic solutions increase with
θ. However, the multiple scales solution presents large areas of very bad behavior for high values of
e0; this is due to the approximations taken for the calculation of g11(T ) and g21(T ), which are only
valid for low values of the initial eccentricity, and the singularity at e0 = 1. It is also noteworthy the
apparition of ‘high precision islands’ in the regular expansion, for large values of θ. This areas do
not really correspond to a good behavior of the regular expansion, but are due to the accumulation
of the drift in θ between the reference and the asymptotic solutions; for long times, this drift may
cause two different minimums of r to coincide, yielding a false low reading of the error.

Finally, Figure (7) shows an orbit with e0 = 0.7 and ε = 0.001, for both the reference and the
multiple scales solutions. The asymptotic solution remains close to the exact solution during the
first orbital revolutions, but slowly separates for larger values of θ. The rotation of the eccentricity
vector, given by γ, can be clearly appreciated.

CONCLUSIONS

Two asymptotic solutions for the two body problem perturbed by a small, constant acceleration
oriented along the radial direction have been obtained, using regular expansions and the method of
multiple scales. The equations of motion have been defined using Dromo orbital formulation, which
has proven very adequate for this purpose. Some important conclusions are reached from studying
the structure and behavior of these solutions:

• The regular expansion fails for θ ∼ 1/ε, where θ is Dromo independent variable, related
with the true anomaly, and ε is the non-dimensional perturbing acceleration. Consequently, it
cannot be used to propagate orbits for long periods of time, unless a reinitialization process
like the one proposed by Bombardelli et al.2 is included.

17



• The method of multiple scales reveals that the problem has two fundamental scales. The first
one is responsible of the 2π-periodic oscillations along each orbit; while the second one, with
a period depending on ε and e0, drives the long term variations of the mean values and the
amplitudes of the oscillations. New periods appear in some cases as the combination of the
two fundamental ones. As expected, this solution behaves noticeably better than the regular
expansion in most cases.

Finally, to close the multiple scales solution for the terms of O(ε), an additional expansion in the
initial eccentricity e0 has been introduced. Since this degrades both the quality of the solution for
high initial eccentricities and the accuracy of the expression for the slow time scale, an interesting
future work would be to derive a better approximation for these elements.

APPENDIX: COMPONENTS OF THE FIRST ORDER TERMS OF THE MULTIPLE
SCALES SOLUTION

The first order terms of the multiple scales solution for the two-body, low radial constant thrust
problem are given as a combination of the following functions:

P∗11(τ, T ) = − (q10(T ) + q3i) (1 + cos τ) + q20(T ) sin τ

q3i
(
q23i − q210(T )− q220(T )

)
(q3i + q10(T ) cos τ + q20(T ) sin τ)

S∗11(T ) = − 2q20(T )

q3i
(
q23i − q210(T )− q220(T )

)3/2
P∗21(τ, T ) =

q10(T )q20(T ) (1 + cos τ) +
(
−q23i + q220(T ) + q3iq10(T )

)
sin τ

q3i (q3i − q10(T ))
(
q23i − q210(T )− q220(T )

)
(q3i + q10(T ) cos τ + q20(T ) sin τ)

S∗21(T ) =
2q10(T )

q3i
(
q23i − q210(T )− q220(T )

)3/2
K∗(τ, T ) = −

(√
q23i − q210(T )− q220(T )− q3i + q10(T )

)
sin τ − q20(T )(1 + cos τ)

(q3i − q10(T ))(1− cos τ) + q20(T ) sin τ + (1 + cos τ)
√
q23i − q210(T )− q220(T )

Introducing the first integral q210(T ) + q220(T ) = q21i, these expressions take simpler forms

P11(τ, T ) = − (q10(T ) + q3i) (1 + cos τ) + q20(T ) sin τ

q3i
(
q23i − q21i

)
(q3i + q10(T ) cos τ + q20(T ) sin τ)

(39)

S11(T ) = − 2q20(T )

q3i
(
q23i − q21i

)3/2 (40)

P21(τ, T ) =
q10(T )q20(T ) (1 + cos τ) +

(
−q23i + q220(T ) + q3iq10(T )

)
sin τ

q3i (q3i − q10(T ))
(
q23i − q21i

)
(q3i + q10(T ) cos τ + q20(T ) sin τ)

(41)

S21(τ, T ) =
2q10(T )

q3i
(
q23i − q21i

)3/2 (42)

K(τ, T ) = −

(√
q23i − q21i − q3i + q10(T )

)
sin τ − q20(T )(1 + cos τ)

(q3i − q10(T ))(1− cos τ) + q20(T ) sin τ + (1 + cos τ)
√
q23i − q21i

(43)
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[5] G. Baù, C. Bombardelli, and J. Peláez, “A new set of integrals of motion to propagate the perturbed

two-body problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 116, No. 1, 2013, pp. 53–78.
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